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The Lassa virus (LASV), an RNA virus prevalent in West and Central Africa, causes
severe hemorrhagic fever with a high fatality rate. However, no FDA-approved
treatments or vaccines exist. Two crucial proteins, LASV glycoprotein and
nucleoprotein, play vital roles in pathogenesis and are potential therapeutic
targets. As e�ective treatments for many emerging infections remain elusive,
cutting-edge drug development approaches are essential, such as identifying
molecular targets, screening lead molecules, and repurposing existing drugs.
Bioinformatics and computational biology expedite drug discovery pipelines,
using data science to identify targets, predict structures, and model interactions.
These techniques also facilitate screening leads with optimal drug-like
properties, reducing time, cost, and complexities associated with traditional
drug development. Researchers have employed advanced computational drug
design methods such as molecular docking, pharmacokinetics, drug-likeness,
and molecular dynamics simulation to investigate evodiamine derivatives as
potential LASV inhibitors. The results revealed remarkable binding a�nities,
with many outperforming standard compounds. Additionally, molecular active
simulation data suggest stability when bound to target receptors. These promising
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findings indicate that evodiamine derivatives may o�er superior pharmacokinetics
and drug-likeness properties, serving as a valuable resource for professionals
developing synthetic drugs to combat the Lassa virus.

KEYWORDS

Lassa fever virus, emerging viral infections, drug discovery, ADMET, molecular docking,

molecular dynamics simulation, evodiamine

1. Introduction

The Lassa virus (LASV), an Arenavirus family member, is
responsible for causing hemorrhagic fever and multiple organ
failure. Transmission to humans occurs through rodents and
human-to-human contact and is considered endemic in several
West African countries, including Sierra Leone, Liberia, Guinea,
and Nigeria (Agbonlahor et al., 2021). The first documented
case of the Lassa virus dates back to 1969 in Nigeria, and
annual reports suggest an incidence of 100,000–300,000 cases,
resulting in approximately 5,000 fatalities (CFDCA Prevention,
2022). However, these numbers are rough estimates due to
regional variations in Lassa fever surveillance. In Sierra Leone
and Liberia, Lassa fever accounts for 10–16% of hospitalized
patients with the infection (CFDCA Prevention, 2022). From
week 1 to week 52 of 2022, at least 1,067 LASV cases
were diagnosed across 112 Local Government Areas (LGAs)
and 27 states of the Nigerian Federation, with 189 fatalities
resulting from the disease. According to the latest report
from the Nigeria Center for Disease Control (NCDC), 8,202
cases were reported from 26 December 2022 to 1 January
2023, affecting more than 63 healthcare personnel (Vanguard,
2023).

LASV’s genome is a single-stranded, bipartite ribonucleic acid
(RNA), lacking an arenavirus’s typical negative-strand coding
configuration (Andersen et al., 2015). The spherical Lassa virus
ranges from 70 to 150 nm in size and features a glycoprotein
envelope with T-shaped spikes measuring 7–10 nm on its surface
(Ogbu et al., 2007).

Although the virus’s pathophysiology is not fully understood,
research has shown that it primarily targets endothelial and
antigen-presenting cells, particularly dendritic cells, and upon
entering the human body, the Lassa virus infects most tissues,
initially affecting the mucosa, intestine, lungs, and urinary system,
followed by the vascular system (Mahanty et al., 2003; Rojek
et al., 2008). LASV RNA genome is responsible for encoding a
few translational products such as highly glycosylated membrane
glycoprotein (MGP), RNA polymerase, a matrix protein, and a
nucleoprotein (NP). Among these genomic products membrane,
glycoprotein plays a crucial role in viral attachment and fusion
through endothelial cell surface (Meyer et al., 2002). Lassa
fever membrane glycoprotein consists of two subunits (GP1 and
GP2), where GP1 is responsible for receptor binding and GP2
plays a significant role in cell membrane fusion (Lenz et al.,
2001; Igonet et al., 2011; Borenstein-Katz et al., 2019). MGP
incorporates with the α-dystroglycan receptor of the extracellular
matrix and initiates LASV entry into the host cell (Bowen et al.,

2000). The pathogen replicates intracellularly by utilizing L-
polymerase and nucleocapsid proteins. After that, nucleocapsid
proteins synthesize both mRNAs and antigenomic RNAs that are
responsible for evading the host immune system (Yun andWalker,
2012). The entire pathophysiology of the Lassa fever virus depends
on the successful attachment of the virus with endothelial cells.
However, the Lassa virus glycoprotein spike (PDB ID 5FT2) was
considered a putative drug target in our study to inhibit viral
attachment with host endothelial cells (Li et al., 2016).

However, the Lassa virus NP is critical for both transcription
and RNA replication since it encloses viral genomic RNAs into
ribonucleoprotein (RNP) complexes (Hass et al., 2004). Though
the exact mechanism of NP involvement in the pathogen’s
pathophysiology is poorly understood, it has been shown in prior
research that the NP of the Lassa virus plays an essential role in viral
RNA synthesis and host immune system suppression by actively
suppressing type I interferon (IFN) (Mart-nez-Sobrido et al., 2006;
Martnez-Sobrido et al., 2007). Generalized immune suppression in
the infected host is correlated with severe arenavirus infections,
including fatal Lassa cases, which indicates that the NP of the Lassa
virus is a key element in Lassa fever pathogenesis (Baize et al.,
2009). Therefore, Lassa virus nucleoprotein (PDB ID: 3MX5) was
also considered as a potential drug target for our following study
(Qi et al., 2010).

The “multimammate rat,” a rodent species, serves as the
primary reservoir or host for the Lassa virus. The two predominant
modes of Lassa virus transmission to humans are ingestion and
inhalation (Tewogbola and Aung, 2020; CFDCA Prevention, 2022).
Mastomys rats excrete the virus in their urine and droppings, and
direct exposure to these materials—such as handling contaminated
objects, consuming tainted food, or contacting open wounds or
sores—can result in infection. Lassa virus typically infects humans
upon contact with the urine or feces of infected Mastomys rats or
through direct contact with the blood, urine, feces, or other bodily
secretions of an individual suffering from Lassa fever (McCormick
and Fisher-Hoch, 2002; Atkin et al., 2009). Infection can occur
when humans come into contact with contaminated rat excrement
or when they capture and consume the rodents as food. Lassa fever
can be contracted from an infected individual, although this is
relatively rare (Asogun et al., 2019). Blood, saliva, urine, and semen
are some of the bodily fluids that can spread infection from person
to person, occurring in both household and healthcare settings.
Those in close contact with the infected individuals are generally
only exposed to the patient’s symptoms; however, a patient can
excrete the virus through their semen for up to 3 months and
in their urine for 3–9 weeks, following the onset of their illness
(Azeez-Akande, 2016) (Figure 1).
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In a world where the menacing Lassa virus poses a deadly
threat, we find ourselves with limited therapeutic options and
no FDA-approved drugs or vaccines for treating Lassa fever
(Baral et al., 2020). The pressing need for effective antiviral
treatments has driven researchers to explore new frontiers, turning
to computational studies in search of potential drug candidates.
Meanwhile, numerous biological actions of evodiamine, including
anti-inflammatory, anti-viral anti-tumor, blood pressure reduction,
and immunological modulation, have been reported (Dai et al.,
2012; Gavaraskar et al., 2015; Yang F. et al., 2017; Zhang
et al., 2022). Evodiamine, a naturally occurring indole alkaloid
derived from the traditional medicinal plant Evodia rutaecarpa,
has been increasingly recognized in recent years for its various
pharmacological effects, including anti-inflammatory, anti-cancer,
and anti-obesity properties, to name a few. Intriguingly, some
studies have also shown evodiamine’s potential as an antiviral agent,
a property that aligns well with the focus of our study. Moreover,
evodiamine has been considered a potential medication option
for combating liver diseases (Li et al., 2020). However, to the
best of our knowledge, there has been no investigation performed
to assess the potentiality of evodiamine derivatives to function
as a potential medication option for Lassa fever. Harnessing the
power of technology, this study aimed to expedite the discovery
process while conserving valuable time, resources, and funding
required for developing novel therapeutic options for combating
the Lassa virus (Rahman et al., 2012). Several evodiamine
derivatives were subjected to computational investigation through
systematic approaches, including molecular docking, drug-likeness
assessment, molecular dynamics simulation, and ADMET analysis.
This theoretical study will add a new dimension in considering
these evodiamine derivatives as potential treatment options for
treating Lassa fever.

2. Computational method

2.1. Determination of the data of ADMET

Many drug-like molecules are eliminated from trial phases for
not having proper absorption, distribution, metabolism, excretion,
and toxicity (ADMET) profile (Alqahtani, 2017). Therefore,
we have calculated ADMET profiles for selected evodiamine
derivatives, employing the pkCSM (https://biosig.lab.uq.edu.au/
pkcsm/prediction) web server (Pires et al., 2015). The pkCSM web
server uses a cutting-edge method based on graph-based signatures
to predict various pharmacokinetic features. Predictive models may
be effectively trained using these signatures for several different
ADMET features. The method, known as pkCSM, also offers a
platform for the analysis and optimization of pharmacokinetic and
toxicity properties implemented in a friendly, open-source web
interface, a useful tool to assist medicinal chemists in striking a
balance between potency, safety, and pharmacokinetic properties.
Assessing the ADMET profiles for selected compounds using this
server will help us to select the most suitable compounds that
have good absorption, distribution through blood, good metabolic
profile, better excretion rate, and lowest toxicity. The pkCSM
server accepts SMILES as input; hence, canonical SMILES for
compounds containing no chiral carbons and isomeric SMILES

for compounds containing chiral carbons were used to generate
desired ADMET values.

2.2. Preparation of ligand and molecular
optimization

Before starting molecular docking, we optimized the three-
dimensional structures of the selected compounds using the
Materials Studio 8.0 software package (Sharma et al., 2019).
This program effectively optimizes the overall geometry and
chemical structure of ligands to achieve minimum ground-state
energy so that these structures could be docked with receptor
proteins without any interruption. After importing the ligand
structures into the Material Studio 8.0 software, density-functional
theory (DFT) was incorporated by applying the DND basis
(diffused basis set) semi-core pseudo-potentials (Papajak and
Truhlar, 2010; Obot et al., 2015; Ribeiro et al., 2015). In material
research, DFT is commonly used to investigate electronic structure
organization using a quantum mechanical modeling strategy.
Finally, the structures are saved in a PDB format for further
computational analysis.

2.3. Preparation of protein and molecular
docking studies

Molecular docking analysis is a significant aspect of
computational drug design (Jakhar et al., 2020). Therefore, in
our study, we have incorporated molecular docking analysis to
understand the molecular binding dynamics between selected
compounds and selected proteins. First, the three-dimensional
structures of the Lassa virus glycoprotein spike (PDB ID 5FT2) and
Lassa virus nucleoprotein (PDB ID: 3MX5) were acquired from
the RCSB protein data bank in the PDB format (Rose et al.,
2016). Users of this platform have access to approximately
200,000 experimentally established PDB structures of biological
macromolecules and almost a million computed structure
models. The PDB structures (Figure 2) were subjected to energy
minimization using Swiss PDB Viewer v4.1.0 (Kaplan and
Littlejohn, 2001). After energy minimization, both protein
structures were opened in BIOVIA Discovery Studio Visualizer to
delete excessive water molecules, surrounding the protein which
could interrupt ligand–protein docking (Design, 2014). It will be
any unwanted heteroatom attached with protein structure were
also deleted, concerning these ligands that could occupy/interfere
the ligand protein binding. Water molecules surrounding the
macromolecules were also eliminated as they do not play a role
in ligand–protein molecular interaction. After completing the
protein preparation part, we acquired ligand structure files from
the PubChem database in SDF format (Kim et al., 2019). The
ligand structures were also energy minimized before molecular
docking is started. For molecular docking, we have used AutoDock
Vina in PyRx software where the ligand structures used were
converted into the PDBQT format, and the grid center points were
set to X = −21.6734, Y = −17.1276, and Z = 28.1838 and the box
dimensions (Å) X = 47.70441, Y = 64.6983, and Z = 51.6696 for

Frontiers inMicrobiology 03 frontiersin.org

https://doi.org/10.3389/fmicb.2023.1206872
https://biosig.lab.uq.edu.au/pkcsm/prediction
https://biosig.lab.uq.edu.au/pkcsm/prediction
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Akash et al. 10.3389/fmicb.2023.1206872

FIGURE 1

Unveiling the stealthy spread of the Lassa virus, a tale of rodents, humans, and unexpected encounters.

FIGURE 2

Three-dimensional protein structure of Lassa virus and its basic features. (A) Lassa virus glycoprotein spike (PDB ID: 5FT2). (B) Lassa virus
nucleoprotein (PDB ID: 3MX5).

(PDB ID: 3MX5), and the grid center for (PDB ID: 5FT2) were set
to X = −8.7259, Y = −31.6119, and Z = −27.5813 and the box
dimension X = 81.3565, Y = 55.5874, and Z = 91.9504 (Trott and
Olson, 2010). PyRx software presents the 9 most suitable docking

poses of the ligand–protein complex after the docking is completed
(Dallakyan and Olson, 2015). We have selected the most suitable
docking poses where the ligands are strongly interacting with
the protein’s catalytic cavity and visualized them using BIOVIA
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Discovery Studio Visualizer to have a great insight into ligand
binding position in the protein cavity.

2.4. Lipinski rule, pharmacokinetics, and
drug-likeness

Determination of pharmacokinetic properties is an effective
approach to distinguish between drug-like and non-drug-like small
molecules. We used the SwissADME server to calculate important
drug-like features such as molecular weight, hydrogen bond
acceptor, hydrogen bond donor, molar refractivity, topological
surface area, and bioavailability (Daina et al., 2017). All these
features were well calculated considering Lipinski’s rule of five
proposed by Lipinski (2004). Distinguishing drug-like molecules by
considering Lipinski’s rule of five is a globally acceptable approach
proposed by Chris Lipinski suggested that any drug-like molecules
should follow at least three of the following four rules: (1) A
drug-like molecule must have a maximum molecular weight of
500 g/mol or less. (2) The lipophilicity of any drug-like molecules
should not cross 5 logP. (3) The maximum number of hydrogen
bond acceptors in the drug-like molecule should not cross 10.
(4) The maximum number of hydrogen bond donors present in the
chemical structure of a drug-like molecule should not cross five.
In our investigation, the canonical SMILES of elected evodiamine
derivatives and the standard drug sofosbuvir were collected from
the PubChem database. The canonical SMILES were inputted into
the SwissADME server to calculate selected parameters for the
proposed small molecules. The Lipinski rule of five following
and violating decisions of selected derivatives was also obtained
from SwissADME.

2.5. System preparation

The compounds were parameterized by a general
AMBER force field (GAFF) for organic molecules with
the ANTECHAMBER module implemented by AMBER.
Protein was parametrized by AMBER ff14SB force field. The
ligands were bound to Lassa fever virus nucleoprotein (PDB
ID: 3MX5) in aqueous solutions with an explicit solvent
TIP3P water box. NaCl ions were modeled to neutralize
the system. The tutorial for the LEaP program was used
for the formation of the protein–ligand complexes and the
preparation of the system (Case et al., 2005; Shukla and Tripathi,
2020).

2.6. Molecular dynamics simulation

The simulations were well carried out by AMBER 16 using
the Particle Mesh Ewald (PME) method in each system (Essmann
et al., 1995). The systems were prepared as described above.
The SHAKE algorithm was used to constrain hydrogen bonds,
allowing the use of an integration time of 2 fs. The following
molecular dynamics protocol was used: (I) solvent minimization
(30,000 steps), (II) equilibrium to heat the system from 100K
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TABLE 2 Molecular docking/binding energy score for all derivatives represented.

Sl. No. PubChem
CID

Chemical structure Lassa virus
glycoprotein spike

(PDB ID 5FT2)

Lassa virus
nucleoprotein
(PDB ID 3MX5)

Binding a�nity
(kcal/mol)

Binding a�nity
(kcal/mol)

01 Evodiamine −7.2 −10.7

02 49806754 −7.4 −9.1

03 49806624 −8.3 −9.7

04 49806625 −8.5 −11.0

05 49806500 −8.1 −9.8

(Continued)
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TABLE 2 (Continued)

Sl. No. PubChem
CID

Chemical structure Lassa virus
glycoprotein spike

(PDB ID 5FT2)

Lassa virus
nucleoprotein
(PDB ID 3MX5)

Binding a�nity
(kcal/mol)

Binding a�nity
(kcal/mol)

06 129710532 −1.7 −2.0

07 151289 −7.8 −10.6

08 56967508 −7.2 −9.4

09 49804912 −8.3 −10.3

Standard
Sofosbuvir

−5.9 −7.1
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FIGURE 3

Docking interactions between the proposed compounds.

to 298K at a constant volume with restricted proteins (1 ns),
(III) equilibrium to relax the system with restricted proteins
(1 ns), (IV) relaxation of the system for 1 ns at constant
pressure and 298K with restriction of less than 10 kcal/mol-Å2
of the protein, (V) minimization of the system with restrictions
only on the protein backbone, (VI) relaxation of the system
for 1 ns at constant pressure and 298K with a restriction of
<10 kcal/mol-Å2 of the backbone, and (VII) three equilibration
steps where the restraint on the backbone was decreased until
it was free. Finally, 140 ns of molecular dynamics production
was launched.

3. Result and discussions

3.1. Lipinski rule, pharmacokinetics, and
drug-likeness

Evodiamine derivatives are well known for their effective
application in different disease treatments, such as pulmonary
hypertension, gastric cancer, and hepatocellular carcinoma
(Zhang et al., 2020; Fan et al., 2021; Liang et al., 2022). Recently,
computational drug designing application of evodiamine
derivatives was noticed in the potential treatment of viral diseases
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FIGURE 4

Root mean square deviation (RMSD) of the Lassa virus nucleoprotein (PDB ID: 3MX5) backbone for standard sofosbuvir complex (blue), compound 1
(red), and compound 2 (green).

FIGURE 5

Root mean square fluctuation (RMSF) of Lassa fever nucleoprotein backbone over time (140 ns) for standard (blue), compound 4 (red), and
compound 9 (green). Residues 113 to 162 are not present in the nucleoprotein structure.

such as COVID-19 caused by the SARS-CoV-2 virus (Belal et al.,
2022). On that account, we have investigated the pharmacokinetics
and drug-likeness properties (Table 1) of our selected evodiamine
derivatives to select the most potent small molecule for Lassa

fever treatment caused by the Lassa virus. The pharmacokinetic
profile of the standard drug sofosbuvir was also calculated for
the following comparative analysis. According to SwissADME,
all nine of our selected compounds followed the Lipinski rule of
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five, whereas the compounds named 49806624, 49806625, and
49804912 expressed only one violation of the Lipinski rules. In
contrast, the compounds named evodiamine, 49806754, 49806500,
129710532, 151289, and 56967508 all followed Lipinski rules, which
prove their credibility to be selected as potential drug candidates
for having appropriate pharmacokinetics and drug profile. The
calculation of topological polar surface area (TPSA) is a crucial
indicator to understand the ability of drug molecule transportation
(Ertl et al., 2000). Ideally, a TPSA score of <130 Å² indicates
excellent drug-transporting ability in the host system where the
minimum TPSA score of a drug-like molecule should not be <20
Å². Interestingly, the standard drug sofosbuvir has a TPSA score
of 167.99 Å² which crosses the ideal range of TPSA. All nine
selected evodiamine compounds had a TPSA score of <130 Å²,
indicating their excellent transporting ability as a drug in the host
system. All nine selected evodiamine compounds expressed a
bioavailability score of 0.55, which was significantly higher than
sofosbuvir. The lipophilicity value was also calculated to predict
non-aqueous solubility. By assessing the data presented, we predict
that compound 129710532 showed the lowest score (2.44 Log
Po/w) and compound 49806624 showed the highest lipophilicity
score (4.54 Log Po/w). For an ideal drug-like molecule, the molar
refractivity score should be between 40 and 130 units. Only three
compounds (49806624, 49806625, and 49806500) had slightly
higher scores than the ideal range. However, the molar refractivity
scores for the other six compounds were satisfying.

3.2. Molecular docking and interaction
analysis

Lassa virus glycoprotein spike (PDB ID: 5FT2) and Lassa virus
nucleoprotein (PDB ID 3MX5) were docked with evodiamine’s
nine selected derivatives. These docked complexes were compared
with the standard drug sofosbuvir for justifying the significance of
conducting this study. According to the molecular docking rules, a
stable protein–ligand complex should express minimum binding
energy with a strong binding affinity of the ligand with the receptor
protein. Sofosbuvir showed binding energy of −5.9 kcal/mol for
the Lassa virus glycoprotein spike. However, eight (ligand nos: 01,
02, 03, 04, 05, 07, 08, and 09) out of nine selected evodiamine
derivatives expressed higher binding affinity than the standard
drug. These docking scores indicate that ligand nos. 03, 04, and
09 have bound much more strongly than sofosbuvir with the
Lassa virus glycoprotein spike. As stronger binding has a positive
correlation with forming amore stable receptor-ligand complex, we
can suppose that our selected compounds will have a better role in
stabilizing the target protein than the stronger drug.

In addition, Lassa virus nucleoprotein was also docked with
the same ligands. Sofosbuvir showed a binding energy score of
−7.1 kcal/mol with this receptor. Except for ligand no. 06, all
eight ligands showed better docking scores than the standard drug
(Table 2). Ligand no. 04 had a binding energy score of only −11
kcal/mol, indicating excellent binding with the receptor by forming
a stable protein–ligand complex. Moreover, ligand nos. 01, 03,
05, 07, and 09 also showed excellent binding affinity, suggesting
that they could be also considered for potential future drug

TABLE 3 Binding free energy calculations for the protein–ligand systems

based on MMGBSA.

MMGBSA Delta G Standard. dev.

Standard −29,4833 ±6,1179

Compound 01 −39,4656 ±7,8665

Compound 09 09 −36,3851 ±3,7805

Values expressed in kcal/mol.

development. After analyzing all the docked complexes, it could be
said that ligand nos. 04 and 09 expressed excellent docking scores
with both target receptors, which was much higher than sofosbuvir.
These two compounds can be considered very strong candidates for
developing future drug development against Lassa Virus.

3.3. Protein–ligand interaction and
molecular docking poses

Protein–ligand docked complexes were visualized using
the PyMOL program to better understand different types of
interactions. For the Lassa virus nucleoprotein (PDB ID: 3MX5),
compound nos. 04 (−8.5 kcal/mol) and 09 (−8.3 kcal/mol) had the
maximum binding energy. Compound no. 04 formed a Py-Alkyl
bond with TYR A:213 and VAL A:252; a conventional hydrogen
bond with THR A:178 and LYS A:253; and pi-pi stacked with
TYR A:209 (Figure 3). However, compound no. 09 formed a
Pi-Alkyl bond with PRO A:302; a conventional hydrogen bond
with LYS A:253 and THR A:178; and pi-pi stacked with TYR
A:213 (Figure 3). Selected protein ligands with strong molecular
interactions were further analyzed by incorporating molecular
dynamics simulation to explore the significant roles of selected
compounds in stabilizing virulent proteins.

3.4. Molecular dynamics simulation analysis

The production of the molecular trajectory (140 ns) was
used to perform the analyses. The root mean square deviation
(RMSD) allows one to calculate the divergence between the
two overlapping structures, so the lower the value, the higher
the similarity between them. The RMSD and RMSF plots were
performed using Visual Molecular Dynamics (VMD) (Humphrey
et al., 1996a,b). VMD and TCL scripts to establish residues
that have contact with the ligand at a distance of fewer
than 5 Å for at least 50% of the molecular trajectory. The
binding free energy calculations for the protein–ligand systems
were estimated using the Python script MMPBSA.py provided
by AMBER.

The root mean square deviation (RMSD) was calculated for
the systems described above (shown in Figure 4). The protein–
ligand complexes were equilibrated at 40 ns from the molecular
dynamics trajectory. In the standard complex, the RMSD had
values of 1∼2 Å. The complexes formed by compounds 1 and 2
reached higher RMSD values. Compound 4 had fluctuations of 1∼3
Å; at the 100th nanosecond of molecular dynamics, the protein
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FIGURE 6

Residues that have contacts at <5 Å with the ligand for at least 50% of the molecular dynamics trajectory for the systems (A) sofosbuvir, (B)
compound 4, and (C) compound 9.

rotates sharply, which twists the N-terminus and C-terminus of the
proteins, justifying the increase of the RMSD value. Compound 2
achieved similar RMSD values as compound 1; however, compound
2 is more stable along the molecular dynamic trajectory.

To characterize the local changes in the interaction motifs
close to the ligand, the root mean square fluctuation (RMSF)
between the nucleoprotein and the ligand was calculated
(Figure 5). The RMSF values are similar in all systems. The
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FIGURE 7

Common residues among contacts found.

most stable interaction correspond to the residues that are
found to keep interacting with the ligand. The most stable
interaction motifs are located near the N-terminus (8–
50 aa.) and in the region between residues 180 and 200,
corresponding to the amino acids found to have contact with
the ligand.

From the molecular dynamics simulation, we estimated
the residues that possessed ligand–ligand contacts at 5 Å
for at least 50% of the molecular dynamics. We found
14, 13, and 16 protein–ligand contacts for the standard,
compound 4, and compound 9 systems, respectively (Figure 5).
Common residues TYR: A 209, TYR: A 206, SER: A 238,
LEU: A 239, SER: A 247, LEU: A 248, and GLY: A 249
were found forming contacts in the systems. Among these,
the GLY: A 249 residue has a prominent role, forming
contacts in all systems in at least 95% of the molecular
dynamics trajectory.

The free energy of the protein–ligand binding was calculated by
theMMGBSAmethod to estimate which compound binds better to
the nucleoprotein. Table 3 shows the union energy residues for each
system. A comparison of the binding free energy values shows that
Ribavirin is less stable than compounds 4 and 9. From the above
analysis, compound 9 was chosen because it has a higher number of
contacts with the nucleoprotein and has a favorable binding energy
compared with the other ligands.

The free energy of the protein–ligand binding was calculated
by the MMGBSA method to estimate which compound binds
better to the nucleoprotein. Figures 6, 7 show the union energy
residues for each system. A comparison of the binding free energy
values shows that sofosbuvir is less stable than compounds 4 and
9. From the above analysis, compound 9 was chosen because
it has a higher number of contacts with the nucleoprotein
and has a favorable binding energy compared with the
other ligands.

3.5. ADMET data investigation

The consumption of drugs of poor ADMET properties can
lead to side effects such as allergic reactions, rashes, and organ
damage. To avoid these complications, we have calculated the
most important ADMET properties for our selected evodiamine
derivatives (Table 4). To understand the absorption aspect, we
have selected the following three parameters: water solubility,
Caco-2 permeability, and human intestinal absorption. According
to the data collected from the pkCSM server, the standard drug
sofosbuvir has a low human intestine absorption rate of only
60.168%. In contrast to that, all our proposed compounds have
higher human interest in absorption rate where compound 05
showed the highest score of 96.562%. According to the water
solubility test (calculated in Log S), the range from highly
soluble compounds to insoluble compounds is <-10 poorly<- 6,
moderately<-4 soluble<-2 very<0<highly. As presented in
Table 4, compounds 01, 06, 07, and 08 were declared as soluble.
Furthermore, compounds 02, 03, 04, 05, and 09 were declared
as moderately soluble. The Caco-2 cell line, which is normally
utilized as a reliable model to evaluate the absorption property of
any orally delivered medications, is made up of human colorectal
adenocarcinoma epithelial cells (Sambuy et al., 2005). According
to pkCSM guidelines, a Caco-2 permeability score over 0.9 is
considered high, and the standard drug sofosbuvir expressed a low
Caco-2 permeability score of 0.454. All nine proposed compounds
showed a higher Caco-2 permeability score than the sofosbuvir,
where compound 08 showed the highest score of 1.519.

For predicting the distribution, we have selected the volume
of distribution of the stead-state method (VDss) and blood–
brain barrier (BBB) as our keynote parameters. The VDss values
indicate how evenly drugs are distributed between the blood
and the tissue. A higher VD score (>0.45) suggests that the
therapeutic molecule is dispersed more evenly throughout the
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body, whereas a lower (<-0.15) result denotes uneven drug
distribution. Compound number 08 showed excellent VDss
distribution, and other derivatives also expressed satisfying VDss
scores, except for compound 05. The BBB shields our brain from
any interactions with outside substances. This implies that BBB
permeability assessment is a crucial characteristic in choosing ideal
drug-like compounds (Passeleu-Le Bourdonnec et al., 2013). When
the BBB permeability score is <-1, the distribution is poor. In
contrast, a score of >0.3 indicates excellent BBB permeability.
Compounds 01, 03, 04, 06, 07, and 08 showed positive BBB
permeability, whereas compounds 02, 05, and 09 showed poor
blood–brain permeability. In metabolic profile analysis, it can be
stated that all selected compounds showed positive CYP450 1A2
inhibition, and none of the compounds inhibited the CYP450
2D6 substrate.

Estimating overall clearance and organic cation transporter
2 (OCT2) allowed for the incorporation of excretion analysis
(Filipski et al., 2009). Total clearance produces a total clearance
score using the combined information from hepatic clearance
and renal clearance, which provides a clear excretion profile of
any particular drug. All selected derivatives showed better total
clearance scores than sofosbuvir. None of the compounds were
predicted to be potential renal OCT2 substrates. Finally, in toxicity
prediction, we have predicted that none of the substances induce
skin sensitization, and special precautions should be taken before
recommending these compounds to patients suffering from liver
diseases, as all of the selected compounds can induce hepatotoxicity
including sofosbuvir.

4. Harnessing evodiamine derivatives
for lassa virus intervention—a
thought-provoking discussion

In the subsequent study, Lassa virus nucleoprotein and
Lassa virus glycoprotein spike were considered potential drug
targets to inhibit the Lassa virus. Evodia rutaecarpa is a
rich source of evodiamine, an alkaloid that has garnered
scientific interest for its potent therapeutic effects against
various diseases such as anti-obesity, anti-allergenic, analgesic,
and anti-ulcerogenic properties (Wang et al., 2008; Tan and
Zhang, 2016). Furthermore, in the hippocampus, evodiamine
significantly reduces neuroinflammation (TNF-α, IL-1β, and IL-6)
and glial cell activation, rendering it a potential treatment
for neurodegenerative diseases such as Alzheimer’s disease
(Wang et al., 2018). Despite concerns about evodiamine-induced
hepatotoxicity and cardiotoxicity, its effectiveness against various
cancer cells (lung cancer, gastric cancer, oral cancer, colorectal
cancer, and pancreatic cancer) cannot be dismissed (Wei et al.,
2012; Sachita et al., 2015; Wen et al., 2015; Zhao et al.,
2015; Zou et al., 2015; Yang W. et al., 2017). Additionally,
evodiamine exhibits anti-inflammatory and antioxidative stress
potency, and one study suggests its potential as a therapeutic lead
compound in liver diseases (Zhang et al., 2018, 2022; Li et al.,
2020).

Given the broad-spectrum antiviral effects of alkaloids
against various DNA and RNA viruses, evodiamine has also T
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demonstrated promising therapeutic effects against viruses
such as influenza A virus (Dai et al., 2012; Abookleesh
et al., 2022). Consequently, natural evodiamine derivatives
were considered for identifying potential therapeutic agents
for Lassa fever treatment in the present study. In light
of the comprehensive findings, the ingeniously designed
evodiamine demonstrates promising potential in combating
both the Lassa virus glycoprotein spike and the Lassa virus
nucleoprotein, with favorable ADMET and drug-likeness
properties and molecular dynamic simulations validating
their stability.

5. Conclusion

Lassa fever, a neglected tropical disease, lacks FDA-
approved vaccines and has limited treatment options. This
study aimed to identify promising therapeutic candidates,
focusing on evodiamine derivatives from the PubChem
database. Using the PyRx application, computational docking
was performed, followed by theoretical bioavailability and
toxicological predictions via pkCSM and Swiss ADME
tools. The results revealed that most selected inhibitors
demonstrated favorable binding energies with the Lassa virus
glycoprotein spike and nucleoprotein. Molecular dynamic
simulations supported the stability of the protein–ligand
complexes. Meeting Lipinski’s criteria, ADME analysis
indicated that the investigated inhibitors were generally
safe. However, patients with impaired liver function should
exercise caution due to potential hepatotoxicity. Overall,
evodiamine derivatives showed potential as inhibitors
against Lassa virus glycoprotein spike and nucleoprotein,
warranting further wet lab validation to confirm these in

silico findings.
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