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Abstract: The advancement of deep learning has resulted in significant improvements on various
visual tasks. However, deep neural networks (DNNs) have been found to be vulnerable to well-
designed adversarial examples, which can easily deceive DNNs by adding visually imperceptible
perturbations to original clean data. Prior research on adversarial attack methods mainly focused
on single-task settings, i.e., generating adversarial examples to fool networks with a specific task.
However, real-world artificial intelligence systems often require solving multiple tasks simultaneously.
In such multi-task situations, the single-task adversarial attacks will have poor attack performance on
the unrelated tasks. To address this issue, the generation of multi-task adversarial examples should
leverage the generalization knowledge among multiple tasks and reduce the impact of task-specific
information during the generation process. In this study, we propose a multi-task adversarial attack
method to generate adversarial examples from a multi-task learning network by applying attention
distraction with gradient sharpening. Specifically, we first attack the attention heat maps, which contain
more generalization information than feature representations, by distracting the attention on the attack
regions. Additionally, we use gradient-based adversarial example-generating schemes and propose to
sharpen the gradients so that the gradients with multi-task information rather than only task-specific
information can make a greater impact. Experimental results on the NYUD-V2 and PASCAL datasets
demonstrate that the proposed method can improve the generalization ability of adversarial examples
among multiple tasks and achieve better attack performance.
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1. Introduction

Over the last decade, deep neural networks (DNNs) have achieved considerable success on a
multitude of visual tasks [1–4], such as semantic segmentation [5], monocular depth estimation [6],
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surface normal estimation [7], etc. A large number of studies have focused on single-task situations,
that is, training a separate neural network for a single task. However, real-world artificial intelligence
(AI) problems often require solving multiple learning tasks concurrently. For instance, an
autonomous driving system should be able to detect all objects in the driving scene and estimate their
distance and trajectory in order to keep the car safely operated in its surroundings. Similarly, a
human-computer interaction system should be able to detect the presence of people, estimate the
pose, track the hand, etc., in order to analyze human actions and make reactions. Therefore, these
problems have motivated researchers to develop generalized deep learning models in which multiple
learning tasks can be solved simultaneously.

Multi-task learning (MTL) [8–10] is a technique to train a multi-task network that can infer several
desired task outputs with only one input given. MTL generally leverages a shared encoder for all
the desired tasks and separate task-specific heads as decoders for different tasks. Such multi-task
networks of MTL can reduce the storage cost, as well as the inference time, compared to the single-
task case, where each individual task is solved separately by its own network. The reason is that
the shared layers result in less memory cost than several single-task networks and avoid repeatedly
calculating the features, while the single-task networks are required to calculate once for each task.
Thus, developing MTL to learn shared representations from multi-task supervisory signals has become
a popular research theme.

Despite the notable achievements of DNNs in visual perception, many recent works have
demonstrated that DNNs are vulnerable to adversarial examples [11, 12], which are able to cheat
DNNs to produce incorrect predictions in high confidence with imperceptible perturbations added to
the clean data. Attack methods to craft adversarial examples have been widely researched for the
single-task setting, where adversarial examples are crafted only for a single task. Obviously, these
single-task adversarial examples will have poor attack performance on other tasks on which there has
been no training. Therefore, existing single-task adversarial attack methods have their limitations in
the multi-task setting, which has more practical significance.

There have been few works on adversarial attacks under the multi-task setting. Guo et al. [13]
proposed a multi-task adversarial attack method by building a multi-task generator for adversarial
perturbations. The generator has a similar architecture to an MTL network consisting of a shared
encoder for all tasks and multiple task-specific decoders. That is, the adversarial examples for each
task are generated separately through the task-specific decoders. However, using the same input to
perform multiple tasks is more common in multi-task problems. Therefore, we concentrate on
generating consistent adversarial examples for multiple tasks, i.e., generating one adversarial example
for each image to attack an MTL network with multiple tasks. In addition, aiming at one specific class
to attack is more rational in real-world applications because many real-world systems will collapse as
long as a specific class is attacked. Thus, we focus on class-specific multi-task adversarial attacks
which generate adversarial examples for each class contained in each image to make the multiple
tasks fail on the class-specific regions.

To this end, we propose a multi-task adversarial attack method that uses attention distraction with
gradient sharpening (ADGS). Specifically, in order to improve the generalization capability of the
adversarial examples among multiple tasks, we propose an attention-distracting loss to attack the
attention heat maps motivated by that attention can contain more generalization information; for
instance, the authors of [14] used an attention-based method to fuse the rich semantic information of
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heterogeneous nodes, and those of [15] used an attention mechanism to capture the correlation
between the spatial traffic flow images’ channels. By optimizing the loss, the generated adversarial
examples can distract the attention of the multi-task network from the class-specific regions to other
regions so that the multiple tasks can fail on the specific class. Further, on the basis of the
gradient-based adversarial example-generating schemes, we propose a gradient sharpening method to
amplify the influence of gradients that contain multi-task information, rather than solely task-specific
information. The main contributions of our paper can be summarized as follows:

• We focus on a significant multi-task adversarial attack problem to generate consistent adversarial
examples for a multi-task network. Such adversarial examples can attack multiple tasks with one
consistent adversarial example for each image, while existing single-task adversarial examples
can only attack one concerned task. Therefore, multi-task adversarial attacks can be more harmful
to real-world visual systems, which are commonly multi-task systems.
• We propose an attack method using ADGS for the multi-task setting, which can improve the

generalization capability of the consistent adversarial examples among multiple tasks, and
therefore realize more effective multi-task adversarial attacks.
• The effectiveness of the proposed ADGS method is empirically demonstrated in experiments on

NYUD-V2 [16] and PASCAL [17] datasets to attack a multi-task network with multiple tasks.
Our ADGS method can not only obtain a larger average per-task performance drop than the
baseline attack methods, but it also has better attack performance on all of the concerned tasks,
which indicates the improved generalization capability of ADGS among multiple tasks.

The remainder of this paper is structured as follows. In the next section, we review the literature
related to MTL and adversarial attacks. In Section 3, we introduce the proposed ADGS method for
class-specific multi-task adversarial attacks. In Section 4, experimental results are shown and we
validate the effectiveness of the proposed method. Finally, we conclude this paper and discuss future
works in Section 5.

2. Related works

In this section, we briefly review the related literature on MTL and adversarial attacks.

2.1. Multi-task learning

Recently, MTL [8–10] has been widely studied as a result of the extensive application scenarios
and the improvement of task performance by leveraging the complementary knowledge from multiple
tasks. Before the deep learning era, MTL works aimed at obtaining better generalization performance
by implementing joint task learning that models the common information among tasks [18–20]. Along
with the development of deep learning, MTL has attracted more attention. In the context of deep
learning, MTL is performed by learning shared representations from multi-task supervisory signals
and outputting multi-task predictions by using task-specific heads [21–23].

Misra et al. [24] proposed a “cross-stitch” unit in the encoder, which combined the activations
from multiple single-task networks and can be trained end-to-end. The cross-stitch networks perform
soft parameter sharing in deep MTL architectures, where each task is assigned its own set of
parameters and a feature-sharing mechanism handles the cross-task talk. Gao et al. [25] proposed a
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similar architecture as a cross-stitch network, named the neural discriminative dimensionality
reduction cnn, which incorporated a dimensionality reduction mechanism into the feature fusion
layers. Liu et al. [26] proposed a multi-task attention network, which consisted of a single shared
backbone network to extract a global feature pool, together with a soft-attention module for each task
to select task-specific features from the global pool. Wallingford et al. [27] proposed a task-adaptive
parameter sharing method to adaptively select a minimal subset of the existing layers in a pre-trained
multi-task network for each task and replace them with task-specific parameters. Soft parameter
sharing approaches need to assign quite a few parameters for each task so that the size of the
multi-task network tends to grow linearly with the number of tasks. On the other hand, hard
parameter sharing is a kind of technique that shares all of the parameters in the multi-task encoder and
utilizes unshared parameters in the task-specific heads. Kokkinos [28] proposed the UberNet by
constructing an image pyramid to process the multi-resolution versions of the images through shared
encoders, which branched out into additional task-specific layers. Chen et al. [22] proposed a gradient
normalization (GradNorm) algorithm to control the training of multi-task networks by dynamically
tuning gradient magnitudes. Sener and Koltun [23] proposed a multiple-gradient descent algorithm to
update the shared multi-task network weights by finding a common descent direction among the
task-specific gradients. Ott et al. [29] proposed several strategies to weight the losses for multivariate
time series classification and trajectory regression in a multi-task network.

2.2. Adversarial attacks

Szegedy et al. [11] first demonstrated that DNNs can be easily fooled by adversarial examples,
which can be generated by adding elaborate and visually imperceptible perturbations to clean images.
They used a box-constrained L-BFGS method to calculate adversarial examples. These carefully
crafted adversarial examples can fool the DNNs with high probability while appearing
indistinguishable from the clean images to the human visual system. Such adversarial attacks on
DNNs on image classification tasks have been extensively studied. Compared with the
time-consuming L-BFGS attack in [11], Goodfellow et al. [12] proposed a faster method, named the
fast gradient sign method (FGSM), which generated adversarial examples by performing one-step
updates along the direction of the sign of the gradient at each pixel. Madry et al. [30] further
developed the FGSM by using a projected gradient descent (PGD) method which generated
adversarial examples by iteratively updating multiple small steps while adjusting the direction after
each step. Moosavi-Dezfooli et al. [31] proposed the DeepFool algorithm to generate minimal
adversarial perturbations in an iterative manner by moving the data points toward the classification
boundary. In contrast to these adversarial input example attacks, another type of adversarial attack
pays attention to attacking network weight parameters. Rakin et al. [32] proposed the targeted bit-flip
attack method to make a classification network predict some selected images as a target class by
flipping a few vulnerable weight bits, which were selected by a searching algorithm.

In addition, adversarial attacks have also been actively investigated beyond the image classification
task in computer vision. Xie et al. [33] proposed the dense adversary generation (DAG) algorithm
to compute adversarial examples for semantic segmentation or object detection tasks. To generate
adversarial examples, the DAG algorithm iteratively optimizes a loss function that targets all pixels for
semantic segmentation, or object proposals for object detection, instead of the entire image in image
classification. Zhao et al. [34] proposed an AP-GAN attack method for the image-retrieval task, which
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uses a generative adversarial network to generate adversarial patches instead of modifying the entire
image. As for the face attribute recognition task, Mirjalili and Ross [35] proposed a technique to
generate adversarial perturbations for face images so that the adversarial face images can fool a gender
classifier while retaining the biometric utility for a face matching system. For the monocular depth
estimation task, Yamanaka et al. [36] proposed to generate adversarial patches attached to the clean
images that can fool the target models into estimating an incorrect depth for the regions of the patches.
Besides, there are other types of attack and defense methods focusing on data security. Niu et al. [37]
proposed to model the dynamic process of the advanced persistent threat attack. Chen et al. [38]
proposed a privacy-preserving deep learning model for vehicular ad-hoc networks by encrypting the
transportation data.

However, there have been few works on adversarial attacks focusing on the significant multi-task
situation. Guo et al. [13] proposed a unified framework that can craft adversarial examples for
multiple tasks. The framework consists of a shared encoder for all tasks and multiple task-specific
decoders, which is similar to the architecture of MTL networks. Their work is committed to
leveraging shared knowledge among multiple tasks to generate multi-task adversarial examples
efficiently. The adversarial examples for different tasks are not the same due to their task-specific
decoders. In contrast, we pay attention to generating consistent adversarial examples for different
tasks since using the same input to perform multiple tasks is more common in multi-task problems.

3. Class-specific multi-task adversarial attack

The framework of our proposed method is depicted in Figure 1. We propose to generate adversarial
examples to attack a multi-task network. First, we design an attention-distracting loss function to attack
the attention heat maps, which contain more generalization information than feature representations.
Then, during the gradient-based adversarial example-generating process, we propose to sharpen the
gradients so that the gradients with multi-task generalization information, rather than only task-specific
information, can make a greater impact.

3.1. Problem formulation

The objective of the multi-task adversarial attack is to craft perturbations that can fool a deep multi-
task model f (·) for each image Xi in the dataset so that each adversarial image can conceal all task
labels yi =

{
y1

i , y
2
i , . . . , y

T
i

}
from the deep multi-task model, where T represents the number of the tasks.

Considering that attacking a specific class is more rational in reality, we focus on the class-specific
setting. That is, for each class k contained in each image, we find a perturbation ∆Xk

i to make all
of the tasks fail on the specific regions Rk

i = {(u, v) |ci (u, v) = k } as much as possible, which can be
formulated as follows:
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∥∥∥∆Xk

i

∥∥∥
p
≤ ε

(3.1)

where ci denotes the pixel-level class label of Xi. d (x1, x2) denotes a distance function to measure
the difference between x1 and x2. ∥·∥p is the Lp norm, and ε limits the maximum deviation of the
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Figure 1. Overview of the proposed method. We first propose to attack the attention
heat maps by using attention-distracting loss to improve the generalization ability of the
adversarial examples among multiple tasks. Then, we use gradient-based schemes to
generate adversarial examples and propose a gradient sharpening operation to reduce the
impact of the gradients with only task-specific information. The generated adversarial
examples are used to attack a multi-task network to make the multiple tasks fail as much
as possible.

perturbation.

3.2. Attention-distracting loss

Semantic segmentation is a basic pixel-level task in MTL. Most MTL models contain the semantic
segmentation branch because semantic segmentation has correlations with many other tasks, and it
can make the feature representations keep abundant information so that combining the semantic
segmentation task can boost the performance under an MTL setup. Therefore, we concentrate on
taking advantage of the semantic segmentation branch to generate adversarial examples with high
generalization capability among the multiple tasks. Considering that attention heat maps contain more
generalization information than feature representations, we propose to attack attention heat maps in
order to make the adversarial examples able to attack multiple tasks effectively.

The basic idea is to distract the focus of the attention heat maps. Let H (X, k) stand for the attention
heat map of the input X and a specified class k. H (X, k) is a tensor with a dimension consistent with that
of X. In this paper, we utilize Grad-CAM [39] to calculate the attention heat map H (X, k). Grad-CAM
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is a well-known method to calculate activation maps for classification tasks, where the output from
the network is typically a global label and no spatial information is involved. However, in our case,
the output from the network is a pixel-wise semantic segmentation map that depends on the location
of a pixel. Therefore, we extend the idea of Grad-CAM to our problem. First, we focus on one pixel
and use Grad-CAM to calculate the attention heat map on the basis of the output on the pixel (u, v), as
follows:

Gu,v
k (i, j) =

∑
m

Am (i, j) ·
1
|RA|

∑
(i, j)∈RA

∂Fk
s (u, v)

∂Am (i, j)

 (3.2)

where Am is the m-th feature map of the multi-task model and (i, j) denotes the spatial location on the
feature map. RA is the location set of the feature map. Fk

s (u, v) denotes the semantic segmentation
output of class k on pixel (u, v). We then resize the attention map Gu,v

k (i, j) to the same size as the input
image by using bilinear interpolation and take the average over the regions (u, v) ∈ Rk to obtain the
final attention heat map, as follows:

H (X, k) =
1∣∣∣Rk
∣∣∣ ∑

(u,v)∈Rk

Resize
(
Gu,v

k

)
(3.3)

This attention heat map can reflect the importance of the pixels for the predictions on class k’s specific
regions Rk.

Based on the calculated attention heat map, our goal is to lead the network to concentrate on
irrelevant regions of class k so that the network can make incorrect predictions for multiple tasks.
Therefore, we propose an attention-distracting loss function to distract the attention from the real
regions of class k to other regions, which can be formulated as follows:

Lad (X, k) =
1∣∣∣Rk
∣∣∣ ∑

(i, j)∈Rk

H (X, k) (i, j)

−
1∣∣∣Rk∗

∣∣∣ ∑
(i, j)∈Rk∗

H (X, k) (i, j)
(3.4)

where Rk∗ = {(u, v) |c (u, v) , k } represents the irrelevant regions of class k. For the predictions on
class k’s relevant regions Rk, optimizing this attention-distracting loss can decrease the attention on
the regions themselves and, meanwhile, increase the attention on other irrelevant regions. That is, the
predictions on Rk for multiple tasks can be seriously disturbed by irrelevant regions.

Moreover, the attention-distracting loss could be readily combined with the existing task-attacking
loss schemes, such as cross-entropy loss for semantic segmentation, resulting in the following overall
attacking loss:

Latt (X, k) = λadLad (X, k) −
T∑

t=1

λt
mtL

t
mt (X, k) (3.5)

where λad and λt
mt represent the trade-off parameters for the attention-distracting loss Lad and the

multi-task loss on the t-th task Lt
mt. Minimizing the overall attacking loss Latt can decrease the

attention-distracting loss and simultaneously increase the multi-task losses. Therefore, we can distract
the attention and, meanwhile, directly reduce the multi-task performance by optimizing loss Latt.
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Here, in order to make the attack meet the demand for the class-specific setting, we modify the
original multi-task losses by focusing on the k-th class. In detail, a class-specific region mask is used
during the calculation of the losses, as follows:

Lt
mt (X, k) =

1∣∣∣Rk
∣∣∣ ∑

(i, j)∈Rk

Lt
mt,px (X) (i, j) (3.6)

where Lt
mt,px (X) denotes the original pixel-level loss for task t. Especially, for the human part

segmentation task, we use the region mask of class person.

3.3. Gradient sharpening

Basically, we generate the adversarial examples on two types of schemes by calculating the gradient
g. The first is a one-step scheme to compute the adversarial examples, which can be formulated as
follows:

Xk
adv = ClipX,ε

(
X − ε

g (X, k)
∥g (X, k)∥1

/
N

)
(3.7)

where the ClipX,ε (·) function performs per-pixel clipping to make the result limited in the L∞
ε-neighborhood of the source image X. The gradient g is normalized by its average L1-norm, i.e.,
∥g (X, k)∥1

/
N, where N is the size of the image. The second scheme is computing the adversarial

examples in a multi-step iterative process, which can be described as follows:

Xk,0
adv = X

Xk, j+1
adv = ClipX,ε

Xk, j
adv − α

g
(
Xk, j

adv, k
)

∥∥∥∥g
(
Xk, j

adv, k
)∥∥∥∥

1

/
N

 (3.8)

where ε limits the maximum deviation of the overall perturbation, while α represents the step deviation
in the multi-step iterative process. Based on the overall attacking loss, the gradient g can be calculated
by

g(X, k) =
∂Latt (X, k)
∂X

(3.9)

However, due to the integration of multi-task branches, the overall loss involves much task-specific
information. Meanwhile, the gradients of regions which are correlated to multiple tasks can have
greater absolute values than those of regions which are only correlated to a single task. Therefore,
in order to make the adversarial examples pay more attention to the regions which are correlated to
multiple tasks, we propose a gradient sharpening method. Specifically, we use an exponential function
to sharpen the calculated gradients so that the gradients with higher absolute values can make a greater
impact. The sharpened gradients can be calculated by

gs (X, k) = sign (g (X, k)) exp
(
|g (X, k)|
γ

)
(3.10)

where 0 < γ < 1 is a parameter to control the sharpening degree. A lower value of γ can make
the gradients sharper, and vice versa. Then, we replace the gradient g in Eq (3.7) or (3.8) with the
sharpened gradient gs and generate the adversarial examples. In addition, the final perturbation added
to the original image can be calculated by

∆Xk = Xk
adv − X (3.11)

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13562–13580.



13570

4. Experiments

We evaluated the proposed method by performing extensive experiments on two common datasets.
We also designed several validation experiments to show the effectiveness of the proposed method
from different aspects. The details of the experimental settings and results are reported in this section.

4.1. Experimental settings

4.1.1. Datasets

We performed our experimental evaluation on the NYUD-V2 [16] and PASCAL [17] datasets. The
NYUD-V2 dataset is composed of indoor scene images recorded by both RGB and depth cameras.
Each image with a label density map and depth map was used for semantic segmentation and depth
estimation tasks in this study. We used the original 795 training and 654 test images for our
experiments. The PASCAL VOC dataset is a widely used dataset for semantic segmentation. As an
extension, PASCAL-Context [40] provides additional annotations for PASCAL VOC 2010. We used
the split from PASCAL-Context, which has annotations for both semantic segmentation and human
part segmentation. In addition, we obtained the surface normal labels from [41], which distilled them
from a pre-trained state-of-the-art model [42]. Based on this PASCAL dataset, we performed three
tasks: semantic segmentation, human part segmentation and surface normal estimation.

4.1.2. Implementation details

We generated adversarial examples to fool a deep MTL network pre-trained on the datasets with a
shared encoder for all of the tasks and separate task-specific heads, which is one of the most
commonly used backbones in deep MTL [9,10]. As for the architecture, we used a DeepLab-v3+ [43]
backbone network, which is based on a ResNet [3] encoder with dilated convolutions and powerful
decoders with atrous spatial pyramid pooling modules to preserve reasonable spatial dimensions for
dense predictions. ResNet-50 and ResNet-18 were used as encoders for the NYUD-V2 and PASCAL
datasets, respectively. All networks in our experiments were implemented by using PyTorch [44] on a
single GeForce RTX 3090 GPU. In order to train well-performed multi-task networks on the two
datasets, we used the effective training setup from [41], which selects the optimal loss weights by grid
search. As for the trade-off parameters in our attacking loss function, we use the same loss weights as
the training strategy of the multi-task network for the multi-task losses and set λad = 1 and λad = 0.7
for the proposed attention-distracting loss on the NYUD-V2 and PASCAL datasets, respectively. In
addition, the adversarial perturbation is bounded as ε = 0.12 × 255, and γ is set to 0.1 for the
appropriate sharpening level.

4.1.3. Evaluation metrics

We first evaluate the performance of original images and adversarial images on different tasks by
using several different metrics. We use the mean intersection over union (mIoU) to evaluate the
semantic segmentation and human part segmentation tasks. The depth estimation task is evaluated by
using the root mean square error. The surface normals are evaluated by using the mean error in the
predicted angles. Then, we use the drop of the generated adversarial images on the task performance
to evaluate the success rate of the adversarial attacks. A larger drop value means a more powerful
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adversarial attack. The class-specific multi-task adversarial attack performance of attack method a
can be defined as the average per-task drop on performance with respect to the original image ori:

Dk
a =

1
T

T∑
t=1

(−1)lt
Mk

ori,t − Mk
a,t

Mk
ori,t

(4.1)

where lt = 1 if a lower value is better for performance measure Mt of task t, and it is 0 otherwise. In
addition, the average Dk

a among all classes can be calculated by

Da =
1
K

K∑
k=1

Dk
a (4.2)

where K represents the number of classes.

4.1.4. Baselines

In order to show the effectiveness of the proposed method, we compare our proposed method on the
two types of schemes with two popular attack strategies: FGSM [12] and PGD [30]. The FGSM is a
one-step attack strategy, and PGD is a multi-step variant. We use the multi-task attack losses without
the proposed attention-distracting loss to perform FGSM and PGD attacks. The gradient-sharpening
operation is not used during the calculation of the gradients. In addition, the FGSM is compared
with our method on the one-step scheme, while PGD is compared with our method on the multi-step
iterative scheme for fair comparison.

4.2. Experimental results

We evaluated the proposed ADGS method, including the one-step scheme ADGS os and the
multi-step iterative scheme ADGS ms, on the NYUD-V2 and PASCAL datasets. As a comparison, we
also implemented the baseline methods, FGSM and PGD. Considering the efficiency, the calculation
of the attention heat maps and the backpropagation of the attention-distracting loss will increase
computational time cost, while the gradient-sharpening operation has little impact. But, the increase is
quite reasonable and can hardly affect efficiency since it only takes 0.141 s and 0.053 s for one
generation step of the proposed ADGS method on the NYUD-V2 and PASCAL datasets, respectively,
while the baseline methods take 0.053 s and 0.025 s.

The results on the NYUD-V2 dataset are reported in Table 1. We can see that the proposed ADGS
method can obtain a larger average per-task drop Dk

a than the baseline attack methods on all 40 classes.
In fact, the adversarial examples generated by ADGS had better attack performance on both semantic
segmentation and depth estimation tasks, which indicates the effectiveness of the proposed ADGS
method. The reason can be that ADGS neglects much task-specific information and pays attention
to the multi-task common information during the generation of the adversarial examples so that the
generated adversarial examples can have higher generalization capability among the multiple tasks.

As for the PASCAL dataset, the results are shown in Tables 2 and 3. While the number of tasks we
performed on the PASCAL dataset increased to three, the proposed ADGS could still realize better
attack performance on all of the semantic segmentation, surface normal estimation and human part
segmentation tasks. This can further demonstrate that the proposed attention-distracting loss and
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Table 1. Comparison results on NYUD-V2 dataset for semantic segmentation and depth
estimation tasks. “Avg.” represents average results among the classes. The symbols ↓ and
↑ denote that lower and higher values mean better attack performance, respectively. The
specific values of the proposed method’s increase or decrease from the baseline methods are
shown in parentheses.

Task Method wall floor cabinet bed chair sofa table door window
book-
shelf

picture counter blinds desk

Semantic
Segmentation ↓

Clean 76.9901 81.3799 56.1077 61.2220 57.6939 58.1987 38.1248 37.0479 43.4251 43.2707 58.2955 55.4290 55.4129 19.1879
FGSM 47.3930 45.4958 16.0723 11.0596 10.1264 22.7287 0.8679 2.3653 6.1089 12.4503 20.0025 5.5507 13.3367 0.3029

ADGS os 44.4819 41.5778 14.6603 11.0465 8.1305 22.2645 0.8673 2.3409 6.0079 10.4823 17.6635 5.3165 13.3357 0.2710
PGD 33.5250 22.6349 5.9242 1.9502 1.8691 1.3900 0.0000 0.4543 0.0102 0.2488 5.6603 0.1923 1.9070 0.0000

ADGS ms 26.3597 17.5876 3.9453 1.3440 1.2667 1.0780 0.0000 0.3825 0.0058 0.0140 4.0807 0.0981 1.8266 0.0000

Depth
Estimation ↑

Clean 0.5854 0.3197 0.4420 0.3137 0.4842 0.4418 0.5393 0.7262 0.8865 0.7056 0.6494 0.5338 0.4717 0.4129
FGSM 1.3057 0.8148 1.1072 0.6519 0.8720 0.8259 0.8516 1.2113 1.6467 1.3053 1.4624 1.1134 1.0825 0.7108

ADGS os 1.3107 0.8194 1.1683 0.6521 0.8846 0.8380 0.8517 1.2581 1.6785 1.3151 1.4795 1.1260 1.0833 0.7287
PGD 2.2207 1.4189 1.6785 0.8806 1.2030 1.0348 1.1471 1.5570 2.2553 1.6317 2.2755 1.4921 1.6873 1.1452

ADGS ms 2.2917 1.5711 2.0371 0.8870 1.2304 1.0753 1.1583 1.7007 2.2573 1.6538 2.3448 1.5169 1.7535 1.2406

Dk
a (%) ↑

FGSM 80.74 99.48 110.93 94.87 81.27 73.94 77.82 80.21 85.84 78.11 95.44 99.28 102.71 85.28
ADGS os 83.06 102.61 119.10 94.92 84.30 75.71 77.83 83.46 87.75 81.08 98.76 100.67 102.80 87.54

PGD 167.90 208.00 184.60 138.76 122.61 115.92 106.35 106.59 127.19 115.34 170.35 139.59 177.13 138.68
ADGS ms 178.62 234.91 226.93 140.28 125.96 120.77 107.39 116.58 127.31 117.17 177.04 142.00 184.22 150.23

Task Method shelves curtain dresser pillow mirror
floor
mat

clothes ceiling books
refrig-
erator

tele-
vision

paper towel
shower
curtain

Semantic
Segmentation ↓

Clean 13.6158 48.5403 40.3091 38.4484 36.2413 31.1598 20.6583 66.4646 30.9703 47.7018 54.1486 30.9493 34.5802 30.2603
FGSM 0.0001 9.2770 0.5528 4.9420 0.0000 2.8643 0.5000 16.9892 0.6651 0.9573 2.6580 2.3315 1.2761 0.0000

ADGS os 0.0000 9.1310 0.5222 4.6005 0.0000 1.9793 0.4822 15.0138 0.4619 0.6029 2.6105 2.3084 1.0660 0.0000
PGD 0.0000 1.4859 0.0000 0.4213 0.0000 0.0000 0.0000 8.9575 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ADGS ms 0.0000 1.3438 0.0000 0.3258 0.0000 0.0000 0.0000 8.2651 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Depth
Estimation ↑

Clean 0.5850 0.5018 0.3416 0.4258 0.9438 0.3605 0.4899 0.9541 0.4919 0.4945 0.7112 0.3806 0.4965 0.2747
FGSM 1.1218 1.0815 0.7797 0.8332 1.2392 0.6517 0.8076 1.8005 0.8682 0.9965 1.4918 0.7544 1.0696 0.5495

ADGS os 1.1270 1.1000 0.7904 0.8558 1.3438 0.6527 0.8148 1.8191 0.9066 1.0062 1.4921 0.7546 1.0826 0.5933
PGD 1.6581 1.8227 0.9551 1.1466 1.7877 0.8236 1.1145 2.7418 1.5463 1.6348 2.2144 1.3101 1.8185 0.7554

ADGS ms 1.7015 1.8552 1.1677 1.1961 2.2983 0.8486 1.1393 2.9048 1.7052 1.6634 2.2531 1.3386 1.8766 1.1058

Dk
a (%) ↑

FGSM 95.88 98.21 113.44 91.41 65.65 85.79 81.21 81.58 87.18 99.75 102.42 95.34 105.87 100.02
ADGS os 96.32 100.20 115.04 94.51 71.19 87.35 81.99 84.04 91.41 101.11 102.49 95.40 107.48 107.99

PGD 141.72 180.09 139.80 134.09 94.71 114.23 113.75 136.95 157.18 165.30 155.68 172.11 183.13 137.50
ADGS ms 145.43 183.47 170.92 140.03 121.76 117.70 116.28 146.01 173.33 168.19 158.40 175.85 188.98 201.27

Task Method box
white-
board

person
night
stand

toilet sink lamp bathtub bag
other

structure
other

furniture
other
prop

Avg.

Semantic
Segmentation ↓

Clean 13.1307 51.9528 73.3729 33.4379 71.6365 52.0400 43.7487 38.2039 10.5524 26.1339 14.5337 35.5264 43.2526
FGSM 0.0000 0.0000 9.9659 0.0008 10.4161 4.3659 8.8168 0.0000 0.0000 3.1974 0.2881 10.2078 7.6033

ADGS os 0.0000 0.0000 9.5471 0.0007 10.0458 1.7914 8.1467 0.0000 0.0000 2.7937 0.1635 9.2670 6.9745 (-0.6288)
PGD 0.0000 0.0000 0.4877 0.0000 0.0000 0.3154 0.3073 0.0000 0.0000 0.3802 0.0371 1.7777 2.2484

ADGS ms 0.0000 0.0000 0.4803 0.0000 0.0000 0.0023 0.0580 0.0000 0.0000 0.0240 0.0000 1.4320 1.7480 (-0.5004)

Depth
Estimation ↑

Clean 0.6017 0.5873 0.4252 0.2881 0.2229 0.2832 0.5839 0.4470 0.5608 0.8809 0.5875 0.6082 0.5260
FGSM 0.8273 0.9164 1.1222 0.5749 0.5938 0.8830 1.2003 0.4457 0.8587 1.3775 0.8919 1.0720 0.9943

ADGS os 0.9314 1.0417 1.1475 0.5765 0.6125 0.9291 1.2181 0.4732 0.8661 1.4067 0.9662 1.1085 1.0203 (+0.0260)
PGD 1.1754 1.4978 1.8442 0.7790 0.9077 1.4209 1.9631 0.6213 1.3496 1.7602 1.1948 1.6370 1.4777

ADGS ms 1.6311 1.9918 1.8450 0.8002 1.1363 1.5940 2.0962 0.8368 1.3861 1.7838 1.6074 1.7023 1.6046 (+0.1269)

Dk
a (%) ↑

FGSM 68.75 78.02 125.17 99.77 125.93 151.70 92.71 49.85 76.56 72.07 74.92 73.76 90.97
ADGS os 77.40 88.69 128.43 100.05 130.38 162.31 95.00 52.93 77.22 74.50 81.67 78.09 94.07 (+3.10)

PGD 97.67 127.52 216.53 135.20 203.61 250.56 167.75 69.50 120.33 99.18 101.56 132.08 144.17
ADGS ms 135.54 169.57 216.63 138.88 254.89 281.42 179.43 93.60 123.58 101.20 136.80 137.93 158.16 (+13.99)
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Table 2. Comparison results on PASCAL dataset for semantic segmentation and surface
normal estimation tasks. “Avg.” represents average results among the classes. The symbols ↓
and ↑ denote that lower and higher values mean better attack performance, respectively. The
specific values of the proposed method’s increase or decrease from the baseline methods are
shown in parentheses.

Task Method aeroplane bicycle bird boat bottle bus car cat chair cow
dining
table

Semantic
Segmentation ↓

Clean 69.7485 55.3695 65.2569 45.2368 54.5278 80.0767 69.7038 77.9084 23.2084 62.9036 35.6100
FGSM 6.3797 13.0935 4.8273 2.1559 15.9784 23.6383 27.0001 28.2298 1.5824 0.0819 2.3187

ADGS os 5.4093 12.9291 2.0414 1.7624 10.6560 8.1874 23.0062 27.3757 1.3500 0.0814 2.2334
PGD 0.0355 1.3790 1.0742 1.3339 5.0285 7.0247 9.2926 5.3788 0.0000 0.0000 0.0053

ADGS ms 0.0000 1.1483 0.0076 1.3154 2.0298 1.8503 7.9092 4.9685 0.0000 0.0000 0.0016

Surface
Normal

Estimation ↑

Clean 15.6729 17.5815 13.7144 17.5100 15.7998 12.5370 16.2255 14.1990 16.0765 16.0318 14.9989
FGSM 24.5548 30.4238 25.6373 27.7976 28.5948 24.7454 31.6472 30.6735 26.8303 49.0884 24.8347

ADGS os 25.8617 30.4932 26.5835 29.1060 29.4265 30.4890 32.3229 31.0406 27.0509 49.1167 25.6008
PGD 27.1021 30.8113 30.0788 27.3372 32.1825 25.4998 36.1721 34.2953 28.8159 51.8043 28.4371

ADGS ms 29.1838 31.2109 34.4765 30.6392 36.4599 43.7306 41.3351 37.7924 29.5512 61.6953 28.4942

Dk
a (%) ↑

FGSM 73.76 74.70 89.77 76.99 75.84 83.93 78.16 89.90 80.04 153.03 79.53
ADGS os 78.63 75.04 95.35 81.16 83.35 116.48 83.10 91.74 81.22 153.12 82.21

PGD 86.44 86.38 108.84 76.59 97.23 97.31 104.80 117.31 89.62 161.57 94.79
ADGS ms 93.10 87.72 125.69 86.04 113.52 173.25 121.70 129.89 91.91 192.42 94.99

Task Method dog horse motorbike person
potted
plant

sheep sofa train
TV/

monitor
Avg.

Semantic
Segmentation ↓

Clean 71.3308 68.2018 65.5548 77.5841 41.8748 71.2738 35.7286 68.4359 55.2319 59.7383
FGSM 24.0875 2.8101 7.2248 43.8461 6.7924 1.9667 9.7871 5.4348 1.5692 11.4402

ADGS os 22.6547 2.8099 5.1636 39.7630 3.9179 0.7290 9.2771 1.8319 1.2599 9.1220 (-2.3182)
PGD 6.4676 0.0653 0.1937 32.5648 2.0136 0.0000 3.7443 0.8408 0.0759 3.8259

ADGS ms 6.3779 0.0575 0.1372 26.6130 1.8882 0.0000 3.5932 0.6464 0.0243 2.9284 (-0.8975)

Surface
Normal

Estimation ↑

Clean 14.6964 16.9342 15.8940 14.8435 16.6265 15.7815 14.0807 16.3957 13.0599 15.4330
FGSM 30.1769 41.7528 31.6862 25.1007 32.9519 31.5115 26.9563 28.1213 24.5354 29.8810

ADGS os 30.8173 41.7639 32.4610 25.9008 35.1169 31.8405 27.1240 32.5282 26.0290 31.0337 (+1.1527)
PGD 32.5360 43.8609 34.8493 27.3991 34.2904 34.7990 29.6597 28.3556 26.9978 32.2642

ADGS ms 36.4277 43.8949 43.4086 28.0833 46.9028 38.4817 29.6697 40.7102 30.5723 37.1360 (+4.8718)

Dk
a (%) ↑

FGSM 85.78 121.22 94.17 56.87 90.98 98.46 82.02 81.79 92.51 87.97
ADGS os 88.97 121.25 98.18 61.14 100.93 100.37 83.33 97.86 98.51 93.60 (+5.63)

PGD 106.16 129.46 109.48 72.62 100.72 110.25 100.08 85.86 103.29 101.94
ADGS ms 119.46 129.56 136.45 77.63 138.79 121.92 100.33 123.68 117.02 118.75 (+16.81)

Table 3. Comparison results on PASCAL dataset for human part segmentation task. The
symbol ↓ denotes that lower values mean better attack performance. The specific values of
the proposed method’s decrease from the baseline methods are shown in parentheses.

Task Method head torso upper arm lower arm upper leg lower leg mIoU

Human Part
Segmentation ↓

Clean 86.1157 68.0468 49.7283 49.9712 44.5645 40.6091 56.5059
FGSM 56.9747 35.2089 17.4860 16.0012 10.1198 6.4798 23.7117

ADGS os 54.9319 33.7157 16.9755 15.5809 8.7527 5.0452 22.5003 (-1.2114)
PGD 39.0677 21.1128 8.4473 8.5785 4.0701 2.6900 13.9944

ADGS ms 34.6721 18.3947 7.9043 8.1781 3.5166 1.9604 12.4377 (-1.5567)

gradient-sharpening operation can leverage the multi-task generalization information to generate
more powerful adversarial examples for multiple tasks.

In addition, we present some qualitative examples in Figure 2. From the figure, we can see that the
proposed ADGS method exactly distracts the attention from the class-specific regions and can do more
damage to the multi-task network on multiple tasks compared to the baseline attack methods.
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Image Attention Map Semantic Segmentation Human Parts Surface Normals

Clean

FGSM

ADGS_os

PGD

ADGS_ms

Figure 2. Qualitative results on class person of PASCAL dataset. The first column shows
the original image for the clean baseline (first row) and adversarial images for the attack
methods. Differences can be seen between different methods in attention map and the three
tasks on PASCAL dataset.

4.3. Validation experiments

We also conducted several validation experiments to demonstrate the effectiveness of the proposed
method from various perspectives.

4.3.1. Attack on single-task networks

In order to further validate the generalization capacity of the proposed ADGS method for multiple
tasks, we aimed to attack single-task networks using the adversarial examples generated from the
multi-task network. Each single-task network comprises an encoder and a task-specific decoder with
the same architecture as the corresponding branch in the multi-task network. We trained the multiple
single-task networks independently and then used the adversarial examples generated from the multi-
task network to attack them. Note that the black-box setting has been applied in this attack scenario,
as knowledge of the single-task networks is not accessible during the generation of the adversarial
examples. The attack results on the NYUD-V2 dataset (two tasks) and the PASCAL dataset (three
tasks) are shown in Tables 4 and 5, respectively. Here, the average per-task drop Da is calculated based
on the performance of multiple single-task networks rather than a multi-task network. Our proposed
method can obtain competitive attack results and outperform the baseline methods on this black-box
multi-task to single-task transferring attack scenario, which demonstrates that the proposed ADGS
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method can improve the generalization ability of the adversarial examples to perform more powerful
attacks on unseen single-task networks.

Table 4. Average attack results for single-task networks on the NYUD-V2 dataset for all of
the classes. Here, Da is calculated based on the performance of multiple single-task networks
rather than a multi-task network. The symbols ↓ and ↑ denote that lower and higher values
mean better attack performance, respectively. The specific values of the proposed method’s
increase or decrease from the baseline methods are shown in parentheses.

Method Semantic Segmentation ↓ Depth Estimation ↑ Da (%) ↑

Clean 43.6960 0.5339 -
FGSM 10.2176 0.9294 79.93

ADGS os 9.7074 (-0.5102) 0.9537 (+0.0243) 82.85 (+2.92)
PGD 4.1700 1.2500 117.75

ADGS ms 3.5925 (-0.5775) 1.3211 (+0.0711) 125.57 (+7.82)

Table 5. Attack results for single-task networks on class person of PASCAL dataset. Here,
Da is calculated based on the performance of multiple single-task networks rather than a
multi-task network. The symbols ↓ and ↑ denote that lower and higher values mean better
attack performance, respectively. The specific values of the proposed method’s increase or
decrease from the baseline methods are shown in parentheses.

Method Semantic Segmentation ↓
Surface Normal

Estimation ↑
Human Part Segmentation

↓
Da (%) ↑

Clean 78.6754 13.7414 56.8839 -
FGSM 48.1401 22.6802 24.8303 53.40

ADGS os 45.7296 (-2.4105) 23.0849 (+0.4047) 23.7961 (-1.0342) 56.01 (+2.61)
PGD 38.1858 21.5924 16.9978 59.57

ADGS ms 34.0767 (-4.1091) 21.9311 (+0.3387) 15.9169 (-1.0809) 62.77 (+3.20)

4.3.2. Attack on a multi-task network without semantic segmentation branch

The proposed attention-distracting loss function is based on the commonly used semantic
segmentation branch in multi-task networks. In order to investigate the attack performance of the
proposed method on the multi-task networks without a semantic segmentation branch, we have
designed an attack strategy. We have incorporated an auxiliary semantic segmentation decoder into a
trained multi-task network without the semantic segmentation branch and fine-tuned the decoder to
perform the semantic segmentation task. The modified multi-task network is then used to generate
adversarial examples by using the proposed ADGS method, which are employed to attack the original
multi-task network. The experiments were conducted on the class person of the PASCAL dataset,
with surface normal estimation and human part segmentation tasks. As a comparison, we performed
the baseline FGSM and PGD methods to directly attack the original multi-task network without the
auxiliary semantic segmentation branch. The results are reported in Table 6. As can be observed,
based on the weak auxiliary semantic segmentation branch, the proposed ADGS method can still
realize competitive attack performance on the two original tasks, which indicates that ADGS can
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improve the generalization ability of the adversarial examples on multiple tasks regardless of the
semantic segmentation performance. Thus, the proposed method can be generalized to attack most
multi-task networks by adding an auxiliary semantic segmentation branch when the semantic
segmentation task is not performed.

Table 6. Attack results for a multi-task network without a semantic segmentation branch on
class person of PASCAL dataset. The symbols ↓ and ↑ denote that lower and higher values
mean better attack performance, respectively. The specific values of the proposed method’s
increase or decrease from the baseline methods are shown in parentheses.

Method Surface Normal
Estimation ↑

Human Part Segmentation ↓
Dk

a (%) ↑
head torso

upper
arm

lower
arm

upper
leg

lower
leg

mIoU

Clean 14.7008 85.8677 67.6339 50.1127 49.7789 43.6892 39.6205 56.1172 -
FGSM 25.2011 58.7565 35.9006 20.1132 17.6379 9.9755 7.6565 25.0067 63.43

ADGS os 25.9299 (+0.7288) 56.2437 34.5907 19.9024 17.3155 9.0294 7.0439 24.0209 (-0.9858) 66.79 (+3.36)
PGD 27.8284 44.4897 23.9749 11.4169 10.5115 5.6239 3.7747 16.6319 79.83

ADGS ms 28.8143 (+0.9859) 40.3611 21.9501 11.1502 10.4040 4.9918 3.4026 15.3766 (-1.2553) 84.30 (+4.47)

5. Conclusions

In this paper, we focus on the multi-task setting of adversarial attacks, where the objective is to
generate a consistent adversarial example for each image to attack multiple tasks in an MTL network.
This scenario holds practical significance due to the widespread use of multi-task real-world AI
systems. To enhance the generalization capability of the consistent adversarial examples across
multiple tasks, we have proposed a multi-task attack method with ADGS. First, we leverage the
generalization knowledge contained in attention heat maps to distract attention from the attack
regions. Second, to reduce the impact of task-specific information during the generation of adversarial
examples, we propose to sharpen the gradients for the gradient-based adversarial example-generating
schemes. In this way, the gradients with multi-task information will have a greater impact than those
with only task-specific information. Our experimental results on two test benchmarks demonstrate the
efficacy and superiority of the proposed method. In addition, improving the robustness of multi-task
networks against generalized multi-task adversarial attacks can be a future trend.
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