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Abstract: Water scarcity is a critical issue in agriculture, and the development of reliable methods for
determining soil water content is crucial for effective water management. This study proposes a novel,
theoretical, non-physiological indicator of soil water content obtained by applying the next-generation
matrix method, which reflects the water-soil-crop dynamics and identifies the minimum viable value of
soil water content for crop growth. The development of this indicator is based on a two-dimensional,
nonlinear dynamic that considers two different irrigation scenarios: the first scenario involves constant
irrigation, and the second scenario irrigates in regular periods by assuming each irrigation as an impulse
in the system. The analysis considers the study of the local stability of the system by incorporating
parameters involved in the water-soil-crop dynamics. We established a criterion for identifying the
minimum viable value of soil water content for crop growth over time. Finally, the model was calibrated
and validated using data from an independent field study on apple orchards and a tomato crop obtained
from a previous field study. Our results suggest the advantages of using this theoretical approach in
modeling the plants’ conditions under water scarcity as the first step before an empirical model. The
proposed indicator has some limitations, suggesting the need for future studies that consider other
factors that affect soil water content.
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1. Introduction

The increasing temperatures resulting from global climate change are affecting the fragile equilibrium
of ecosystems worldwide [1]. Mediterranean regions are affected by heat waves and decreased rainfall,
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which affects the water supply and food production systems [2]. In Mediterranean and semi-arid climate
areas, artificial irrigation is necessary to maintain global agriculture production during the growing
season (spring to summer). The main source of irrigation water is either reservoirs that usually fill
with rain or snowmelt during the fall and winter seasons. In recent years, the lack of precipitation has
substantially decreased water availability for seasonal irrigation. Dry soils and low water availability
reduce the plants’ evapotranspiration fluxes, which generates a physiological response, called water
stress, due to water scarcity [3]. When plants experience water stress, a physiological response is
induced that reduces their photosynthetic rates. This negatively impacts the growth of the plant [4–7],
compromising the balance between water availability in the soil and the crop. Farmers were forced to
adjust irrigation practices to improve irrigation water productivity.

Theoretically, the implementation of an irrigation strategy should focus on the quantity and timing
of irrigation to meet two criteria: (I) supplying the plants’ water needs of evapotranspiration and (II)
keeping the available soil water content within a certain range [8]. However, in the field, irrigation
decisions are generally empirical by observing signs of water stress in plants [9].

There are different technical recommendations for establishing an irrigation strategy to reduce total
water consumption during the growing season without negatively affecting the fruit yield and quality.

Among the different technical recommendations, one highly recommended strategy is regulated
deficit irrigation (RDI). RDI consists of irrigating only when the soil water level is minimal or until
the physiological response of the plant is not affected, producing controlled levels of water stress [10].
Several field studies suggest their implementation to optimize water use without affecting the soil-plant
dynamics [11–14]. However, due to the empirical nature of RDI, one needs to set-up the experimental
plots before their application in the entire field, requiring time and costs.

The construction of mathematical models facilitates our understanding of agricultural phenomena and
offers advantages for simulating different scenarios of dryness by considering the complexes involved
in determining how dryness affects the plant’s production. These models can be used to analyze the
possible effects of implementing RDI strategies, thereby providing the theoretical behavior of plant-water
dynamics in the soil. Mathematical modeling offers an excellent alternative to simulate the interaction
between the plant and water in the soil. Mathematical models applied to agricultural systems incorporate
mass balance equations, and cause-effect relationships between variables, among others [15]. Recently,
some models for the growth of crops under water deficit have been presented [4, 16], considering
advantages such as simulating multiple scenarios without affecting live systems and reducing costs
associated with experimental field studies.

Indicators are numerical variables that provide simple and relevant information [17], which can be
environmental, physical, physiological, or biological. In agricultural systems, indicators have been used
for decision-making concerning particular phenomena or conditions subject to a specific value or range
of values. However, the construction of these indicators is subject to multiple variables that contemplate
the dynamics of the phenomenon studied.

For example, physiological indicators such as the stem water potential (Ψ), stomatal conductance
(gs), and the Crop Water Stress Index (CWSI), among others, have been used to monitor the water status
of plants and to determine when to irrigate [18–22]. These indicators allow the producers to verify
whether or not the plants are suffering from water stress [23, 24]. However, measuring these indicators
in the field can be limited by their cost, time cunsumption, and representativeness, mainly because they
are obtained from sentinel plants.
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Based on those mentioned above, the construction of a non-physiological indicator to decide the
moment of irrigation could be an important proposal for simulation, thereby reflecting the interaction
among the soil water content and the plant water behavior. Indicators are widely used in mathematical
modeling, providing a theoretical basis for decision-making, considering simulated situations. The
next generation matrix method developed by [25] is a mathematical method used in dynamic and
biological systems to calculate the local stability of a system of ordinary differential equations. This
method has been extended and developed in epidemiology by [26] to determine a threshold parameter
known as the basic reproduction number. This parameter is used to establish either the persistence or
absence of a disease, considering compartmentalized mathematical models [26]. In biology, this kind of
model has been applied in several ways, such as calculating the source-sink dynamics in marine meta
populations [27] and the evolutionary invasion analysis [28]. Additionally, the next-generation method
has been applied in agricultural systems to study the behavior of plant diseases [29–34].

This work proposes the development of a soil water indicator based on the next-generation matrix
method to determine the minimum soil water amount required for optimal plant growth and fruit
production. As far as the author’s know, while the next-generation matrix method has been mainly
used in biotic systems, its application to abiotic phenomena such as the water fluxes dynamic between
soil and plants has not been explored. It is hypothesized that this method could provide an effective
theoretical indicator for irrigation decisions.

This work presents the construction of the indicator based on a theoretical mathematical model
that considers two irrigation scenarios: a constant rate of irrigation without water limitations and an
impulsive irrigation strategy with cycles of irrigation and water cut.

2. Mathematical modeling

The construction of a mathematical model that describes the soil-crop dynamics implies identifying rele-
vant variables and parameters, such as genotype, soil water availability, energy, soil type, crop management
conditions, fertilization, depth roots, and environmental factors, among other variables [4,35–38].

To approach the mathematical model describing soil moisture-crop dynamics carried out through the
relationship between the amount of water in the soil and the growth of the fruit tree, we consider the
following assumptions presented in [4, 39]:

i. Crop growth dynamics are influenced by the interaction between energy, water, and vegetative
growth variables.

ii. The crops respond immediately to irrigation application.
iii. Adult crop and a suitable soil for crop growth.
iv. Optimal agronomic management conditions, including pest control and fertilizer management.
v. The system´s energy is constant.

vi. The system only considers the application of irrigation as a source of water; other possible sources,
such as rainfall or groundwater, as not been considered in the model construction.

Table 1 provides a summary of the parameters that affect the growth dynamics of plants that produce
fruits, according to our model.

We denote W = W(t) as the water amount in the soil in time t and C = C(t) as the concentration of
biomass in the plant that produces fruits at time t, both state variables. The variation of the amount
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of water in the soil concerning to time denoted W ′(t) is determined by the relationship between
environmental and physiological variables. That is, there is a loss due to the energy (q) - water (W)
interaction (Evapotranspiration) at a β rate. In addition, an alternative amount of water is used for
the growth of the plant that produces fruit at a rate of r. Additionally, the variation of the biomass
concentration concerning to time, denoted C′(t), is positively affected by the contribution of water to
the growth of the plant that produces fruits at the rate of r. An entry is presented in the variation of the
biomass concentration due to the photosynthetic contribution to the growth of the plant given by the
relation energy (q) - water W and vegetative growth C at a rate γ and is considered an output given by
the term ωC, which represents a loss of biomass concentration due to natural death at a rate of ω.

Table 1. Parameters used in the plants that produce fruits growth model.

Parameter Meaning
q Accumulated energy constant
r Intrinsic growth rate of plants that produce fruits
N Fruit tree carrying capacity
p Rainfall contribution rate
I Irrigation amount
β Evapotranspiration rate
γ Photosynthetic contribution rate
ω Mortality rate of plants that produce fruits

Figure 1. Dynamics flow. where E = energy; W = water amount in soil; C = crop biomass
amount; r = intrinsic growth rate of crop; N = crop carrying capacity; β = evapotranspiration
rate; γ = photosynthetic contribution rate; ω =mortality rate of crops; p = rainfall contribution
rate and I = irrigation amount. Modified from [4].

The growth dynamics of the trees that produce fruits are represented in Figure 1, where E = energy;
W = water amount in soil; C = crop biomass amount; r = intrinsic growth rate of crops; N = crop
carrying capacity; β = evapotranspiration rate; γ = photosynthetic contribution rate; ω = mortality rate
of crops; p = rainfall contribution rate; and I = irrigation amount.
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The system of differential equations given by (2.1) presents the theoretical mathematical model that
describes the growth of crops with continuous irrigation, as mentioned before:{

W ′(t) = (p + I(t)) − βqW(t) − rC(t)(1 − C(t)
N )W(t)

C′(t) = rC(t)(1 − C(t)
N )W(t) + γqC(t)W(t)

(C+1)(W+1) − ωC(t)
(2.1)

where I(t) is non-negative, smooth, and bounded function. The qualitative behavior of this model with

p = 0 and I(t) = 0 has been studied in [4], and the results show the local and global stability of the
system. The results show that a scenario of water deficit can compromise the growth and development
rates of the crop; if this scenario continues, the persistence of the crop is compromised. Therefore, it is
important to find an indicator that identifies the point at which the amount of water in the soil does not
contribute to the growth of the crops.

Definition 2.1. The soil water indicator wd is a numerical value based on model parameters that
indicate the minimum amount of water that the crop requires for their growth.

The soil water indicator will be important to determine the water requirements in a crop and the
levels at which the water resource should be managed. The indicator (wd) is calculated for system (2.1)
following the next generation matrix methodology established in [26].

Let I(t) be a smooth, monotonous, and bounded function, in the absence of crop the system (2.1)
admit the solution (W∗, 0), where W∗ = lim

t→∞
e−βqt

[∫ t

0
I(s)eβqsds

]
.

Additionally,

F =

(
rC(1 − C

N )W + γq WC
(C+1)(W+1)

0

)
, V =

(
ωC

βqW + rC(1 − C
N )W − I(t)

)
,

the matrices F and V are the Jacobian matrices of F andV, respectively, and have been defined in [26].

F(W∗, 0) =
(

rW∗ +
γqW∗

W∗+1 0
0 0

)
, V(W∗, 0) =

(
ω 0

rW∗ βq

)
,

V−1(W∗, 0) = 1
ωβq

(
βq 0
−rW∗ ω

)
.

The next-generation matrix is described as

FV−1(W∗, 0) =
(

rW∗ +
γqW∗

W∗+1 0
0 0

) ( 1
ω

0
−rW∗
ωβq

1
βq

)
=

(
1
ω

(rW∗ +
pW∗

W∗+1 ) 0
0 0

)
.

The eigenvalues of matrix FV−1 are λ1 =
1
ω

(rW∗ +
γqW∗

W∗+1 ), λ2 = 0.

max{λ1, λ2} =
1
ω

(rW∗ +
γqW∗

W∗+1 ).

Therefore, the soil water indication (wd) is:

wd =
1
ω

(
rW∗ +

γqW∗

W∗ + 1

)
. (2.2)
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In what follows, the water soil indicator will be obtained for two irrigation scenarios, and based
on this indicator, a criterion will be defined to determine the minimum viable amount for crop growth
based on the local stability of the system solutions.

The calculation of the soil water indicator is hypothetically illustrated in this example. It is not a
common scenario in practice, as it is inefficient to consider unlimited water resources. However, despite
being unrealistic, this theoretical case serves as an example to analyze the indicator and its relevant
parameters. Let us assume that I(t) = I constant. The system (2.1) can be solved using this assumption.

2.1. Constant irrigation case

This example is a hypothetical illustration for the calculation of the soil water indicator. This case is
not common in practice because it is not very efficient to consider unlimited water resources. However,
despite being unrealistic, this theoretical case provides an example to analyze the indicator and its
relevant parameters. Suppose I(t) = I constant, the system (2.1) admits the solution (W∗, 0), where
W∗ = I

m , with m = βq.
Additionally,

F =

(
rC(1 − C

N )W + γq WC
(C+1)(W+1)

0

)
, V =

(
ωC

mW + rC(1 − C
N )W − I

)
,

the matrices F and V are determined as

F(W∗, 0) =
(

rW∗ +
pW∗

W∗+1 0
0 0

)
, V(W∗, 0) =

(
ω 0

rW∗ m

)
,

V−1(W∗, 0) = 1
ωm

(
m 0
−rW∗ ω

)
,

FV−1(W∗, 0) =
(

rW∗ +
pW∗

W∗+1 0
0 0

) ( 1
ω

0
−rW∗
ωm

1
m

)
=

(
1
ω

(rW∗ +
pW∗

W∗+1 ) 0
0 0

)
with p = γq, the eigenvalues of matrix FV−1 are λ1 =

1
ω

(rW∗ +
pW∗

W∗+1 ), λ2 = 0.

max{λ1, λ2} =
1
ω

(rW∗ +
pW∗

W∗+1 ).

Therefore, the soil water indication (wd) is:

wd =
I
ω

( r
m
+

p
I + m

)
. (2.3)

Lemma 1. If wd < 1 the solution (W∗, 0) of system (2.1) is asymptotically stable.

Proof. The Jacobian matrix of the system (2.1) is

J =
(

−rW + 2rW C
N −m − rC(1 − C

N )
rW − 2rW C

N + p W
(C+1)2(W+1) − ω rC(1 − C

N ) + p C
(W+1)2(C+1)

)
The Jacobian matrix of (2.1) evaluated in the point (W∗, 0) is

J(W∗, 0) =
(

−rW∗ −m
rW∗ + p W∗

(W∗+1) − ω 0

)
Mathematical Biosciences and Engineering Volume 20, Issue 8, 13881–13899.
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and characteristic polynomial given by:

P(λ) = λ2 + rW∗λ + m(rW∗ + p W∗
(W∗+1) − ω)

The Routh-Hurwitz criterion [40] for a quadratic equation states that P(λ) has roots with negative
real part if rW∗ > 0 and m(rW∗ + p W∗

(W∗+1) − ω) > 0, with W∗ = I
m and wd =

I
ω

(
r
m +

p
I+m

)
. This is r I

m > 0
and mwd > 0 if and only if wd < 1. Therefore (W∗, 0) is asymptotically stable. □

In terms of model interpretation, the equilibrium stability implies that the crop tends to decrease
until it inevitably disappears when the indicator of water in the soil is less than one. Thus, this result
can be interpreted as a criterion that allows defining a threshold for the application of irrigation, and this
situation should be avoided.

The studied scenario provides relevant information on the parameters required to obtain the indicator.
In order to establish what are the most relevant parameters in the variation of the value of this indicator,
a sensitivity analysis was carried out (see appendix for details). However, it is necessary to consider
other irrigation scenarios that reflect the application of this methodology in the field.

2.2. Impulsive irrigation case

A more realistic scenario for describing the growth dynamics of crops is to carry out irrigation
applications at specific points in time. This scenario has been studied from numerical simulations
by [41], who proposes the impulsive model described in the equation (2.4)

W ′(t) = −βqW(t) − rC(t)(1 − C(t)
N )W(t)

C′(t) = rC(t)(1 − C(t)
N )W(t) + γqC(t)W(t)

(C(t)+1)(W(t)+1) − ωC(t)

}
if t , nT,

W(t+) = W(t) + I
C(t+) = C(t)

}
if t = nT,

(2.4)

where W = W(t),C = C(t) are nonnegative. This model is defined in space

Ω =
{
(W,C) ∈ R2 : W ≥ 0, 0 ≤ C < N} ,

and the parameters are all positive in the space ρ =
{
(q, r,N, I, β, γ, ω) ∈ R7

+} .

It is important to consider the previously proposed system as a realistic model of the phenomenon to
be studied to prove that its solutions are bounded (i.e. there is α depending only on the initial conditions
such that for all t > t0, ∥(W(t),C(t))∥ ≤ α).

Lemma 2. The solutions of system (2.4) are bounded.

Proof. We denote tn = nT, n ∈ Z. Clearly 0 < t1 < t2 < ... < tn < ..., inf{tn − tn−1 : n ≥ 2} ≥ 0, and
limn→∞ tn = ∞. We define the set σn = {(t,W,C) ∈ [0,∞] × R2 : t = tn}. At most, the integral curves of
the system (2.4) meets the hypersurface σn once. If I is constant, it is possible to consider a continuous
function for each choice of n. From the construction of the model, it is clear that the functions that
define the system (2.4) are continuously differentiable and locally Lipschitz. Moreover, they satisfy the
theorem of existence and uniqueness in each time interval [nT, (n + 1)T ]. If the solution (W(t),C(t)) is
defined for any fixed initial condition in the interval [t0, t] with t > 0 constant, from the above conditions,
the result follows from Lemma 1 in [42]. □
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To determine the soil water indicator for (2.4), we follow the methodology outlined in [26, 43].
System (2.4) admits a periodic solution (W∗, 0), where

W∗ =
I

1 − e−mT e−m(t−nT ); t ∈ (nT, (n + 1)T ). (2.5)

Additionally,

F =

(
rC(1 − C

N )W + γq WC
(C+1)(W+1)

0

)
, V =

(
ωC

βqW + rC(1 − C
N )W

)
,

(
C(nT+)
W(nT+)

)
=

(
1 0
0 1

) (
C(nT )
W(nT )

)
+

(
0
I

)
.

According to Theorem 2.1 in [43], the soil water indicator is the solution of ρ(U(T, 0, χ)) = 1, where
ρ(U(t, s, χ)) is the evolution operator of the system

S ′(t) =
(
−ω +

rW∗+γq W∗
(W∗+1)

χ

)
S

}
if t , nT,

S (nT+) = S (nT )
}

if t = nT,

(2.6)

Then ρ(U(T, 0, χ)) = exp

∫ T

0

−ω + rW∗ +
γqW∗

(W∗+1)

χ

 dt

 . Solving the polynomial about χ,

exp

∫ T

0

−ω + rW∗ +
γqW∗

(W∗+1)

χ

 dt

 = 1,

∫ T

0

−ω + rW∗ +
γqW∗

(W∗+1)

χ

 dt = 0,

∫ T

0
−ωdt +

∫ T

0

rW∗ +
γqW∗

(W∗+1)

χ

 dt = 0,

∫ T

0

(
rW∗ +

γqW∗

(W∗ + 1)

)
dt = ωTχ,

∫ T

0
rW∗dt +

∫ T

0

γqW∗

(W∗ + 1)
dt = ωTχ.

Solving each integral we have:

Step 1:

∫ T

0
rW∗dt =

rI
m
.
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Step 2:

∫ T

0

γqW∗

(W∗ + 1)
dt = −

γq
m

[
ln

(
Ke−mT + 1

(K + 1)

)]
, with K = I

1−e−mT .

Therefore, the soil water indicator for the model (2.4) is:

wd =
1
ωmT

[
rI − γq ln

(
Ke−mT + 1

K + 1

)]
. (2.7)

Equation (2.7) shows the relationship between the parameters considered in the dynamics. Based on
this relationship, it is posible to establish criteria for the efficiency of the water-soil-crop dynamics that
guarantees crop growth.

Lemma 3. If wd < 1 the periodic solution (W∗, 0) of system (2.4) is asymptotically stable.

Proof. The linearization of system (2.4) evaluated in (W∗, 0) is given by
X′(t) =

(
rW∗ + p W∗

(W∗+1) − ω 0
0 −m

)
X(t)

}
if t , nT,

X(nT+) =
(

1 0
0 1

)
X(nT )

}
if t = nT,

(2.8)

the monodromy matrix of the impulsive system (2.8) is

QΦM(T ) =
(

1 0
0 1

) (
ΦF−V(T ) 0

0 Φ−m(T )

)
=

 exp
(∫ T

0

(
rW∗ + p W∗

(W∗+1) − ω
)

dt
)

0

0 exp
(∫ T

0
−m dt

) 
Since wd = exp

(∫ T

0

(
rW∗ + p

W∗

(W∗ + 1)
− ω

)
dt

)
< 1, we have ρ(QΦM(T )) < 1. Therefore the

periodic solution (W∗, 0) is asymptotically stable. □

3. Calibration and validation

3.1. Modelling of soil-moisture patterns

After creating a theoretical mathematical model, validation is necessary to assess its robustness in
characterizing the examined phenomenon. This study did not have field data for the model’s validation.
Thus, this process was performed by reusing published data. In this case, these data were extracted from
the works of Ooi et al. [44] and Filippucci et al. [45]. The process consisted of hand-selecting data from
some of the original works using the WebPlotDigitizer https://automeris.io/WebPlotDigitizer/, accessed
on December 15, 2021 and March 20, 2023, respectively). After their selection, they were extracted and
exported to Comma Separated Values (CSV) files for post-processing.

Regarding the work of Ooi et al. [44], the authors presented the results of the automation of an apple
tree orchard irrigation experiment using wireless sensor network technologies in Australia. In this case,
for calibration and validation of the proposed models, data was extracted from Figure 2, which describes
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the measured soil moisture dynamics in the apple orchard, considering irrigation and water-cut cycles.
The work of Filippucci et al. [45] presented the results of an irrigation experiment on irrigated tomatoes
in Italy. In this case, the trend data for soil moisture was extracted from Figure 3. Please revise their
original works for more details about Ooi et al. [44] and Filippucci et al. [45].

The soil moisture database obtained from Ooi et al. [44] consisted of 653 pairs of data. In the case of
the data from Filippucci et al. [45], 258 pairs of data were record for the soil moisture content (percent).
To ensure data independence for calibration and validation, these databases were split into two parts (9
and 642 pairs of data from Ooi et al. [44], and 9 and 249 pairs of data from Filippucci et al. [45].

The parameterization of the proposed model was carried out using a non-linear least-squares curve
fitting method [46], using a specific script written in Matlab©R2019a (Mathworks Inc., Natick, MA,
USA). Considering the soil-moisture dynamic, the calibration allowed us to solve the system (2.1)
numerically, for both irrigation (water refill) and no-irrigation events (soil-water depletion between each
irrigation), adjusting the output W(t) for the soil water content, considering I(t) = 0 (non-irrigation case).

The calibration allowed for the parameter’s adjusting of Table 2 to minimize the difference between
the simulated and measured data. The calibrated impulsive models were then validated using the separate
database mentioned above. For this purpose, the actual data of soil moisture were compared against those
simulated using the classical linear regression method suggested by Mayer and Butler [47]. In this case,
the statistical deviance parameters used were the Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Mean Absolute Percent Error (MAPE). Additionally, the index of agreement (d) [48, 49] and
Lin’s concordance index (ρ) [50] was added to this analysis (Eq (3.1)).

Table 2. Fitted parameters of the model.

Parameters From database 1 From database 2
β 0.0358 0.0004
q 0.7541 0.0081
r 0.0002 0.0675
γ 0.0021 0.0032
ω 0.0569 0.0037

where data were extracted from1 Ooi et al. [44] and 2 Filippucci et al. [45].

MAE =
∑
|obs−est|

n

RMS E =

√∑
(obs−est)2

n

MAPE = 100 [
∑

(|obs−est|/|obs|)]
n

d = 1 −
∑

[(est−obs)−(obs−obs)]2∑
(|est−obs|+|obs−obs|)2

ρ =
2sobsest

s2
obs+s2

est+(obs−est)2

(3.1)

where obs: observed data; est: estimated data; n: the number of pairs [47]; obs: mean of observed; est:
mean of estimate data; s2

obs: variance of observed data and s2
est: variance of estimated data [48–50].

Figure 2 shows that the trends of the dynamics of filling and emptying of water in the soil were
imitated by the proposed impulsive model (blue line), compared with the real values (points), for the
examples obtained from the works from Ooi et al. [44] and from Filippucci et al. [45]. (Figures 2(a)
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and (b), respectively) In both cases, the observed data trends showed some regularity in the irrigations
(irrigation frequency), fulfilling the main assumptions necessary to apply the proposed model.

On the other hand, the trends of the impulsive model proposed (Eq (2.4)) contrasted against the
observed data and had limitations on properly reflecting the soil-moisture dynamics. Figure 2(a)
shows that the modeled values could not reach the highest soil moisture values, presenting a difference
close to 1% at the maximum peaks. Regarding the lowest soil moisture values, the model imitated them
well. In Figure 2(a), the trends of the soil water content observed showed values in the range of 36
to 42 %. In the case of Figure 2b, there was a lag between the observed and modeled soil moisture
values, particularly from days 10 to 25. The range of observed values is between 42 and 84 mm, with
a difference between the minimum and maximum achievable values of 12 mm. When comparing the
observed values against the modeled values using the linear regression method, it was observed that in the
first database, there was a trend of the cloud of points to stay above the 1:1 line. In this case, the statistician
analysis (Table 3) indicated an MAE, RMSE, MAPE, d, and ρ of 1.19, 1.57, 0.03, 0.70, and 0.46 mm,
respectively. Regarding the second database, it shows a uniform cloud of points around the 1:1 line.
The statistical analysis indicated a poor performance compared to the first one (MAE = 13.28 mm,
RMSE = 16.56 mm, MAPE = 0.24, d = 0.52, and ρ = 0.17). These contrasting results show that the
performance of the proposed impulsive model will be highly dependent on the assumptions used to
calibrate the proposed parameters (Table 2). According to [16, 51], these kinds of models are generalist,
explaining the studied phenomenon. However, their performance could be poor compared to empirical
models specifically calibrated from the data. As indicated herein, compared to Filippucci et al. [45], the
database from Ooi et al. [44] presented regular patterns of irrigation events, despite the original data
presented in Filippucci et al. [45], which was irregular. This second scenario did not agree with the
main assumption of the proposed theoretical model, which was reflected in their poorest performance
after the calibration.

(a) database 1 (b) database 2

Figure 2. Model fit from soil moisture data (data extracted from 1 Ooi et al. [44] and 2

Filippucci et al. [45]).
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(a) database 1: Extracted from Ooi et al. [44] (b) database 2: Extracted from Filippucci et al. [45]

Figure 3. Model performance evaluation.

Table 3. Simulation performance.

MAE RMSE MAPE d ρ

Database 1 1.19 mm 1.57 mm 0.03 0.70 0.46
Database 2 13.28 mm 16.56 mm 0.24 0.52 0.17

where: Mean Absolute Error (MAE); Root Mean Square Error (RMSE); Mean Absolute Percent Error (MAPE); Index of
agreement (d); Lin’s concordance index (ρ).

3.2. Indicator of water in the soil based on the next-generation matrix method

After carrying out the calibration and validation of the impulsive model, the values established in
Table 2 were used to calculate the soil water indicator associated with the equation of the impulsive
model (2.4). Initially, we calculate the indicator with the parameters set for database 1, this is:

wd =
1
ωmT

[
rI − γq ln

(
Ke−mT+1

K+1

)]
= 1

0.003 (0.0036 − 0.0015(−0.0233))
= 1.21.

In this case, the parameters involved in the indicator came from a study where adjustment with the
observed data is acceptable. Therefore, the value of the indicator provides a reliable numerical value
that implies that the amount of water applied in the period of time presented in Figure 2 (a) favors the
water-in-soil-crop interaction.

The soil water indicator for the parameters associated with database 2 is given by:

wd =
1
ωmT

[
rI − γq ln

(
Ke−mT+1

K+1

)]
= 1

16683 (0.00877 − 0.00002(−0.00001))
= 146.

In the case of database 2, the indicator is wd > 1, which implies that the amount of water supplied in
the time described in Figure 2(b) favors the interaction water- cultivation in the soil. However, in this case,
the parameters used to calculate this indicator are the result of poor validation, which implies that this
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numerical value is not reliable for this case. The effectiveness of the indicator will depend on the values
of the parameters involved. Thus, the more robust the model, the more accurate the indicator will be.

4. Discussion and conclusions

To the best of the author’s knowledge, various works in the literature highlight the importance of an
adequate irrigation technique [8, 9, 44]. The aim is to establish criteria for the quantification and timing
of irrigation. These criteria are based on physiological indicators such as Ψ, gs, and CWSI, among
others. In our case, we propose a non-physiological indicator of water in the soil that depends on the
parameters established in the water-soil-crop dynamics. The next-generation matrix technique was
used to calculate the soil water indicator in this study. This mathematical technique was applied to a
non-linear model of differential equations that describe the dynamic between water in soil and crop.

This dynamic between the water content in soil and crops is presented in two different scenarios.
The first scenario describes a relationship between two variables: the amount of water in the soil W(t)
and trees that produce fruits biomass amount C(t) at time t; this relationship is modeled in Eq (2.1). In
this model the only input of water is given by the application of constant irrigation. The calculation of
the soil water indicator is presented in Eq (2.3), which shows that its value depends on the established
relationship between the incorporated parameters. In addition, the indicator of water in the soil was
considered for the analysis of the local stability of System (2.1). However, this scenario suggests a good
example for understanding the calculation of the indicator, and may not reflect the current reality when
considering a constant irrigation supply in times of water scarcity and climate crisis.

The second presented scenario has considered the same relationship between the variables of
System (2.1), but it differs in the application of irrigation. In this case, the water supply in the soil is
described through the impulsive model given by Eq (2.4), where the irrigation is incorporated at regular
intervals. In addition, the soil water indicator Eq (2.7) has been calculated and was used to determine
the local stability of the impulsive system (2.4).

Biological systems present complex relationships that can be difficult to represent due to the number
of variables and parameters that must be considered. In that instance, the importance of mathematical
modeling in agricultural systems lies in the contribution and understanding of the relationships between
climatic variables, water conditions and crops. In this sense, the construction of theoretical models allows
for a better understanding of a studied phenomenon. However, the validity of these models depends on the
calibration of parameters adjusted to field conditions [8]. In the model that describes the soil water-crop
dynamics presented in this work and used to calculate the soil water indicator, was validated with data
provided by [44], showed that the amount of water in the soil presents a trend similar to the data obtained
(Figure 2(a)) from the work of [44], the errors between both works are presented in Table 3.

In addition, as a second exercise, the proposed theoretical model has been compared with data
obtained from the work of Filippucci et al. [45] applied to a tomato field. In Figure 2(b), it can be seen
that the model behaves similarly to the observed data. However, there is a lag in the irrigation times,
which can occur because the observed data tend to present regularity over time; however, this cannot
be guaranteed as required by the model assumptions. The errors for this case are presented in Table 3.
Furthermore, Lin’s concordance index was calculated for both works, and the results obtained suggest a
poor performance of the proposed model. This result is because the proposed theoretical mathematical
model is an approximate and simplified representation of reality. The proposed model is simple. Its
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construction is based on restrictive hypotheses and with the minimum possible parameters to describe
water-soil-crop dynamics, which do not necessarily reflect actual conditions. On the other hand, the
observed data correspond to an empirical model, designed to directly represent those observations [16].
Therefore, a theoretical mathematical model does not necessarily perform well compared to an empirical
one because they are based on theoretical assumptions and mathematical equations, not descriptions of
observable data [16, 51–53]. In both cases, the indicator is wd > 1, and implies that the amount of water
supplied favors the interaction between crop water in the soil. The soil water indicator was calculated in
both Ooi et al. [44] and Filippucci et al. [45]. The results obtained suggest that the amount of water
supplied is adequate to guarantee water-soil-crop dynamics. However, the results presented depend on
the validity of the parameters involved, rather than the method used to calculate them.

One of the main contributions of this model is the extension of the next-generation matrix method,
widely used to establish thresholds for the control of pests in plants. In this case, this method has been
used to establish the soil water indicator. The results of this work show that it is possible to describe
the crop-water interaction in the soil through mathematical models in a simple way. In addition, a
non-physiological indicator of water in the soil wd that provides information on the commitment or
permanence of water over time was established. However, it is important to continue investigating the
interaction between water in the soil and crop from other scenarios. For example, one should incorporate
the irrigation supply at intervals. These possible studies broaden the understanding of the phenomenon
and provide a different study approach than the one commonly used in agricultural systems.
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reproductive response of ‘Prime Giant’ sweet cherry trees to regulated deficit irrigation, Sci. Hortic.,
249 (2019), 478–489. https://doi.org/10.1016/j.scienta.2019.02.016

14. M. Liu, Z. Wang, L. Mu, R. Xu, H. Yang, Effect of regulated deficit irrigation on alfalfa performance
under two irrigation systems in the inland arid area of midwestern China, Agric. Water Manage.,
248 (2021), 106764. https://doi.org/10.1016/j.agwat.2021.106764

15. J. Lopez-Jimenez, A. Vande Wouwer, N. Quijano, Dynamic modeling of crop–soil systems to
design monitoring and automatic irrigation processes: A review with worked examples, Water, 14
(2022), 889. https://doi.org/10.3390/w14060889

16. J. H. Thornley, I. R. Johnson, Plant and crop modelling, Clarendon Press, Oxford, 1990.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13881–13899.

http://dx.doi.org/https://doi.org/10.14483/2256201x.14786
http://dx.doi.org/https://doi.org/10.1088/1742-6596/2046/1/012017
http://dx.doi.org/https://doi.org/10.1016/j.jclepro.2020.125008
http://dx.doi.org/https://doi.org/10.1111/nph.12772
http://dx.doi.org/https://doi.org/10.1007/s13595-014-0408-y
http://dx.doi.org/https://doi.org/10.1016/j.biosystemseng.2008.02.008
http://dx.doi.org/https://doi.org/10.1007/s002710050001
http://dx.doi.org/http://dx.doi.org/10.5772/intechopen.80365
http://dx.doi.org/https://doi.org/10.1016/j.agwat.2012.03.006
http://dx.doi.org/10.25165/j.ijabe.20181104.3846
http://dx.doi.org/https://doi.org/10.1016/j.scienta.2019.02.016
http://dx.doi.org/https://doi.org/10.1016/j.agwat.2021.106764
http://dx.doi.org/https://doi.org/10.3390/w14060889


13896

17. J. Prieto-Méndez, O. A. Acevedo-Sandoval, M. A. Méndez-Marzo, Indicadores e ı́ndices de calidad
de los suelos (ICS) cebaderos del sur del estado de Hidalgo, México, Agronomı́a mesoamericana,
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Supplementary

Sensitivity analysis

In the sensitivity analysis developed, we have used the technique proposed in [54,55]. The technique
proposes a formula to establish the sensitivity index of all the parameters, this is defined by

Λwd1
y =

∂wd1

∂y
x

y
wd1

where y represent all parameters and wd1 =
I
ω
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∂wd1

∂β
x
β

wd1
= −

r(I + βq)2 + γβ2q3

(I + βq)[r(I + βq) + γβq2]
≤ 0

∂wd1

∂q
x

q
wd1
=

−r(I + βq)2 + γβq2I
(I + βq)[r(I + βq) + γβq2]

∂wd1

∂I
x

I
wd1
=

r(I + βq)2 + γq(βq)2

(I + βq)[r(I + βq) + γβq2]
≥ 0

In our case, this sensitivity analysis provides a fundamental tool to know the level of influence of
each parameter on the soil water indicator. The analysis shows that by increasing the parameters r, γ, I,
and considering the other parameters constant, the soil water indicator increases. While the increase
of the ω, β parameters decrease the value of the soil water indicator, which can generate compromises
in the growth rates of the fruit tree. The analysis for the parameter q indicates that if I > rβ

γ
, then the

contribution is negative for 2rβI−
√

4rγβI3

2(γβI−rβ2) < q < 2rβI+
√

4rγβI3

2(γβI−rβ2) .

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 8, 13881–13899.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Mathematical modeling
	Constant irrigation case
	Impulsive irrigation case

	Calibration and validation
	Modelling of soil-moisture patterns
	Indicator of water in the soil based on the next-generation matrix method

	Discussion and conclusions

