
TYPE Original Research

PUBLISHED 11 July 2023

DOI 10.3389/fnins.2023.1137557

OPEN ACCESS

EDITED BY

Xi Jiang,

University of Electronic Science and

Technology of China, China

REVIEWED BY

Saneera Hemantha Kulathilake,

Rajarata University of Sri Lanka, Sri Lanka

Ling Xing,

Southwest University of Science and

Technology, Luoyang, China

*CORRESPONDENCE

Zhiguo Zhou

zhiguozhou@bit.edu.cn

Junwei Duan

jwduan@jnu.edu.cn

RECEIVED 04 January 2023

ACCEPTED 26 June 2023

PUBLISHED 11 July 2023

CITATION

Ma P, Wang J, Zhou Z, Chen CLP, the

Alzheimer’s Disease Neuroimaging Initiative

and Duan J (2023) Development and validation

of a deep-broad ensemble model for early

detection of Alzheimer’s disease.

Front. Neurosci. 17:1137557.

doi: 10.3389/fnins.2023.1137557

COPYRIGHT

© 2023 Ma, Wang, Zhou, Chen, the Alzheimer’s

Disease Neuroimaging Initiative and Duan. This

is an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Development and validation of a
deep-broad ensemble model for
early detection of Alzheimer’s
disease

Peixian Ma1, Jing Wang2, Zhiguo Zhou3*, C. L. Philip Chen4,

the Alzheimer’s Disease Neuroimaging Initiative5 and

Junwei Duan1,6*

1College of Information Science and Technology, Jinan University, Guangzhou, China, 2College of

Computer Science, Guangdong Polytechnic Normal University, Guangzhou, China, 3School of

Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing, China, 4School of Computer

Science and Engineering, South China University of Technology, Guangzhou, China, 5Steering

Committee of Alzheimer’s Disease Neuroimaging Initiative, Bethesda, MD, United States, 6Guangdong

Provincial Key Laboratory of Traditional Chinese Medicine Informatization, Guangzhou, China

Introduction: Alzheimer’s disease (AD) is a chronic neurodegenerative disease

of the brain that has attracted wide attention in the world. The diagnosis of

Alzheimer’s disease is facedwith the di�culties of insu�cientmanpower and great

di�culty. With the intervention of artificial intelligence, deep learning methods

are widely used to assist clinicians in the early recognition of Alzheimer’s disease.

And a series of methods based on data input with di�erent dimensions have been

proposed. However, traditional deep learning models rely on expensive hardware

resources and consume a lot of training time, and may fall into the dilemma of

local optima.

Methods: In recent years, broad learning system (BLS) has provided researchers

with new research ideas. Based on the three-dimensional residual convolution

module and BLS, a novel broad-deep ensemble model based on BLS is

proposed for the early detection of Alzheimer’s disease. The Alzheimer’s Disease

Neuroimaging Initiative (ADNI) MRI image dataset is used to train the model and

then we compare the performance of proposed model with previous work and

clinicians’ diagnosis.

Results: The result of experiments demonstrate that the broad-deep ensemble

model is superior to previously proposed related works, including 3D-ResNet and

VoxCNN, in accuracy, sensitivity, specificity and F1.

Discussion: The proposed broad-deep ensemble model is e�ective for early

detection of Alzheimer’s disease. In addition, the proposed model does not need

the pre-training process of its depth module, which greatly reduces the training

time and hardware dependence.

KEYWORDS

deep-broad ensemble model, Alzheimer’s disease, early detection, MRI, validation,

e�ciency

1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disease of the brain that

develops insidiously. People diagnosed with Alzheimer’s will suffer from the disease for

remaining lifespan (Todd et al., 2013; Weiner et al., 2013; Fink et al., 2020). The main

symptoms of AD includes memory impairment, executive dysfunction, aphasia, impairment

of visuospatial skills and so on, and the etiology remains unknown (Mayeux and Sano, 1999;

Mimura and Yano, 2006). Thus, Millions of people around the world suffer fromAlzheimer’s
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disease. The long-term treatment of these patients consumes

huge medical resources and costs (Cummings and Cole, 2002;

Scheltens et al., 2016). The diagnosis of AD can be divided into

three main types: AD (Alzheimer’s disease), MCI (Mild Cognitive

Impairment), NC (Normal Control).

Radiographic images are important in medical diagnosis of

Alzheimer’s disease. These include positron emission tomography

(PET), magnetic resonance imaging (MRI), computed tomography

(CT) and so on (Prince and Links, 2006; Doi, 2007; Johnson et al.,

2012). Due to low cost and high efficiency, MRI imaging play

an important role in diagnosing AD related pathological brain

changes and researching (Jack et al., 1999). The understanding

of the pathological information provided by these radiographic

images depends on the knowledge and experience of the front-

line clinicians. As the number of professional medical staff is far

less than the actual patient treatment needs, they can not timely

diagnose some early hidden symptoms of Alzheimer’s disease. At

the same time, the imbalance of medical resources also leads to the

inability of patients in rural areas to obtain effective early diagnosis

locally for follow-up treatment.

Currently, with the proposal of VGG (Simonyan and

Zisserman, 2014), ResNet (He et al., 2016), ResNest (Zhang et al.,

2022), ResNext (Xie et al., 2017) and a series of deep neural

networks, many medical and artificial intelligence researchers used

these model to conduct corresponding training on radiographic

images. The popularity of high-performance hardware maked it

possible to deploy these frameworks in some large hospitals and

enable medical departments to actually use these methods to assist

physicians in clinical diagnosis and reduce patient care costs. Due

to the complex 3-Dimensional (3D) spatial feature of radiographic

images, which is extremely different from the traditional 2-

Dimensional (2D) images, a variety of model were proposed

based on different inputs. Compared to 2D-input models, 3D-

input models get more structure information from data obtained

by continuous scanning, thus they can extract more complex

three-dimensional spital feature. Consequently, inmost application

scenarios, 3D-input models performs better than the former in

recognition tasks. These methods can be divided into 2D deep

learning method and 3D deep learning method. The 2D method

mainly divides the original medical image into multiple slices on a

specific axis and then inputs them into the classical convolutional

neural network for training.However, the 2D method cannot

learn the correlation feature between these slices, so the model

performance is limited. The 3D method directly input the original

image into the 3D improved convolutional neural network for

training, in order to learn more comprehensive feature information

and make up for the above defects.

However, deep models contained a large number of

hyperparameters, which required huge hardware resources.

The gradient descent method is also prone to fall into the optimal

solution, leading to the failure of weight. Researchers need to

find a quick and effective way to solve this problem. In recent

years, on the basis of Random Vector Functional-Link Neural

Network (RVFLNN) (Pao et al., 1994) and Single-layer Linear

Feedforward Network (SLFN) (Sanger, 1989), Chen et al. proposed

the Broad Learning System (BLS) (Chen and Liu, 2017a,b) and

proved its approximation. BLS showed good accuracy and excellent

calculation speed in various classification tasks.

Therefore, on the basis of BLS, we try to combine it with

deep learning to establish a depth-broad ensemble model. The

3D deep convolution module will enable the model to have

the capacity to initially extract features of 3D inputs, while the

broad learning module, as a key part of feature fitting, greatly

reduces the resource consumption of the model and can maintain

a good performance. While Alzheimer’s image recognition is a

emblematic 3D image processing task, it has had a profound

influence on medicine and computer science. There have been

a lot of research on the application of depth model in this

aspect. Applying our proposed depth-broad ensemble model to the

early detetion of Alzheimer’s disease will help drive technological

innovation, reduce the cost of future applications, and better

facilitate the adoption of machine learning technologies in this

field.

In this study, we proposed an improved deep-broad ensemble

model for the detection of AD. This model combined the 3D

extraction capability with the fast operation speed and low

dependence on hardware. It firstly extracted spatial features of

different levels of images, and then fused multi-level features

based on a novel BLS to get better classification results. We

applied this model to the task of MRI image recognition

in Alzheimer’s disease and compared it with some previous

work and the work of radiology readers. Experimental results

demonstrate that the proposed model has excellent accuracy and

computational efficiency.

The main contributions of our study for the early detection of

AD can be reported as follows:

1. We constructed a novel deep-broad ensemble model based

on 3D residual convolution module and Broad Learning

System.

2. The proposed model outperforms previous single deep

models, and has higher training efficiency, less dependence

in hardwares.

3. There is no need to pre-train the deep modules of the

proposed, which greatly reduces the training time.

2. Related works

Early detection of Alzheimer’s disease is a chronic and

significant research topic in computer science area. At present,

a large number of computer-aided early detection methods

for Alzheimer’s disease have been developed. According to the

dimension division of input data, related works can be divided

into two-dimensional input-based research methods and three-

dimensional input-based research methods. Two-dimensional

input methods consist of traditional machine learning model and

two-dimensional deep learning models. The three-dimensional

input method basically takes the three-dimensional deep learning

model as the main backbone. Due to the abundant spatial

pathological information in medical examination images, three-

dimensional methods generally have more advantages in the

detection effect. In addition, some researchers have studied the

characteristics of small sample size of medical test images, or

introduced different types of data to establish a multi-modal

fusion algorithm.
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Rieke et al. trained on a 3D CNN model and applied four

gradient-based and occlusion-based approaches to visualization,

promoting clinical impact and trust in computer-based decision

support systems (Rieke et al., 2018). But 3DCNN contains the

risk of network degradation and gradient disappearance/gradient

explosion after increasing the number of middle layers. Rieke

et al. trained on a 3D CNN model and applied four gradient-

based and occlusion-based approaches to visualization, promoting

clinical impact and trust in computer-based decision support

systems. But 3DCNN contains the risk of network degradation

and gradient disappearance/gradient explosion after increasing the

number of middle layers. Based on convolutional autoencoder

(CAE), Kanghan et al. proposed supervised and unsupervised

classification methods for the diagnosis of Alzheimer’s disease. The

combination of convolutional layer and pooling layer of CAE is

relatively fixed, which limits to construct more complex network

structure. Guan et al. constructed a preliminary standardizedmodel

framework based on ResNet, VGG, DenseNet and other networks,

and comprehensively tested and compared these models using

standard MRI image data sets of Alzheimer’s disease. They found

that these simple architectures performed similarly on the task,

and the pre-training process of these methods has less impact on

accuracy. Korolev et al. proposed VoxCNN based on ResNet to

classify MRI images. This model can achieve better performance

using a small training dataset, and be applied to 3D MRI images

without the need of intermediate handcrafted feature extraction.

However, VoxCNN includes themodule of 3D-Resnet, which needs

to consume more training time and more computing resources

in training.

In the above reports, these methods have achieved excellent

performance in their selected datasets. However, these studies

lacked comparability and robustness among themselves. Most

studies needs lots of GPU resources to train themodel, whichmakes

it difficult to apply the research results widely.

3. Methods

3.1. Approvement statement of institutional
review board

This study is approved by institutional board with written

informed consent waived. All experiments including any

relevant details are approved by institutional and/or licensing

committee. All experiments on humans and/or the use of human

tissue samples were performed in accordance with relevant

guidelines and regulations. All experimental protocols were

approved by the Steering Committee of Alzheimer’s Disease

Neuroimaging Initiative and Academic Committee of Jinan

University. Informed consent was obtained from all subjects

and/or their legal guardian(s).

3.2. Data acquisition

All MRI image data used in this study were obtained from

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

(http://adni.loni.usc.edu/) (Petersen et al., 2010). Founded in

2003, ADNI is a public-private partnership led by Principal

Investigator Michael W.Weiner, MD. The primary goal of ADNI

is to test whether serial magnetic resonance imaging (MRI),

positron emission tomography (PET), other biomarkers, and

clinical and neuropsychological assessments can be combined to

measure the progression of mild cognitive impairment (MCI) and

early Alzheimer’s disease (AD). The latest information about the

ANDI database can be found at (http://adni.loni.usc.edu/). The

ADNI database consists of four sub-databases, including ADNI-1,

ADNI-Go, ADNI-2, and ADNI-3, which are interdependent. The

diagnostic labels of these medical image data are given by doctors

after a series of tests.

ADNI provides several standardized datasets for researchers

to study. In our research, ADNI1 Complete 2Yr 3T standardized

dataset is chosen to train our model, including scans of patients

taken at 6, 12, 18, and 24 months after diagnosis. The dataset

contains 434 subjects, including 77 of AD, 206 of MCI, and 151

of NC. The demographic information of the dataset is shown in

Table 1. We searched the ADNI1 Complete 2Yr 3T standardized

dataset in the ADNI database, packaged it and downloaded. All

image data in this study were stored inNifTI format. Figure 1 shows

the slides samples of this dataset.

3.3. Data preprocessing

Since the data came from many different patient samples, the

size of different data and the location of key parts in the image

may vary to some extent, while the neural network model required

that the size of each input be consistent. At the same time, due to

its intensity and other attributes, MRI image is not suitable to be

directly used as the input image of the model, so it needs to be

transformed to some extent. In conclusion, we have to take a series

of pre-processing measures for the data, so that it can be converted

into appropriate input data, and is conducive to improving the

performance of the model.

In this research, The primitive image size of our ADNI dataset

was 256×256×160. Firstly, Since the pixel size of different medical

scanned images is not the same, all pixels need to be resampled

at a fixed homogeneous resolution. We resampled all MRI images

to 1.5-mm isotropic voxels. Then, we scaled the intensity of the

images to the range (0, 1). Since the region of interest (ROI),

namely the patient’s brain, was basically concentrated in the

center of the image, we cropped the image based on the central

region and removed some peripheral background areas. The final

output after processing were 224×224×128-pixel grid resulting

in 336×336×192-mm2 volume. The above data preprocessing

operations were based on Python 3.8 environment, using package

Monai (https://monai.io/) and package Numpy (https://numpy.

org/) for processing.

3.4. Model details and training

3.4.1. Broad learning system
Although traditional deep neural networks show good accuracy

in traditional recognition and classification tasks, they also expose

problems such as large number of hyperparameters and long

time consuming. At the same time, with the publication of

more types of datasets, researchers need to seek a new method
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TABLE 1 The structure of residual Conv module used in feature mapping layer and enhancement layer.

Layer name Number of Bottle Neck block Number of kernel Kernel size Input Size Output size

3D Conv Layer 0 64 7×7×7 224×224×128 224×112×64

3D AvgPool Layer 0 64 3×3×3 224×112×64 112×56×32

3D Residual Module 1 3 256

1×1×1

112×56×32 112×56×323×3×3

1×1×1

Global AvgPool 0 256 0 112×56×32 256

3D Residual Module 2 4 512

1×1×1

112×56×32 56×28×163×3×3

1×1×1

Global AvgPool 0 512 0 56×28×16 512

FIGURE 1

Partial slice samples of some ADNI datasets: (A–F) AD, (G–L) NC.

with simple structure and fast operation to deal with different

requirements and tasks. In studies over the past few years, classical

single-layer network structures such as Extreme Learning Machine

(ELM) (Huang et al., 2006) and Random Vector Functional

Link Neural Network (RVFLNN) (Pao et al., 1994) have been

proposed successively.

On the basis of RVFLNN (Pao et al., 1994), Chen et al. proposed

Broad Learning System (BLS) (Chen and Liu, 2017a,b). In the

structure of BLS, the basic linear feature of the input was extracted

by the feature mapping layer. The further feature of the former

layer was extracted by the enhancement layer which contained

a non-linear function. Then, the output of these layers were

concat together and transferred to the output layer for classifying.

Since there is only two layers of structure, BLS does not need

to calculate a large number of weight parameters for multiple

middle layers, which saving a lot of calculation resources and

reducing the training time of the model. Previous experimental

results demonstrate that BLS can still achieve excellent performance

in the basic test of image recognition, which proves that BLS has

good potential in the field of computer vision (Chen and Liu,

2017a,b).

For a given input sample X ∈ Rn×m, where n represents the

number of samples, m represents the feature dimension of the

sample. The feature mapping layer is composed of the combination

of feature nodes. The feature nodes and feature mapping layer of

broad learning system can be expressed as following:

di = ϕi(XWen + βen ) (1)

Dn = [d1, d2, ......dn] (2)

where ϕi is the selectable linear or non-linear activation

function, Wen is the random weight, and βen is the random

bias. Wen and βen are usually optimized by sparse auto-coding

algorithm. The enhancement node and enhancement layer of BLS

can be denoted as:

ej = δj(D
nWhm + βhm ) (3)

Em = [E1,E2, ......Em] (4)
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FIGURE 2

Structure of proposed deep-broad ensemble model.

TABLE 2 Demographics of ADNI dataset.

Diagnosis Number of patients Number of images Gender Male/Female Average age All [Male/Female]

AD 18 77 32/45 75.32 [75.71/75.04]

NC 33 151 58/93 76.62 [77.46/76.08]

MCI 35 206 132/74 74.62 [77.45/69.56]

Total 86 434 222/212 75.44 [77.20/73.58]

where δj is the non-linear activation function, Whm is the

random weight, and βhm is the random bias. Then, the feature

mapping layer and the enhancement layer are concated and

transferred to the output layer. Since Wen , βen , Whm , and βhm

remain unchanged in the training process, the objective function

of BLS is:

W(||(Y − Y
′

)||22 +
λ

2
||W||22) (5)

where W is the weight of the output layer of the BLS, Y is the

label of X, ||(Y − Y
′

)||22 is used to control the minimization of

training error, λ
2
||W||22 is used to prevent model overfitting, and

λ is the regularization coefficient. Then, W can be obtained by

seeking the pseudo-inverse of ridge regression:

W = G+Y (6)

G+ = lim
λ−→0

(λI + GTG)−1GT (7)

where I is the identity matrix. Through the above steps, we

constructed a complete Broad Learning System.

3.4.2. Deep-broad ensemble model
Three-dimension radiographic images contain complex

pathological spatial information. However, the original broad

learning system can only receive two-dimensional features as

input, and the ability to extract complex image features is weak.

Integrating the deep convolution module can effectively improve

the feature extraction ability of the broad learning system, which

can better the performance for its classification and recognition

(Chen et al., 2018).

In this paper, we proposed a deep-broad ensemble model

for early recognition of Alzheimer’s disease based on the above

ideas, which aims to maintain a considerable performance of

classification, reduce the dependence of hardware and improve the

efficiency of the model.

As shown in Figure 2, we used a convolution-pooling layer to

initially extract the features of the original input. The size of the

convolution kernel used was 7×7×7, and the size of the pooling

module was 3×3×3.The backbone of the model is composed of a

3D residual convolution—feature mapping layer and a 3D residual

convolution—enhancement layer. The 3D residual convolution—

feature mapping layer can be divided into residual convolution

module and feature mapping module. The former is composed of

several 3D bottleneck convolution modules (He et al., 2016), which

are used to extract shallow features of the input, and transform

these features into feature vectors with a size of 256 through the

global pooling, and then input into the feature mapping module for

further processing; The 3D residual convolution enhancement layer

also includes several 3D bottleneck convolution modules as the
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former to extract deeper features. The feature vectors are then input

to the enhancement module through the global pooling, which is

different from the input of the enhancement layer in the original

FIGURE 3

Receiver operating characteristic (ROC) curve of the proposed

deep-broad ensemble model trained on 70% of 3YR 2T ADNI

dataset and tested on the remaining 30% of ADNI dataset and

independent test set. ROC curve labeled Alzheimer Disease (AD)

represents the essential performance for distinguishing AD vs. all

other cases. ROC curves for Mild Cognitive Impairment (MCI) and

Normal Control (NC) are also reported for technical completeness.

BLS. Detailed parameters of the deep module used in the whole

backbone model are shown in Table 1. Finally, feature mapping

module and enhancement module are mapped to the output layer

to produce classification results.

For a Given the original MRI image input X, the output feature

vector after the first convolution-pooling layer is:

Xbase = λconv−pool(X) (8)

The feature vector of the output after the residual convolution

module of the 3D residual convolution-feature mapping layer and

the 3D residual convolution-enhancement layer can be denoted as:

Xd = λd(Xbase) (9)

Xe = λe(λd(Xbase)) (10)

where λd() indicates the residual convolution module of 3D

residual convolution-feature mapping layer, and λe() indicates

the residual convolution module of 3D residual convolution-

enhancement layer. According to formula (1)–(4), feature nodes,

feature mapping modules, enhancement nodes, and enhancement

mapping modules of Broad learning can be denoted as:

di = [ϕi(XdWen + βen )] (11)

Dn = [d1, d2, ......dn] (12)

ej = [δj(XeWhm + βhm )] (13)

Em = [E1,E2, ......Em] (14)

According to formula (6)–(7), the final classification output Y

can be obtained. Thus, we constructed a 3D Convolution Broad

Learning System based on 3D medical image input.

FIGURE 4

The accuracy of the model under di�erent hyperparameters (A) Feature nodes, (B) Enhancement nodes, (C) Sparsity coe�cient.
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3.4.3. Model training
After data preprocessing, the original image was converted into

a 224×224×128 matrix as the input of the model. The server we

used for model training had a AMD EPYC 7543 32-core Processor,

90 GB of RAM, Nvidia GeForce RTX 3090 GPU with CUDA 11.1.

We set up two groups of experiments whose convolution

module was non-pre-trained and pre-trained respectively for

comparison. The dataset used for pre-training was ADNI training

dataset (347 images). In the pre-training experiment, we set cross

entropy as the loss function, with the learning rate of 0.0001, the

optimizer of momentum-SGD, and the batch size of 4.

For the broad module in the model, the range of feature nodes

was [500–4,000], the range of enhancement nodes is [100–1,000],

and the range of sparsity coefficient is [0.4–0.7]. We used Pytorch

1.8 and Numpy to construct the program of the model presented

in this article, and all programs and experiments were run in

Python 3.8.

TABLE 3 Comparison of the proposed model and radiology readers.

Method Accuracy
(%)

Sensitivity
(%)

Precision
(%)

AD vs. NC

Deep-broad ensemble

model (Pre-trained)

90.57 91 91

Deep-broad ensemble

model (Not Pre-trained)

92.65 91 91

AD vs. MCI

Deep-broad ensemble

model (Pre-trained)

93.58 92 91

Deep-broad ensemble

model (Not Pre-trained)

91.57 92 92

MCI vs. NC

Deep-broad ensemble

model (Pre-trained)

76.44 74 75

Deep-broad ensemble

model (Not Pre-trained)

84.68 85 84

The data are presented as Maximum.

3.5. Model testing and analysis

For the three groups of models after training, we used the ADNI

test dataset for testing. The model finally outputs the probability

that an image belongs to one of these categories. The category

with the highest probability was selected as the classification result.

We calculated the final classification accuracy, Precision and Recall

based on this result. In addition, We studied the stability of the

model by modifying the hyperparameters.

3.6. Clinical interpretation of MRI

To compare the performance of our proposed model with that

of an actual radiology reader, a board-certified nuclear medicine

physician with several years of experience (HuanHua Wu, nuclear

medicine) was invited to perform a discriminative analysis of 87

MRI images from the ADNI test dataset. In order to prevent

data leakage, the reader can only obtain MRI image data and the

number of the subject, and analyze them based on their professional

experience.Wewill calculate the corresponding indicators based on

this result.

4. Results

4.1. Demographics

As shown in Table 2, The dataset used in this study contained

434 MRI images from 86 patients, which contained three types

of Alzheimer’s symptoms: AD, patients with Alzheimer’s disease;

MCI, mild cognitive impairment; NC, normal person. Seventy-

seven images were obtained from AD, 151 from NC, and 206 from

MCI. Partial slice images of AD and NC cases in the dataset are

shown in Figure 4. The average age of all patients was 75.44 years

old (range from 55 to 90 years), including 73.58 years old for female

(range from 55 to 90 years) and 77.20 for male (range from 57 to 89

years). The average age of AD groups was 75.32 years (range from

57 to 90 years), with the average age of 75.04 years for female (range

from 64 to 90 years) and 75.71 years for male (range from 57 to

87 years). The average age of MCI groups was 74.62 years (range

from 55 to 89 years), with the average age of 69.56 years for female

FIGURE 5

The visualization of training set after dimension reduction with t-distributed stochastic neighbor embedding (t-SNE). Each point represents the final

features of the proposed deep-broad ensemble model. (A) t-SNE for the AD/CN, (B) t-SNE for the AD/MCI, (C) t-SNE for the NC/MCI.
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TABLE 4 Comparison of the proposed model and previous related work.

Method Accuracy (%) Sensitivity (%) F1-score(%) Time(s)

AD vs. NC

Deep-broad ensemble model 90.97± 1.02 91 91 1.3731

ResNet-18 (He et al., 2016) 73.53± 0.97 74 67 †1920

DenseNet-121 (Huang et al., 2017) 69.12± 2.93 69 69 †2480

VCNet (Rieke et al., 2018) 70.56± 2.91 71 58 †1440

CAE (Oh et al., 2019) 85.24± 3.97 88 nan nan

ICAE (Oh et al., 2019) 86.60± 3.66 88 nan nan

Guan’s work (Guan et al., 2019) 69.12± 0.57 69 64 †2120

VoxCNN (Korolev et al., 2017) 72.06± 1.43 72 64 †2800

AD vs. MCI

Deep-broad ensemble model 91.16± 3.86 94 94 1.4745

ResNet-18 (He et al., 2016) 77.11± 1.20 77 68 †1920

DenseNet-121 (Huang et al., 2017) 70.59± 1.47 71 58 †2480

VCNet (Rieke et al., 2018) 74.69± 1.24 75 65 †1440

CAE (Oh et al., 2019) 74.68± 6.04 75 nan nan

ICAE (Oh et al., 2019) 75.06± 3.86 77 nan nan

Guan’s work (Guan et al., 2019) 71.08± 2.41 71 67 †2120

VoxCNN (Korolev et al., 2017) 75.90± 0.10 76 66 †2800

MCI vs. NC

deep-broad ensemble model 83.39± 1.31 85 84 1.6825

ResNet-18 (He et al., 2016) 57.65± 0.90 58 55 †1920

DenseNet-121 (Huang et al., 2017) 55.86± 2.81 56 45 †2480

VCNet (Rieke et al., 2018) 58.56± 0.91 59 53 †1440

CAE (Oh et al., 2019) 62.83± 5.17 66 nan nan

ICAE (Oh et al., 2019) 63.34± 4.16 69 nan nan

Guan’s work (Guan et al., 2019) 56.76± 3.72 58 57 †2120

VoxCNN (Korolev et al., 2017) 59.46± 0.90 59 49 †2800

Unless otherwise stated, the data are presented as Mean± Std.

†The data here is represented as the average of the three tasks.

(range from 55 to 82 years) and 77.45 years for male (range from 63

to 89 years). The average age of NC groups was 76.62 years (range

from 70 to 88 years), with the average age of 76.08 years for female

(range from 71 to 82 years) and 77.46 years for male (range from 70

to 88 years).

4.2. Result of training

The preprocessed dataset was divided into training set and test

set in a ratio of 0.7:0.3. We trained models for AD/CN, AD/MCI,

andMCI/NC tasks respectively. Accuracy (ACC), sensitivity (SEN),

and F1-score were used to evaluate the performance of them, and

the training time of each model was recorded.

As shown in Table 4, in the tests of AD/CN, AD/MCI, and

MCI/NC, the average of accuracy for prediction were 90.97, 91.16,

and 83.39%. SEN is 91, 94, 85%. F1-score is 91, 94, 84%. The above

results indicated that the proposed model has good discrimination

ability in AD/NC and AD/MCI tasks, but weak discrimination

ability in MCI/NC tasks. The ROC curves of the proposed deep-

broad ensemble model method trained on 70% of ADNI dataset

were shown in Figure 3.

Because the broad module of the model required different

hyperparameters, We also verified the stability of the model

based on different hyperparameters. Due to the huge range

of hyperparameters (range of feature mapping nodes: 500–

4,000, range of enhancement node: 100–1,000, range of

sparsity coefficient: 0.4–0.7), we took several hyperparameters

values as representative. As shown in Figures 4A–C, when

the number of feature mapping nodes and the sparse

coefficient increased, the model maintained good stability.

When the number of enhancement nodes increases, the

stability of the model is generally acceptable, excluding some

unstable intervals.
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TABLE 5 Comparison of the proposed model and radiology readers.

Method Accuracy (%) Sensitivity (%) Specificity F1-score(%)

AD vs. NC

Deep-broad ensemble model 92.65 91 89 91

Radiology readers 68.57 38 22 35

AD vs. MCI

deep-broad ensemble model 93.58 94 92 94

Radiology readers 75.00 43 21 29

MCI vs. NC

deep-broad ensemble model 84.68 85 81 84

Radiology readers 61.76 66 45 68

The data are presented as Maximum.

In addition, We explored the influence of the pre-training for

the deep module on the final classification performance of the

model. As shown in Table 3, the non-pre-trained model performed

better than the pre-trained model on the AD/NC and NC/MCI

tasks (maximum accuracy of 92.65/90.57 and 84.68/76.44), while

the two performed similarly on the AD/MCI tasks (maximum

accuracy of 92.76/91.57).

Since the BLS itself had considerable ability of feature fitting,

the deep module of the proposed model was mainly used to further

extract complex space features of medical image, enhancing the

feature extraction ability of BLS. Therefore, the pre-training of deep

module was not decisive. The broadmodule is decisive in the fitting

of image features. If the cost of pre-training process was removed,

the training time of the model proposed can be further reduced,

lowing the dependency of hardwares and improving the efficiency

of the model.

4.3. Model interpretation: t-SNE plot

As shown in the Figure 5, We clustered the final features of

the models in the three experiments respectively after dimension

reduction by t-SNE. In AD/NC and AD/MCI classification

experiments, the corresponding categories were almost pure, with

only a small amount of mixing. In the NC/MCI experiment, the

mixture of the two categories was more common. Therefore, we

concluded that the proposed model is highly sensitive to AD

categories, because most of the sample points were in the clustering

of AD; we achieved high accuracy in both experiments.

4.4. Comparison to previous works

We compared the proposed model with some previous works,

which had developed several deep models in this task. Due to the

lack of relevant hyperparameter reference, we set the number of

training epochs to 40 for each work. As shown in Table 4, in the

three tasks of AD/CN, AD/MCI and MCI/NC, the accuracy of the

proposed model outperformed these works. The training time of

the proposed model was much shorter than that of these deep

models, because there was no need to update the weight parameters

of the deep module of the proposed model. Therefore, compared

with the previous works, the proposed model had a considerable

optimization effect, less dependence on computer hardware, and

was easier to deploy in the actual diagnosis process.

4.5. Comparison to clinical Interpretations

As shown in Table 5, in the above tasks, the accuracy of

radiology readers were 68.57, 75.00, 61.76%. Sensitivity were 38, 43,

66%. F1-score were 35, 29, 68%. Compared to radiology reader’s

work, the proposed model had better performance in the detection

of ADNI datasets, which has statistical significance.

5. Discussion

The diagnosis and treatment of Alzheimer’s disease is becoming

an important medical issue for decades to come. Millions of

Patients with Although Alzheimer’s disease provides a rich data

base for the improvement of diagnostic theories, it brings great

work pressure and challenges to front-line doctors.

At present, computer science researchers had developed many

detection models for radiographic images of the Alzheimer’s

disease. However, these current models almost consisted of single

deep networks. This would lead to the problem that the models

were highly dependent on hardwares, which was difficult to be

popularized in non-urban areas where relevant hardware was

lacking. To solve the above problems, we constructed a deep-

broad ensemble model for radiographic images based on the novel

BLS which has higher efficiency. Then, we trained and tested

the model using the MRI dataset obtained from ADNI database,

and calculated the corresponding accuracy, sensitivity and F1-

score according to the results. We also compared the model with

some previous work and results from radiology reader. The results

demonstrates that compared with the previous work and the

reader, the proposed model has better performance and greatly

reduces the training time. Meanwhile, we studied the effect of

the deep convolution module and the improved BLS module on

the model. The results demonstrates that BLS was still the core
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of the model. The function of the deep module was to enhance

the feature extraction capability of the BLS module, thus requiring

no pre-training, which would greatly improve the performance of

the model proposed in this paper. Our experiment had certain

limitations. Firstly, the amount of data used in this study is still

relatively small (434 images) due to the limited number of public

medical image datasets for Alzheimer’s disease currently available

for research. Therefore, the robustness of the proposed model has

not been verified on larger and more general data, which limits the

application of our proposed model in real scenarios.

Second, BLS is a non-deep learning framework. Although

its interpretability of it has been proven (Chen et al., 2018),

BLS is not as widely used as deep neural network. Broad

Learning System itself also has the limitation of relatively low

accuracy, and its application in medical imaging and other

fields lacks of universal reference. The hyperparameter setting of

the proposed model relies on the previous research experience

of machine learning researchers and lacks a better adjustment

method (Gong et al., 2021).

In general, our experiment and research results demonstrate

that our proposed deep-broad ensemble model method

significantly reduces the training time while maintaining

good detection performance. This makes our model play

a referential role in practical medical image diagnosis and

reduces the dependence on external hardware. With the

opening of more medical image data, the model proposed in

this paper can be better applied to first-line clinical diagnosis

and provide reliable reference for doctors and medical

image readers.
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