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Although treatment modalities for head and neck cancer have evolved
considerably over the past decades, survival rates have plateaued. The treatment
options remained limited to definitive surgery, surgery followed by fractionated
radiotherapy with optional chemotherapy, and a definitive combination of
fractionated radiotherapy and chemotherapy. Lately, immunotherapy has been
introduced as the fourth modality of treatment, mainly administered as a single
checkpoint inhibitor for recurrent or metastatic disease. While other regimens
and combinations of immunotherapy and targeted therapy are being tested in
clinical trials, adapting the appropriate regimens to patients and predicting their
outcomes have yet to reach the clinical setting. Radiotherapy is mainly regarded
as a means to target cancer cells while minimizing the unwanted peripheral
effect. Radiotherapy regimens and fractionation are designed to serve this
purpose, while the systemic effect of radiation on the immune response is rarely
considered a factor while designing treatment. To bridge this gap, this review
will highlight the effect of radiotherapy on the tumor microenvironment locally,
and the immune response systemically. We will review the methodology to
identify potential targets for therapy in the tumor microenvironment and the
scientific basis for combining targeted therapy and radiotherapy. We will
describe a current experience in preclinical models to test these combinations
and propose how challenges in this realm may be faced. We will review new
players in targeted therapy and their utilization to drive immunogenic response
against head and neck cancer. We will outline the factors contributing to head
and neck cancer heterogeneity and their effect on the response to radiotherapy.
We will review in-silico methods to decipher intertumoral and intratumoral
heterogeneity and how these algorithms can predict treatment outcomes. We
propose that (a) the sequence of surgery, radiotherapy, chemotherapy, and
targeted therapy should be designed not only to annul cancer directly, but to
prime the immune response. (b) Fractionation of radiotherapy and the extent of
the irradiated field should facilitate systemic immunity to develop. (c) New
players in targeted therapy should be evaluated in translational studies toward
clinical trials. (d) Head and neck cancer treatment should be personalized
according to patients and tumor-specific factors.

KEYWORDS

head and neck cancer, immunotherapy, radiotherapy, SBRT, hypofractionated, targeted

therapy, squamous cell carcinoma, HNSCC
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/froh.2023.1180869&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/froh.2023.1180869
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/froh.2023.1180869/full
https://www.frontiersin.org/articles/10.3389/froh.2023.1180869/full
https://www.frontiersin.org/articles/10.3389/froh.2023.1180869/full
https://www.frontiersin.org/articles/10.3389/froh.2023.1180869/full
https://www.frontiersin.org/journals/oral-health
https://doi.org/10.3389/froh.2023.1180869
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org/


Sharon et al. 10.3389/froh.2023.1180869
1. Introduction

1.1. Head and neck cancer

Head and neck squamous cell carcinoma (HNSCC) accounted

for approximately 878,000 newly diagnosed cases worldwide in

2020 (1), and approximately 68% of patients with oral cavity and

pharyngeal cancer are expected to survive five years (2). The two

conventional approaches to treating HNSCC are primary surgery

followed by risk-adapted chemoradiotherapy or upfront definitive

chemoradiotherapy. Chemotherapy for HNSCC is mainly based

on high-dose cisplatin and fractionated radiation therapy (RT)

delivered to a total of 66–70 Gy. For patients with advanced

comorbidities or poor performance status, these approaches often

lead to unacceptable treatment-associated morbidity and

mortality. Recurrent or metastatic (R/M) HNSCC poses an even

greater challenge as only one-third of patients respond to

treatment, primarily chemoradiotherapy, and the median survival

period is 6–8 months (3).
1.2. Radiotherapy

RT has evolved over the years, and more than ever, it targets

cancer cells. Its design serves this purpose by utilizing the

principles of radiation physics and fractioning into smaller doses.

The conventional RT that most patients undergo is fractionated,

during which small doses of radiation (around 2 Gy per fraction)

are delivered daily. This method presumably allows for normal

tissue to undergo repair better than tumor tissue (4), thus

targeting the destructive radiation effect on cancer cells more

than on their surrounding healthy counterparts.

An alternative fractionation method is based on delivering

high-dose radiation in either a single dose or a limited number

of doses. Defined as hypofractionation, or stereotactic body

radiotherapy (SBRT), this method enables a high radiation dose

to be focused on a specific location while maintaining a steep

dose gradient beyond (5). For patients who are unable to

withstand the prolonged fractionated RT regimen or surgery,

primary SBRT has yielded impressive local control and overall

survival (OS) rates while maintaining relatively low radiation-

related adverse features (6–8).
1.3. The immunogenic radiation and SBRT

SBRT can be seen, like surgery, as an opportunity to focally

treat a cancer site. For many years, the effect of RT on the

immune system was generally perceived as immunosuppressive.

It was backed by data showing lymphopenia, leukocyte

cytotoxicity, and impaired leukocyte function in response to RT

(9–12).

However, a growing amount of evidence supports an

additional, synergistic effect of RT. The synergistic effect, under

certain conditions, functions as an in-situ vaccine that primes the
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immune response both locally and systemically (13, 14), and

drives the immune response to control distant disease (15).

Preclinical models and clinical reports have linked the induction

of the immune response by RT to the abscopal effect. This effect

is evident when locally irradiating a primary tumor and

consequently witnessing the regression of distant metastases

outside the irradiated field (16, 17). This process clearly stems

from a systemic response to radiation, pointing to the immune

system as a potential key factor in this process.

A different synergistic effect is demonstrated by the radiation-

induced changes in the tumor environment and its surviving

cancer cells to drive an immune-mediated local clearance of

residual disease. Radiation-induced cell damage triggers the

tumor to release antigens, which have the potential to generate

new T-cells to attack the tumor with antigen specificities that

were not formerly involved—termed epitope spreading (10, 18,

19) (Figure 1). However, antigen release alone is insufficient, as

innate adjuvants are essential for effective immunity (20). In the

sterile immunity of radiation-induced cell death, these innate

adjuvants are endogenous adjuvants released by dying cancer

cells (20, 21). Understanding the pattern of innate adjuvants

released by dying cancer cells is critical, since some forms of cell

death are differentially immunogenic (21–23). Similarly, the cell

types that respond to these adjuvants and their differentiation

dramatically impact the immune consequences of cancer cell

death and adjuvant release (24–29). Thus, if the response to

radiation is optimal, cancer cell death will release antigen and

adjuvant to promote dendritic cells (DC) maturation to boost

existing T-cell responses and generate new T-cell responses. It

will also generate a pro-inflammatory environment in the tumor

to help attract effector T-cells and guide myeloid differentiation

into anti-tumor patterns. A suboptimal response will fail to

mature DC (30, 31), and generate suppressive cytokine release

from cells, such as M2-differentiated macrophages in the tumor

environment (25).

The local and systemic effects can be linked to the radiation

dose and fractionation, and no discussion of RT is complete

without their appreciation. Basic radiobiology demonstrates that

splitting doses into multiple fractions has non-linear effects on

radiation-mediated cell death (32). This concept was

demonstrated in the clinical setting after the introduction of

SBRT into the field of intracranial tumors (33), and was followed

by its application to extracranial sites using ablative doses of

radiation (8–30 Gy per fraction) (4).

Since then, it was shown that SBRT could be both effective

and well-tolerated in various types of cancer, including non-

small-cell lung cancer (NSCLC) (34), with local control rates of

above 90% at three years (35–37); and prostate cancer with

progression-free survival (PFS) rates of 97% at five years (38).

In contrast to lymphopenia that may be triggered by

conventional RT, administering neoadjuvant SBRT concurrently

with durvalumab (anti-PD1) in HNSCC led to increased white

blood cell counts (39). We will review the immunological basis

of dose and fractionation-dependent effects, and describe the

related data from preclinical models and clinical trials in head

and neck cancer.
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FIGURE 1

Overview of the main radiation-induced changes in the tumor environment and cancer cells. The local and systemic effects of irradiation can be linked to
the radiation dose and fractionation. Although the initial effect of radiation therapy (RT) is cell death due to DNA damage, accumulating evidence from
recent studies demonstrates multiple local and systemic molecular alterations induced by RT. These include antigen release and antigen-specific T-cells
activation; molecular changes in the tumor microenvironment (TME) due to direct effects of RT or interactions between dying cells and the TME;
RT-induced development of resistant subpopulations within the tumor; lymphocyte loss; abscopal effect; trafficking of dendritic cells (DC) from
tumors to the tumor-draining lymph node (LN).
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1.4. Immunotherapy

Immunotherapy has been developing rapidly over the last

decade. It has the potential to activate an immune response to

target cancer cells by utilizing the function of the immune

system to survey the body for abnormal cells and eliminate them

continually. Cancer cells that were not eliminated can exist in

equilibrium with the immune response until their eventual

evasion from it, defined as immune escape (40). The balance

may be tilted in favor of the immune response with targeted

therapy.

Programmed cell death protein 1 (PD-1) is a receptor

expressed on immune cells that drives the downregulation of the

immune response (41) and is blocked by immune checkpoint

inhibitors. Nivolumab and pembrolizumab, both PD-1

checkpoint inhibitors, were approved by the Food and Drug

Administration (FDA) in 2016 as second-line treatment
Frontiers in Oral Health 03
modalities for R/M HNSCC, following clinical trials

demonstrating a favorable response in platinum-refractory R/M

HNSCC (42, 43). Although the absolute number of months

added to OS in these trials was limited, one must remember they

were conducted in the R/M setting (42, 44–46).

In 2019, pembrolizumab was approved as first-line monotherapy

for R/M HNSCC or in combination with chemotherapy. Due to the

low response rates to monotherapy checkpoint inhibitors in

R/M HNSCC, more clinical trials focus on combining

immunotherapeutic agents, concurrent immunotherapy and

chemotherapy, and concurrent immunotherapy and RT. However,

the results of trials adding immunotherapy to the standard

treatment for locally-advanced HNSCC have not been as

promising as expected. The JAVELIN Head and Neck 100 trial

tested the addition of a programmed cell death ligand 1 (PD-L1)

inhibitor to chemoradiotherapy and was halted when the primary

objective of prolonging PFS was not reached (47). The GORTEC
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2015-01 PembroRad trial replaced high-dose cisplatin with

pembrolizumab in combination with RT, and showed similar

disease control rates (48). The outcomes of these trials underscore

the complexity in assigning the most suitable treatment to a

particular cancer patient and predicting its success (49).
2. The immunogenic radiation

2.1. Introduction to dose/fractionation-
dependent effects

Technological developments in physics and computing have

permitted highly conformal targeting of tumors while avoiding

normal tissues. It allowed higher doses of radiation to be

delivered in fewer fractions and optimization of RT-fractionation

to permit tumor-selective death. Currently, most patients are

treated with standard fractionation with individual doses at or

below 2 Gy, and treatments are delivered over several weeks. In

HNSCC, these doses add up to 66–70 Gy over 6–7 weeks and

may be delivered concurrently with chemotherapy.

In preclinical models, however, a daily regimen of 2 Gy

fractionation over multiple weeks is rarely tested (50). First, it

stems from a practical limitation in the growth rate and timeline

of murine models. Second, fractionated radiation negatively

affects the proliferating T-cells, and studies are generally designed

to avoid this effect. For example, in a model where high-dose RT

(30 Gy) resulted in effective CD8+ T-cells anti-tumor response,

adding fractionated RT (3 Gy ×10) decreased tumor control (51).

These data demonstrate that extending the timeline of radiation

treatment can kill T-cells which are critical for tumor control (52).

As for the radiation dose, this area of research has not reached

a firm conclusion. In some cases, preclinical models show that

higher radiation doses lead to optimal synergism with immune

combinations. For example, 5–8 Gy per fraction has been

successfully employed (53–55), which is consistent with the

optimal dose which led to the release of immunological

adjuvants from cancer cells following RT (56, 57).

Morisada et al. compared the effect of administering 2 and

8 Gy RT to mouse oral cancer cells in-vitro and in-vivo. 8 Gy

induced greater tumor-cells susceptibility to T-cell cytotoxicity

than 2 Gy, and dose-dependency was demonstrated in terms of

antigen release, antigen-specific T-cells activation, and cytotoxic

targeting of cells (58). The same group later showed enhanced

anti-tumor immunity when administering hypofractionated RT

(8 Gy ×2), compared to hyperfractionated RT (2 Gy ×10). When

RT was combined with PD-1 blockade, better control of primary

and distant tumors was achieved (59).

In contrast, other preclinical studies have shown that synergy

with immunotherapy was achieved at low doses of RT (60–63).

Clinical studies are no different. While some use higher doses

of radiation in combination with immunotherapy (64–66), others

use conventional fractionation (67). Certain immunotherapies

likely require specific radiation dose as well as an optimal

timeline of delivery (68), each deserves preclinical modeling prior

to its clinical translation (50).
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2.2. Direct effects of radiation on immune
cells in the field

T-cells are a dynamic population that recirculates in and out of

tissues via the draining lymphatics and back into the peripheral

blood (69). Hence, understanding the effect of RT on T-cells

should encompass data from all sites: The peripheral blood, the

tissues, and the draining lymphatics.

The clearest data relating to the impact of radiation on the

immune profile of tumors is the direct radiation-mediated killing

of T-cells in the treatment field [reviewed in (52)]. Systemic

lymphocyte loss is another immune-related outcome observed in

patients treated with conventionally fractionated radiation

(Figure 1) (11, 12, 70–75), though alterations in dose and

fractionation can limit this effect (76, 77).

Following total body radiation, T-cells in the tumor are

relatively radio-resistant compared to circulating T-cells (78)

but are still killed by focal radiation therapy (78, 79). This is

critical since the tumor is enriched for tumor antigen-specific

T-cells, and tumors with a more significant proportion of

tumor-specific T-cells are associated with improved prognosis

(80). If radiation of the tumor eliminated all tumor-specific T-

cells, then it would likely be a poor partner for T-cell-targeted

immunotherapies (52). However, since T-cells recirculate in and

out of tissues via lymphatics and back into the peripheral blood

(69), a transient local loss of T-cells following treatment can be

recovered by infiltration from the circulation, and local

proliferation (81). Notably, irradiation of T-cells in the tumor-

draining lymph node can impair reconstitution and impair

tumor control by radiation and some immunotherapy

combinations (82). These data suggest that reconstitution from

some non-tumor sources is critical to the success of some

radiation and immunotherapy combinations.

In-vitro studies exposing circulating blood cells to low doses of

RT ex-vivo have demonstrated that a significant increase in T-cell

death was detectable at 0.125 Gy, and approximately half of the

T-cells underwent apoptosis at 2 Gy (83). By contrast, myeloid

populations were relatively radio-resistant at these doses (83, 84).

Among myeloid populations, DC and Langerhans cells have been

shown to be more radio-resistant than T-cell populations

(83, 85–87). When monocytes are differentiated into DC ex-vivo,

the cells become less radiosensitive (83), in part due to the

terminally differentiated and non-proliferative status of DC

(85, 86, 88). However, DC can be directly impacted by radiation.

Human DC given high-dose radiation (30 Gy) demonstrated a

suppressed co-stimulatory phenotype and MHC Class II

expression (89). Irradiation of murine bone marrow-derived DC

has been shown to affect antigen-presentation pathways and their

ability to generate T-cell responses following injection into mice

(85). Irradiation (30 Gy) of human monocyte-derived DC

resulted in inhibited IL-12 secretion and reduced ability to

stimulate T-cells, but phagocytosis and migration were not

impaired (88). Similarly, radiation doses above 6 Gy resulted in

decreased IL-23 secretion and decreased ex-vivo Th17 priming

ability (90). These data suggest that while DC are radio-resistant,

they are susceptible to radiation-mediated direct effects.
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It is important to note that these studies of DC use higher doses

than are typically used for in-vitro studies, and in ex-vivo studies,

the positive impact of radiation-induced adjuvant release is not

well modeled. Using a fluorescence model to label infiltrating

cells in murine tumors, we observed the trafficking of dendritic

cells from tumors to the tumor-draining lymph node (30).

Treatment of the tumors with 12 Gy resulted in migration and

maturation of DC in radio-immunogenic tumor models but not

in poorly radio-immunogenic models (30). The difference

between these models is that the poorly radio-immunogenic

model had minimal T-cell involvement in tumor control

following radiation (24, 31), suggesting that DC migration is a

potential reason for the discrepancy. However, since each model

was treated with the same 12 Gy radiation dose, it demonstrates

that DC can be fully functional when exposed to high single

doses of RT in-vivo and can be a critical cell type to propagate

immune responses following RT.
2.3. The immune effect of treating lymph
nodes of the neck

Elective neck irradiation is frequently employed to irradicate

microscopic disease in the draining lymph nodes of the neck.

However, as lymph nodes are the site in which tumor-specific

T-cells reside, antigen-presenting cells are primed, and central

memory is established (91–95), irradiation of the draining lymph

nodes may hinder the immune response and the effect of

immunotherapy.

Using an in-vivo model of HNSCC, Darragh et al. administered

8 Gy ×3 to the primary oral tumor, with or without elective nodal

irradiation. The resulting data showed that sparing the neck led to

better local control, better distant control, induction of epitope

spreading, increased activation of CD8+ T-cells, and no lung

metastases. However, while sparing the neck led to better local

and distant control, regional recurrence was observed only in this

group. Elective neck dissection performed five days after tumor

cells implantation demonstrated similar results to elective nodal

irradiation (91). These data suggest that while maintaining the

integrity of the draining lymph nodes may induce immune

response propagating to local and distant control, their

persistence may eventually lead to regional recurrence. Notably,

removing the sentinel lymph nodes was sufficient to prevent

regional recurrence (91). Thus, the timing of surgery relative to

immunotherapy and RT is critical. While upfront surgery

followed by an immunotherapy-RT combination led to worse

local control and immune response, a neoadjuvant

immunotherapy-RT combination followed by surgery resulted in

better local control and systemic immunity. This benefit was

maintained even if the neck lymph nodes were removed, either

entirely or by removing sentinel lymph nodes alone, as long as

they were removed after administering immunotherapy and

SBRT to the primary tumor (91).

Similar results were observed when checkpoint inhibitors were

preceded by neck dissection or high-dose neck RT in murine

orthotopic tongue tumors, both significantly reducing OS (96).
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The tumor-draining lymph nodes were found to be the critical

component for immune checkpoint inhibitors response after

ipsilateral, and not contralateral, neck dissection led to a

compromised response to immune checkpoint inhibitors in a

lateralized orthotopic model (96). A significant increase in CD45-

negative cells and a decrease in the amount of CD8+ and CD4+

T-cells within the tumor was observed in the neck dissection

group (96). Complete response of murine orthotopic tongue

tumors was achieved following anti-CTLA-4 (cytotoxic

T-lymphocyte–associated antigen 4) or anti-PD-1, and this effect

was unchanged following a subsequent late (+6 days) neck

dissection. However, an early neck dissection (+1 day) hindered

the complete response (96). These data suggest that

administering immunotherapy should commence in the

neoadjuvant setting, and that neck irradiation or dissection

should be timed late enough to allow systemic immunity to

develop.
2.4. Cancer cell death as a source of antigen
and adjuvant

Many other changes that occur in the tumor immune

environment following radiation are secondary to the effects of

radiation on cancer cells (Figure 1). The primary focus of RT is

cancer cell death, which necessitates phagocytic clearance, a

defining feature of the immune response in the vicinity of dying

cells (22, 97, 98). The interaction of dying cancer cells with

phagocytic myeloid cells in the tumor environment can drive

their differentiation into suppressive states that limit the immune

control of tumors following radiation (99, 100). However, DC

uptake and cross-presentation of tumor-associated antigen is

critical for subsequent T-cell responses in the tumor-draining

lymph nodes (101).

This cross-presentation of cell-associated antigen to T-cells

provides Signal 1 to T-cells via cognate interaction with the

T-cell receptor. Signal 2 is an essential second step in T-cell

activation provided by the antigen-presenting cell in response to

adjuvant signals in their environment. Signal 2 is delivered by

costimulatory molecules such as CD80 and CD86 that are

induced on antigen-presenting cells following their exposure to

innate adjuvants, as well as following antigen presentation to

CD4+ T-cells (29, 102–105). In the case of infectious disease,

these immunological adjuvants are bacterial or viral components

directly recognized by Toll-Like Receptor or similar pathways in

the antigen-presenting cell. T-cells receive signal 2 through

CD28, which synergizes with TCR ligation to activate critical

activation pathways in the T-cell (106–110). Signal 1 without

signal 2 can tolerize T-cells or result in their deletion (111, 112),

so without immunological adjuvant release, cancer cell death is

potentially able to delete tumor antigen-specific T-cells.

Importantly, as we will discuss later, a range of immunological

adjuvants being released following radiation-mediated cancer cell

death in-vitro and in-vivo have been described (20, 21, 113, 114).

Together, cancer cell death following RT has the potential to

provide signal 1 to T-cells following antigen release from dying
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cells via antigen delivered to cross-presenting DC, and signal 2 in

the form of endogenous adjuvants. This can cause DC

maturation, migration to the draining lymph nodes, and

upregulation of CD80 and CD86. In this way, DC are the

immunological mechanism that links cancer cell death to signal 1

and signal 2 in T-cells. Notably, the degree of DC maturation

varies between preclinical tumor models exposed to identical RT

(31), which in turn affects DC migration to the tumor-draining

lymph node and, therefore, T-cell involvement in the control of

residual disease following radiation (24, 30). Factors contributing

to this heterogeneity in radiation response and methods to

analyze heterogeneity will be discussed later.
2.5. The abscopal effect

Other than the direct effects of radiation on immune cell types

discussed above, a large portion of the early work in the immune

aspect of RT resulted from studies exploring the mechanisms of

post-radiation fibrosis, and the elusive abscopal effect. The

abscopal effect is evident when locally irradiating a primary

tumor and consequently witnessing the regression of distant

metastases outside the irradiated field (16, 17). In fibrosis,

immune cells, cytokines, and growth factors underlie the

transition from cell death following radiation to abnormal repair

in field (115, 116). In studying the abscopal effects, it was

necessary to find mechanisms that could support radiation-

mediated cell killing in the treated tumor and act at a distance,

and a range of angiogenic and cytokine mediators were initially

proposed (117–121). Thanks to pioneering studies, it is now

appreciated that abscopal effects can be mediated by T-cells (14),

which through recirculation, can move between distant sites,

including distant tumors (69).
2.6. The oligometastatic status

In 1995, Hellman & Weichselbaum defined the oligometastatic

status as an intermediate condition on a spectrum extending from

localized disease to a rapidly advancing systemic disease. On the

one hand, the limited spread of metastases to the lymph nodes

may be perceived as an aggressive disease since the involved

nodes harbor cancer cells and are, thereby, a source for seeding

cancer (122). On the other hand, albeit an advanced disease, the

oligometastatic status has not yet progressed into a systemic

state, so it can be potentially cured.

To allow for clinical decision-making, the European Society for

Radiotherapy and Oncology (ESTRO) and the European

Organisation for Research and Treatment of Cancer (EORTC)

proposed a consensus for classifying and characterizing the

oligometastatic disease. It was based on the first cohort of the

ESTRO and EORTC OligoCare registry project, focusing on

differentiating between oligometastatic states and subclassifying

the oligometastatic disease into oligorecurrence, oligoprogression,

and oligopersistence (123). Although this system requires further

evaluation, it underlines the importance of perceiving the
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oligometastatic disease as a heterogeneous state that needs to be

addressed as such.

Currently, HNSCC patients with distant metastasis are

classified as M1 and treated systemically. However, surgical

removal of a metastasis (metastasectomy) or targeting it with

stereotactic ablative radiotherapy (SABR) is employed in certain

types of cancer. Metastasectomy was beneficial for lung

metastases, prolonging life, and potentially curative in a selected

group of patients (124).

By introducing the definition of oligometastatic disease into the

diagnostic process, metastases originating from the lung, adrenal,

liver, and spine may be targeted by SABR/SBRT (125). In a study

that concentrated on delivering SABR to lung oligometastases

originating from HNSCC, Bates et al. showed that although the

2-year disease-free survival was only 14%, the 2-year OS was

more encouraging, reaching 43% (126). These data suggest that

targeting oligometastases with SBRT should be considered to

improve OS in HNSCC. Whether adding targeted therapy to

prime the immune response to irradiation of oligometastases will

improve OS and disease-free survival remains to be seen in

future trials.
2.7. Combining radiation and immune
checkpoint inhibitors in preclinical models

The combination of RT and immunotherapy is gaining interest

as an avenue for cancer treatment, as recently reviewed (49,

127–129). Although limited initially, data on the combination of

RT and immunotherapy in preclinical models is now

accumulating. Using preclinical models allows for the testing of

combinations regimens and mechanistic interventions that help

understand how treatments impact tumors, both not practically

feasible in large-scale clinical trials (50). Selecting the optimum

immunotherapy to combine with radiation may depend on the

immune status of the patient’s tumor. For example,

immunotherapies that target exhausted T-cells, such as

checkpoint inhibitors, will likely be most successful where the

patient has an extensive immune infiltrate limited by expression

of these checkpoint molecules. By contrast, where a patient lacks

extensive pre-existing immunity, the optimum immunotherapy

may be better targeted to initiate anti-tumor immune responses

in the tumor-draining lymph nodes, focusing on DC-related

innate adjuvants (29–31), or costimulatory molecules such as

ICOS and OX40 that are induced following antigen exposure

(130, 131). A range of immune interventions in combination

with radiation are discussed below.

Given the T-cell mechanism of action, it becomes logical to

deliver therapies that act on T-cells to improve local and distant

tumor control following radiation. Currently, almost all candidate

T-cell targeted immunotherapies have shown synergy with

radiation in some preclinical settings. The dominant players have

been anti-CTLA-4 and anti-PD1.

Inhibition of CTLA-4 in combination with irradiating mouse

primary mammary tumor led to an anti-tumoral immune

response which inhibited the formation of lung metastases (132).
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To test dose fractionation that induces an abscopal effect, breast

carcinoma tumors were implanted in-vivo in two separate sites

and treated with different combinations of systemic CTLA-4

blockade and RT targeted to a single tumor site in a range of

doses and fractions. By following the irradiated and unirradiated

tumors, the experiments allowed an assessment of local control

and abscopal effects, respectively. Both the fractionated and

single-dose regimens caused a delay in the growth of the

irradiated tumor, and the addition of anti-CTLA-4 further

enhanced the effect. However, the non-irradiated tumor exhibited

growth delay only in mice treated with the combination of

fractionated radiation and CTLA-4 blockade (55). These data

suggest that fractionated RT is a better partner for CTLA-4

blockade than single-dose RT to generate an abscopal effect.

Combining RT and CTLA-4 blockade in a similar model also

demonstrated a significant survival benefit (132).

Using the murine pancreatic ductal adenocarcinoma model, it

was shown that the addition of anti-PD-L1 to high-dose RT

improved tumor response and further prevented the development

of liver metastases. This effect was evident following

hypofractionated high doses of radiation but not after using low-

dose radiation (133). Combining a single dose (10 Gy) of SBRT

and PD-1 blockade gave rise to a significant long-term survival

advantage in the orthotropic mouse glioma model; mice treated

with PD-1 blockade or SBRT as monotherapy did not exhibit a

significant advantage over the untreated group (134). A

combination of PD-1 blockade and SBRT induced near-complete

regression of irradiated mouse melanoma and partially reduced the

size of the non-irradiated tumor. This effect was less prominent in

the sole blockade of PD-1 or the RT-only groups (135).

The importance of timing and fractionation regimen was

studied using the murine colon carcinoma and breast cancer

models; blocking PD-1 or PD-L1 enhanced the efficacy of RT,

while fractionated RT upregulated PD-L1 expression.

Importantly, the highest efficacy was noted in the concurrent

RT/PD-L1 blockade arm but diminished after delaying PD-L1

blockade for five days and became virtually non-beneficial

following PD-L1 blockade initiated seven days after completion

of RT (60). A single 10 Gy dose to an orthotopic model of

HNSCC led to the upregulation of PD-L1 on tumor cells and

increased T-cell infiltration, thereby improving local control and

OS (136). Integration of single-dose RT with immunotherapy has

also upregulated the expression of murine PD-L1 in the tumor

microenvironment (TME), and blockade of PD-L1/PD-1 in

combination with radiation showed a cumulative positive

effect (137).

Notably, the combination of CTLA-4 blockade and PD-1/PD-

L1 blockade provides distinct synergy with radiation such that the

combination is more effective than any alone (138). Other T-cell

targets that have shown preclinical efficacy include a range of

TNFRSF members, including LIGHT (54), OX40 (131), 41BB

(139), GITR (140), and ICOS (130), as well as alternative targets

showing efficacy in combination such as Tim3, TIGIT, and

Lag3 (141, 142).

These data establish the basis for the RT-immune checkpoint

inhibitors combination and the importance of choosing a
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radiation dose, fractionation, timing, and sequencing with

immune checkpoint inhibitors.
3. Radiotherapy and immunotherapy in
clinical trials

3.1. From conventional radiotherapy to
SBRT

Previously, SBRT in HNSCC was mainly used in patients

unable to tolerate the prolonged course of RT due to

comorbidities, advanced age, poor social and financial support,

or inability to travel daily (143, 144). Thus, studies mainly

concentrated on utilizing SBRT for second primary tumors,

reirradiation (145), or in recurrent or metastatic settings (146–

150), and rarely as an upfront modality for newly diagnosed

patients (151).

SBRT was also applied to boost conventional RT, mainly in

nasopharyngeal and oropharyngeal cancers (152–154). Lee et al.

described high 1-year and 2-year locoregional recurrence-free

rates of 91.4% and 86.3%, respectively (n = 26). However, there

was also a high frequency of acute complications (27%) and

severe late complications (34.6%), which was more frequent

among individuals who received concurrent chemo-RT two

weeks prior (153). These data demonstrate the importance of

fractionation dose and timing to the development of treatment-

related toxicities.

Earlier studies reported the use of SBRT in patients unfit to

undergo standard-of-care. Amini et al. described three patients

aged 72–88 treated with 5.0–7.2 Gy ×5 and witnessed either a

clinical or radiographic complete response, with no grade 3

toxicities or greater, at 4–8 months of follow-up (155). Khan

et al. described 24 sites in 21 patients aged 25–103 (median 87),

most of them diagnosed with SCC, who were treated with 4–6

fractions of 7–8 Gy and exhibited 25% complete response and

67% partial response at eight months of follow up (6). It was

uncertain, however, whether SBRT could be used in place of

fractionated RT and lead to comparable outcomes.

To test the potential of SBRT for reirradiation of recurrent or

second primary head and neck cancer (squamous cell carcinoma

in most patients), Vargo et al. retrospectively compared SBRT

(n = 197) to intensity-modulated radiation therapy IMRT

(n = 217). The two groups had different characteristics at

baseline, with patients in the SBRT group being older and more

heavily treated, more likely to be treated for recurrence than a

second primary, and having more lifetime doses of RT. Although

the unadjusted 2-year overall survival (OS) and median survival

were higher among the IMRT group, after controlling for

baseline differences, there was no difference between the groups

in OS (HR 0.877; 95% CI: 0.702–1.097; p = 0.251) or cumulative

incidence of locoregional failure (HR 1.154; 95% CI: 0.886–1.505;

p = 0.289). A subset analysis, however, revealed that the OS of

the two groups was similar as long as the tumor volume was

small and the SBRT dose was ≥35 Gy. Otherwise, IMRT led to

better OS. Patients in the IMRT group had a higher rate of acute
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grade ≥4 toxicity than in the SBRT group (5.1% vs. 0.5%, p < 0.01)

(156). Thus, SBRT may be considered for patients with small

tumors and should be administered to a total dose of no less

than 35 Gy. These benefits are highlighted when compared to

previous clinical trials investigating salvage reirradiation. Under

the same settings, salvage reirradiation with conventional RT

resulted in a median OS of 8.5 months in RTOG 9610 (157) and

12.1 months in RTOG 9911 (158). These trials showed grade ≥3
acute toxicity in 63%–78% and late toxicity in 22%–37% (157,

158). In clinically negative neck (N0) cases, locally recurrent and

previously irradiated head and neck cancer patients pose a

significant therapeutic challenge (159). Due to the limited data

available on the potential benefits of surgical treatment for the

N0 neck, it is important to investigate whether neoadjuvant

targeted therapy can provide advantages in managing this

challenging group of patients.

Considering its lower toxicity rate and comparable outcome to

IMRT under certain circumstances, studies focused on identifying

the factors contributing to better outcomes following SBRT.

Comparing previously-irradiated with never-irradiated patients

was among the main factors examined. To evaluate the effect of

previous irradiation on treatment outcomes following SBRT, a

retrospective review of unresectable head and neck cancer in

medically unfit patients was carried out (n = 114, squamous cell

carcinoma n = 81, skin primary n = 41, non-skin primary n = 59).

Patients received a total dose of 35–50 Gy SBRT divided into 4–6

fractions and stratified according to their baseline disease status.

There was a statistically significant difference in median

progression-free survival (PFS) between the groups: 23.7 months

(untreated primaries), 14.8 months (recurrent unirradiated

primaries), 10.5 months (metastatic non-head and neck cancer

primaries), and 7.8 months (recurrent irradiated head and neck

cancer primaries) (p = 0.04). Although the local control in the

recurrent irradiated primaries at 12 months (78.9%) did not

significantly differ from other groups, both the PFS (7.8 months)

and the locoregional recurrence rate (38.4%) were the worst

among the recurrent irradiated primaries compared to the other

groups. Indeed, multivariate analysis showed that the only

significant variable was previously irradiated lesions, which were

more likely to have shorter PFS than previously unirradiated

lesions (HR 4.09, p = 0.03) (160).

These data align with a previous publication by Kodani et al.

(n = 34), who observed a superior OS rate in SBRT-treated

patients who have not undergone a prior RT within the previous

two years or in cases of reduced target volume. In the same

group of patients, 17.6% experienced severe late complications,

all having a history of prior RT (161).

In a more recent publication focusing on previously

unirradiated head and neck cancer patients unfit to standard-of-

care (n = 66, SCC n = 44), 7–8 Gy ×5 SBRT was delivered

biweekly. Thirty-four patients also received adjuvant therapy.

Median time to local failure was 28.3 months, and 1-year local

control and OS rates were 73% and 64%, respectively. The

toxicity rate was low, with 3% grade 3 and no grade 4 or above

toxicities (8). Compared to smaller studies, this larger study

demonstrated similar OS and local control and reiterated the role
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of SBRT in patients unfit to undergo surgery and standard-of-

care chemoradiation.
3.2. Combination therapies of SBRT, other
than immunotherapy

Given the benefit of combining RT with chemotherapy and the

systemic therapy administered in the recurrent or metastatic

setting, the next step was to study the effect of combining SBRT

with other modalities. Recurrent head and neck cancer patients

(total n = 137, squamous cell carcinoma n = 98) were treated in a

single institution with 4–5 fractions of SBRT to a total mean

dose of 45 Gy (range 36–47.5 Gy) on an every-other-day

schedule (median follow up 19.3 months) (145). This regimen

resulted in OS of 78% (1-year) and 62% (2-year), and local,

regional, and distant control of 78%, 66%, and 83%, respectively.

Importantly, among patients who had disease progression, OS

was significantly improved in those who received salvage therapy

(surgery, RT, or systemic), compared to patients who did not

(median OS 44.3 months vs. 15.3 months, p = 0.03). Concurrent

systemic therapy was associated with increased regional control

(73% vs. 53%, 1-year, p = 0.004) (145). Taken together, these data

demonstrate the advantage of SBRT over conventional RT in

treating recurrent head and neck cancer, and the benefit of

combining SBRT with concurrent systemic therapy in these

patients.

The combination of SBRT with cetuximab was the focus of

many studies, including clinical trials. In a phase II clinical trial

conducted in inoperable locoregional confined recurrent HNSCC

(n = 50, median follow-up 18 months), the combination of SBRT

(8–8.8 Gy ×5) and cetuximab was tested. The median OS was ten

months (95% CI: 7–16), the median PFS was seven months (95%

CI: 5–12), and the 1-year OS was 40% (95% CI: 26%–54%).

Although the primary efficacy in this study was not met, the PFS

was similar to conventional fractionated RT combination with

cetuximab but with lower toxicity rates (149). Similar results

were obtained in a multi-institutional phase II clinical trial

testing the combination of SBRT (6 Gy ×6) and cetuximab in

recurrent HNSCC (n = 60, median follow-up 11.4 months). The

median PFS was 7.1 months (95% CI: 5.5–8.9), and the 1-year

OS was 47.5% (95% CI: 30.8–62.4) (150). Although SBRT

showed no benefit in OS in these populations over fractionated

RT, it required a shorter overall treatment time and led to lower

toxicity rates.
3.3. SBRT to metastases

Conventional RT in metastatic HNSCC was previously seen as

a palliative measure, with hypofractionated RT also utilized for

symptom relief (162). However, SBRT may generate impressive

local control of metastatic disease. In a multi-institutional

retrospective registry analysis of SBRT for the management of

HNSCC, lung, non-regional lymph nodes, and spine metastases,

1-year and 2-year OS rates were 66.4% (95% CI: 53.4%–76.4%)
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and 43.1% (95% CI: 30.3%–55.2%), respectively, and local control

rate was 93.3% (95% CI: 75.4%–99.3%) at 1-year and 2-year, and

76.4% (95% CI: 44.7%–91.4%) at three years (163). Due to the

retrospective nature of this registry analysis, much data was

missing, including the extent of disease, HPV status, the intent

of RT (palliative vs. local control), and concurrent systemic

treatment. However, it showed that using SBRT may induce

local control of metastasis. Although there was a high

variability of RT regimens and fractionation doses (6–22 Gy per

fraction over 1–5 doses), and no correlation was identified

between local control and either prescription dose or

fractionation schedule, local control was notably higher in

smaller metastatic lesions and lack of spinal osseous metastatic

disease (163).
3.4. Summary—SBRT without
immunotherapy

This body of data supports using SBRT as an alternative to

fractionated RT under certain circumstances. First, it remains

advantageous for medically unfit patients who cannot withstand

standard-of-care treatment. Second, it should be considered

in cases where the gross tumor volume (GTV) is small.

GTV < 15 cm3 was associated with better OS in (161); recurrent

GTV < 25 cm3 was associated with improved 1-year locoregional

PFS (53% vs. 22%, p = 0.029) and 1-year OS (70% vs. 22%, p <

0.001) in (149); and ≤50 ml was associated with better median

OS and PFS (21.9 and 19.1 months for ≤50 ml, 12.6 and 12.1

months for 50–100 ml, 8.6 and 8.6 months for >100 ml,

respectively) in (164). Thirdly, in re-irradiated patients, an

interval greater than one year since the previous irradiation

correlated with better survival (157) and favorable treatment

response (164), and greater than two years in (161, 165). Fourth,

analysis of a national cancer database on SBRT for HNSCC

showed that combining SBRT with surgery or chemotherapy

yielded better OS than administering SBRT as a monotherapy

(166). Lastly, better OS was associated with a fractionation

regimen of 7 Gy ×5 or greater (166).

Ongoing SBRT clinical trials are summarized in Table 1.
TABLE 1 Selected SBRT clinical trials in head and neck cancer.

NCT ID Title Phase

NCT02158234 SBRT and Concurrent Cisplatin for Re-Irradiation of
Unresectable, Recurrent HNSCC

1

NCT05674396 3–5 fraction SBRT for Palliation of HNSCC: the FAST
Phase II Randomized Trial

2

NCT03070366 SBRT Combined With Chemotherapy or Not for
Treatment of Oligometastases in HNSCC (SBRT + Cx vs
SBRT alone)

2

NCT04435938 A Study of SBRT for HNSCC 2

NCT02057107 SBRT With Cetuximab ± Docetaxel Followed by
Adjuvant Cetuximab +/- Docetaxel in Recurrent,
Previously-Irradiated HNSCC

2

HNSCC, head and neck squamous cell carcinoma; SBRT, stereotactic body radiation t
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3.5. Combination of conventional radiation
therapy and immunotherapy

The first phase III clinical trial to test the addition of a

checkpoint inhibitor to chemoradiotherapy was the JAVELIN

Head and Neck 100 trial. It was a placebo-controlled double-

blind phase III study (n = 697) of locally advanced HNSCC

patients treated with definitive fractionated RT and

chemotherapy combination, and randomized to receive the anti-

PD-L1 inhibitor avelumab (n = 350) or a placebo (n = 347). The

trial was discontinued after the primary objective of prolonging

PFS with avelumab was not reached (median PFS: 95% CI: 16.9

months-not estimable for avelumab, 23.0 months-not estimable

for placebo), and an HR favoring the placebo group (HR 1.21;

95% CI: 0.93–1.75, p = 0.92) (47).

Given it was the first phase III trial to test the addition of

immunotherapy to chemoradiotherapy in the upfront setting for

locally advanced HNSCC, comparing it to other studies is

challenging. However, based on other trials showing more

favorable results following the addition of immunotherapy to

chemotherapy without RT (46, 167), it is worth considering a

possible negative effect of concurrent fractionated RT on the

immune response. Moreover, the irradiated field in this trial

included the neck draining lymph nodes, which might have

impeded the priming of T-cells and hindered the effect of

immune checkpoint inhibitors (91, 82, 96, 168).

Another trial focused on RT-immunotherapy combination is the

phase II multicenter GORTEC 2015-01 PembroRad trial, which

enrolled patients with locally-advanced HNSCC. This trial,

however, recruited patients unfit to high-dose cisplatin, so it was

not administered. Patients were randomized into pembrolizumab-

RT (n = 67) vs. standard-of-care cetuximab-RT (n = 66)

combinations, with a median follow-up of 25 months. Most

patients had the oropharynx as the primary site (62% and 59%,

cetuximab-RT and pembrolizumab-RT, respectively), and the

minority had the oral cavity as the primary site (8% and 6%).

Fractionated RT was administered in 33 daily fractions to a total

dose of 69.96 Gy or 52.8 Gy. Three concurrent doses of

pembrolizumab were administered at 3-week intervals. Both

regimens achieved similar 15-month locoregional control (60% vs.
Patients
enrolled

HNSCC population Number of
SBRT fractions

Total dose

20 Re-irradiation of unresectable
and recurrent

5 30 Gy

108 Ineligible for curative-intent
treatment

3 to 5

78 Oligometastatic 3 or 5 30/33/45 Gy
or 35/50 Gy

38 Surgery and standrard RT not
recommended/performed

5 45 Gy

92 Recurrent, previously-
irradiated

5 44–50 Gy

herapy.
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59%, pembrolizumab-RT vs. cetuximab-RT, respectively), and there

was no significant difference in PFS (HR 0.85, 95% CI: 0.55–1.32; p

= 0.47) or OS (HR 0.83. 95% CI: 0.49–1.40; p = 0.49). Although there

was no statistically significant difference in PFS or OS, both trended

in favor of the pembrolizumab-RT combination. Notably, the

pembrolizumab-RT combination led to a statistically significant

lower toxicity rate, with 74% vs. 92% of patients with adverse

events≥ grade 3 (p = 0.006) (48). These data suggest that

pembrolizumab-RT may be a less toxic alternative to a high-dose

cisplatin-RT combination, while still achieving similar OS and

PFS. However, the neck was included in the irradiated field, and

considering the data pointing to the possible role of an intact neck

when commencing immunotherapy, a study designed to deliver

immunotherapy-RT combination while limiting neck RT is the

natural next step. The phase II REWRITe clinical trial in HNSCC

(NCT03726775) will evaluate the combination of durvalumab and

RT, restricted to the primary tumor and the adjacent neck levels.

These trials focused on administering immunotherapy and

fractionated RT at the definitive setting. Given the potential of

SBRT to induce an immune response, clinical trials are testing

the combination of SBRT and immunotherapy in the metastatic

setting.
3.6. SBRT-immunotherapy combination in
the metastatic setting

An ample amount of data in solid tumors other than HNSCC

emerges from combining SBRT and CTLA-4 blockade. Prescribing

ipilimumab (anti-CTLA-4) and a single fraction 8 Gy RT in

metastatic castration-resistant prostate cancer had not produced

significant superiority over single-arm treatment (169). However,

more encouraging results came from a study of solid metastatic

tumors refractory to standard therapy. Five cohorts of patients

were administered concurrent or sequential ipilimumab with

12.5 Gy ×4 or 6 Gy ×10 RT. Results indicated a possible

correlation between an early increase in peripheral CD8+ T-cells,

expression of 4–1BB and PD-1 on CD8+ T-cells, and a possible

clinical benefit (170).

Concurrent delivery of ipilimumab and radiosurgery (median

21 Gy in 2 fractions) to melanoma brain metastases produced

favorable regional control and amount of time to brain

metastases progression, as opposed to the RT alone group (171,

172). However, in a different study, no superiority of

immunotherapy in combination with RT was apparent over RT

alone (173).

On the one hand, these data demonstrate a limited benefit at

best; on the other hand, there is still no considerable amount of

published data regarding this combination, and the already

published data represents primarily studies conducted in

advanced cancer populations.

In a single-center phase II trial (n = 62, median follow-up 20.2

months), a possible synergy between SBRT (9 Gy ×3) and anti-PD-

1 immunotherapy was assessed in the metastatic HNSCC setting.

Patients were randomized into nivolumab alone (n = 30) or

nivolumab-SBRT combination (n = 32). At 12 months, there was
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no statistically significant difference in PFS (32.2% nivolumab;

95% CI, 19%–54.9%; 16.8% nivolumab-SBRT; 95% CI: 7.2%–

39.3%), nor in median OS (14.2 nivolumab, 13.9 nivolumab-

SBRT), overall response rate (34.5% nivolumab, 29.0%

nivolumab-SBRT) or grade 3–5 toxicities rates (13.3% nivolumab,

9.7% nivolumab-SBRT; p = 0.7) (174). This trial showed no

benefit to SBRT when added to nivolumab in the metastatic

setting. To test whether concurrent targeting of the PD-1 and

CTLA-4 pathways in addition to SBRT will lead to a benefit, the

phase I/II clinical trial (NCT03283605) will administer both

CTLA-4 (tremelimumab) and PD-1 (durvalumab) inhibitors

concurrently with SBRT to metastatic head and neck carcinoma

(n = 35, 2–10 extracranial metastases) (175). Another possibility

is that this combination of SBRT and immunotherapy is

insufficient to counteract the immune escape inherent to the

metastatic state.
3.7. Neoadjuvant immunotherapy

The combination trials described thus far focused on

administering immunotherapy and SBRT at the definitive setting,

either as a concurrent treatment to standard-of-care or replacing

chemotherapy. However, a growing body of data points to a

potential benefit of administering immunotherapy in the

neoadjuvant setting.

In a phase II randomized clinical trial (n = 29), neoadjuvant

immunotherapy prior to surgical resection of oral cavity SCC

resulted in a major to complete pathologic response in 8%

(n = 1) of patients treated with neoadjuvant nivolumab, and in

20% (n = 3) of patients treated with neoadjuvant nivolumab +

ipilimumab. Pathologic response greater than 50% was observed

in 15% of patients receiving neoadjuvant nivolumab and 33%

receiving nivolumab + ipilimumab. Pretreatment CD4+ T-cells

were associated with pathologic response in the nivoloumab +

ipilimumab combination but not in nivolumab alone (176). In a

similar HNSCC non-randomized phase Ib/IIa clinical trial

(n = 32), major pathologic response (MPR) was observed in 17%

(n = 1) following nivolumab monotherapy and 35% (n = 8)

following nivolumab + ipilimumab combination therapy. There

was a trend of higher baseline intratumoral CD8+ T-cells density

among major-pathological responders, albeit not statistically

significant (p = 0.31). Interestingly, in both major-pathological

responders and non-responders, there was an increase in

intratumoral CD8+ T-cells density after neoadjuvant

immunotherapy (177). Neoadjuvant pembrolizumab (n = 36,

phase II trial, HPV-unrelated HNSCC), however, did not result

in a complete response, and a major pathologic response was

only evident in two patients (178).

Some studies showed a positive correlation between high-

expressing PD-L1 populations and clinical outcomes following

treatment with PD-1 inhibitors (42, 46, 47, 167, 179). However,

while T-cells expressing PD-1 may decrease in responders post-

treatment, baseline cell-specific expression of PD-L1 or combined

positive score (CPS) do not necessarily differ between responders

and non-responders to SBRT and anti-PD1 combination (39), or
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fractionated RT and anti-PD-1 combination (48). Since PD-1 is

expressed by both PD-1+CD8+ T-cells and PD-1+ T-regulatory

(Treg) cells, PD-1 blockade reactivates the effector effect of CD8+

T-cells and immunosuppressive Treg cells. Thus, it may be the

ratio between the two, rather than the absolute levels of

PD-1+CD8, which predicts response to PD-1 immune checkpoint

inhibition (180).

While these data show a somewhat limited potential for certain

immunotherapy regimens to induce a major pathologic response in

HNSCC, the response was achieved shortly after administering it as

monotherapy. Given the baseline differences in T-cells populations

between patients and after treatment, it is possible that other

regimens or combinations of immunotherapy will augment the

immune response.
3.8. Neoadjuvant immunotherapy-SBRT
combination

Although insufficient to signify a reversal of cancerous

processes, the data reviewed so far points to possible positive

trends in tilting the immune-cancer balance: Potential

induction of immune response by SBRT, a possible benefit in

combination therapies, a potential benefit, albeit slight, in

starting immunotherapy in the neoadjuvant setting, and the

supporting preclinical data. These logically lead to design

studies that combine SBRT and immunotherapy in the

neoadjuvant setting.

The combination of SBRT with durvalumab (anti-PD1) was

assessed in the neoadjuvant setting of HPV-negative HNSCC in

a phase I/Ib clinical trial (n = 21). The most common features

were the oral cavity as the primary subsite (n = 18, 85.7%), T3 or

T4 disease (n = 19, 90.5%), and node-positive disease (n = 14,

67%). The patients received one neoadjuvant dose of

durvalumab, and the study was designed with an escalating

radiation dose, starting 6 Gy ×2 to a maximum of 8 Gy ×3. For

the 6 Gy ×3 or 8 Gy ×3 groups (n = 18), OS at 16 months was

80.1% (CI 95%: 62.0%–100%), and PFS and locoregional control

were both 75% (CI 95%: 57%–99.8%). There was a positive

association between 8 Gy ×3 dose and a better response

(p = 0.07). In contrast, none of the recurred patients had a major

pathologic or complete response (39).

Importantly, tissue samples obtained pretreatment (baseline)

and at surgery (after neoadjuvant SBRT and durvalumab),

demonstrated an increase in the CD103+CD39+CD8+ T-cells at

baseline and at surgery among responders, similar to (80) and

(181). Responders also had increased IFN-gamma within

cytokine-producing T-cells and an increase in activated T-cells

(PD1, CD69, Ki-67, and DNAM-1); responders had an increase

in CD45RO+ memory T-cells, while non-responders had a less

consistent pattern (39).

Gene expression analysis among responders revealed increased

expression patterns associated with immune activation. In contrast,

neither PD-L1 expression nor CPS scores correlated with response

to durvalumab and SBRT (39). Although Treg cells in the TME

were linked to decreased response to immunotherapy (182), a
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decrease in Treg cells was not a differentiator between

responders and non-responders (39). Instead, the ratio between

the amount of CD8+ T-cells to Tregs was correlated with

response-to-treatment, with a decrease in total T-cells in non-

responders, leading to a significant difference in the CD8+ T-cells

to Treg ratio (39). The CD8+ T-cells to Treg ratio increased in

patients receiving 8 Gy ×3 compared to lower doses of SBRT.

Only by administering neoadjuvant 8 Gy ×3 were consistent

MPR and CR observed in HPV-negative HNSCC concurrently

treated with neoadjuvant durvalumab (39). This study is pivotal

to the field as it systematically uncovers processes and trends

underlying the resulting outcome. In addition to the optimal

8 Gy ×3 dose, it points to the CD8+ T-cells to Treg-cells ratio,

baseline CD103+CD39+CD8+ T-cells, and T-cell activation

markers as differentiators, and perhaps possible predictors of

response.

In another phase Ib clinical trial, previously untreated

locally-advanced HNSCC patients (n = 21) were treated with

neoadjuvant SBRT (to GTV only) over one week. The doses

studied were 8 Gy ×3 (24 Gy total dose) or 8 Gy ×5 (40 Gy

total dose), with or without neoadjuvant nivolumab. Three

cohorts (n = 16) were HPV positive, while the fourth was HPV

negative (n = 5). All patients underwent standard-of-care

surgery five weeks after SBRT, followed by adjuvant nivolumab

for three months. The overall MPR was 86%, the CR was 67%,

and 90% of patients were downstaged. The extent of resection

was reduced in most patients, and no treatment-related surgical

delays occurred. 20 of the 21 patients did not require adjuvant

radiotherapy postoperatively. Delayed treatment-related adverse

events were more common in the 40 Gy cohort. Of note,

although major pathologic response was achieved in 86% of

patients, partial radiologic response prior to surgery was

evident in 10 patients, while 10 patients had stable

radiographic disease. There was no correlation between the

pathologic and radiographic response (64).
3.9. Summary—SBRT with immunotherapy

Currently, data on the combination of SBRT and

immunotherapy in HNSCC is limited. So far, combining SBRT

and immunotherapy in the metastatic setting has resulted in

limited pathologic response. However, the published clinical

trials indicate a more favorable outcome following neoadjuvant

SBRT and immunotherapy. Of these two trials, the total dose of

24 Gy seems optimal, as a lower dosage led to a less favorable

outcome (39), and a higher dose led to a similar outcome but a

higher toxicity rate (64). The total RT dose, fractionation

regimen, and the timeframe after completion of SBRT and

before surgery may play a significant role in improving the

pathologic outcome. Sparing the neck from the irradiation field

may also play a significant role in allowing an immune response

to develop after irradiating the primary site and administering

immunotherapy.

Ongoing clinical trials of SBRT-immunotherapy combinations

are summarized in Table 2.
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TABLE 2 Selected combination SBRT-immunotherapy clinical trials in head and neck cancer.

NCT ID Title Phase Patients
enrolled

HNSCC
population

Number of
SBRT

fractions

Total
SBRT
dose

Sequence of
treatments

NCT04576091 Testing the Addition of an Anti-cancer Drug,
BAY 1895344, With RT to the Usual
Pembrolizumab Treatment for Recurrent HN
Cancer

1 37 Recurrent
unresectable

3 IT on day 1 of 1st cycle,
BAY1895344 starting day 7
of 1st cycle, SBRT starting
day 2–8 of 2nd cycle

NCT03283605 IT and SBRT for Metastatic HN Carcinomas 1/2 45 Metastatic SBRT after 2 cycles of IT

NCT03212469 A Trial of Durvalumab and Tremelimumab in
Combination With SBRT in Patients With
Metastatic Cancer

1/2 54 Metastatic IT starting day 1, SBRT
staring day 15

NCT04830267 The Efficacy of Camrelizumab Plus SBRT in
R/M HNSCC

2 70 R/M 3 27 Gy IT starting day 1, SBRT
starting day 14

NCT02684253 Screening Trial of Nivolumab With Image
Guided SBRT Versus Nivolumab Alone in
Patients With Metastatic HNSCC

2 65 Metastatic 3 27 Gy IT starting day 1, SBRT
starting day 14

NCT03546582 SBRT ± Pembrolizumab in Patients With
Local-Regionally Recurrent or Second Primary
HN carcinoma

2 102 Recurrent or new
second primary

SBRT for 2 weeks, followed
by IT

NCT04862455 NBTXR3, Radiation Therapy, and
Pembrolizumab for the Treatment of
Recurrent or Metastatic HNSCC

2 60 R/M Injection of NBTXR3 on day
1, SBRT with concurrent IT
starting day 3–8

NCT05136768 Sintilimab Combined With Chemotherapy and
SBRT in Limited Metastatic HNSCC

2 50 Limited metastatic IT and chemotherapy
starting day 1, SBRT starting
after at least 2 cycles of IT
and chemotherapy

NCT03313804 Priming Immunotherapy in Advanced Disease
With Radiation

2 57 Metastatic 30 Gy IT starting day 1, SBRT
starting day 1–14

NCT03635164 RT With Durvalumab Prior to Surgical
Resection for HPV Negative Squamous Cell
Carcinoma

1 21 HPV negative
resectable

2 (escalate to 3) 12 Gy
(escalate to
18 Gy)

Neoadjuvant IT + SBRT,
followed by surgery at 3–6
weeks after SBRT

NCT05053737 RT in Combination With Atezolizumab Prior
to Surgical Resection for HPV Unrelated
HNSCC

1/2 46 HPV negative 3 24 Gy Neoadjuvant IT + SBRT,
followed by surgery

NCT04938609 Neoadjuvant Immunoradiotherapy in HN
Cancer (NIRT 2-HNC)

2 28 Stage III-IVa HPV
negative

3 24 Gy Neoadjuvant IT + SBRT,
followed by surgery at week 7

NCT03618134 SBRT and Durvalumab With or Without
Tremelimumab Before Surgery in Treating
Participants With Human Papillomavirus
Positive Oropharyngeal Squamous Cell Caner

1/2 82 HPV positive
resectable
oropharyngeal

Neoadjuvant IT + SBRT,
followed by TORS and neck
dissection between weeks
6–8

HN, head and neck; HNSCC, head and neck squamous cell carcinoma; IT, immunotherapy; R/M, recurrent or metastatic; RT, radiation therapy; SBRT, stereotactic body

radiation therapy; TORS, transoral robotic surgery.
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4. New players in immunotherapy and
radiotherapy

4.1. Cytokines

Checkpoint inhibitors such as anti-CTLA-4 and anti-PD-1 are

clearly the major players in cancer immunotherapy, but they are

the second phase of FDA-approved immunotherapies for cancer.

The first phase was recombinant cytokine therapies; some are still

in use. The anti-tumor activity of recombinant IL-2 led to FDA

approval for patients with metastatic kidney cancer in 1992 and

metastatic melanoma in 1998, and high-dose recombinant IL-2 is

still in clinical practice (183). The toxicity of high-dose IL-2 and

relatively low response rates limit its clinical use to specialized

centers and some community hospital programs (183). However,

it can generate clinically meaningful and durable responses and

remains part of published treatment guidelines for both melanoma

and renal cancer (184, 185). An initial phase I study demonstrated
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that SBRT combined with high-dose IL-2 resulted in an objective

response of 71% in previously untreated patients with metastatic

melanoma and 60% in renal cell carcinoma (66). There was no

increase in the toxicities associated with high-dose IL-2 and no

dose-limiting toxicities associated with radiation. A subsequent

phase II randomized study showed an improved disease control

rate in patients receiving SBRT combined with high-dose IL-2

compared to high-dose IL-2 alone (65). While the combination

therapy was similar to the phase I results, an unexpectedly strong

response in the IL-2 alone group limited the ability to detect an

improvement with SBRT. This may have been influenced by

dramatic improvements in treatment options for these patients in

the past decade, including BRAF-targeted therapies and prior anti-

PD-1 and anti-CTLA-4 treatments. Retrospective analyses suggest

a higher-than-anticipated response to anti-PD-1 following IL-2

(186). Preclinical studies suggest novel IL-2 formulations can

enhance immune activity with limited toxicity, and that these

agents synergize with radiation therapy in preclinical models
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(187). The response rate could be increased through combination

with innate adjuvants and correlated with antigen-presenting cells

maturation (188), suggesting that improving antigen cross-

presentation in combination with antigen release and T-cell

support could provide multifaceted support of anti-tumor immunity.

Similarly, various cytokines within the Type I interferon (IFN)

family have been studied as adjuvant therapy for cancer in the past

30 years. Treatment of patients with type I IFN resulted in

improved recurrence-free survival (189, 190) but not OS (191).

Preclinical studies in pancreatic cancer have shown improved

outcomes with type I IFN and chemotherapy in pancreatic cancer

(192, 193). However, clinical studies suggested that while patients

receiving type I IFN and adjuvant chemoradiation showed

improved outcomes (194), the use was limited by high-grade

toxicity in 85%–90% of patients (195, 196). To control for systemic

toxicity while sustaining tumor effects, type I IFN can be injected

into the local tumor environment to generate tumor control (197)

and can be engineered to accumulate in the vicinity of cancer cells

using immune conjugates (198, 199). However, a range of

alternative therapies has been developed to induce type I IFN in

the tumor environment through local administration, improving the

in-vivo efficacy and toxicity profile [reviewed in (20)]. Examples of

these will be discussed below.
4.2. Innate adjuvants

The use of innate adjuvants to support the immune response to

RT has been widely reviewed (20, 21, 113, 114). This is based in part

on a wide range of studies using exogenous adjuvants injected into

tumors to improve radiation-mediated control of tumors. For

example, an important series of studies demonstrated that single

fraction and fractionated RT regimens resulted in improved local

control when combined with CpG in a mouse fibrosarcoma model

(200, 201). These studies demonstrated that the 50% tumor cure

dose for fractionated radiotherapy is reduced from 83.1 to 23 Gy

when combined with CpG. As discussed above, more recent

studies have identified that endogenous innate adjuvants that

stimulate the STING pathway are generated by RT and are a

critical component of the immune effects of radiation (56, 57,

202). Exogenous administration of STING ligands also synergizes

with radiation to control tumors in preclinical models (203), and

an array of methods to deliver STING ligands and similar innate

therapies have been developed (204–206). However, these

discoveries have proven difficult to translate, given the limited

efficacy of STING ligands in clinical trials (207, 208). Considering

the high potency of STING ligands in preclinical models and the

lack of potency in patients, these data suggest either a problem in

how these agents are translated to clinical use, or a fundamental

limitation in the murine preclinical models used to develop these

agents (50). Extensive further study is ongoing in this area.
4.3. Myeloid-targeted agents

As discussed above, while exogenous adjuvants can synergize

with RT to control tumors, cancer cells killed by RT can provide
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endogenous adjuvants such as STING ligands (56), heat shock

proteins (209–211), HMGB1 (212, 213), and calreticulin (214).

However, macrophages in tumors are generally polarized such that

they respond to TLR ligands with an M2 pattern of response by

secreting cytokines such as VEGF, IL-10, and TGFβ (215–217). In

addition, exposure of unpolarized macrophages to irradiated

cancer cells can drive macrophages to become M2 polarized (97,

215, 218, 219), regardless of any adjuvants released. Since myeloid

cells can be an obstacle to RT, there is a range of strategies

focused on eliminating these cells or preventing M2 polarization

[reviewed in (99)]. One such approach has been to target CSF1R,

which drives macrophage differentiation and supports

macrophages in peripheral tissues. CSF1 or CSF1R inhibition with

blocking antibodies or small molecules has synergized with both

chemotherapy and RT to control tumors (220, 221). Despite

improved responses, this approach has a marginal effect and has

not been shown to result in tumor cures.

As an alternative to macrophage depletion, targeting the

pathways that drive M2 differentiation following macrophage

interaction with dying cells has provided stronger impacts.

Blocking phosphatidylserine (PS) (222), milk fat globulin E8

(MFGE8) (223), and Mertk (224, 225), have all altered

macrophage differentiation following exposure to dying cells, and

resulted in improved control of tumors. Mertk is a particularly

relevant target since it is the signaling component downstream of

PS ligation by Gas6 (226) and MFGE8 ligation by integrins

(227), as well as complement-mediated opsonization of dying

cells via C1q (228). Importantly, Mertk blockade combined with

radiation can also be improved in resistant tumors by additional

therapies such as TGFb inhibition or checkpoint regulators,

which can permit control of distant tumors (99, 224, 225, 229),

suggesting it is a good target to overcome macrophage

suppression following radiation (99).

Recent studies have highlighted CD47 as a novel phagocytosis-

related target in cancer therapy. CD47 binds SIRPa, where SIRPa is

predominantly expressed on macrophages and some myeloid

subpopulations, while CD47 is expressed on most cells, and

particularly on hematopoietic cells and red blood cells (230).

CD47 expression prevents phagocytosis of red blood cells (231).

CD47 expression varies on immune cells through their activation,

and high-level expression of CD47 on acute myeloid leukemia

(AML) cells was associated with a worse prognosis (232).

Antibodies blocking human CD47 on AML cells transplanted

into immunodeficient mice resulted in limited engraftment of the

human cells due to increased phagocytosis by host cells (232). In

patients, where anti-CD47 can bind normal cells as well as

cancer cells, most patients exhibit hematological toxicities with

100% receptor occupancy on red blood cells observed at doses

above 1 mg/kg (233). Novel CD47 antibodies are in development

that can potentially limit toxicity, but an alternative is to target

the SIRPa molecule on myeloid cells. In immunocompetent

preclinical models, the addition of anti-SIRPa to radiation

resulted in improved control of tumors compared to either agent

alone, and compared to anti-CD47 combined with RT (234).

Further improvements in local and distant responses could be

made by adding anti-PD1 (234), indicating again that myeloid
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targeting works well in combination with T-cell targeted therapies

to improve radiation outcomes.

To provide a degree of certainty in selecting CD8+ T-cells to

become long-lived memory cells, the immune system uses multi-

factor authentication that depends on the presence of innate

adjuvants as well as distinct CD4+ and CD8+ T-cell antigenic

epitopes. These signals are integrated via dendritic cells, which

traffic to lymph nodes in the presence of adjuvant and where

CD4+ T-cells license dendritic cells via CD40-CD40l interactions

to optimally activate CD8+ T-cells to cross-presented antigen

(102–104). In the absence of CD4+ T-cells, effector CD8+ T-cell

responses to infectious agents can still be generated, but memory

responses are generally decreased (235, 236). CD40-CD40l signals

are necessary to develop the T-cell immune environment of

tumors, and this is, in turn, necessary for tumor control by

radiation and immune checkpoint inhibitors (79). Therapeutically,

CD8+ T-cell memory can be generated in the absence of CD4+

help by providing polyIC and anti-CD40 antibodies (237), thus,

exogenously providing the DC adjuvant and the critical aspect of

CD4+ help (102). Anti-CD40 treatment has been shown to

improve responses to RT in a range of preclinical models (238–

240). Anti-CD40 treatment has resulted in some on-target toxicity

in patients (241), so novel approaches are in development to

target this agonist. Locally administered anti-CD40, designed to

slowly release into the tumor-draining lymph node, has shown an

equivalent single agent response as systemic delivery and decreased

toxicity (242), suggesting that targeted CD40 therapies have the

potential to improve the use of this agent. A distinct sustained

release system, providing both anti-CD40 and anti-PD1, has

shown synergy with radiation in preclinical models (243), and

antibody alone directly injected into tumors has shown synergy

with radiation in preclinical models (244). Alternatively, a dual

fibroblast and CD40 targeting antibody has been developed, which

shows synergy with RT in preclinical models (245). These data are

interesting since they suggest that DC help is relevant in the

tumor environment rather than following trafficking to the lymph

node, as has been shown for endogenous T-cell responses

following radiation (30, 31). Importantly, as with other myeloid-

targeted therapies, anti-CD40 therapy has been shown to be a

strong partner for T-cell targeted immunotherapies (246),

suggesting that these treatments can be layered to optimally treat

tumors that have limited pre-existing immunity.
4.4. Metabolic targets in the tumor
environment

The unique environment of a growing tumor can engender a

range of unusual metabolic conditions that are a target for

therapy. In general, the active proliferation of cancer cells can

lead to the depletion of metabolites along with hypoxic

conditions of high growth outstripping vascular supply (247).

Many of these metabolic conditions are immunoregulatory, and

critical pathways can impair immune responses in the tumor

environment. For example, prostaglandin E2 (PGE2) is a long-

defined feature of the tumor environment that suppresses the
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immunostimulatory activity of DAMPs on DC and macrophages

(248–250). Radiation increases PGE2 production by irradiated

tumor cells and tumor stroma cells, and this impacts cancer cell

repopulation and results in poor therapeutic outcomes (251).

Even positive features of cancer treatment can have negative

metabolic consequences that impact outcomes. For example,

signaling through type I IFN signaling following treatment with

radiation and exogenous adjuvants increases the expression of

indoleamine 2,3-dioxygenase 1 (IDO1) (252), which can negatively

regulate immune activation. IDO1 expression in tumors can

promote tumor growth (253, 254), and patients with higher IDO1

expression have been shown to have worse outcomes (255). IDO1

impacts a range of immune cells in the tumor immune

environment, including CD8+ T-cells and myeloid cells [reviewed

in (254)]. Similarly, arginase induction in myeloid cells following

RT of tumors can result in metabolic suppression of T-cells and

limited T-cell control of irradiated tumors (256), and macrophages

infiltrating tumors following immunotherapy can suppress T-cell

control of tumors via arginase expression (100). These data

suggest that targeting this specific metabolic feature can enhance

the radiation control of tumors.

Recently, several studies have pointed to purinergic signaling as

an important target in cancer [reviewed in (257)] and following RT.

Extracellular ATP concentrations are regulated by the

ectonucleotidases CD39 and CD73, which are themselves

regulated on immune cells in tumors (80, 258, 259). ATP is

hydrolyzed to ADP and AMP by CD39, and AMP is further

hydrolyzed to adenosine by CD73. Adenosine can, in turn,

generate anti-inflammatory and immunosuppressive effects in the

tumor environment, including promoting a tolerogenic

phenotype in DC (260), and directly inducing T-cell anergy and

Treg differentiation (260–262). While CD39 is enriched on

tumor-specific T-cells in tumors (80, 263) as well as Treg cells,

increased expression of CD73 is associated with a poor prognosis

in a range of tumors (264–266). Importantly, hypoxia and

inflammation in the tumor can upregulate the expression of

CD39 and CD73, resulting in radio-resistance (267, 268). Thus,

blocking CD73 can improve the response to radiation in

preclinical models (269). Similarly, a range of studies have

demonstrated that targeting adenosine metabolism and

purinergic signaling has improved immune control of tumors

(261, 270), the response to radiation in preclinical models (271,

272), and a range of related approaches are in clinical

development (273). Again, given that these factors limit T-cell

control of tumors, these can be layered with T-cell-targeted

immunotherapy to improve tumor control.
5. The effect of heterogeneity on
response to radiotherapy

5.1. Signaling mechanisms and intratumor
heterogeneity

Recently, advances in molecular biology and a better

understanding of the molecular mechanisms underlying HNSCC
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have resulted in the development of targeted therapy to boost

radio-sensitization. A few agents are being studied, including

anti-epidermal growth factor receptor (EGFR). EGFR is

overexpressed in over 90% of head and neck tumors and is

linked to poor prognosis and increased tumor growth and
FIGURE 2

Signaling pathways in HNSCC involved in the development of resistance to radi
of the central components of resistance to RT due to activation of pro-surv
combined inhibition of EGFR with RT did not improve HNSCC response to
inhibition, such as HGF/MET, JAK-STAT, and Hedgehog pathways. Inhibition
to RT in preclinical studies.
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metastasis. Moreover, EGFR was found as one of the critical

components of resistance to RT (274, 275) through activation of

downstream pro-survival mechanisms, such as pAkt/ MAPK or

DNA repair pathways, when it internalizes to nuclei and activates

DNA-PK (274) (Figure 2, right panel).
otherapy. The Epidermal Growth Factor Receptor (EGFR) was found as one
ival mechanisms, such as pAkt/MAPK or DNA repair pathways. However,
RT. This is due to alternative pathways activated in response to EGFR
of these pathways, along with EGFR, improved the response of HNSCC
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However, the combined therapy of anti-EGFR with RT did not

significantly improve treatment response due to alternative

pathways activated in response to EGFR inhibition, such as

HGF/MET, JAK-STAT, and Hedgehog pathways. Indeed,

inhibition of these pathways along with EGFR improved HNSCC

response to RT in preclinical studies (274, 276, 277) (Figure 2,

left panel).

Recent data suggest that the activation of alternative pathways

is often patient-specific (278). For example, certain HNSCC

malignancies can activate cMet pathways along with EGFR+

processes, whereas others may harbor EGFR+ and Src+ distinct

subnetworks. Hence, in this example, two different drug

combinations should be selected to treat these HNSCC

malignancies. Analyzing proteomic and phospho-proteomic

alterations, 61 distinct tumor subtypes were found in a cohort of

203 HNSCC patients (278), suggesting a high level of intertumor

heterogeneity, and thus an urgent need for personalized therapies.

Complex, often spatial-dependent (279–281) interactions

between cancer cells, the immune system, microbiome, and

additional individualized elements in the TME, contribute to the

intratumor cellular diversity, thereby complicating the intra- and

intertumor heterogeneity of HNSCC. Intratumor processes and

communication with the TME generate constant selective

pressure, which promotes continuous diversification of malignant

and nonmalignant compartments of TME, thereby increasing a

degree of intratumoral heterogeneity, aggressive disease

progression, and resistance to treatments (282). An example of

spatial heterogeneity in HNSCC was provided by Forum et al.,

who demonstrated that the invasive leading edge of primary

tumors was occupied by cancer cells expressing epithelial-

mesenchymal transition (EMT) signature genes, while cancer

cells located within the core of the tumor did not show EMT

transcription factors (283). In addition to being a factor involved

in intratumor heterogeneity, EMT is also associated with, and is

widely considered, a potential cause of drug resistance, invasion,

and metastasis (284).

Non-homogeneous distribution of immune cells within solid

tumors is another example of non-homogeneous intratumor

evolution, which may contribute to immunotherapy-RT

resistance. For example, it was shown that hypoxia might drive

the localization of tumor-associated macrophages. M1

macrophages, a subtype displaying an anti-tumor phenotype,

were found mainly in normoxic areas approximate to blood

vessels, while M2 macrophages, the protumor subtype, were

more dominant in hypoxic areas in lung cancer (285). The

intratumor diversity of TME, including hypoxia and cancer-

associated fibroblasts (CAF), was found to have an essential role

in developing the M2 macrophage subpopulation in head and

neck cancers (286) and development of the HNSCC resistance to

RT and immunotherapy.

Thus, an in-depth understanding of intratumoral

heterogeneity, along with the changes occurring in response to

RT/immunotherapy, can be crucial to the design of

individualized therapy for head and neck cancer patients.

Studies that capture and target intratumor evolution are

underway in other cancer fields. For example, Alkhatib et al.
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have shown that RT resistance may occur due to the evolution of

the intratumor cellular populations in response to RT, towards a

more radio-resistant molecular composition. The study

characterized evolving processes in triple-negative breast tumors

in response to RT and found two different HER2 and cMET-

positive cellular subpopulations, which have been expanded in

the resistant tumors. Simultaneous inhibition of HER2 and

cMET receptors sensitized the tumor responses to RT (287). This

research suggests that a similar approach, providing an accurate

molecular characterization of tumors undergoing RT, may be

beneficial for HNSCC as well.
5.2. Computational tools to resolve
heterogeneous cancer responses

Growing evidence for the extensive intertumor and intratumor

heterogeneities in HNSCC, and their potential influence on

different types of treatments, led to the development of

quantitative approaches addressing the challenge of accurately

classifying cancer patients (or cells within a tumor) into distinct

subgroups.

For example, in a phase I trial of neoadjuvant SBRT and anti-

PD1 prior to surgery, responders exhibited higher levels of

proinflammatory cytokines IFN gamma and TNF alpha, and an

increase in circulating memory T-cells, while non-responders had

more prominent TGF beta, IL-17A, and DNAM-1 expressing

myeloid populations (39). While each attribute may constitute a

potential biomarker for patient response, accumulating

knowledge in precision oncology suggests that quantitative

strategies should classify cancer patients based on specific

features of their altered protein-protein networks rather than on

overexpression or mutation of a specific biomarker. Once

differences and similarities in these networks are identified and

found to differentiate between individuals, protein hubs from

each subgroup-specific network can be transformed into practical

clinical solutions. Namely, an accurate stratification will

significantly increase response to existing therapies or lead to the

development of new therapeutic strategies.

Machine deep-learning algorithms play an essential role in

these efforts. These techniques attempt to derive a general rule

from the input proteomics (or genomics) data, and then to

“allocate” each patient into a specific subgroup according to this

rule. This classification can generate a prediction of drug

sensitivity for a given patient.

Examples of machine-learning methods include clustering

algorithms, such as the K-nearest neighbor algorithm, K-Means

algorithm, and support vector machine (SVM). These calculate

from the experimental (such as protein expression data) how

similar the samples are in terms of protein expression alterations,

and then calculate the distance between every two samples.

These machine-learning algorithms, and others that will be

described next, were frequently used for early diagnosis and

prevention of head and neck cancer (288). Recently, they have

been applied to differentiate responders from non-responders to

anticancer drugs in oral (289) and additional cancer types (290),
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as well as predictors for cancer subtypes (291) and survival of

cancer patients (289, 292).

Additional examples include Bayesian Networks classifiers,

which use conditional probabilities to calculate the probability of

sample B to belong to a particular cluster, given a set of samples

features, e.g., a particular protein expression signature (293), or

Decision Tree algorithms, which sequentially use data variables

to compute the sequence of branch choices. These types of

machine-learning algorithms were used to predict clinical

outcomes (289, 294) through the identification of essential gene

lists or clinical features associated with survival (Bayesian

Networks classifiers) (295, 296), or to predict aggressive

behaviors of tumors via DNA methylation differences (Decision

Tree algorithms) (289, 297).

Neural network-based models are an example of the most

popular deep learning algorithms employed today to study

cancer systems. Similar to the connections of neurons and

synapses found in the brain, the algorithm processes several

“layers” of data, each one using increasingly complex analysis

than the previous one. In oral cancer, this approach was applied,

for example, to transcriptomic data to identify different immune

subtypes (298). Additional discussion on machine-learning and

deep-learning approaches can be found in (293, 299).
5.3. Physics-based models

While predictions based on probabilities identify abundant

patterns in a patient population, and then assume that a patient

possessing this pattern should respond to a drug in a certain

way, physical approaches base their predictions on the stabilities

of systems. They are derived, for example, from free energy

quantifications for each state of the system (300–304). According

to the basic physicochemical laws, spontaneous transitions from

a higher to lower free energy state occurs in a system, and thus

would define a direction of spontaneous change in the course of

any process, including pathological process. Therefore,

identifying stable and unstable states in tissues, including cancer

tissues, should allow us to predict different phenotypes and

recommend how those phenotypes can be manipulated.

This notion inspired us and others to implement

thermodynamic-based approaches in cancer (302, 305, 306) and

extend it further to the field of personalized medicine (301, 307).

A series of works demonstrated that the thermodynamic-based

strategies could provide detailed information not only on the

central oncomarkers (oncological biomarkers) or common

patterns characterizing a particular subgroup of patients, but also

on the role of each oncomarker in the patient-specific ongoing

processes (301, 307, 308). Once a patient-specific set of

unbalanced processes is resolved, then a prediction on how a

tumor-specific imbalance should be targeted is readily provided

(287, 307).

Using unbalanced processes resolved in each HNSCC

malignancy, we have recently demonstrated how they can be

used to design patient-specific drug combinations. Jubran et al.

have shown that combining the anti-EGFR inhibitor with
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additional, patient-specific targeted drugs, results in higher

efficacy than the anti-EGFR monotherapy. Using in-vivo studies,

Jubran et al. demonstrated that the resistance to anti-EGFR

therapies could be inhibited when the unbalanced processes,

occurring in addition to the EGFR+ processes, are resolved and

targeted simultaneously in a patient-specific manner (278).

Moreover, the study provided evidence that patient-specific drug

therapies can also increase the potential of T-cell activation.

These results suggest that resolving the individualized unbalanced

processes, basal or induced to a specific type of therapy, provides

an essential step towards accurately designing patient-specific

drug combinations (278, 287, 307, 309).

In summary, quantitative, statistical, or physicochemical

approaches provide great promise for accurate patient

stratification to individualize diagnostics and treatments.

Future methods will likely focus on integrating omics, clinical

data, and image data, using multimodal learning (310, 311) to

reveal novel molecular aberrations that differentiate certain

groups of tumors from others. One of the central clinical

challenges would be to find and implement a strategy that

addresses each tumor individually, and provides a complete

molecular characterization to any new patient. In particular, to

those who do not necessarily possess the features learned from

the previous patient populations.
6. Conclusions

The introduction of immunotherapy, targeted therapy, and

hypofractionated RT into the field of head and neck cancer has

opened new possibilities for treatment. Recent developments in

diagnostic and computational methods allow better

characterization of the patients and tumors and assess treatment

outcomes. However, adapting the appropriate regimens to patients,

and predicting their outcomes have not matured into practical tools.

RT, once regarded only as a means to kill cancer cells

directly, is transforming into a multilayered tool to impact the

immune response. Preclinical studies and clinical trials have

uncovered the impact of dose adjustment, hypofractionation,

and lymph node sparing to allow and even augment systemic

immunity against cancer cells. A better understanding of

immune cells trafficking, response-to-treatment, and

implementation of in-silico methods, will facilitate treatment

design and prediction of response.

FDA-approved immunotherapy and targeted therapy in head

and neck cancer are still limited to a narrow set of agents, with

most published clinical trials resulting in less-than-optimal

results. However, the natural propagation of clinical trials from

the recurrent and metastatic setting into the upfront and even

neoadjuvant settings have resulted in encouraging data upon

which ongoing and future clinical trials will follow. Current data

show that RT fractionation and the sequence of surgery, RT,

chemotherapy, immunotherapy, and targeted therapy should be

designed to allow systemic immunity to develop. In particular,

while upfront surgery followed by an immunotherapy-RT

combination led to worse local control and immune response,
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neoadjuvant immunotherapy-RT combination followed by surgery

resulted in better local control and systemic immunity. The optimal

RT dose and its combination with immunotherapy and targeted

therapy are still under investigation.

In conclusion, in recent years, there have been major

advancements in the field of head and neck cancer. Although

mostly confined to clinical trial settings, the evolution of an

immune-directed approach to treat head and neck cancer

seems well underway. Basic research studies and clinical trials

are key to advancing toward the next milestone. And then to

the next.
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