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With the rapidly increasing incidence of bladder cancer in China and worldwide,

great efforts have been made to understand the detailed mechanism of bladder

cancer tumorigenesis. Recently, the introduction of immune checkpoint

inhibitor-based immunotherapy has changed the treatment strategy for

bladder cancer, especially for advanced bladder cancer, and has improved the

survival of patients. The ubiquitin–proteasome system, which affects many

biological processes, plays an important role in bladder cancer. Several E3

ubiquitin ligases and deubiquitinases target immune checkpoints, either

directly or indirectly. In this review, we summarize the recent progress in E3

ubiquitin ligases and deubiquitinases in bladder cancer tumorigenesis and further

highlight the implications for bladder cancer immunotherapies.
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1 Introduction

Bladder cancer (BCa) is one of the most common types of cancer, with 550,000 new

cases and 200,000 deaths annually (1). While the 5-year survival rate of all bladder cancer

patients is 77.1%, the rate drops dramatically to 36.3% for regional disease and 4.6% for

metastatic disease (2). Therefore, adjunctive therapy is needed to improve the prognosis of

invasive and metastatic diseases. Cisplatin and gemcitabine combination chemotherapy

has been applied for advanced bladder cancer (3); however, no major improvements in

survival rate have been achieved until recently. The 5-year survival rate for patients with

metastasis is 15% (3).

Immunotherapy, especially immune checkpoint inhibitors, is widely used for the

treatment of different cancers (4, 5). BCa has been reported to be relatively sensitive to

immunotherapy (6, 7). In May 2016, atezolizumab was the first PD-L1 inhibitor approved
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by the Food and Drug Administration (FDA) for bladder cancer (8).

Since then, another four immune checkpoint inhibitors targeting

PD-1 or PD-L1 for locally advanced and metastatic bladder cancer,

including Nivolumab, Pembrolizumab, Avelumab, and

Durvalumab have been approved by FDA for bladder cancer (8–

10). However, owing to a lack of response, only a small group of

patients with BCa can benefit from these agents (11). Taking PD-L1

as example, many studies have verified that PD-L1 expression is

correlated with anti-PD-1/PD-L1 treatment, where high PD-L1

expression is equal to a good response to anti-PD-1/PD-L1

treatment (12). Thus, exploring the mechanism and identifying

other reagents that can improve the efficacy of immune checkpoint

blockade (ICB) is urgently needed (13). A series of mechanisms of

PD-L1 regulation by post-translational modifications have been

revealed in different cancers among recent research, including

bladder cancer (14–16).

Ubiquitination and deubiquitinating modifications are highly

conserved posttranslational modifications (PTMs) in mammals that

play important roles in many biological processes and diseases,

including cancers. The ubiquitin-activating enzyme E1, ubiquitin-

conjugating enzyme E2, and ubiquitin ligase E3 contribute to the

step-by-step process of ubiquitination. Ubiquitination involves the

transfer of the C-terminal glycine of ubiquitin to the -NH2 group of

t he sub s t r a t e l y s i n e r e s idue . Monoub iqu i t i n a t i on ,

multiubiquitination, and polyubiquitination, which lead to

proteolysis and signal transduction, are the three main types of

ubiquitination (17). On the other hand, deubiquitinases (DUBs) can

reverse ubiquitination by removing ubiquitin chains, thereby

preserving the expression of the substrate protein while

preventing ubiquitination. Most elements of biological activity

depend on the interplay between ubiquit ination and

deubiquitination (13).

Numerous studies have demonstrated that the ubiquitin

proteasome system (UPS) is related to the occurrence and

progression of bladder cancer and that E3 ubiquitin ligases may

be promising therapeutic targets (18–21). Meanwhile, the

interaction between ubiquitination modification and immune-

related molecules is emerging as a crucial regulatory mechanism

and has recently draws great research interest (16, 22–25).

In this review, we summarize recent findings on protein

ubiquitination and deubiquitinating enzymes in bladder cancer

tumorigenesis and progression, as well as recent advances in the

regulation of cancer immunotherapy effects.
2 Roles and mechanisms of E3
ubiquitin ligases in bladder cancer

2.1 The category of E3 ubiquitin ligases

Over 600 types of E3 ubiquitin ligases involved in the

degradation of proteins have been discovered in humans (26). E3

ligases are classified into three subtypes: the interesting new gene

(RING)-type, the homologous to E6AP carboxyl terminus (HECT)-

type, and the RING-between-RING (RBR)-type (27). RING E3
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ligases contain multiple subtypes, including monomers (c-CBL,

E4B), homodimers (cIAP, CHIP), heterodimers (MDM2-

MDMX), cullin-RING ligases (CRLs), and other RING E3s (28).

CRLs are comprised of multiple subunits, which consist of four

components: a cullin (CUL1,2,3,4A,4B,5,7,9), an adaptor protein, a

substrate-recognizing receptor, and one RING protein (29–32).

Moreover, SCF is the largest complex, consisting of SKP1,

Cullin1, RBX1, and F-box proteins (29, 33). HECT structures are

divided into three subfamilies: NEDD4 subfamily, HERC subfamily,

and other HECT E3 ligases (34). RBRs are grouped into the Ariadne

family and other RBRs (35). In particular, E3 ubiquitin ligases

determine substrate specificity in the ubiquitination process.
2.2 Roles of E3 ubiquitin ligases in
bladder cancer

In addition to maintaining the balance of intracellular proteins,

E3 ligases are involved in multiple non-degradable functions

including intracellular transport, autophagy, DNA damage repair,

and metabolism (36). Thus, E3 ubiquitin ligases are critical for

cellular processes. Therefore, their dysregulation may have a

potential effect on the pathogenesis of cancer. Disorders of E3

ligases result in aberrant activation or inactivation of signaling

pathways and the accumulation of misfolded or dysfunctional

proteins (37), which promotes the occurrence and progression

of cancer.

Numerous E3 ligases have been reported to be involved in

bladder cancer tumorigenesis. They are involved in the regulation of

key molecules including PD-L1, PTEN, and p53 (Table 1). In this

section, we provide a detailed description of each E3 ligase in

bladder cancer.

2.2.1 RNF126
RNF126 is a RING domain E3 ligase. A group of RNF126

substrates has been identified, including frataxin (62–64), epidermal

growth factor receptor (64), pyruvate dehydrogenase kinases (65)

and insulin-like growth factor II receptor (66). RNF126 is highly

expressed in various cancers and strongly associated with

tumorigenesis, including bladder cancer (38, 67–69). In BCa,

RNF126 directly binds to PTEN via its C-terminal containing the

RING domain and promotes the polyubiquitination and

degradation of PTEN through the proteasome pathway (38). In

vivo and in vitro studies have demonstrated that PTEN acts as an

anti-oncogene, and PTEN silencing is closely related to the poor

prognosis of patients with BCa (70). RNF126 silencing stabilizes

PTEN, which antagonizes PI3K/AKT signaling pathway (38, 39),

and promotes cell proliferation and metastasis when activated.

Moreover, previous studies revealed that RNF126 promotes the

repair of DNA double-strand breaks via NHEJ and HR through

different mechanisms (71, 72). The Ku70-Ku80 heterodimer

recognizes DNA double-strand breaks (DSBs) and recruits

proteins responsible for DNA repair by non-homologous end

joining (NHEJ). While prolonged retention of Ku70/80 at DSBs

prevents the completion of DNA repair, RNF126 ubiquitylates
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Ku80 at DSBs and promotes Ku70/80 dissociation from DSBs. In

contrast, RNF126 can ubiquitinate and quench RNF168 function in

the DNA damage response (71). Cisplatin has been widely used as

first-line treatment for patients with advanced BCa (73).

Furthermore, cisplatin induces cell apoptosis by accumulating

DNA double-strand breaks. RNF126 depletion markedly increases

the effect of cisplatin in inducing apoptosis in BCa cells (38). It has

also been reported that RNF126 can directly bind and regulate

PTEN stability through polyubiquitination, making RNF126 an

attractive target for augmenting cisplatin-based chemotherapy

and regulating bladder cancer tumorigenesis.

2.2.2 RNF144A
RNF144A belongs to the RBR E3 ubiquitin ligase family.

Epigenetic depletion of RNF144A has been detected in numerous

human cancers, including glioblastoma (74), breast cancer (75), and

bladder cancer (40), indicating that RNF144A may act as a tumor

suppressor. Previous studies have found that RNF144A is

upregulated by various DNA-damaging agents (76) and further

promotes cancer cell apoptosis of cancer cells by ubiquitinating and

degrading DNA-PKcs and BMI1 (74, 77).

In a recent study, the basal-squamous subtype of bladder cancer

has been found to express relatively low levels of RNF144A and high

levels of immune checkpoint protein programmed cell death

ligand-1(PD-L1) (41). The carboxyl-terminal region (aa 250–292)

of RNF144A is responsible for its interaction with PD-L1, and
Frontiers in Immunology 03
RNF144A mainly targets glycosylated PD-L1 for degradation (40),

further indicating a complex mechanism between protein

ubiquitination and glycosylation.

2.2.3 NEDD4
NEDD4 is a HECT family E3 ubiquitin ligase (78). Mounting

evidence has demonstrated that NEDD4 participates in the

tumorigenesis of human cancers, such as cervical cancer (79),

hepatocellular carcinoma (80), and breast cancer (81). NEDD4 is

highly expressed in bladder cancer and promotes tumor cell

migration and invasion (42, 43). KLF8 acts as a transcription

factor in the Sp/KLF family and stimulates and promotes

migration of bladder cancer cells. Moreover, miR-132 is

downregulated by KLF8, which is overexpressed in bladder

cancer. NEDD4 is conformed to interact with KLF8 (44). In

bladder cancer, NEDD4 depletion significantly downregulated

endogenous KLF8 ubiquitination, which affected the K63-linked

polyubiquitination of KLF8, while K48-linked polyubiquitination

remained unchanged. NEDD4 intensifies the stability and

transcriptional activity of KLF8 through ubiquitination and affects

the miR-132/NRF2 ax i s , the reby promot ing tumor

progression (44).

The ubiquitin ligase activity of NEDD4 can be promoted by

FGFR1 and EGFR activation via tyrosine phosphorylation of

NEDD4 (82). Previous studies have demonstrated that there is

relatively decreased expression of PD-L1 in bladder cancer with
TABLE 1 E3 ligases in bladder cancer tumorigenesis.

E3 Function Substrate Pathway Reference

RNF126 Promoting/oncogene PTEN PI3K/AKT (38, 39)

RNF144A Promoting/oncogene PD-L1 (40, 41)

NEDD4 Promoting/oncogene PD-L1 (16, 42)

KLF8 microRNA-132/NRF2 (43, 44)

PTEN (42)

RBX1 Promoting/oncogene p-IkBa NF-kB (45)

DEPTOR mTOR (46)

SUFU RBX1-SUFU-GLI2 (47)

cIAP2 DNA damage response MRE11 (48, 49)

FBW7 Tumor suppressor ZMYND8 (50)

RhoGDIa p65/PTEN/FBW7/RhoGDIa (51)

TRAF4 Promoting/oncogene BMP/SMAD (21)

TRIM21 Promoting/oncogene ZHX3 (52)

TRIM65 Promoting/oncogene ANXA2 (53)

TRIM25 Promoting/oncogene RBPJ Notch1 (54)

TRIM26 Promoting/oncogene AKT/GSK3b/b-catenin (55)

CUL4B Promoting/oncogene H2AK119 CUL4B/miR-372/373/PIK3CA/AKT (56)

TRIM38 Promoting/oncogene GLUT1 (57)

RFWD3,HUWE1 MDM2,DTL Promoting/oncogene (58–61)
f
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FGFR3 mutations or high expression (41, 83, 84). Jing et al. (16)

have indicated that the activation of FGFR3 promoted NEDD4

binding and phosphorylation and it had been reported that NEDD4

can be phosphorylated to greatly improve its ubiquitination

capacity. NEDD4 depletion using CRISPR/Cas9-sgRNA

remarkably upregulated PD-L1 expression in bladder cancer cells.

NEDD4 targets and catalyzes the K48-linked polyubiquitination of

PD-L1. These results reveal that NEDD4 is a critical regulator of

PD-L1 expression in bladder cancer upon FGFR3 activation. This

study provides powerful evidence for the combination of anti-PD-1

antibody therapy and erdafitinib, a tyrosine kinase inhibitor of

FGFR1–4 (16).

As mentioned earlier, PTEN acts as an oncogene in bladder

cancer. NEDD4 regulates PTEN levels in several types of human

cancers (85). In bladder cancer, PTEN levels were increased by

NEDD4 silencing (42). NEDD4 downregulation inhibits cell

proliferation and apoptosis. However, the precise mechanism by

which NEDD4 regulates PTEN expression has not been

fully elucidated.

2.2.4 RBX1
The cullin/RING ubiquitin ligase (CRL)family is the largest UPS E3

family (86). RBX1 forms the catalytic core of CRL complexes with

different Cullin subunits (87). RBX1 is widely reported to be associated

with poor clinical prognosis and is highly expressed in many cancers,

including bladder cancer. In particular, RBX1 expression is significantly

higher inmuscle-invasive BCa and positively correlated with epithelial–

mesenchymal transition (EMT) via inhibition of mTOR kinase activity

by accumulation of the cullin-RING ligase (CRL) substrate mTOR-

inhibitory protein DEPTOR (46).

Moreover, RBX1 has been confirmed to be positively correlated

with activation of the NF-kB signaling pathway and nuclear p65

expression (45). p65 plays a key role in the canonical NF-kB
pathway and is inactive in the cytoplasm upon binding to IkBa.
Upon receiving the relevant signals, IkBa is phosphorylated, which

is then ubiquitinated and degraded. Finally, p65 enters the nucleus

and activates gene transcription (88). Therefore, IkBa-p65 is a key

regulatory factor in the NF-kB signaling pathway. Activation of the

NF-kB signaling pathway promotes tumor progression (89). By

enhancing p-IkBa ubiquitination and degradation, RBX1 activates

NF-kB signaling, which promotes p65 nuclear translocation and

causes the transcription of several metastasis-related target genes

including matrix metalloproteinase 9 (MMP9), vascular cell

adhesion molecule 1 (VCAM1), and urokinase-type plasminogen

activator receptor (uPAR) (45). Recently, Wang et al. demonstrated

that RBX1 can activate the hedgehog pathway through the

ubiquitinate suppressor of fused homolog (SUFU) for

degradation, and dysregulation of the RBX1–SUFU–GLI2 axis

play a pivotal role in bladder cancer progression (47).

2.2.5 cIAP2
IAP family members have been indicated to act as a key role in

the regulation of NF-kB signaling and participate in intrinsic and

extrinsic cell death pathways (90). cIAP2 is a RING-type E3 ligase in

the IAP family and has been demonstrated to play a pivotal role in
Frontiers in Immunology 04
DNA repair (91, 92). Although the expression of cIAP1 examined

by immunohistochemical testing is highly correlated to bladder

cancer TNM stage, tumor grade, disease recurrence, and tumor-

related death (93) and cIAP2 precise function and substrate

specificity is unclear, previous studies have a common sense that

there is redundancy between cIAP1 and cIAP2 in the regulation of

cell death (94, 95). Recently, cIAP2 was reported to be involved in

regulating radiosensitization in bladder cancer (48).

Histone deacetylase (HDAC) inhibitors exhibit low toxicity in

normal cells, and panobinostat, an HDAC inhibitor, is a promising

radiosensitizer (96). Panobinostat downregulates MRE11 (49), which

is a key player in DNA repair, leading to a decreased ability to repair

DNA, thereby enhancing radio sensitization. In T24 cells, transfecting

cIAP2 into cells in increasing quantities, a growing decrease in

MRE11 levels was observed. cIAP2 downregulates MRE11 via

proteasomal pathways and increases the ubiquitination of MRE11.

Furthermore, T24 cells became more radiosensitive after

panobinostat treatment when cIAP2 was silenced.

2.2.6 FBW7
F-box and WD repeat domain-containing 7(FBW7) is a

member of the RING E3 ligase family, which is a subunit of the

SKP1, cullin1, and F-box protein ubiquitin ligase complex (29). Low

expression and mutation of FBW7 has been frequently detected in

various human tumors such as breast cancer (97), colon cancer (98),

and gastric cancer (99). Therefore, FBW7 is generally considered a

tumor suppressor. According to the analysis of public datasets

TCGA-BLCA and GSE13507, it has been verified that the mRNA

expression levels of FBW7 are significantly downregulated in

bladder tumors compared with normal samples (50). Kaplan–

Meier analysis suggested that patients with BCa with high FBW7

expression levels exhibited longer survival times. Collectively, these

results indicate that FBW7 may serve as a tumor suppressor in

bladder cancer. ZMYND8 was acted as a common oncogene in

numerous tumors, including bladder cancer (50). Bioinformatics

predictive analysis from the UbiBrowser platform (http://

ubibrowser.ncpsb.org/) and ubiquitination assays demonstrated

that in T24 cells, ZMYND8 was a substrate target of FBW7.

FBW7 is a tumor suppressor that is and downregulated in BCa.

Low expression of FBW7 can increase the protein levels of

ZMYND8 and promote BCa progression (50). This result was

further confirmed in clinical samples.

Moreover, FBW7 was verified to be an NF-kBp65 downstream

effector. Through promoting RHO guanosine diphosphate

dissociation inhibitor (RhoGDIa) protein degradation, FBW7

significantly inhibited BCa migration (51). Mechanistically, p65

inhibited PTEN mRNA transcription, whereas PTEN accelerated

FBW7 protein degradation. This revealed the function of the p65/

PTEN/FBW7/RhoGDIa axis in mediating bladder cancer

migration and expands the theoretical support for the regulation

of the NF-kBp65 and PTEN pathways in BCa treatment.

2.2.7 MDM2
MDM2 is reported to mainly target p53 protein in various types

of cancer, including bladder cancer (100). The SNP309
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polymorphisms of MDM2 is associated with an improved survival

rate of bladder cancer (101). MDM2 is upregulated by the OCT3/4/

TET1/NRF2 axis, which contributes to increased immune escape in

bladder cancer (102). Amounts of inhibitors, such as MDM2

ex e r t e d an i nflu en c e on immun i t y i n t h e t umo r

microenvironment, such as APG-115 and AMG-232. APG-115

can enhance the efficacy of PD-L1 blockade (103) and AMG-232

(104) can increase the ability to kill T cells. Furthermore, gene

amplification of MDM2 can act as a predictive marker for PD-L1

targeted therapy response (105).
2.3 Other E3 ubiquitin ligases

Several other E3 ubiquitin ligases are also involved in bladder

tumorigenesis. RFWD3 is highly expressed in bladder cancer tissue

and correlates with a higher N stage and poorer prognosis (58). A

bladder cancer genome-wide CRISPR/Cas9 KO screen showed that

HUWE1 was correlated with cisplatin sensitivity in bladder cancer;

however, the underlying mechanism has not been elucidated (59).

MDM2 binds to PPARg to ubiquitinate and downregulate its

PPARg expression (60). Denticleless E3 ubiquitin protein ligase

homolog (DTL) is overexpressed in BCa, and increased DTL

expression correlates with malignant biological behavior and

promotes BCa progression through the AKT/mTOR pathway

(61). A pan-cancer study also showed that DLT could be a

potential immunotherapy biomarker (106).

TRAF4 can bind to and target another E3 ligase, SMURF1, for

proteasomal degradation (21). As SMURF1 is a negative regulator

of the BMP/SMAD signaling pathway, TRAF4 can promote BMP/

SMAD signaling and inhibit bladder cancer progression (21).

TRIM21 acts as a ubiquitin E3 ligase to degrade ZHX3, which is

involved in bladder cancer progression and metastasis (52). The

expression level of TRIM65 is frequently upregulated and ANXA2

is ubiquitinated and degraded by TRIM65. Bladder cancer patients

with low ANXA2 expression and high TRIM65 expression showed

the poorest outcome (53). RITA1 recruits TRIM25 to ubiquitinate

RBPJ to accelerate its degradation via the proteasome, which leads

to transcriptional inhibition of Notch1 downstream targets (54).

TRIM26 plays an oncogenic role in bladder cancer by regulating cell

proliferation, migration, and invasion via the AKT/GSK3b/b-
catenin pathway (55). CUL4B is a scaffold protein in the CUL4B–

RING ubiquitin ligase (CRL4B) complexes. CUL4B levels are

overexpressed and positively associated with the malignancy of

BCa, and CUL4B epigenetically represses the transcription of miR-

372/373 by catalyzing the monoubiquitination of H2AK119 in the

gene cluster encoding miR-372/373, which further leads to the

upregulation of PIK3CA and activation of AKT (56).

Reprogramming cell metabolism is a hallmark of cancer (107,

108). Aerobic glycolysis has been extensively studied in several

cancers, including bladder cancer (107). It is characterized by

increased glucose uptake and lactate production under normal

oxygen conditions. Elevated glycolytic flux in cancer cells is

mediated by glycolysis-associated signature genes, including

GLUT1 (109). GLUT1 driven glycolytic reprogramming is

considered necessary for tumor cell growth (110).Wang et al.
Frontiers in Immunology 05
identified GLUT1 as the downstream substrate of TRIM38 and

TRIM38 can constrain bladder tumor progression through

ubiquitination and degradation of GLUT1 (57). TRIM38 has been

verified to be a predictive biomarker related to prognosis, with low

expression in BCa (57).
3 Deubiquitinases in bladder cancer

3.1 Overview of deubiquitinases

Deubiquitinases (DUBs) are proteases that remove ubiquitin

from substrates or cleave ubiquitin chains to regulate ubiquitination

(111). It is important to regulate the processes of deubiquitination

and ubiquitination (112). DUBs consist of cysteine proteases and

metalloproteinases that specifically cleave ubiquitin molecules on

protein substrates (113). Approximately 100 different DUBs can be

broadly classified into seven distinct superfamilies (114). Six of

these families are cysyrine-based DUBs, including Ub C-terminal

hydrolases (UCHs), Ub-specific proteases (USPs), Machado-

Josephin domain proteases (MJDs), ovarian tumor proteases

(OTUs), motifs interacting with the Ub-containing novel DUB

family (MINDY), zinc-finger-containing Ub peptidase (ZUP1),

and Jab1/Mov34/MPN+ protease (JAMM) family members,

which are zinc-binding metalloproteases (115).

Numerous studies have demonstrated that the effect of protein

deubiquitination is associated with the occurrence and development

of cancers, such as prostate cancer, lung cancer, stomach cancer,

and bladder cancer (116–120). A summary of the deubiquitinases

involved in BCa is presented in Table 2.
3.2 Roles of deubiquitinases in
bladder cancer

3.2.1 OTUD5
There are 16 types of cysteine protease OTU family members,

including OTUB, OTUD, A20-like, and OTULIN subfamily (113).

The OTUD family is one of the subfamilies including OTUD1,

OTUD2/YOD1, OTUD3, OTUD4, OTUD5/DUBA, OTUD6A,

OTUD6B, and ALG13 (113, 136). OTUD5 has been the focus of

numerous studies and plays pivotal roles in various cellular

processes. The first report of function of OTUD5 is to negatively

regulate IFN-1 expression by cleaving the polyubiquitin chains on

TRAF3 (137). Furthermore, OTUD5 regulates DNA damage repair,

transcription, and innate immunity (138, 139).

In bladder cancer, OTUD5 has been shown that is highly

expressed in tumor tissues compared with normal urothelial cells

(121). OTUD5 knockdown inhibited the cell proliferation, and

OTUD5 positively regulated the mTOR signaling pathway to

promote cell proliferation. Specifically, OTUD5 stabilizes RNF186

by deubiquitination, leading to sestrin2 degradation, which acts as a

feedback inhibitor of the mTOR signaling pathway (140, 141).

Everolimus treatment, an mTOR inhibitor, with simultaneous

OTUD5 knockdown seems to be an ideal strategy for bladder

cancer treatment (121).
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1226057
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2023.1226057
3.2.2 OTUB1
The deubiquitinase OTUB1 is significantly more highly

expressed in bladder cancer tumor tissues than in normal tissues

(122). Kaplan–Meier survival analysis confirmed that bladder

cancer patients with low OTUB1 expression had significantly

superior overall survival compared to those with high OTUB1

expression. It has been found that OTUB1 can stabilize activating

transcription factor 6a (ATF6a) in response to endoplasmic

reticulum stress and promote bladder cancer progression (122).

Numerous studies have indicated that ferroptosis is an important

and independent mechanism of tumor suppression (142). Solute

carrier family 7, membrane 11 (SLC7A11), a 12-pass

transmembrane protein, acts as a potential biomarker for

protecting cancer cells from oxidative stress and ferroptosis (143).

Liu et al. discovered a distinct mechanism by which OTUB1

mediates ferroptosis in bladder cancer via the stabilization of

SLC7A11 (123).

3.2.3 MINDY1
MINDY1 (also known as FAM63A) has been reported that

contains MIU motifs with high selectivity for binding and cleaving

K48-linked polyUb (144). The Hippo signaling pathway has

emerged as a critical pathway in the regulation of bladder cancer

tumorigenesis, and TAZ and YAP are important effectors of this

pathway (145–147). MINDY1 removes the K48-linked ubiquitin

chain from YAP, thus inhibiting proteasome-mediated YAP

degradation, which will in turn promote the expression of YAP

downstream genes, CTGF, ANKRD1, and CYR61 (119).

3.2.4 UCHL5
UCHL5 is abnormally upregulated in human cancer tissues and

cell lines, such as pancreatic adenocarcinoma, gastric cancer,

endometrial cancer, and bladder cancer (124, 148–150).

Upregulation of the TGF signaling pathway is the main
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mechanism by which UCHL5 modulates malignant tumor

progression (151–153). UCHL5 is overexpressed in patients with

bladder cancer patients, and high expression is associated with poor

prognosis and tumor progression. Mechanistically, UCHL5

activates the AKT/mTOR signaling pathway and increases c-Myc

expression, which promotes tumor occurrence and progression

(124). Meanwhile, it has been reported that the UCHL5 inhibitor

b-AP15 suppresses bladder cancer stemness by inhibiting the b-
catenin and c-Myc signaling pathways and overcomes cisplatin

resistance (125). b-AP15 has been demonstrated to have synergistic

effects in combination with cisplatin, gefitinib, gemcitabine, and

vinorelbine in lung cancer cells (154). In bladder cancer cell lines

and mouse xenograft models, b-AP15 combined with cisplatin

showed superior therapeutic effects compared to cisplatin

monotherapy (125). These studies indicate that UCHL5 may act

as a potential therapeutic target, and that b-AP15 may be a new

choice for patients with cisplatin resistance.
3.2.5 USP24
Ubiquitin-specific peptidase 24 (USP24), consisting of 2,620

amino acids, serves as a deubiquitinase (155). However, the

biological function of USP24 in cancer is poorly understood. It

has been reported that USP24 binds to GSDMB to deubiquitinate

and stabilize GSDMB. GSDMB promotes cancer cell growth by

activating STAT3, which increases the expression of HK2, LDNA,

ENO2, and IGFBP3 to enhance glycolysis in bladder cancer cells

(126). EOAI3402143, a USP24 inhibitor, can block this process,

which provides a therapeutic strategy for inhibiting the GSDMB/

STAT3 axis (126).

3.2.6 USP13
USP13 belongs to the Ub-specific protease subfamily of

deubiquitinase family. USP13 has been indicated in suppressing

tumor occurrence by deubiquitinating anti-oncogenes, including p53
TABLE 2 Deubiquitinases in bladder cancer tumorigenesis.

DUBs Function Substrate Pathway Reference

OTUD5 Promoting/oncogene RNF186 mTOR (121)

OTUB1 Promoting/oncogene ATF6a (122)

SLC7A11 (123)

MINDY1 Promoting/oncogene YAP (119)

UCHL5 Promoting/oncogene c-Myc AKT/mTOR (124)

Cisplatin resistance b-catenin, c-Myc (125)

USP24 Promoting/oncogene GSDMB GSDMB/STAT3 (126)

USP13 Tumor suppressor PTEN (127)

USP7 Tumor suppressor CCDC6 (128, 129)

USP8 Promoting/oncogene AUF1 USP8/AUF1/RhoGD1b (130)

USP38 Tumor suppressor METTL14 (131)

USP22
USP18,USP28 Promoting/oncogene (132–135)
f
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(156), PTEN (157), andMITF (158), and subsequently stabilizing these

proteins. As mentioned above, PTEN acts as a key tumor suppressor in

bladder cancer via inhibition of the PI3K/AKT/mTOR signaling

pathway. Otherwise, NF-kB activation has been reported to be

essential for inhibition of PTEN expression (159, 160). PTEN is

deubiquitinated by USP13 in bladder cancer, and its stabilized

expression suppresses tumor progression (127). There is also a

potential regulatory loop in which NF-kB induces miR-130b/301b

overexpression, decreasing USP13 expression and subsequently leading

to the downregulation of PTEN overexpression (127).
3.2.7 USP2a/7/8/18/22/28/38
Several studies have demonstrated that other USPs serve as

oncogenes in BCa tumorigenesis (128, 130, 132–134, 161). Jeong

et al. detect the mRNA expression of USP2a in bladder cancer

tissues and normal tissues. The results indicate that the expression

of USP2a in bladder cancer is downregulated and that high stage

muscle invasive bladder cancer (MIBC) has lower USP2a

expression. USP2a can be specifically used as a potential marker

to stratify the more invasive phenotype of MIBC (132).

USP7 has been reported to modulate CCDC6 levels in bladder

cancer and lung neuroendocrine cancers (129). CCDC6 acts as a

tumor suppressor, its deficiency determines the sensitivity of PARP-

inhibitors (162, 163). In a recent study, P5091, an inhibitor of USP7,

promoted CCDC6 degradation and sensitized bladder cancer cells

to the cytotoxic effect of the PARP-inhibitor olaparib (128).

The non-canonical NF-kB subunit p52 upregulates USP8

expression at the transcriptional level, and USP8 modulates AUF1

protein degradation. USP8 plays a significant role in the p52/miR-

145/Sp1/USP8/AUF1/RhoGD1b axis, which can act as a positive

regulator of bladder cancer invasion (130).

USP22 is a positive regulator of tumor growth. Silencing USP22

by interfering with RNA inhibits proliferation and induces cell cycle

arrest in BCa cells (133). USP18 and USP28 have been reported to

serve as prognostic markers for bladder cancer (134, 135). A study

also revealed a feedback loop of USP38 and METTL14 in bladder

cancer to suppress BCa progression. METTL14 stabilizes USP38

mRNA expression through YTHDF2-dependant m6A modification

and USP38 enhances the stability of METTL14 by deubiquitination

of METTL14 (131).
4 Role of E3 ligases and DUBs in
immunotherapy of bladder cancer

The concept of immunotherapies for bladder cancer can be

divided into cytokine-based treatment, genetically engineered

immune cells (adoptive cell therapy), oncolytic viruses, bispecific

antibodies, intravesical therapy with Bacillus Calmette–Guerin

(BCG) vaccine, immune checkpoint inhibitors (ICIs), and

antibody–drug conjugates (ADCs) (10, 164, 165).

BCG immunotherapy remains the gold standard treatment for

patients with non-muscle-invasive bladder cancer (NMIBC) at a

high risk of progression or recurrence (166). Although it has been

used in clinical practice since 1976, the mechanism of the BCG
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the urothelium and internalization, it is thought to induce innate

and adaptive immune responses. However, whether a combination

of reagents targeting E3 ligases or DUBs can augment the response

to BCG or conquer certain patients’ unresponsiveness to BCG

warrants further exploration (167).

The adoption of ICIs in bladder cancer has dramatically

changed its treatment landscape (168). ICIs are now approved for

the treatment of BCa at all stages, depending on the specific tumor

characteristics (10). Immune checkpoint inhibitors can enhance T-

cell responses and provide promising clinical outcomes in bladder

cancer. However, this treatment strategy has only a 13%–24%

response rate among patients with bladder cancer. A deeper

exploration of the mechanisms that regulate PD-1/PD-L1

expression and stability may help increase clinical effectiveness.

During the last decade, intensive evidence has demonstrated that

PD-1/PD-L1 protein expression is regulated by the ubiquitin-

mediated proteasome degradation pathway (169–172).

RNF144A and NEDD4 have been reported to participate in the

regulation of PD-L1 expression (Figure 1). The basal-squamous

subtype of bladder cancer expresses relatively low levels of

RNF144A and high levels of immune checkpoint protein

programmed cell death ligand-1 (PD-L1) (41). The carboxyl-

terminal region (aa 250–292) of RNF144A is responsible for its

interaction with PD-L1 and RNF114A mainly targets glycosylated

PD-L1 for degradation (40). PD-L1, primarily in the insoluble

fraction, interacts with RNF144A, which contains the plasma

membrane and intracellular vesicles (40). RNF114A knockout

stabilizes PD-L1 and leads to a reduction in tumor-infiltrating

CD8+ T-cell populations in BBN-induced bladder tumors (40).

Thus, RNF144A E3 ligase may be a promising therapeutic target for

immunotherapy or combined therapy.

FGFR3 is an eligible target for the treatment of bladder cancer.

p-FGFR3 and NEDD4 co-localized at the cell surface of bladder

cancer cells. It has been demonstrated that NEDD4 can be

phosphorylated to greatly improve its ubiquitination capacity by

FGFR3 (16). NEDD4 depletion using CRISPR/Cas9-sgRNA

remarkably upregulated PD-L1 expression in bladder cancer cells.

NEDD4 targets and catalyzes the K48-linked polyubiquitination of
FIGURE 1

Graphic model of interaction between PD-L1 and E3 ligases in
bladder cancer.
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PD-L1. These results revealed that NEDD4 is a critical regulator of

PD-L1 expression in bladder cancer with FGFR3 activation (16).

Thus, NEDD4 E3 ligase may be a promising therapeutic target in

the bladder with immunotherapy or combined therapy.

USP7 has been shown to regulate anti-tumor immune responses.

The activity of Treg cells is impeded by its inhibitor and the polarization

of tumor-related macrophages is enhanced (173). One study reported

that USP7 expression is positively related to PD-L1 expression and

USP7 directly binds to PD-L1 which stabilized it in gastric cancer

(117).However, the function of USP7 inhibitors in enhancing the

immune response in bladder cancer remains unclear. Therefore, it is

essential to investigate the role of USP7 in bladder cancer.

Although some other DUBs, including USP22 (174) and USP9X

(175), have been shown to regulate PD-1/PD-L1 expression, no

research has been conducted on bladder cancer. Because

ubiquitination or deubiquitination of certain molecules can be

cellular context-dependent, E3 ligases and DUBs targeting PD-1/PD-

L1 in other tumors should be further verified in bladder cancer. Several

E3 ligases and DUBs, especially DUBs, can be directly targeted by small

molecular drugs; thus the combination of specific inhibitors and ICIs

might be attractive and promising for enhancing ICI treatment effects

(176). Notably, deubiquitinating enzymes are potential biomarkers for

treatment selection and prognosis prediction (177).

In addition to PD-1 or PD-L1 based immunotherapy,

antibody–drug conjugates (ADCs) have recently shown great

progress. An ADC targeting nectin-4 (Enfortumab Vedotin) has

shown significantly prolonged survival in patients with locally

advanced or metastatic urothelial carcinoma who previously

received platinum-containing chemotherapy and progressed after

treatment with a PD-1 or PD-L1 inhibitor (178). For patients who

are not eligible for cisplatin-containing chemotherapy, Enfortumab

Vedotin Plus Pembrolizumab may be a safe and effective surrogate

for previously untreated advanced bladder cancer patients (179,

180). Nectin-4 is a transmembrane protein overexpressed in

bladder cancer and several other malignancies, making it an

appropriate target antigen for ADCs. However, little is known

about its role in tumor development, progression, and

immunomodulatory functions. It might also be interesting to

investigate the regulation of stabilization and degradation (180).

Casitas B lymphoma-b (Cbl-b) is an E3 ligase that can modulate

PD-L1 ubiquitination and degradation after inhibition of PI3K/Akt,

Jak/Stat, and MAPK-Erk signaling (181). Cbl-b can also target the

ubiquitination of PI3K NEDD4, PLCg, and the zeta-subunit of TCR.
Interestingly, Cbl-b also serves as a downstream regulator of both

CD28 and CTLA-4 signaling pathways. Thus, both innate and

adaptive immune cells are regulated by E3 ubiquitin ligase,

promoting an immunosuppressive tumor microenvironment. This

implicated a complex regulatory loop between CTLA-4, E3 ligase

Cbl-b, and PD-L1. Novel Cbl-b inhibitors offer antigen-specific

immune stimulation and are promising therapeutic tools in the field

of immune-oncology (182).

5 Summary and perspectives

In summary, patients with advanced bladder cancer have poor

survival rates, and immunotherapy may be a promising method for
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these patients. The use of single-agent immunotherapy or combined

immunotherapy may be a further direction for treating advanced

bladder cancer. A better understanding of bladder cancer

progression and its regulation of immune-related molecules will

help us to develop better therapeutic drugs and select appropriate

patients. However, the overall efficacy is unsatisfactory, and a large

number of patients cannot benefit from these agents due to a lack of

response. PTMs have been indicted to play a significant role in the

regulation of protein stabilization of the PD-1/PD-L1 axis. The

ubiquitinase–protease system plays a pivotal role in bladder cancer,

including in tumor progression, cisplatin resistance, tumor

suppression, and predictive biomarkers. Notably, numerous E3

ligases and DUBs act as oncogenes, including RBX1, cIAP2,

CUL4B, OTUD5, MINDY1, and USP24. FBW7, USP13, USP2a,

USP8, and USP7 serve as tumor suppressors. Furthermore,

emerging evidence has demonstrated that RNF114A and NEDD4

can modulate PD-L1 ubiquitination, which in turn leads to the

subsequent modula t ion o f immunosuppres s ion and

anticancer effects.

This review highlights the significant role of the UPS in bladder

cancer carcinogenesis and in the regulation of certain immune

therapy-related molecules, including PD-1/PD-L1. These findings

indicate that E3 ligases and DUBs may act as potential targets for

bladder cancer therapy or a promising therapeutic approach to

promote immunotherapy effectiveness by regulating ubiquitination

and deubiquitination.
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