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Introduction: Extreme learning machine (ELM) is a training algorithm for single

hidden layer feedforward neural network (SLFN), which converges much faster

than traditional methods and yields promising performance. However, the ELM

also has some shortcomings, such as structure selection, overfitting and low

generalization performance.

Methods: This article a new functional neuron (FN) model is proposed, we takes

functional neurons as the basic unit, and uses functional equation solving theory

to guide the modeling process of FELM, a new functional extreme learning

machine (FELM) model theory is proposed.

Results: The FELM implements learning by adjusting the coefficients of the basis

function in neurons. At the same time, a simple, iterative-free and high-precision

fast parameter learning algorithm is proposed.

Discussion: The standard data sets UCI and StatLib are selected for regression

problems, and compared with the ELM, support vector machine (SVM) and

other algorithms, the experimental results show that the FELM achieves

better performance.
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1. Introduction

Artificial neural network (ANN) is a parallel computing system which simulates human
brain activity by using widely interconnected neuron structure and certain learning rules.
Because of its strong self-learning, associative memory, adaptive and fault-tolerant ability,
it can easily detect the complex nonlinear relationship between the dependent variable and
the independent variables, and has large-scale parallel computing ability. Therefore, it has
become a popular and useful model for classification, clustering, pattern recognition and
prediction in many disciplines, and is a powerful tool to solve problems that cannot be solved
by many traditional methods (Abiodun et al., 2018).

Artificial neural network (ANN) has gone through four stages of development, and
hundreds of models have been established so far. It has achieved great success in applied
research fields such as handwriting recognition (Baldominos et al., 2018), image annotation
(Afridi et al., 2018) and speech recognition (Gautam and Sharma, 2019), et al. However, most
ANNs are only simple simulation of biological networks, so they often appear inadequate
in dealing with big data and complex tasks, and cannot be satisfactory in both processing
speed and calculation accuracy. Among the hundreds of neural network models, traditional
training algorithms are usually gradient-based, such as back-propagation neural network
(BP) (Werbos, 1974). BP algorithm has been widely used in many fields because of its
easy understanding and implementation. However, that gradient-based algorithm is easy
to converge to the local minimum and cannot obtain the global optimal solution, because
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the solution it obtains is sensitive to the initial parameters and
depends on the complexity of the feature space, and the iterative
learning of the BP algorithm makes the convergence speed too
slow. In recent years, Huang et al. proposed for the first time a
single hidden layer feedforward neural network learning algorithm
called Extreme Learning Machine (ELM) (Huang et al., 2006),
which breaks through the commonly used feedforward neural
network learning theories and methods. Compared with support
vector machine (SVM) (Cortes and Vapnik, 1995), ELM tends to
achieve higher classification accuracy with lower computational
complexity (Li et al., 2019). Since ELM has the advantages of
high learning accuracy, easy to use, easy to implement, and fast
learning speed, it has been applied widely in ELM self-encoder
(Yimin Yang and Jonathan, 2018), handwriting recognition (Tang
et al., 2016), regression and classification (Huang et al., 2012), big
data analysis (Sun et al., 2017), and many improved algorithms of
ELM (Zong et al., 2013; Geng et al., 2017; Sattar et al., 2019; Gong
et al., 2021; Kardani et al., 2021) have also emerged to deal with
specific problems. Studies have shown that ELM, especially in some
applications, has the advantages of simple structure, short training
times, and high calculation accuracy compared with popular deep
learning, and the obtained solution is the only optimal solution,
which ensures the generalization performance of the network.

The extreme learning machine (ELM) theory has attracted
extensive attention by scholars all over the world since it
was proposed (Huang et al., 2012; Tang et al., 2016; Sun

et al., 2017; Yimin Yang and Jonathan, 2018), and a lot of
achievements have been made in its theoretical and applied
research. Kärkkäinen (2019) proposed an ELM which conducts
ridge regression using a distance-based, the experimental results
show that the over-learning with the distance-based basis is avoided
in the classification problem. Atiquzzaman and Kandasamy (2018)
successfully used ELM for hydrological flow series prediction.
Golestaneh et al. (2018) presented a fuzzy wavelet ELM, and its
performance is better than ELM. Yaseen et al. (2019) used the
enhanced extreme learning machine for river flow forecasting.
Pacheco et al. (2018) used restricted Boltzmann machine to
determine the input weights of ELM, which greatly optimized
the performance of ELM. Christou et al. (2018) proposed a
hybrid ELM method for neural networks, which is applied
to a series of regression and classification problems. Murli
et al. (2018) applied extreme learning machine to microgrid
protection under wind speed intermittency. Artem and Stefan
(2017) applied ELM to the credit evaluation of user credit
cards, indicating that it is a valuable alternative to other credit
risk modeling methods. Henríquez and Ruz (2019) used ELM
to reduce the noise of near-infrared spectroscopy data, which
was successfully applied. Mohammed et al. (2018) proposed an
improved ELM based on competitive group optimization and
applied it to medical diagnosis. Lima et al. (2017) proposed a
variable complexity online sequential ELM, which was successfully
used for streamflow prediction. Paolo and Roberto (2017)

FIGURE 1

(A) Functional neuron model. (B) M-P neuron model.

FIGURE 2

Topological structure of general FELM.
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applied ELM to inverse reactor kinetics, and the experimental
results show that ELM application has great potential. Ozgur
and Meysam (2018) compared the performance of wavelet
ELM and wavelet neural networks. Vikas and Balaji (2020)
proposed a PIELM and successfully applied it to solve partial
differential equations; Peter and Israel (2020) proposed a new
morphological/linear perceptron ELM and implemented fast
classification problems.

So far, the ELM has been widely used in industry, agriculture,
military, medicine and other fields. Although the research on
ELM has made a lot of achievements, from the classification of
achievements, there are many application achievements and few
theoretical achievements, which greatly limit the application scope
of ELM. In particular, there are still the following shortcomings in
the ELM theory:

(1) The weights randomly determined by hidden layer neurons
have a great impact on the classification performance of the
network, and the number of hidden layer neurons cannot
be calculated by an effective algorithm. Although some
researchers have proposed some optimization algorithms

about ELM, these algorithms transform the steps to determine
the number of hidden layer neurons into optimization
problems, which are cumbersome and time-consuming.

(2) In the learning and training of ELM, the regularization
coefficient plays an important role, which requires people
to manually determine the size before classification and
recognition. However, there is no effective parameter selection
method at present. In most cases, people use trial and error
method to select the size of the regular coefficient.

(3) Because the ELM has the defect of randomly giving the left
weight and the hidden layer threshold, the regression model
is prone to have low generalization performance and poor
stability, which is crucial to classification problems.

Aiming at the shortcomings of the above ELM theory,
this article takes the functional neuron (FN) model (Castillo,
1998; Guo et al., 2019) as the basic unit, intends to use
the functional equation solving theory to guide the modeling
process of extreme learning machine, and proposes a new type
of functional extreme learning machine (FELM) theory. The
functional neurons of the learning machine are not fixed, and

FIGURE 3

General FELM learning process diagram.
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they are usually linear combinations of linearly independent base
functions. In FELM, network learning can be achieved by adjusting
the coefficients of base functions in neurons. For the parameters
(coefficients) selection method, one simple, iterative-free and high-
precision parameter fast learning algorithm is proposed. Finally,
through simulation experiments on the regression problems
of real standard test data sets, compared with the traditional
extreme learning machine (ELM) and support vector regression
(SVR), the approximation ability, parameter learning speed,
generalization performance and stability of the proposed FELM are
experimentally tested.

The rest of the article is organized as follows: in Section
“2. Functional extreme learning machine (FELM)”, we describe
the FELM modeling theory, parameter learning algorithm and
the feasibility analysis of the modeling theory in detail. Section
“3. Experimental results and analysis” conducts regression
experiments to evaluate the performance of the proposed
technology. Finally, we summarize and future work in Section “4.
Conclusions and future works”.

FIGURE 4

Initial structure of FELM for predicting disease d = D(x, y, z).
(A) Diagnostic order: x → y → z. (B) Diagnostic order:
y → z → x. (C) Diagnostic order: x → z → y.

FIGURE 5

The FELM structure equivalent to Figure 4.

2. Functional extreme learning
machine (FELM)

Taking the FN model as the basic unit, a kind of learning
machine with better performance is designed based on the
functional equation solving theory, which is called Functional
Extreme Learning Machine (FELM). The model is different from
the traditional extreme learning machine. The type and quantity
of hidden layer activation function in the structure of FELM are
not fixed and can be adjusted. Figure 1A is the functional neuron
model, and Figure 1B is the M-P neuron model. Comparing
Figure 1A and Figure 1B, it can be seen that compared with
artificial neurons, functional neurons lack the weight information
on the connection line and can have multiple outputs. The output
of functional neurons is:

{O1,O2, . . . ,Ok} = f (x1, x2, . . . , xk). (1)

Functional neuron f can be a linear combination of arbitrary
nonlinear correlation base functions:

f (x1, x2, . . . , xk) =
n∑
j=1

ajϕj(x1, x2, . . . , xk). (2)

where {ϕj(x1, x2, . . . , xk) | j = 1,2,...,n} is any given base functions,
which can be learned. According to specific problems and
data, different functions can be selected, such as trigonometric
basis function and Fourier basis function; {aj|j = 1, 2, ..., n} is a
parameter set, which can also be learned. It can be used to infinitely
approximate the expected accuracy of functional neuron function
f (x1, x2, ..., xk).

2.1. FELM model

With functional neuron as the basic unit (Figure 1A), the
definition of general FELM is established:

Definition 1: Any FELM is a binary ordered pair: FELM =<
X,U >, where X is a node set, U = {< Yi, Fi,Zi > |i = 1, 2, ..., n}
is a functional neuron set on the node set X and satisfies: For any
node Xi ∈ X, it is an input node or an output node and at least one
functional neuron belongs to the node set U.

According to the definition of FELM, the components of
general FELM include:

(1) Several layers of storage units: one layer input unit; one
layer output unit; some intermediate units are used to store
the information generated by functional neurons in the
intermediate layer; all are represented by solid circles with
corresponding names (i.e., {xi, yi, zi, ...} in Figure 2).

(2) One layer or several layers of processing units: A processing
unit is a functional neuron, which handles a set of input values
from the previous layer of functional neurons or input units,
and provides a set of input data for the next layer of functional
neurons or output units. (i.e., {fi, gi, ...} in Figure 2).

(3) Directional connection lines: it connects the storage unit
and the processing unit, and the arrow indicates the flow
direction of information.
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All these elements together constitute the structure of the
FELM, and determine the generalization ability of the FELM.

We based on the above definition and components of FELM, it
is easy to design a general FELM. The network topology is shown
in Figure 2:

The output expression of FELM in Figure 2 is:

y1 = f1 (x1, x2, . . . , xk) ,
y2 = f2 (x1, x2, . . . , xk) ,
...

z1 = g1
(
y1, y2, . . . , yl

)
,

z2 = g2
(
y1, y2, . . . , yl

)
,

...

zm = gm
(
y1, y2, . . . , yl

)
,

...

(3)

The Figure 2 shows the general FELM model, and the
output expression (3) of the network is essentially a functional
equation group. In turn, any functional equations can draw
the corresponding functional learning machine. Therefore, it is

concluded that any FELM establishes a one-to-one correspondence
with the functional equation (group). Based on the correspondence
between FELM and functional equation (group), the functional
equation theory is used to guide the modeling process of FELM.
The steps are as follows:

Step 1. Based on the characteristics of the undetermined
problem and the definition of FELM, the initial FELM
model for solving the undetermined problem is established.
Step 2. Obtain the output expression of the initial FELM;
this expression corresponds to a functional equation group;
Step 3. Using the method of solving functional equations,
the general solution expression is given.
Step 4. Based on the general solution expression of
functional equations, the corresponding FELM is redrawn
by using its one-to-one correspondence with FELM.
Step 5. Output the simplified FELM.

In this way, according to the above modeling steps of FELM,
any type of FELM can be drawn, and the model establishes one-to-
one correspondence with functional equation (group). Moreover,

FIGURE 6

Multi-input single-output single-hidden layer FELM.

TABLE 1 Comparison of simulation and prediction on the f1(x).

Algorithms Train time (s) E (training) E/N
(training)

Modela E/N (testing) E (prediction) E/N
(prediction)

TAFNN (Zhang et al., 2009a) 5.0558E-04 1.2441E-05 1.2318E-07 6 1.3355E-07 9.3008E-03 1.0334E-03

SVR 3.0791E+00 2.1591E-06 2.1377E-08 37 1.8650E-08 8.5675E-04 9.5195E-05

LSSVR 4.5523E-03 3.1328E-07 3.1017E-09 101 8.7980E-06 6.9867E+00 7.7630E-01

ELM 1.0739E-03 1.5963E+00 1.5805E-02 6 1.6132E-02 2.0097E+01 2.2330E+00

OP-ELM 1.0445E-01 1.0288E-08 1.0186E-10 87/25* 1.0350E-10 1.1865E-03 1.3184E-04

Inverse-free ELM 1.8147E-03 5.6601E+00 5.6040E-02 6 5.6675E-02 1.9901E+00 2.2112E-01

OS-RELM 4.5930E-04 2.2948E+00 2.2721E-02 6 2.2719E-02 5.1731E-01 5.7479E-02

FELM 3.4860E-04 5.4485E-08 5.3945E-10 6 5.9727E-10 1.6918E-04 1.8798E-05

aThe number of hidden nodes of TAFNN, ELM and its three variant algorithms, the number of support vectors of SVR and LSSVR, and the number of hidden layer parameters of FELM.
*Maximum number of neurons given before training/optimal number of neurons after training.
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FIGURE 7

The test of each algorithm [(A) TAFNN, (B) SVR, (C) LSSVR, (D) ELM, (E) OP-ELM, (F) Inverse-free ELM, (G) OS-RELM, and (H) FELM] on f1(x).

the functional equations are used to simplify and obtain any
optimal FELM. The theoretical basis of the definition is based
on the mathematical model of "binary ordered pairs" in discrete
mathematics. Its physical meaning is similar to the layout structure

of a printed circuit board (PCB). In the practical application of
FELM modeling theory, based on the characteristics and data of the
problem to be solved, the FELM (initial structure) of any problem
to be solved can be obtained according to the above definition of
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general FELM and the theoretical guidance of modeling process by
solving functional equation.

Based on the definition and constituent elements of FELM,
any type of FELM can be drawn, and one-to-one correspondence
with functional equation (group) can be established. Therefore,
using functional equation solving theory to guide the design
process of FELM is supported by mathematical theory, which
is correct and easy to operate. The unique structure of FELM
fundamentally overcomes the shortcomings of the current extreme
learning machine that the weights randomly determined by hidden
layer neurons have a great impact on the classification performance
of the network, and the number of hidden layer neurons cannot be
obtained by an effective algorithm.

2.2. FELM learning algorithm

The FELM is based on the problem-driven modeling, without
weight and threshold concepts. Its learning essence is to learn
the network structure and parameters. Aiming at the parameter
(coefficient) selection method, based on the parameter error cost
function evaluation criterion, a simple, no iteration and high
precision fast parameter learning algorithm is designed by using the
theory of linear equations. The learning process of FELM is shown
in Figure 3.

The learning process of FELM in Figure 5 is illustrated by a
specific example:

Set a disease d with three basic symptoms: x: fever, y: dry cough;
z: fatigue. How to build a FELM to implement its prediction so that:
d = D (x, y, z).

(1) Determine the initial structure of FELM. According to the
knowledge and information (known data, prior knowledge

of the problem and some characteristics of the function,
etc.) of the problem, the initial structure of FELM is
designed. In the process of diagnosing a disease with three
characteristics, the order of symptoms asked by doctors is
different, and three cases of the initial structure are shown
as in Figures 4A–C:

(2) Simplifying the initial structure of FELM. Since each initial
network structure corresponds to a functional equation
group, the FELMs equivalent to the initial network structure
is found by using the characteristics of the solution of
the functional equation, and the simple and optimal FELM
equivalent to the initial network structure is selected.

The above examples in Figure 4 are essentially independent of
the diagnostic order, which meet functional equation.

d = D
(
x, y, z

)
= F

(
P
(
x, y

)
, z
)
= G

(
Q
(
y, z

)
, x
)

(4)

= H
(
R (x, z) , y

)
.

The general solution of Eq. 4 is:

d = D
(
x, y, z

)
= k

[
p (x)+ q

(
y
)
+ r (z)

]
. (5)

The FELM equivalent to functional Eq. 5 is shown in
Figure 5.

In this way, the design network can be simplified by using
the solution theory of functional equations, and the equivalent, a
simple and optimal FELM can be obtained.

(3) Uniqueness of output expression of functional extreme
machine. Before FELM learning, ensure the uniqueness of
output expression. It is proved theoretically that for a given
FELM, under the same initial conditions, the FELM has the
same output value for any input value.

FIGURE 8

The prediction on f1(x).

Frontiers in Computational Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2023.1209372
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1209372 July 5, 2023 Time: 16:55 # 8

Liu et al. 10.3389/fncom.2023.1209372

The above example is still used to prove the equivalence of
FELMs in Figures 4, 5. It is assumed that there are two functional
neuron function sets: {k1, p1, q1, r1} and {k2, p2, q2, r2}, so that

k1
[
p1 + q1 + r1

]
= k2

[
p2 + q2 + r2

]
, (6)

For any variable x, y, z, let k2(u) = k1(
u−b−c−d

a ), the solution
of the functional equation is:

p2 (x) = ap1 (x)+ b; q2
(
y
)
= aq1

(
y
)
+ c; r2 (z) = ar1 (z)+ d.

(7)
Such uniqueness is proved.

TABLE 2 Comparison of the simplest network structure and running time for approximating f2(x) at four precisions.

Algorithms Eexpect

10−2 10−3 10−4 10−5

Modela Time Modela Time Modela Time Modela Time

Legendre (Zhang et al., 2009b) 10 0.01113 17 0.01844 22 0.02531 24 0.02635

SVR 107 0.19271 111 0.81580 127 4.24594 120 8.34329

LSSVR 201 1.20236 201 0.31068 201 0.04934 201 0.03241

ELM 14 0.03886 32 0.09619 51 0.16112 115 0.45132

OP-ELM 9 0.08181 17 0.37463 32 0.25154 32 0.21841

inverse-free ELM 17 0.03072 43 0.02585 116 0.13123 366 1.28757

OS-RELM 10 0.00882 42 0.02152 96 0.08197 364 1.21366

FELM 10 0.00585 17 0.01059 22 0.01430 24 0.01585

aThe minimum number of hidden nodes for Legendre and ELM that meet the accuracy requirements, the number of support vectors for SVR, and the minimum number of parameters for
FELM.

A B

C D

FIGURE 9

The approximation error [(A–D) 10−2
∼10−5] of FELM.
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(4) Parameter learning algorithm design for FELM. In the general
FELM in Figure 4, a multi-input single-output single-hidden
layer FELM is selected as an example. Its network structure is
shown in Figure 6:

Let input X = [x1, x2, ..., xk] and output y; each neuron
function in the hidden layer fi, i = 1, 2, ..., p is a linear
combination of any nonlinear correlation base functions, that
is,

fi (x1, x2, . . . , xk) =
m∑
j=1

aijϕij (x1, x2, . . . , xk) . (8)

where m is the number of functional neuron base functions. For
the convenience of matrix representation. Let si = X • ωi, ωi =

[1, 1, ..., 1]T . Then Eq. 8 can be written:

fi (si) =
m∑
j=1

aijϕij (si) . (9)

when the function of output neuron has inverse function, it can also
be expressed as a linear combination of base functions:

f−1
p+1 (x) = −

m∑
j=1

ajϕj (x) . (10)

The output of the FELM in Figure 6 is:

y = fp+1

 p∑
i=1

m∑
j=1

aijϕij (si)

 . (11)

Let the sample data be (Xr, yr)and the error cost is:

er = yr − fp+1

 p∑
i=1

m∑
j=1

aijϕij (sri)

 . (12)

where sri = Xrω i .
If there are n groups of sample data, the sum of squares of error

of the FELM model is:

E =
n∑

r=1

yr − fp+1

 p∑
i=1

m∑
j=1

aijϕij (sri)

2

. (13)

By changing the value of the base function coefficient aij,
E is minimized.

If fp+1 is a reversible function, the error sum of the FELM model
can be expressed as:

E =
n∑

r=1

p+1∑
i=1

m∑
j=1

aijϕij (sri)

2

. (14)

where sr,p+1 = yr .

2.2.1. Parameter learning algorithm
The optimal value of parameter coefficient aij can be obtained

by solving (15):

∂E
∂ats
= 2

n∑
r=1

(
p+1∑
i=1

m∑
j=1

aijϕij (sri)

)
ϕts (srt) (15)

= 2
p+1∑
i=1

m∑
j=1

( n∑
r=1

ϕts (srt)ϕij (sri)

)
aij = 0.

where t = 1, 2, ..., p+ 1; s = 1, 2, ...,m.
The Eq. 15 is a linear equation group, which is easy to solve.

Expand Eq. 15, such as Eq. 16:



∂E
∂a11

= 2e1ϕ11 (s11)+ 2e2ϕ11 (s21)

+ . . .+ 2enϕ11 (sn1) = 0,
∂E
∂a12

= 2e1ϕ12 (s11)+ 2e2ϕ12 (s21)

+ . . .+ 2enϕ12 (sn1) = 0,
...
∂E
∂a1m

= 2e1ϕ1m (s11)+ 2e2ϕ1m (s21)

+ . . .+ 2enϕ1m (sn1) = 0,
∂E
∂a21

= 2e1ϕ21 (s12)+ 2e2ϕ21 (s22)

+ . . .+ 2enϕ21 (sn2) = 0,
...
∂E
∂a2m

= 2e1ϕ2m (s12)+ 2e2ϕ2m (s22)

+ . . .+ 2enϕ2m (sn2) = 0,
...
∂E

∂ap+1,1
= 2e1ϕp+1,1

(
s1,p+1

)
+ 2e2ϕp+1,1

(
s2,p+1

)
+

. . .+ 2enϕp+1,1
(
sn,p+1

)
= 0,

...
∂E

∂ap+1,m
= 2e1ϕp+1,m

(
s1,p+1

)
+ 2e2ϕp+1,m

(
s2,p+1

)
+ . . .+ 2enϕp+1,m

(
sn,p+1

)
= 0.

(16)

TABLE 3 Examples of actual regression.

Datasets #Train #Test #Total #Features

Abalone 2,784 1,393 4,177 8

Mpg 261 131 392 7

Autoprice 106 53 159 15

Balloon 1,334 667 2,001 2

Baskball 64 32 96 4

Cleveland 202 101 303 13

Cloud 72 36 108 9

Concrete CS 686 344 1,030 8

Diabetes 28 15 43 2

Housing 337 169 506 13

Machine CPU 139 70 209 6

Mg 923 462 1,385 6

Quake 1,452 726 2,178 3

Servo 111 56 167 4

Strike 416 209 625 6

Wisconsin B.C. 129 65 194 32
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A =



ϕ11 (s11) ϕ11 (s21) · · ·

ϕ12 (s11) ϕ12 (s21) · · ·

...
. . .

ϕ1m (s11) ϕ1m (s21) · · ·

ϕ21 (s12) ϕ21 (s22) · · ·

...
. . .

ϕ2m (s12) ϕ2m (s22) · · ·

...
. . .

ϕp+1,1
(
s1,p+1

)
ϕp+1,1

(
s2,p+1

)
· · ·

...
. . .

ϕp+1,m
(
s1,p+1

)
ϕp+1,m

(
s2,p+1

)
· · ·

ϕ11
(
sn−1,1

)
ϕ11 (sn1)

ϕ12
(
sn−1,1

)
ϕ12 (sn1)

...

ϕ1m
(
sn−1,1

)
ϕ1m (sn1)

ϕ21
(
sn−1,2

)
ϕ21 (sn2)

...

ϕ2m
(
sn−1,2

)
ϕ2m (sn2)

...

ϕp+1,1
(
sn−1,p+1

)
ϕp+1,1

(
sn,p+1

)
...

ϕp+1,m
(
sn−1,p+1

)
ϕp+1,m

(
sn,p+1

)



, B =


e1

e2
...

en

 .

In matrix form, Eq. 16 can be written as:

2AB = 0 (17)

Let P =
[
a11, a12, · · · , a1m, a21, · · · , a2m, · · · , ap+1,1, · · · ,

ap+1,m
]
. So B can be written as B =


e1

e2
...

en

 = ATPT . So Eq. 17 is:

2AATPT = 0. (18)

In Eq. 18, the vector P is the desired parameter coefficients,
but it will not be unique. In order to solve this problem,
initial constraint conditions need to be given. Suppose the given
constraints are as follows.

fi (x0) =
m∑
j=1

ajϕj (s0) = βi, i = 1, 2, . . . , p+ 1 (19)

where s0 = X0ωi, i = 1,2,..., P and s0 = y0, i = P + 1; βi is any real
constant. Therefore, by using the Lagrange multipliers technique,
the following auxiliary function can be established.

Eadd =
n∑

r=1

(
p+1∑
i=1

m∑
j=1

aijϕij (sri)

)2

+

p+1∑
s=1

θs

(
m∑
j=1

asjϕsj (s0)− βs

)
.

(20)

The minimum model error sum of squares corresponds to.

∂Eadd
∂ats = 2

n∑
r=1

(
p+1∑
i=1

m∑
j=1

aijϕij (sri)

)
ϕts (srt) + θtϕts (s0)

= 2
p+1∑
i=1

m∑
j=1

( n∑
r=1

ϕts (srt)ϕij (sri)
)
aij + θtϕts (s0) = 0.

∂Eadd
∂θt
=

m∑
j=1

atjϕti (s0)− βt = 0.

(21)
where t = 1, 2, . . . , p+ 1; s = 1, 2, . . . ,m.

Let

ϕ0 =



ϕ11 (s0) 0 0 · · · 0
...

ϕ1m (s0) 0 · · · 0 0
0 ϕ21 (s0) 0 · · · 0
...

0 0 · · · 0 ϕp+1 (s0)


,

θ =


θ1

θ2
...

θp+1

 ,C =



0
...

0
β1
...

βp+1


.

In matrix form, Eq. 21 can be written as:

[
2AAT ϕ0

ϕT
0 0

][
PT

θ

]
= C. (22)

It is very simple to use Eq. 22 to solve the parameters. This
parameter learning algorithm is simple, iterative-free, and has good
approximation effect.

2.2.2. FELM parameter learning algorithm analysis
The FELM is based on problem-driven, learning network

structure and parameters. Its each step in the learning process
is operable and realizable, and the learning process is suitable
for any FELM. At the same time, the theoretical basis and
mathematical derivation of learning algorithms of FELM are given.
The parameter learning algorithm is simple, no iteration and high
precision, which is convenient for engineers to use.

The learning process of FELM is completely different from
that of the ELM, for its structure have no weight values and the
threshold value of neurons. In the ELM, the input layer weights and
hidden neuron thresholds of the network are randomly selected,
but people can only choose the size of the regularization coefficient
by trial and error method, because there is no effective parameter
selection method. The characteristics of FELM structure and the
process of parameter learning make the problem fundamentally
solved. Based on some simple examples, the above shows the
learning process of the structure and parameters of the FELM, and
its research ideas can be extended to general situations.
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3. Experimental results and analysis

In this section, the performance of the proposed FELM is
compared with feedforward neural network algorithms such as
the ELM and support vector regression (SVR) on approximating
two artificial datasets and 16 benchmark real problems. For

comparison, three variant algorithms of ELM (OP-ELM) (Miche
et al., 2010), inverse-free ELM (Li et al., 2016), OS-RELM (Shao
and Er, 2016) and the variant algorithm of SVR (LSSVR) are also
added. Simulations of all algorithms are performed in the MATLAB
2019b environment running on an 11th Gen Intel(R) Core(TM)
i5-11320H @ 3.20GHz and 16GB RAM.

TABLE 4 Comparison of network complexity.

Algorithm FELM SVR LSSVR ELM

# nodes (C, γ) # SVs (C, γ) # SVs # nodes

Abalone 8 (211, 24) 1,461.82 (212, 2−10) 2,784 8

Mpg 7 (28, 24) 182.64 (212, 2−7) 261 7

Autoprice 15 (29, 23) 105.38 (212, 2−10) 106 15

Balloon 2 (27, 24) 690.18 (212, 2−10) 1,334 2

Baskball 4 (210, 20) 58.08 (212, 2−10) 64 4

Cleveland 13 (211, 2−4) 197.92 (212, 2−4) 198 13

Cloud 9 (27, 22) 71.94 (212, 2−5) 72 9

Concrete CS 8 (211, 24) 527.82 (211, 2−9) 686 8

Diabetes 2 (211, 23) 24.32 (212, 2−10) 28 2

Housing 13 (212, 2−1) 329.76 (212, 2−6) 337 13

Machine CPU 6 (27, 23) 108.52 (212, 2−7) 139 6

Mg 6 (212, 24) 530.38 (212, 2−10) 923 6

Quake 3 (211, 24) 756.86 (212, 2−10) 1,452 3

Servo 4 (22, 24) 77.56 (212, 2−3) 111 4

Strike 6 (212, 21) 341.7 (212, 2−9) 416 6

Wisconsin B.C. 32 (211, 2−5) 128.28 (212, 20) 129 32

TABLE 5 Comparison of training and testing RMSE.

Data sets ELM OP-ELM OS-RELM FELM

ϕ1 ϕ2

Train Test Train Test Finala Train Test Train Test Train Test

Abalone 0.1650 0.1657 0.1486 0.2097 35 0.1850 0.1878 0.0038 0.0129 0.0079 0.0119

Mpg 0.1825 0.1895 0.1207 0.1605 36 0.2492 0.2608 0.0252 0.0309 0.0236 0.0309

Autoprice 0.1545 0.1867 0.1272 0.1737 14 0.2113 0.2702 0.0016 0.0145 0.0017 0.0124

Balloon 0.1533 0.1574 0.0141 0.0237 44 0.1917 0.1925 0.0014 0.0015 0.0009 0.0009

Baskball 0.2529 0.2817 0.2244 0.2769 7 0.2765 0.2923 0.0119 0.0342 0.0195 0.0402

Cleveland 0.4247 0.4517 0.4043 0.4331 9 0.5269 0.5632 0.0318 0.0712 0.0468 0.0702

Cloud 0.1364 0.1685 0.0850 0.1673 18 0.2836 0.3245 0.0023 0.0120 0.0054 0.0103

Concrete CS 0.2748 0.2786 0.0979 0.1201 85 0.3642 0.3664 0.0136 0.0150 0.0150 0.0160

Diabetes 0.3483 0.3873 0.2661 0.3764 5 0.3500 0.3788 0.0107 0.0247 0.0143 0.0253

Housing 0.2353 0.2488 0.1219 0.2341 54 0.2971 0.3122 0.0228 0.0438 0.0274 0.0358

Machine CPU 0.0800 0.1057 0.0320 0.0943 13 0.1494 0.1783 0.0003 0.0047 0.0020 0.0055

Mg 0.3385 0.3421 0.2454 0.2707 84 0.3888 0.3923 0.0225 0.0230 0.0291 0.0300

Quake 0.3445 0.3480 0.3407 0.3462 10 0.3610 0.3614 0.0078 0.0077 0.0147 0.0152

Servo 0.3565 0.3608 0.1029 0.1956 39 0.4163 0.4268 0.0205 0.0260 0.0272 0.0288

Strike 0.1579 0.1555 0.1437 0.1557 10 0.2216 0.2180 0.0118 0.0202 0.0207 0.0261

Wisconsin B.C. 0.0634 0.0920 0.0109 0.0262 48 0.1818 0.2673 0.0007 0.0279 0.0023 0.0225

aThe number of neurons in the final model.
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The SVR, LSSVR, ELM, and OP-ELM source
codes used in this experiment were downloaded from
www.csie.ntu.edu.tw/cjlin/libsvm/,www.esat.kuleuven.be/sista/lssv
mlab/;www.ntu.edu.sg/home/egbhuang/; and www.cis.hut.fi/proj
ects/tsp/index.php?page = OPELM, respectively. We use the radial
basis function as the kernel function for SVR and LSSVR. In
SVR, two parameters are mainly optimized. For each problem
we use different combinations of the cost parameter C and
the kernel parameter γ to estimate the generalized accuracy
(Huang and Zhao, 2018): C =

[
212, 211, . . . , 2−1, 2−2] and

γ =
[
24, 23, . . . , 2−9, 2−10] (Huang et al., 2006). Therefore, on

SVR, for each problem we try 15× 15 = 225 (C, γ) parameter
combinations, 50 trials for each combination, then calculate
the root mean square error (RMSE) of the 50 results of the
combination, take the combination with the smallest root mean
square error among the 225 combinations as the best parameter
combination, and the parameter optimization process of LSSVR is
the same. LSSVR mainly optimizes the regularization parameter
(C) and the kernel parameter (kp), and the adopted ranges are the
same as C and γ of SVR, respectively. The activation functions of
ELM and its variants and the base functions of FELM will be set
according to the following specific problems to be solved.

3.1. Artificial datasets

3.1.1. Artificial case 1: f1(x) = x cos(4x)
In the interval [−1.0, 1.5], 101 training samples (xi, fi)

were obtained by sampling at 0.025 intervals. In addition,
with 0.025 as the interval, nine data points are obtained
in the unlearned interval [1.505, 1.705] as the prediction

points. In this example, FELM uses the base functions:
{sin (x) , sin (2x) , sin (3x) , sin (4x) , sin (5x) , sin (6x)}. The optimal
combination parameter of SVR is (C, γ) =

(
212, 20), the optimal

combination parameter of LSSVR:
(
C, kp

)
=
(
212, 2−10). ELM,

OP-ELM and inverse-free ELM use the sig function as the
activation function, and the activation function of OS-RELM is
triangular basis function, because the commonly used sig function
cannot obtain a feasible solution to this problem in a reasonable
time. Trigonometrically-Activated Fourier Neural Networks
(Zhang et al., 2009a) (hereinafter referred to as TAFNN) will also
be added for performance comparison. The definition error of
function as follows.

E = 1
2

N∑
t=1

e2
t =

1
2

N∑
t=1

(
expectt − predictt

)2 (23)

where expectt is the expected output, and predictt represents the
actual network output, N is the number of sample points. And E/N
is the average error.

As shown in Table 1, the parts in bold are the optimal
data, FELM has a competitive advantage in training time, and
the total training error and the average training error are less
than 6 compared algorithms (especially hundreds of thousands
of times smaller than ELM, inverse-free ELM and OS-RELM,
Figure 7 shows that the training results obtained by the above
three algorithms are not satisfactory), but slightly worse than OP-
ELM. However, the training time of FELM is more than 200 times
faster than OP-ELM, and its hidden layer has only 6 parameters,
so its model complexity is much lower than OP-ELM. Figure 7
shows the testing of 8 algorithms. It can be seen that the testing
results of FELM are good, and the error between its output and
the target output is small. The testing results of ELM, inverse-free

TABLE 6 Comparison of training and testing RMSE.

Data sets IFELM SVR LSSVR FELM

ϕ1 ϕ2

Train Test Train Test Train Test Train Test Train Test

Abalone 0.1882 0.1876 0.1438 0.1658 0.0001 0.1951 0.0038 0.0129 0.0079 0.0119

Mpg 0.2519 0.2595 0.1031 0.1513 0.0001 0.3549 0.0252 0.0309 0.0236 0.0309

Autoprice 0.2238 0.2673 0.0332 0.2408 0.0078 0.3737 0.0016 0.0145 0.0017 0.0124

Balloon 0.1935 0.1906 0.0105 0.0109 0.0003 0.1016 0.0014 0.0015 0.0009 0.0009

Baskball 0.2705 0.3007 0.1538 0.5060 0.0001 0.3340 0.0119 0.0342 0.0195 0.0402

Cleveland 0.5353 0.5808 0.0009 0.8334 0.0001 0.5918 0.0318 0.0712 0.0468 0.0702

Cloud 0.2847 0.3336 0.0233 0.1947 0.0001 0.3476 0.0023 0.0120 0.0054 0.0103

Concrete CS 0.3679 0.3747 0.0555 0.1008 0.0063 0.4312 0.0136 0.0150 0.0150 0.0160

Diabetes 0.3584 0.3755 0.1874 0.8771 0.0001 0.3915 0.0107 0.0247 0.0143 0.0253

Housing 0.3006 0.3226 0.0500 0.2147 0.0001 0.3562 0.0228 0.0438 0.0274 0.0358

Machine CPU 0.1478 0.1803 0.0026 0.0263 0.0001 0.2138 0.0003 0.0047 0.0020 0.0055

Mg 0.3777 0.3779 0.2377 0.2794 0.0002 0.4418 0.0225 0.0230 0.0291 0.0300

Quake 0.3646 0.3660 0.3405 0.3517 0.0955 0.8925 0.0078 0.0077 0.0147 0.0152

Servo 0.4106 0.4179 0.1552 0.1950 0.0001 0.2187 0.0205 0.0260 0.0272 0.0288

Strike 0.2207 0.2240 0.1125 0.2053 < 10−4 0.1646 0.0118 0.0202 0.0207 0.0261

Wisconsin B.C. 0.1844 0.2666 0.0003 0.0360 0.0001 0.2100 0.0007 0.0279 0.0023 0.0225

“IFELM” for “inverse-free ELM”.
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FIGURE 10

Comparison of test RMSE on the first 8 datasets when FELM uses ϕ1. (A) Abalone data set, (B) Mpg data set, (C) autoprice data set, (D) balloon data
set, (E) baskball data set, (F) cleveland data set, (G) cloud data set, and (H) concrete CS data set.
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FIGURE 11

Comparison of test RMSE on the last 8 datasets when FELM uses ϕ1. (A) Diabetes data set, (B) housing data set, (C) machine CPU data set, (D) Mg
data set, (E) quake data set, (F) servo data set, (G) strike data set, and (H) wisconsin B.C. data set.
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FIGURE 12

Comparison of test RMSE on the first 8 datasets when FELM uses ϕ2. (A) Abalone data set, (B) Mpg data set, (C) autoprice data set, (D) balloon data
set, (E) baskball data set, (F) cleveland data set, (G) cloud data set, and (H) concrete CS data set.

Frontiers in Computational Neuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2023.1209372
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1209372 July 5, 2023 Time: 16:55 # 16

Liu et al. 10.3389/fncom.2023.1209372

A B

C D

E F

G H

FIGURE 13

Comparison of test RMSE on the last 8 datasets when FELM uses ϕ2. (A) Diabetes data set, (B) housing data set, (C) machine CPU data set, (D) Mg
data set, (E) quake data set, (F) servo data set, (G) strike data set, and (H) wisconsin B.C. data set.

Frontiers in Computational Neuroscience 16 frontiersin.org

https://doi.org/10.3389/fncom.2023.1209372
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1209372 July 5, 2023 Time: 16:55 # 17

Liu et al. 10.3389/fncom.2023.1209372

ELM and OS-RELM are different from the target output. In terms
of prediction accuracy, FELM obtains the smallest total prediction
error and average prediction error which shows that it has
good generalization performance. A more intuitive comparison of
predictions is shown in Figure 8. Therefore, compared with other
comparison algorithms, FELM can obtain the highest prediction
accuracy in the shortest time under the smallest network model.

3.1.2. Artificial case 2:
f2 (x) = ex cos (6πx) /3 sin (x)

In the interval [−1, 1], 201 training samples are obtained
at 0.01 sampling interval. The following simulation is
carried out to determine the optimal number of hidden
neurons corresponding to four different expectation average
error

(
Eexpect = 10−2, 10−3, 10−4, 10−5), the evaluation metric

is Eq. 23. The FELM uses
{

1, x, x2, x3, . . . , x24} as the
base functions in this example. For different expected
mean errors, the best parameters of SVR (C, γ) =(
2−1, 24) , (21, 24) , (24, 24) , (25, 24). The best parameters

of LSSVR
(
C, kp

)
=
(
2−2, 2−10) , (20, 2−10) , (22, 2−10) ,(

24, 2−10). OP-ELM uses the commonly used activation function
sig function, and the activation function of ELM, inverse-free ELM
and OS-RELM is triangular basis function. The Legendre neural
network (Zhang et al., 2009b) (hereinafter referred to as Legendre)
will also be used for comparison.

As shown in Table 2, the parts in bold are the optimal data,
except for the first Eexp ect , under the other three Eexp ect , the
structural complexity of FELM is the lowest with the Legendre,
because they use similar hidden layer functions. It can be seen from
the table that the time required for the FELM optimization process

 

A

B

FIGURE 14

Comparison of eight algorithms training time. (A) Eight data sets average training time and (B) eight data sets average test time.
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is short, indicating that of its learning speed is fast. Table 2 shows
that the higher the required precision, the network complexity
of ELM, inverse-free ELM and OS-RELM increase exponentially,
while the model complexity of SVR has always been relatively
large, and the structural complexity of LSSVR remains unchanged

because all training samples have been used all the time. In contrast
to FELM, its structural complexity will not increase significantly
due to high precision requirements, but will increase slowly.
Figure 9 shows the approximation of FELM under four different
required accuracies.

TABLE 7 Comparison of training and testing time.

Data sets ELM OP-ELM OS-RELM FELM

ϕ1 ϕ2

Train Test Train Test Train Test Train Test Train Test

Abalone 0.0008 0.0006 1.2151 0.0053 0.0005 0.0001 0.0006 0.0019 0.0012 0.0058

Mpg 0.0001 0.0003 0.1163 0.0010 0.0002 < 10−4 0.0003 0.0004 0.0003 0.0004

Autoprice 0.0001 0.0003 0.0571 0.0004 0.0002 < 10−4 0.0291 0.0006 0.0671 0.0006

Balloon 0.0002 0.0003 0.3266 0.0026 0.0016 < 10−4 0.0001 0.0003 0.0001 0.0003

Baskball 0.0001 0.0003 0.0319 0.0003 0.0001 < 10−4 0.0005 0.0002 0.0002 0.0002

Cleveland 0.0002 0.0003 0.0733 0.0003 0.0008 0.0003 0.0012 0.0007 0.0291 0.0006

Cloud 0.0001 0.0003 0.0301 0.0005 0.0004 < 10−4 0.0005 0.0004 0.0003 0.0002

Concrete CS 0.0004 0.0003 0.2841 0.0040 0.0096 0.0001 0.0006 0.0009 0.0006 0.0006

Diabetes 0.0001 0.0003 0.0060 0.0002 0.0001 < 10−4 0.0002 0.0001 0.0001 0.0001

Housing 0.0002 0.0003 0.1372 0.0017 0.0360 0.0001 0.0013 0.0008 0.0378 0.0008

Machine CPU 0.0002 0.0003 0.0523 0.0004 0.0001 < 10−4 0.0004 0.0003 0.0003 0.0002

Mg 0.0003 0.0003 0.3608 0.0041 0.0040 0.0001 0.0003 0.0006 0.0003 0.0005

Quake 0.0003 0.0003 0.5760 0.0007 0.0002 < 10−4 0.0001 0.0004 0.0001 0.0004

Servo 0.0002 0.0002 0.0556 0.0009 0.0001 < 10−4 0.0002 0.0002 0.0002 0.0002

Strike 0.0001 0.0002 0.1478 0.0004 0.0002 < 10−4 0.0003 0.0005 0.0003 0.0005

Wisconsin B.C. 0.0004 0.0003 0.0763 0.0013 0.0008 0.0001 0.0060 0.0014 0.0052 0.0011

TABLE 8 Comparison of training and testing time.

Data sets IFELM SVR LSSVR FELM

ϕ1 ϕ2

Train Test Train Test Train Test Train Test Train Test

Abalone 0.0170 0.0003 23.9456 0.1626 1.3931 0.0829 0.0006 0.0019 0.0012 0.0058

Mpg 0.0005 0.0001 0.3389 0.0018 0.0049 0.0017 0.0003 0.0004 0.0003 0.0004

Autoprice 0.0003 < 10−4 0.2050 0.0005 0.0063 0.0046 0.0291 0.0006 0.0671 0.0006

Balloon 0.0458 < 10−4 7.1634 0.0282 0.1645 0.0264 0.0001 0.0003 0.0001 0.0003

Baskball 0.0001 < 10−4 0.0762 0.0002 0.0048 0.0022 0.0005 0.0002 0.0002 0.0002

Cleveland 0.0003 < 10−4 0.2124 0.0014 0.0038 0.0013 0.0012 0.0007 0.0291 0.0006

Cloud 0.0002 < 10−4 0.0529 0.0002 0.0027 0.0012 0.0005 0.0004 0.0003 0.0002

Concrete CS 0.0004 0.0002 29.9708 0.0130 0.1204 0.0124 0.0006 0.0009 0.0006 0.0006

Diabetes 0.0001 < 10−4 0.0348 0.0001 0.0026 0.0011 0.0002 0.0001 0.0001 0.0001

Housing 0.0086 0.0001 28.4575 0.0044 0.0130 0.0053 0.0013 0.0008 0.0378 0.0008

Machine CPU 0.0003 < 10−4 0.1797 0.0006 0.0034 0.0012 0.0004 0.0003 0.0003 0.0002

Mg 0.0208 0.0001 12.3212 0.0160 0.2015 0.0097 0.0003 0.0006 0.0003 0.0005

Quake 0.0029 0.0001 5.2265 0.0331 0.2491 0.0269 0.0001 0.0004 0.0001 0.0004

Servo 0.0002 < 10−4 0.0028 0.0002 0.0075 0.0020 0.0002 0.0002 0.0002 0.0002

Strike 0.0405 0.0001 27.6507 0.0050 0.0361 0.0067 0.0003 0.0005 0.0003 0.0005

Wisconsin B.C. 0.0063 0.0009 0.0267 0.0011 0.0027 0.0011 0.0060 0.0014 0.0052 0.0011

“IFELM” for “inverse-free ELM”.
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3.2. Realistic regression problem

3.2.1. Data sets and experimental settings
The 16 real benchmark datasets are selected because they

cover various fields, and the data size and dimension are different.
They are mainly obtained from the data archives of UCI Machine
Learning (Asuncion and Newman, 2007) and StatLib (StatLib
DataSets Archive, 2021). Table 3 lists the specifications of these
datasets. In practical applications, the distribution of these datasets
is unknown, and most datasets are not noise-free. For these 7
algorithms, 50 independent simulation trials are performed on each
dataset, and the training and test data are randomly regenerated
from their entire dataset, two-thirds training and one-third testing.
Additionally, in our experiments, all inputs (attributes) and outputs
(targets) are normalized to the range [−1, 1].

The ELM uses the sig function as the activation function,
OP-ELM uses Gaussian kernel, and the proposed algorithm uses
two different types of base functions: ϕ1 = {1, x, x2, x3

} and ϕ1 =

{sin(x), sin(2x), sin(3x)}, the rest of the comparison algorithms use
the RBF kernel. The network complexity comparison of FELM,
ELM and SVR is shown in Table 4, where FELM and ELM adopt the
same network complexity on the same problem, it can be seen that
in most cases, FELM is more compact than SVR. It should be noted
that, for fairness, the network complexity of OP-ELM, inverse-free
ELM and OS-RELM is also the same as ELM, and will not be
repeated in the table. Finally, on the baskball, cloud and diabetes
problems, the maximum number of neurons for OP-ELM is pre-
specified as 62, 70 and 26, respectively, because they have fewer
training sets, and the remaining data sets are used a maximum
number of 100 neurons.

3.2.2. Evaluation criteria
On the above 13 benchmark regression problems, the

evaluation criteria of FELM, ELM and SVR adopt root mean square
error:

RMSE =

√√√√ 1
N

N∑
t=1

(
predictedt − labelt

)2 (24)

3.2.3. Evaluation and analysis of experimental
results

The FELM is compared with other algorithms to test RMSE
under two different types of base functions, and the winners are
shown in Tables 5, 6 in bold. As can be seen from Tables 5, 6,
FELM achieves higher generalization performance than the other 6
algorithms on all problems. Except on the Wisconsin B.C. problem,
the average test RMSE of FELM is 1 order of magnitude higher
than the other algorithms on the other 15 problems. It is worth
noting that in Table 6, LSSVR achieves the best training results,
but on most problems, its test and training RMSE are 3 orders of
magnitude different, while the training and test RMSE of FELM are
of the same order of magnitude or only one order of magnitude
worse. Figures 10–13 shows that whether FELM uses ϕ1 or ϕ2,
on Balloon, the curve of FELM and SVR are at the same level
and below, which shows that although they obtain similar results,
they are better than other algorithms. In Wisconsin B.C., The
comparison curves of FELM, SVR and OP-ELM are also similar.
But for other 14 problems, it can be seen from the figure that the
curves of FELM are all at the bottom, and the fluctuations are

gentler, while other algorithms have large fluctuations, indicating
that compared with other algorithms, it not only obtains the highest
accuracy, but also the network outputs of each independent trial are
very close to the expected value, and the error is very small.

Figure 14 shows the average time comparison of 7 algorithms
on 16 datasets, where FELM−ϕ1 and FELM−ϕ2 use ϕ1 and ϕ2 base
functions for FELM, respectively. Tables 7, 8 and Figure 14 show
that the average training time of FELM on the two different types
of base functions is close, and it is also similar to ELM, inverse-
free ELM and OS-RELM in learning speed and test time. But it is
obvious from Figure 14 that FELM learns ten times or even more
than a hundred times faster than OP-ELM, SVR and LSSVR on
most problems.

In fact, according to the above experiments, it is obvious
that FELM has better generalization performance than other
comparison algorithms; at the same time, the RMSE of FELM
changes milder or less, which means that FELM has stronger
robustness. In addition, ELM has the advantage of fast learning
speed, and the algorithm proposed in this article has been
shown to not only generalize well, but also compete with ELM
in learning speed.

4. Conclusions and future works

This article proposes a new type of functional extreme learning
machine theory, the parameter learning algorithm without iteration
makes the learning speed of FELM very fast. In our simulations,
for many problems, the learning stage of FELM can be completed
in less than a few seconds. Although the purpose of this article
is not to compare functional extreme learning machine with
ELM, SVR and their improved algorithms, we also make a
simple comparison between FELM and six algorithms in the
simulations. The results show that the learning speed of FELM
can not only compete with ELM and its improved algorithms,
but also be dozens or hundreds of times faster than SVR. As our
experimental results show, FELM has higher test accuracy under
the same network complexity as ELM and its variants. Because
SVR usually generates more support vectors (computing units),
LSSVR uses all training data, and functional extreme learning
machine just needs few hidden layer nodes (computing units) in
the same application. In applications requiring fast prediction and
response capability, SVR algorithm may take several hours, so
it is not suitable for real-time prediction, and the performance
of FELM in this article seems to prove that it is suitable for
this application. Compared with popular learning technologies,
the proposed FELM has several important characteristics. (1) The
training speed of FELM is very fast; (2) Fast parameter learning
algorithm without iteration and with high precision; (3) Different
function families can be selected according to specific problems,
such as trigonometric function bases, Fourier basis functions, etc.
In this article, we have proved that FELM is very useful in many
practical regression problems, but the following two aspects can
be studied in the future: under the actual engineering error, the
purpose of optimizing the network is achieved by reducing the
network complexity. The network parameters are obtained by
matrix pseudo inverse method.
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