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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent 
of coronavirus disease 19 (COVID-19), has caused a global health crisis. Despite 
ongoing efforts to treat patients, there is no universal prevention or cure available. 
One of the feasible approaches will be identifying the key genes from SARS-CoV-
2-infected cells. SARS-CoV-2-infected in vitro model, allows easy control of 
the experimental conditions, obtaining reproducible results, and monitoring of 
infection progression. Currently, accumulating RNA-seq data from SARS-CoV-2 
in vitro models urgently needs systematic translation and interpretation. To fill this 
gap, we built COVIDanno, COVID-19 annotation in humans, available at http://
biomedbdc.wchscu.cn/COVIDanno/. The aim of this resource is to provide a 
reference resource of intensive functional annotations of differentially expressed 
genes (DEGs) among different time points of COVID-19 infection in human in 
vitro models. To do this, we  performed differential expression analysis for 136 
individual datasets across 13 tissue types. In total, we  identified 4,935 DEGs. 
We performed multiple bioinformatics/computational biology studies for these 
DEGs. Furthermore, we developed a novel tool to help users predict the status of 
SARS-CoV-2 infection for a given sample. COVIDanno will be a valuable resource 
for identifying SARS-CoV-2-related genes and understanding their potential 
functional roles in different time points and multiple tissue types.
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Introduction

SARS-CoV-2 poses a significant and widespread health threat. As of December 2022, there 
have been 642M confirmed cases of COVID-19, including 6.6M deaths, according to COVID-19 
situation dashboard of World Health Organization (https://covid19.who.int). The host immune 
response plays a crucial role in the fight against viruses. However, host cell metabolisms can 
be altered by viral factors, immune regulatory factors, and various medicinal factors in the in vivo 
environment. Most of all, the human immune system is highly variable among individuals due to 
diverse factors, including different combinations of genetics/epigenetic factors (such as sex and 
age) and environmental factors. The human immune system is highly variable, making it difficult 
to grasp the key features as a whole. A good way to overcome these limitations is to infect target 
cells directly with SARS-CoV-2 in vitro. The in vitro models only include the viral factors, without 
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the confounding variables present in the in vivo environment. It is also 
easy to control the experimental condition, obtain reproducible results, 
and monitor the progression of infection.

COVID-19 patients can present symptoms in multiple systems of 
the human body, including the respiratory, cardiovascular, 
gastrointestinal, hepatic, and ocular systems (Sridhar and Nicholls, 
2021). Many studies have shown that SARS-CoV-2 can infect multiple 
tissues, such as the nose, lungs, eyes, stomach, intestines, heart, kidneys 
and liver (Lindner et al., 2020; Wichmann et al., 2020; Benvari et al., 
2022; Brauninger et al., 2022; Chaurasia et al., 2022; Ramasamy, 2022). 
However, obtaining SARS-CoV-2-infected tissues from living 
COVID-19 patients, especially from specific tissues such as the heart, 
kidneys, intestines and liver, is difficult. Usually, the infected tissues are 
from autopsy cases. It is unclear what happened during the progression 
of the disease. RNA-seq data are collected from COVID-19 patients, who 
usually exhibit certain clinical symptoms that can be detected. However, 
these data lack information about the initial infection process (incubation 
period). In vitro models are useful for exploring the continuous infection 
progression and addressing immunologic drivers in the early stages of 
SARS-CoV-2 infection. A systematic comparison between in vitro 
models and in vivo conditions may provide novel and useful insights for 
improving COVID-19 therapeutics and drug development.

Currently, numerous in vitro models of multiple human tissues 
have been built to study COVID-19. To date, there are 11 COVID-19-
related data resources and 4 databases that integrate publicly available 
COVID-19-related RNA-seq data (Satyam et al., 2021). However, the 
knowledge obtained from these databases is limited, and a 
comprehensive analysis is lacking. Most importantly, none of these 
databases focused on in vitro models infected with SARS-CoV-2. 
Although RNA-seq data from in vitro models of SARS-CoV-2 
infection have accumulated, systematic translation/interpretation of 
these data is lacking. To address this gap, we integrated all existing 
RNA-seq datasets from SARS-CoV-2 in vitro models from Gene 
Expression Omnibus (GEO) (Barrett et al., 2013). In total, we collected 
745 samples across 13 human tissues (brain, bronchi, eyes, heart, 
kidneys, large intestine, liver, lungs, nasal cavity, nerves, pancreas, 
small intestine, and stomach). We performed multiple bioinformatics 
analyses on the 4,935 significant DEGs, including gene group 
annotation, expression profiling, exon skipping event annotation, 
expression trajectory analysis, tissue-specific expression analysis, 
regulatory network analysis, drug and disease information integration, 
and curation of previous studies. We built a new database COVIDanno, 
COVID-19 annotation in human, available at http://biomedbdc.
wchscu.cn/COVIDanno/. COVIDanno aims to provide resources and 
references for intensive functional annotations of the significant DEGs 
among different time points after COVID-19 infection from in vitro 
models. Additionally, COVIDanno provides a novel tool that enables 
users to predict infection status for a given SARS-CoV-2-infected 
sample through an unsupervised analysis method.

Materials and methods

Data quality control and reads alignment

The raw RNA-seq data (fastq files) of SARS-CoV-2 in vitro models 
were downloaded from GEO. Fastp (Chen et al., 2018) was used to 
perform quality checks of fastq files. The quality checked reads were 

then mapped to the Ensembl human reference genome (GRCh38 
release 103; Yates et al., 2020) using STAR aligner (Dobin et al., 2013) 
and SARS-CoV-2 reference genome (GenBank: NC_045512.2) using 
Bowtie2 (Langmead and Salzberg, 2012). After quality control and 
alignments, read counts were summarized using the featureCounts 
function of the Subread package (Liao et al., 2014).

Sample relationship analysis

The raw read counts of the RNA-seq data were normalized using 
the variance stabilizing transformation (VST) after mapping to the 
human reference genome and SARS-CoV-2 reference genome. The 
VST normalized counts were then used to generate sample correlation 
results using the Pearson correlation coefficient and perform principal 
component analysis (PCA).

Differential gene expression analysis

To perform differential gene expression analysis, we first removed 
the SARS-CoV-2 viral transcripts. DEseq2 (Love et al., 2014) was then 
used to identify the DEGs between SARS-CoV-2-infected and mock-
treated samples. Next, we  performed various bioinformatics/
computational biology studies for these DEGs.

Detection of alternative splicing events

rMATS (Shen et al., 2014) was used to identify the differential 
alternating splicing (DAS) events between SARS-CoV-2-infected and 
mock-treated samples and obtain percent spliced-in (PSI) values of 
individual samples. Five types of DAS events were identified, including 
exon skipping (ES), alternative 5′ splice site (A5SS), alternative 3′ 
splice sites (A3SS), mutually exclusive exon (MXE), and intron 
retention (RI). PSI values of SARS-CoV-2-infected and mock-treated 
samples were corrected for batch effect using the removeBatchEffect 
function in limma (Ritchie et al., 2015).

Functional enrichment analysis for DEGs 
and differential exon skipping events

We performed enrichment analysis using Kyoto Encyclopedia of 
Genes and Genomes (KEGG) (Kanehisa and Goto, 2000) and Gene 
Ontology (GO) (Blake et al., 2015) pathways for DEGs (p.adj < 0.05 
and |log2FC| > 1) and differential exon skipping events (FDR < 0.05 
and |∆ PSI| > 0.1) by the Enrichr tool (Kuleshov et al., 2016).

Landscaping of gene expression and PSI 
values

To gain insight into the gene expression patterns, counts were 
then normalized using the TMM method in edgeR (Robinson et al., 
2010). These TMM-normalized counts were then transformed into 
TMM normalized log-CPM values. Finally, the batch-corrected TMM 
normalized log-CPM gene expression values of SARS-CoV-2-infected 
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and mock-treated samples were used to visualize the landscape of 
individual genes across 136 datasets via heatmaps. For PSI patterns, 
batch-corrected PSI values of SARS-CoV-2-infected and mock-treated 
samples were used to visualize the landscape of individual exon 
skipping events across 136 datasets via heatmaps. We corrected the 
batch effect using the removeBatchEffect function in the limma 
package (Ritchie et al., 2015).

Construction of genetic regulatory 
networks of transcription factors for 
COVID-19 infection DEGs

We used PANDA (Glass et  al., 2013), the baseline method in 
netzoo, to construct gene regulatory networks between transcription 
factors (TFs) and their target genes by combining information from 
gene expression, protein–protein interaction, and transcription factor 
regulatory data. First, we  downloaded position weight matrices 
(PWMs) for Homo sapiens motifs from CIS-BP (version 2.0) 
(Weirauch et al., 2014). Then, we mapped the PWMs to promoter 
regions using FIMO (Grant et al., 2011). The sequence motifs of 940 
TFs were mapped into the promoter region ranging from –750 to 
+250 around the transcription start site (TSS) with a significant value 
of p less than 10E-5 (Supplementary Figure S1A). Finally, we used 
PANDA (Glass et al., 2013) to estimate population-based networks by 
integrating 940 TFs, gene expression profiles, and protein–protein 
interactions (StringDB) (Szklarczyk et al., 2015). To compare these 
regulatory networks between SARS-CoV-2-infected and mock-treated 
samples, we used panda.diff.edges function with a default threshold 
value 0.8 for differential TF-gene edges.

Construction of alternative splicing 
regulatory networks in response to 
SARS-CoV-2 infection

We used PANDA (Glass et al., 2013) to infer alternative splicing 
(AS) regulatory networks between RNA-binding proteins (RBPs) and 
their target exon skipping events. First, we downloaded PWMs for 
Homo sapiens motifs from CisBP-RNA (version 0.6) (Weirauch et al., 
2014) and mapped the PWMs to the skipped exon regions using 
FIMO (Grant et al., 2011). The sequence motifs of 73 RBPs mapped 
with a value of p less than 10E-4 within 4 skipped exon regions 
(referring rMAPS2; Hwang et al., 2020) (Supplementary Figure S1B). 
Then, we used PANDA (Glass et al., 2013) to estimate population-
based networks by integrating 73 RBPs, PSI values of exon skipping 
events, and protein–protein interactions (StringDB) (Szklarczyk et al., 
2015). To compare these network models between SARS-CoV-2-
infected and mock-treated samples, we used panda.diff.edges function 
with a default threshold value 0.8 for differential RBP-ES edges.

Gene group annotation (immune 
relatedness, sex relatedness, aging 
relatedness, and tissue specificity)

For further dissecting the DEGs, we overlapped our DEGs with 
specific gene groups such as immune-related genes, sex-related genes, 

age-related genes, and tissue-specific genes. Immune-related genes 
were extracted from InnateDB (Breuer et  al., 2013) and immune 
response-related pathways from KEGG (Kanehisa and Goto, 2000) 
and GO (Blake et al., 2015). Sex-related genes were extracted from 
SAGD (Shi et al., 2019). Aging-related genes were extracted from 
GenAge (de Magalhaes and Toussaint, 2004) and Aging Atlas (Liu 
G. H. et al., 2021). Tissue-specific genes were extracted from TissGDB 
(Kim et al., 2018).

Drug and disease information

Drug-target interactions (DTIs) were extracted from DrugBank 
(Wishart et  al., 2018) (May 2022, version 5.1.9). All drugs were 
grouped using Anatomical Therapeutic Chemical (ATC) classification 
system codes. Disease-related genetic information was extracted from 
a database of gene-disease associations (DisGeNet, May 2022, version 
7.0) (Pinero et al., 2017).

Curation of PubMed articles

To understand the current research progress, we used RISmed 
(version 2.3.0) to retrieve the related literature related to the DEGs. 
PubMed’s literature query was performed in August 2022 using the 
keywords for DEG (gene symbol, synonyms of gene symbol). Taking 
ACE2 as an example, the searching keywords used were ‘(COVID-19 
[Title/Abstract] OR SARS-CoV-2 [Title/Abstract]) AND (ACE2 
[Title/Abstract] OR ACEH [Title/Abstract])’.

Infection status prediction of 
SARS-CoV-2-infected samples (inferred 
time)

Viral infection can trigger host pattern recognition receptors 
(PRRs) to initiate antiviral innate immune responses. The intracellular 
signaling cascades triggered by these PRRs lead to altered expression 
of cytokines and chemokines against the virus. Here, we defined the 
immune response genes, which are enriched in PRRs, cytokines, and 
chemokines-related pathways, to explore the infection severity of 
SARS-CoV-2  in the infected samples. We  identified 891 immune 
response genes by integrating data from 132 paired datasets (742 
samples). To assess the richness of immune response genes, rarefaction 
curves were generated by randomly re-sampling the pool of N datasets 
several times and then plotting the average number of immune 
response genes identified in each dataset.

To minimize the impact of batch effects and tissue difference, 
we performed gene expression analysis of 132 paired datasets under 4 
matched conditions, including GEO accession number, sub-tissue 
type, hours post-infection (hpi) value, multiplicity of infection (moi) 
value (Supplementary Figure S2). We  used log2FC values of 891 
immune response genes from 132 paired datasets to explore the 
severity of SARS-CoV-2 infection. Monocle2 (Qiu et al., 2017), which 
can measure cell transition from one state to another in disease using 
gene expression data, was used for pseudotime inference. We studied 
transcriptional heterogeneity in immune responses by clustering 132 
paired datasets based on their individual position on the pseudotime, 

https://doi.org/10.3389/fmicb.2023.1129103
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Feng et al. 10.3389/fmicb.2023.1129103

Frontiers in Microbiology 04 frontiersin.org

following a previous study (Meistermann et al., 2021). To do this, a 
k-means (k = 8) was performed to separate the 132 paired datasets into 
8 clusters, with each cluster containing at least 3 datasets and datasets 
with sub-branch belonging to the same cluster. We  performed 
projective clustering (k-means) based on the position of datasets on 
the pseudotime. Clusters are ordered according to their mean 
pseudotime. The information of 132 datasets used in the tool is shown 
in Supplementary Figure S3 and Supplementary Table S1.

A tool for exploring the infection status of 
a given SARS-CoV-2-infected sample

For pseudotime prediction of infected conditions, we divided 132 
paired datasets (742 samples) into 8 continuous infection states 
(Supplementary Figure S3). When a given SARS-CoV-2-infected 
sample was input, we combined it with the 132 paired datasets and 
followed the same procedure to predict the infection pseudotime. 
Subsequently, we compare the pseudotime position distance for a 
given SARS-CoV-2-infected sample with the 8 positions representing 
the infection state clusters. The infection severity of the given SARS-
CoV-2-infected sample was determined based on its similarity to the 
closest infection state cluster.

Expression trajectory analysis of 14 
sub-tissues to infer behaviors of individual 
DEGs over time

TMM normalized log-CPM data of SARS-CoV-2-infected samples 
were used to explore expression trajectory patterns at different hours 
post-infection (real infection time in experiments) and infection state 
clusters (inferred time). Normalized data were corrected for batch effects 
using the removeBatchEffect function in limma (Ritchie et al., 2015). 
Sub-tissues, including at least 2 time points post-infection and with the 
same moi values, were used to perform expression trajectory analysis.

Tissue-specific expressed genes across 
SARS-CoV-2 infection state (inferred time)

To identify tissue-specific expressed genes in SARS-CoV-2-
infected samples with the same infection state, we generated a gene list 
by evaluating z-scores based on the expression levels of the genes. 
Here, a z-score equal to N represents more than N standard deviations 
greater than the mean expression in all tissues. For the appropriate 
number of genes, we  set a threshold of 1.3 for the z-score in the 
expression data for each infection state.

Exploring disease progression of different 
tissue types

We inspected a scatter plot of the infection state compared with 
the hpi value in the same SARS-CoV-2-infected samples. These 
samples had the same GEO accession number, sub-tissue type, moi 
value, and multiple hpi values. The scatter plot showed that the 
relationship between infection states and hpi values apparently follows 

a linear regression model with logarithmic transformations. The 
model can be represented as follows:

 
Y 0 X= + +( )∗β β1 1log .

 (1)

where Y is the infection state of a paired dataset, which is the 
dependent variable. X is the hpi value of a paired dataset. The goodness 
of fit is quantified by R2, which is the square of the correlation r 
between percentage infection states and hpi values.

Results

Database overview

We manually collected all available RNA-seq datasets of SARS-
CoV-2 in vitro models from GEO database. First, we curated samples 
into paired datasets by matching each SARS-CoV-2-infected sample 
with its corresponding mock-treated samples. The criteria for pairing 
included the same GEO accession number, sub-tissue type, hpi value 
and moi value (Figures 1B,C). Next, we filtered the paired datasets 
with the following two criteria: (i) the dataset should contain both 
SARS-CoV-2-infected samples and their corresponding mock-treated 
samples with same conditions (GEO accession number, sub-tissue 
type, hpi value, and moi value); (ii) each group (SARS-CoV-2-infected 
or mock-treated group) should consist of at least two independent 
biological replicates to minimize variability. Finally, we collected a 
total of 136 paired datasets consisting of 745 samples from 13 human 
tissues, including brain, bronchi, eyes, heart, kidneys, large intestine, 
liver, lungs, nasal cavity, nerves, pancreas, small intestine, and stomach 
(Figures 1A,D). A comprehensive list of all datasets used in this study 
is shown in Supplementary Table S1.

The overall schema of COVIDanno is represented in Figure 2. The 
COVIDanno consists of 3 parts. Firstly, we performed differentially 
expressed analysis on these 136 paired datasets. Four thousand nine-
hundred and thirty five were identified (p.adj < 0.001 and |log2FC| > 2). 
Subsequently, we performed diverse bioinformatics/computational 
biology studies on these DEGs. The main features of COVIDanno are 
summarized below, and other features can be  found through our 
website link.

For each of the 136 individual datasets, we performed differentially 
expressed genes analysis (COVID-19 infection DEGs) and differential 
alternative splicing analysis (COVID-19 infection DESs) between 
SARS-CoV-2-infected and mock-treated samples. We then performed 
functional enrichment analyses on these DEGs and DESs to provide 
insight into the cellular working context after the COVID-19 infection. 
Overall, we identified a total of 4,935 DEGs associated with at least 3 
GEO resources.

For 4,935 significant DEGs, individual genes were integrated with 
relevant gene groups (i.e., immune relatedness, sex relatedness, aging 
relatedness, and tissue specificity). We provided the expression landscape 
and exon skipping events values across 136 datasets. Expression 
trajectory analysis of 14 sub-tissues provided the inferred behaviors of 
individual DEGs over time. Tissue-specific expression analysis revealed 
tissue-specific changes during SARS-CoV-2 infection. The TF-gene and 
RBP-ES regulatory networks identified potential regulators for 
COVID-19 infection DEGs. In related drug analysis, we found that 903 
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COVID-19 DEGs were targeted by 3,577 FDA-approved drugs. 
Additionally, through related diseases analysis, we  identified 3,801 
COVID-19 DEGs reported in 19,189 diseases. We performed a curation 
of 4,935 genes regarding their expression in the COVID-19 infection 
samples by PubMed search. Among them, 1,704 genes have been 
reported to associate with COVID-19 progression.

Furthermore, through our study, we developed a novel online tool 
to predict the infection status for a given sample through an 
unsupervised analysis method. This approach was validated by 
applying it to multiple datasets from previous studies.

Analysis of differential gene expression and 
their regulatory networks at different time 
points of COVID-19 infection in in vitro 
models

From the DEG analysis, we observed significant changes in host 
gene expression landscape following SARS-CoV-2 infection. Further 
analysis of these changes will be helpful in developing new avenues for 
antiviral therapies. In the 136 individual datasets, we  performed 
differential gene expression analysis between SARS-CoV-2-infected and 

FIGURE 1

Description of used 136 datasets. (A) The origin of 13 human tissues. (B) The generating of SARS-CoV-2-infected and mock-treated samples. (C) The 
definition of the paired dataset. (D) Summary of collected samples.
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mock-treated samples. In order to reduce background noise and generate 
reliable a set of DEGs, we implemented a series of stringent filters (p.
adj < 0.001, |log2FC| > 2, DEGs identified at least 3 GEO resources). After 
screening, we identified 4,935 genes with significant expression changes 
by integrating DEGs from 136 individual datasets. The distributions of 
4,935 DEGs are shown in Supplementary Figure S4. More than 4,200 
genes show a significant difference in at least 2 tissue types. Lungs and 
heart have the most significant number of differentially expressed genes, 
which is in line with findings that SARS-CoV-2 mainly affects the lungs 
and heart in COVID-19 patients (Bavishi et al., 2020; Huang et al., 2020). 
A gene summary of the 4,935 DEGs is shown in Supplementary Table S2. 
We then performed GO and KEGG pathway enrichment analysis for 136 
individual datasets to investigate the functions related to biological 
responses or processes during SARS-CoV-2 infection. Overall, we found 
that the up-regulated DEGs were mainly enriched in the biological 
processes related to ‘transcription regulation’, ‘cytokine’ and ‘anti-virus 
immune response’ -related pathways. In previous studies, various 
cytokines and chemokines have been observed in different stages of 
COVID-19 and act as independent risk factors for disease severity and 
mortality. However, the molecular pathogenesis underlying COVID-19-
associated cytokine storm is unknown. These DEGs, identified through 

in vitro models provide a unique advantage in understanding the 
immune activation process and the severe-to-critical symptom (cytokine 
storm) in COVID-19 patients (Wang J. et al., 2020).

The importance of transcriptional regulation of host genes in 
innate immunity against viral infection has been widely recognized. 
Construction of TF regulatory networks can help identify potential 
upstream TFs for therapeutic targeting. For 14 sub-tissues, which have 
at least 3 individual datasets, we constructed TF regulatory networks 
for both SARS-CoV-2-infected and mock-treated samples. In 
addition, we performed differential network analysis between SARS-
CoV-2-infected and mock-treated samples.

Alternative splicing events among different 
time points of the COVID-19 infection in 
human in vitro models and their regulatory 
networks

AS is a crucial post-transcriptional mechanism enabling single 
genes to produce structurally and functionally distinct protein 
isoforms (Wang et  al., 2008). Host splicing changes have been 

FIGURE 2

Overall schema of COVIDanno annotation pipeline. (A–C) Data collection, quality control, and alignment. (D,E) Redefining 745 samples into 136 paired 
datasets by matching SARS-CoV-2-infected samples with corresponding mock-treated samples based on 4 conditions. (F) Main categories for 136 
individual datasets. (G) Main categories for 4,935 individuals significant DEGs by integrating 136 individual datasets.
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observed during infection with RNA viruses such as reovirus 
(Boudreault et al., 2016), Herpes simplex virus −1 (HSV1) (Ku et al., 
2011), dengue virus (Sessions et al., 2013), zika virus (Hu et al., 2017) 
and SARS-CoV-2 (Arora et al., 2020; Banerjee et al., 2020). However, 
a systematic and intensive analysis of AS in COVID-19 is still lacking. 
For 136 individual datasets, we did DAS analysis between SARS-CoV-
2-infected and mock-treated samples. Exon skipping events are the 
most prevalent type of alternative splicing events in the human 
genome, and are well represented in the databases. We performed GO 
and KEGG pathway enrichment analyses to gain insights into the 
biological pathways associated with the genes undergoing exon 
skipping. Our analysis revealed that these genes, which exhibit exon 
skipping events, were enriched in ‘transcription regulation,’ ‘protein 
modification’ and ‘mRNA processing’-related biological pathways. 
From our analysis, we identified 1,443 exon skipping events of 767 
DEGs, each of which was identified from at least 3 GEO resources. 
Notably, our findings revealed the involvement of specific genes in 
important biological processes. For instance, IFI16 plays a role in the 
negative regulation of viral genome replication and can initiate 
different innate immune responses (Karlebach et  al., 2022). 
Additionally, alternative splicing of MX1 supports rather than restricts 
viral infection (Ku et al., 2011; De Maio et al., 2016). Our findings 
provide further insights into the complex molecular mechanisms 
associated with viral infections and host responses, expanding our 
understanding of alternative splicing events in COVID-19.

Recently, post-transcriptional regulatory mechanisms have gained 
appreciation as an additional and important layer of regulation to fine-
tune host immune responses. RBPs are a group of proteins that bind to 
mRNAs or non-coding RNAs, playing diverse roles in post-
transcriptional processing and RNA regulation (Li et  al., 2014). 
Therefore, we construct RBP regulatory networks to investigate the 
changes and regulation of alternative splicing events. For 14 sub-tissues 
with at least 3 individual datasets per tissue, we  constructed RBP 
regulatory networks for both SARS-CoV-2-infected and mock-treated 
samples. We then performed differential network analysis between 
SARS-CoV-2-infected and mock-treated samples in order to identify 
potential regulatory changes associated with SARS-CoV-2 infection.

Important gene group annotations (i.e., 
immune, sex, aging, and tissue specificity)

Clinical experience to date has shown that COVID-19 is highly 
heterogeneous, ranging from asymptomatic, mild, moderate, to severe 
and critical. Host factors, including age and sex, are key determinants 
of disease severity and progression (Alwani et al., 2021; Chen et al., 
2021; Hobbs et al., 2021). The exaggerated immune response induced 
by the cytokine storm is an independent risk factor for disease severity 
and mortality. Furthermore, multiple tissue types could be susceptible 
to SARS-CoV-2 and COVID-19 patients presenting symptoms in 
multiple systems (Yang et al., 2013; Hong et al., 2020; Jin et al., 2020; Qi 
et al., 2020). To gain insights into the molecular basis of COVID-19, 
we analyzed the overlap between 4,935 significant DEGs and specific 
gene groups, including immune-related genes, sex-related genes, 
age-related genes, and tissue-specific genes. Our analysis identified 560 
immune-related genes, 230 sex-associated genes, 170 aging-related 
genes, and 718 tissue-specific genes within the set of significant DEGs 
(Supplementary Figure S5). Among them, 6 genes were present in all 
four gene groups. All of the 6 intersected genes have been reported to 

associate with COVID-19, including FGFR3 (Hachim et al., 2021), 
TP63 (Delorey et  al., 2021), CXCL2 (Livanos et  al., 2021), CCL20 
(Chua et al., 2020), IL1B (Chua et al., 2020) and CXCL8 (Zheng et al., 
2021). Annotation of these gene groups provides valuable insights into 
their functional relevance in the context of COVID-19.

Infection status prediction of 
SARS-CoV-2-infected samples (inferred 
time)

Currently, there are accumulated RNA-seq data generated from 
SARS-CoV-2-infected in vitro models. However, there is a lack of 
systematic evaluation of the infection severity of these samples. It is 
difficult to compare SARS-CoV-2-infected samples from different 
studies with different tissue types, hpi values and moi values. 
Additionally, systematic evaluation of infection severity in SARS-
CoV-2-infected samples is lacking. For example, although GSE151513 
contains 6 infection time points (0–12 h), there is no obvious 
difference between the degree of infection (Supplementary Figure S6C). 
To better understand the continuous infection progress and severity 
of SARS-CoV-2-infected samples, we did infection state prediction by 
pseudotime analysis.

Viral infection triggers host PRRs to initiate antiviral innate immune 
responses by pathogen-associated molecular patterns (PAMPs) or 
danger-associated molecular patterns (DAMPs) (Carty et al., 2021; Li 
and Chang, 2021; Zheng, 2021). The intracellular signaling cascades 
triggered by these PRRs lead to the activation of diverse transcriptional 
factors that regulate the expression of cytokines and chemokines. Such 
cytokines and chemokines play important roles in host protection, 
activation and migration of antigen-presenting cells, and induction of 
adaptive immune responses. The schematic diagram of the immune 
activation process is shown in Figure 3A. In our study, we extracted 891 
immune response genes from the immune activation process by 
integrating 132 paired datasets (742 samples). The distribution of 
immune response genes in the datasets is illustrated in Figure 3B. The 
rarefaction curves represent the immune response gene richness for a 
given number of individual datasets. A plateau in the rarefaction curves 
indicates a good representation of immune response genes (Figure 3C). 
Even with the increase in the number of datasets, the number of immune 
response genes did not change much. Subsequently, we divided 132 
paired datasets into 8 continuous infection states according to gene 
expression changes of 891 immune response genes during SARS-CoV-2 
infection using an unsupervised analysis method (Figures  3D,E). 
We validated this approach by applying it to datasets with multiple hpi 
values but the same GEO accession number, sub-tissue type and moi 
value. Seventy-four datasets with multiple hpi values showed that as the 
hpi value (real infection time in experiments) increased, the infection 
state (inferred time) increased or remained the same 
(Supplementary Figure S6). The information of 132 datasets used in the 
tool can be  found in Supplementary Figure S3 and 
Supplementary Table S1.

A tool for exploring the infection status of 
a given SARS-CoV-2-infected sample

We developed a novel online tool using 132 datasets (724 samples) 
to explore the severity of SARS-CoV-2-infected samples in vitro. 
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When a given SARS-CoV-2-infected sample was input, we combined 
it with the 132 paired datasets and followed the same procedure to 
predict the infection pseudotime. Subsequently, we  compared the 
pseudotime position distance of the given SARS-CoV-2-infected 
sample with a center position of 8 infection state clusters. The given 
SARS-CoV-2-infected sample was assigned to the closest infection 
state cluster. Seventy-four datasets with multiple hpi (hours post-
infection) values were analyzed. Our results revealed a consistent 
relationship between hpi and inferred infection state 
(Supplementary Figure S6). To further validate the performance of the 
tool, we applied it to the datasets (BI_10 and BI_11 from GSE196464) 
that were not used during tool development. As shown in 
Supplementary Figure S7, as the hpi value increased (24–72 hpi), the 
infection state also increased (state 5 to state 6). These results were 
stable and exhibited consistent patterns. The detailed information of 
132 datasets used in the tool is shown in Supplementary Figure S3 and 
Supplementary Table S1.

Application of COVIDanno to enhance 
understanding of COVID-19 anosmia 
symptom

Anosmia (loss of smell) is a common symptom of COVID-19. 
Recent studies have shown that non-neuronal supporting cells of the 
human olfactory epithelium express ACE2, which is necessary for 
SARS-CoV-2 infection. In our studies, we observed high expression of 
ACE2 in nasal cavity samples (Supplementary Figure S8). For SARS-
CoV-2-infected nasal cavity samples, we identified 212 tissue-specific 
expressed genes in all infection states (state 3, state 4) with z-score 
greater than the threshold 1.3. For instance, ACE2 and UGT2A are 
among the 212 genes, and their expression patterns are shown in 
Figures 4A,B. Four of 212 tissue-specific expressed genes have been 
reported to associate with smell in previous studies, including UGT2A1 
(Leclerc et al., 2002; Neiers et al., 2021), ACE2 (Gupta et al., 2021), 
KISS1 (Valdes-Socin et al., 2014), and GRM2 (Kim et al., 2020). In 

FIGURE 3

Pseudotime inference of SARS-CoV-2-infected samples. (A) Schematic diagram of the immune activation process. (B) The distribution of differential 
immune response genes (adj.p < 0.05 and |log2FC| > 1) in 132 datasets. (C) Investigating the immune response genes richness using rarefaction curve. 
(D) Pseudotime inference for 132 paired datasets using DEGs. (E) Infection state prediction for 132 datasets.
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particular, UGT2A1 has been reported to associate with COVID-19-
related loss of smell and taste in multiple studies (Khan et al., 2021; 
Hendaus, 2022; Shelton et al., 2022). In our studies, UGT2A1 was 
significantly down-regulated (log2FC < −2 and adj.p < 0.001) in the 
SARS-CoV-2-infected nasal cavity samples. Through the genetic 
regulatory network analysis, we identified the transcription factors 
associated with UGT2A1 (Figure 4C). HESX1, with a high probability 
of regulating UGT2A1, has been previously reported to be associated 
with smell (Valdes-Socin et al., 2014). Transcription factors TEAD1 
and FOXA2 are associated with taste and were found to regulate 
UGT2A1 (Inamdar et al., 1993; Golden et al., 2021). The loss of smell 
and taste is well-known and often the sole COVID-19 symptom. 
COVIDanno provides valuable insights by analyzing genetic regulatory 
networks and identifying potential regulatory genes associated with 
specific symptoms. By deciphering the intricate interplay between 
genes, transcription factors, and regulatory pathways, COVIDanno 
aids in uncovering the molecular basis of symptoms like anosmia.

Application of COVIDanno to enhance 
understanding of arrhythmia symptom in 
COVID-19

Growing evidence shows that arrhythmias are also one of the 
major complications of COVID-19. A previous report from Wuhan, 
China, revealed that 16.7% of hospitalized and 44.4% of ICU 
COVID-19 patients experienced cardiac arrhythmias (Wang D. et al., 
2020). In a cohort study conducted in New York, atrial arrhythmias 
rates were 17.7% in mechanically ventilated COVID-19 patients and 
1.9% in non-invasive ventilation COVID-19 patients (Goyal et al., 
2020). SARS-CoV-2 virus load was detected in the myocardial tissue 
and showed signs of viral replication within the myocardial tissues in 
autopsy cases (Lindner et al., 2020; Brauninger et al., 2022). This is in 
line with the finding that ACE2 is expressed within myocardial cells 
(Nicin et  al., 2020), and myocardium is infected by SARS-CoV 
(Oudit et al., 2009).

Fibroblast growth factor (FGF) homologous factors (FHFs), a 
subfamily of FGF proteins (FGF11–FGF14), are expressed 
predominantly in excitable cells (Goldfarb, 2005) and can modulate 
both Na+ and Ca2+ channels (Wang et al., 2011; Hennessey et al., 
2013b). Among them, FGF12 has been reported to associate with 
arrhythmias (Hennessey et al., 2013a; Li et al., 2017). In our studies, 
we investigated the expression of FGF12 in the context of SARS-
CoV-2 infection. We observed that FGF12 was significantly down-
regulated in late infection state 7 of the heart and gradually 
recovered in infection state 8 (Figure 4D). The continuous infection 
state was validated by multiple GEO resources 
(Supplementary Figure S6). The datasets from 4 individual studies 
(GSE162736, GSE150392, GSE184715, and GSE151879) showed a 
significant down-regulation of FGF12. However, in autopsies of 
COVID-19 patients, no significant changes in FGF12 expression 
were observed in cardiomyocytes (Lindner et al., 2020; Brauninger 
et al., 2022). Our result also showed a recovery in FGF12 expression 
in infection state 8, consistent with the reports (Figure  4D). 
Obtaining SARS-CoV-2-infected tissues from living COVID-19 
patients, particularly in specific tissues such as the heart, kidneys, 
intestines and liver, is difficult. COVIDanno can help explore the 
continuous progression of SARS-CoV-2 infection.

Application of COVIDanno to explore the 
biomarkers associated with disease severity 
of COVID-19 in the respiratory tract

Prior studies have demonstrated that immunologic dysfunction is 
a key factor underlying severe illness in COVID-19 patients. Elevated 
levels of multiple cytokines/chemokines have been observed in acutely 
severe/critically ill patients with COVID-19. Specifically, CCL2 and 
CXCL10 have been associated with an increased risk of death and poor 
prognosis in COVID-19 patients (Chen et al., 2020; Uranga-Murillo 
et  al., 2022). Chua et  al. found that CCL2 and CXCL10 were 
predominantly expressed in monocyte-derived macrophages (moMa) 
and non-resident macrophages (nrMa) within the respiratory tract 
(Supplementary Figure S9A; Chua et al., 2020). Macrophages have 
been found to play a crucial role during SARS-CoV-2 infections (Grant 
et al., 2021; Sefik et al., 2022). The expression of chemokine receptors 
(CCR1, CCR5, CXCR4) on moMa and nrMa was significantly altered 
in COVID-19 patients (Supplementary Figure S9B; Chua et al., 2020). 
Chemokines secreted in the initial phase recruit inflammatory innate 
and adaptive immune cells, resulting in an exaggerated inflammatory 
immune response. To explore the immunologic drivers within the 
respiratory tract, we analyzed the expression profiles of 7 chemokines 
(CCL2, CCL3, CCL8, CCL14, CCL15, CCL21, CxCL12) and their 
corresponding receptors (CCR1, CCR5, CXCR4). Detailed information 
of ligand-receptor pairs can be found in Supplementary Figure S9C.

As shown in Figures 4G,H, we observed a significant up-regulation 
of the chemokine CCL2  in the late infection states of lungs in 6 
individual studies (GSE155241, GSE148697, GSE160435, GSE157057, 
GSE147507, and GSE184536). Increased expression of CCL2 during 
the initial phase of COVID-19 was also reported previously (Blanco-
Melo et  al., 2020). However, no increased expression of these 7 
chemokines was observed in nasal cavities or bronchi tissues 
(Figures 4E,F), suggesting that SARS-CoV-2-infected cells in the upper 
respiratory did not secrete many chemokines to recruit moMa or 
nrMa. In contrast, SARS-CoV-2-infected lung cells secreted a high-
level of CCL2 to recruit moMa. This is in line with the findings that 
early and effective immune responses in the upper respiratory tract 
limit (Ramasamy, 2022). Furthermore, we identified potential TFs with 
regulatory roles in the expression of CCL2 and CXCL10, such as 
STAT1, STAT3, IRF1, etc. (Supplementary Figures S9D,E). Khokhar 
et al. also reported that TFs STAT1 and STAT3 are potential regulators 
of CCL2, while TFs IRF1, IRF3, IRF7, and RELA are potential 
regulators of CXCL10 in a COVID-19 study (Khokhar et al., 2022). 
These findings provide important insights into the regulatory 
mechanisms of chemokine expression during SARS-CoV-2 infection, 
which may have implications for developing therapeutic strategies 
targeting specific regulatory genes. Therefore, COVIDanno can be a 
useful resource for addressing immunologic drivers and exploring 
potential regulatory factors in the early stages of SARS-CoV-2 infection.

Application of COVIDanno to explore the 
disease progression of different tissue 
types

We applied linear regression models with logarithmic transformations 
to multiple datasets with continuous infection time from the same study. 
The R2 and p-values suggest a goodness of fit by using this model 
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(Supplementary Figure S10). The slope coefficient β1 represents the rate 
of disease progression. However, usually, there are multiple moi values 
and sub-tissue types within one tissue, and both factors can influence the 
disease progression. Therefore, we fit the linear model for each tissue with 

different moi values and sub-tissue types to provide an overview of 11 
tissues (brain, bronchi, eyes, heart, kidneys, large intestine, liver, lungs, 
nasal cavity, pancreas, and small intestine) (Figure 4I). A common clinical 
feature among COVID-19 patients is respiratory symptoms. Some 

FIGURE 4

COVIDanno analyses. (A) Tissue-specific genes in the infection state 3 across tissues. (B) Tissue-specific genes in the infection state 4 across tissues. 
(C) TF-gene regulatory network composed of UGT2A1 gene and associated top 30 TFs. (D) DEG heatmap across infection time as an example of 
FGF12 (adj.p < 0.05 and |log2FC| > 1). DE chemokines (adj.p < 0.05 and |log2FC| > 1) in (E) nasal cavity tissue. (F) Bronchi tissue. (G) A549 cell line of lungs. 
(H) Lung organoid of lungs. (I) Disease progression across 11 tissue types using the regression model.
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patients are accompanied by extrapulmonary symptoms such as cardiac 
injury, kidney injury, liver injury, ocular symptoms, and gastrointestinal 
symptoms (Lindner et al., 2020; Wichmann et al., 2020; Sridhar and 
Nicholls, 2021; Benvari et al., 2022; Brauninger et al., 2022; Chaurasia 
et al., 2022; Ramasamy, 2022). Among these, acute cardiac injury is a 
common extrapulmonary manifestation observed in COVID-19 patients 
(Chung et  al., 2021; Liu F. et  al., 2021). Figure  4I shows that the 
susceptibility to SARS-CoV-2 infection varies widely among different 
tissues, and the rate of disease progression also shows tissue-to-tissue 
heterogeneity. Lung, heart, bronchi, and nasal cavity show high 
susceptibility to SARS-CoV-2, which is consistent with a previous study 
highlighting the dominant pathological features of pulmonary and 
cardiovascular involvement (Falasca et al., 2020). On the other hand, the 
pancreas appears to be  less susceptible to SARS-CoV-2 infection. 
Understanding tissue-specific mechanisms of COVID-19 infection and 
individual differences in disease progression will help identify novel 
targets for preventing disease progression in future studies.

Discussion

COVIDanno is the first and unique database that systematically 
analyzed 745 SARS-CoV-2-infected and control (paired) samples from 
in vitro models and provides comprehensive annotations of downstream 
functional mechanisms. COVIDanno enables users to retrieve large-
scale functional information and promotes understanding of virus-host 
interactions. In addition, COVIDanno provides a novel tool to help 
users predict the infection status for a given SARS-CoV-2-infected 
sample. In this study, we applied COVIDanno to explore anosmia 
symptoms, arrhythmia symptoms, and biomarkers in COVID patients, 
as well as to explore the susceptibility of 11 tissue types to SARS-CoV-2 
infection. By applying COVIDanno, we identified multiple important 
genes associated with COVID-19 symptoms, such as UGT2A1, FGF12. 
Furthermore, we observed differences in immune responses between 
the upper respiratory tract and lungs during the early stages of SARS-
CoV-2 infection. These findings are in line with previous reports. 
Comparing in vitro models to in vivo conditions in COVID patients can 
provide novel and effective insights to improve understanding of the 
relationship between host immune responses and disease progression. 
In order to keep COVIDanno at the forefront of the COVID-19 
database, we will be constantly collecting and updating new data into 
our database. We believe that COVIDanno will be a valuable tool and 
platform for SARS-CoV-2-related research, facilitating a better 
understanding of pathogenesis, disease progression, biology, and 
improvement of therapeutic strategies.
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