
A Collaboration Environment to Support Distributed eXtreme Programming
Paul Adams

In the beginning... >> What is agility? >> Taking it to the eXtreme... >> ...then calming things down again >> What needs to be done? >> Research goals

Individuals and interactions >> Working software >> Customer collaboration >> Responding to change

 In the beginning...

There was a waterfall

And the waterfall brought order to the software
engineering process. But there was trouble on the
horizon...

● Projects were still late

● Projects were still over budget

● Projects were still not delivering suitable software

So what was wrong?

Today, the waterfall model is so widely recognised
that it is often referred to as the “classic” model.
But with hind-sight we are able to evaluate its
weaknesses and how it contributed to the troubles
of software engineering...

● Customer collaboration
All of the customer collaboration was taking
place early in the development cycle,
potentially years before the software is developed

● Documentation
Too much emphasis was given to the production
of supporting documentation at each stage,
rather than the production of software

● An unresponsive approach
The process was so strict that there was no
maneuvering room for responding to changes
in the customer's needs

But now we have learned our lesson. Now we
are agile...

 What is agility?

Over time new approaches to the software
engineering process developed as practitioners
started to address the issues in the waterfall
model.
In 2001 representatives from each of these
new approaches came together for a skiing
holiday in Utah. Motivated by their mutual
appreciation of their new processes, they
produced...

● Individuals and interactions over processes and
tools

● Working software over comprehensive
documentation

● Customer collaboration over contract negotiation
● Responding to change over following a plan

... the agile manifesto

 Taking it to the eXtreme...

One of these new approaches is
eXtreme Programming (XP)

● Small development iterations
Useful software is produced in small increments

● Lightweight method
XP is based on key principles not on strict
processes and rules

● Responsive to change
XP is particularly useful in an environment of
volatile requirements

● Empowered project team
The eXtreme Programmers have control over
the project schedule, not the project managers

 ...then calming things down again

If eXtreme Programming is assessed against the “individuals and interactions” requirement of the
agile manifesto, certain key elements are apparent...

 Research goals

● Daily meetings
All parties (managers, programmers, customer) meet on a daily basis to ensure that everyone
fully comprehends the current status of the project

● Continuous integration
As new features are developed frequently there is a requirement for the constant integration
of new components into the existing system. This is of particular important as often, in XP,
there is no set architecture for the system. Instead the architecture evolves as the system does.

● Pair programming
Programmers work in pairs, one typing, the other watching. The purpose of the second
programmer is to assist the typer and to learn about the evolving system. These pairs are
reassessed on a regular basis.

All of these interactions, plus the lightweight nature of XP, imply one major requirement for
the success of eXtreme Programming...

So, what's been done about all this?

● The “Minimally Intrusive Longterm Organisational Support” (MILOS) System
http://sern.ucalgary.ca/~milos/ papers/2002/MaurerMartel2002a.pdf

MILOS was designed to offer support for task creation, pair programming and task management
and awareness. It was implemented as a collection of tools, with pair programming supported by
NetMeeting. Similar systems exist based on VNC.

● Adaptive workflow
Ricardo Jota and Antönio Rito-Silva, "Supporting Distributed Extreme Programming with Adaptive Workflow"

The adaptive workflow model is based on using adaptable features within a traditional workflow
environment in order to allow for the distribution of team members. This approach offers no
specific support for pair programming; a key feature of XP.

I propose that it is desirable and possible to develop
a system to enable the distribution of XP so that an
existing team of eXtreme Programmers, once
distributed, will not suffer a degradation of project
velocity (that is, the rate of conversion of required
features to implemented features).

To this end there are some intermediate goals:
● To gain a fuller understanding of the XP process
● To gain an understanding of the requirements of

distributed software engineers in XP
● To design, implement, test and deploy an

environment to support the activities of

distributed eXtreme Programmers
● To adapt and improve the the environment through

continuous evaluation of its use

 What needs to be done?

Existing solutions for distributing eXtreme
Programming appear to fall short in two major ways:

● They do not support ALL features of XP (such as
pair programming)

● They are composed as an ad hoc integration of
existing tools

To allow eXtreme Programmers to distribute
their group in an effective manner, a system is
required that supports all features of the XP
process and that is specifically designed for the
purpose of supporting distributed XP.

Why distribute XP?

Enforcing the collocation requirement on an XP
project can be very restricting. Here are some
reasons why the team may wish to distribute:

● The customer may not be based close to the
project team

● Project team members may be involved with
many projects and need to move about

● A support tool for distributed eXtreme
programming would enable open source
developers to use XP.

... the team MUST be collocated.

