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Breast cancer deaths are primarily caused bymetastasis. There are several treatment

options that can be used to treat breast cancer. There are, however, a limited

number of treatments that can either prevent or inhibit the spread of breast tumor

metastases. Thus, novel therapeutic strategies are needed. Studies have increasingly

focused on the importance of the tumor microenvironment (TME) in metastasis of

breast cancer. As the most abundant cells in the TME, cancer-associated fibroblasts

(CAFs) play important roles in cancer pathogenesis. They can remodel the structure

of the extracellular matrix (ECM) and engage in crosstalk with cancer cells or other

stroma cells by secreting growth factors, cytokines, and chemokines, as well as

components of the ECM,which assist the tumor cells to invade through the TME and

cause distant metastasis. Clinically, CAFs not only foster the initiation, growth,

angiogenesis, invasion, and metastasis of breast cancer but also serve as

biomarkers for diagnosis, therapy, and prediction of prognosis. In this review, we

summarize the biological characteristics and subtypes of CAFs and their functions in

breast cancer metastasis, focusing on their important roles in the diagnosis,

prognosis, and treatment of breast cancer. Recent studies suggest that CAFs are

vital partners of breast cancer cells that assist metastasis and may represent ideal

targets for prevention and treatment of breast cancer metastasis.

KEYWORDS

breast cancer, metastasis, cancer-associated fibroblasts (CAFs), tumor microenvironment
(TME), extracellular matrix (ECM)
1 Introduction

According to the cancer statistics released by the World Health Organization in 2020,

breast cancer surpassed lung cancer to become the disease with the highest incidence

worldwide and the leading cause of cancer-related deaths in women (1). It is a

heterogeneous disease with several known subtypes, which can be classified as luminal

(hormone receptor positive), HER2 overexpressing, and triple negative. These types exhibit
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different biological and molecular features, leading to a requirement

for different treatment modalities, as well as different response

patterns and characteristic differences across clinical outcomes

(2). Breast cancer deaths are primarily caused by metastasis,

which accounts for 90% of all cancer-associated deaths. The 5-

year survival rate for patients with localized breast cancer is 99%,

but for those with metastatic breast cancer it is 28% (3). The most

common sites of breast cancer metastasis are bone, liver, lung, and

brain, among which bone is the most common site of breast cancer

metastasis, with 70% of metastatic breast cancers involving bone

metastasis (4). To suppress this fatal biological behavior, many

researchers have investigated its mechanisms and attempted to

identify more molecular targets and relevant treatment approaches.

Tumor metastasis relies onmultiple steps. Tumor cells first grow at

the primary site, invade the ECM and then the systemic circulation,

extravasate into the target organ, and finally grow at the metastatic site

(5). Steven Paget (6) proposed the “seed and soil” theory, where the

“soil” is the tumor microenvironment (TME). Cancer cells received

more attention in earlier studies (7), but recently there has been an

increased focus on the importance of TME in breast cancer metastasis

(8–10). The development of cancer, including metastasis, depends not

only on the tumor cells themselves but also, significantly, on the TME

(11, 12). The dynamic TME of the primary tumor is involved in the

development and invasion of tumor cells, whereas the metastatic TME

play a role in the colonization and growth of tumor cells (13).

The TME consists of numerous components, including stromal

cells and non-cellular components, with complex interactions

between the tumor and stroma. In breast TME, cellular

components include cancer-associated fibroblasts (CAFs), immune

cells, inflammatory cells, endothelial cells, pericytes, adipocytes, and

bone-marrow-derived cells (14–16). The non-cellular components

include soluble factors such as chemokines, cytokines, growth factors,

and metalloproteinases (MMPs), as well as insoluble factors such as

exosomes and extracellular matrix (ECM) (17). CAFs are the most

abundant cells in the TME and have important roles in cancer

pathogenesis. They can remodel the structure of the ECM and

engage in crosstalk with cancer cells or other stroma cells by

secreting growth factors, cytokines, and chemokines, which assist

the tumor cells to invade through the TME and achieve distant

metastasis (18). Clinically, CAFs not only foster the initiation, growth,

angiogenesis, invasion, and metastasis of breast cancer but also serve

as biomarkers for diagnosis, therapy, and prognostic prediction (19).

Given the importance of CAFs in breast cancer, we undertook this

review to discuss current information about the origins, biomarkers,

and subtypes of CAFs, as well as their functions, mainly in breast

cancer. We focus particularly on their contributions to breast tumor

metastasis and the possible implications for cancer therapy.
2 Biological characteristics of CAFs

2.1 Biological features

CAFs are special fibroblasts in the stroma surrounding the

tumor mass. They are also known as activated fibroblasts,

myofibroblasts, peri-tumoral fibroblasts, reactive fibroblasts, or
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tumor-associated fibroblasts (TAFs) (20).They produce ECM

components (including collagens, elastin, proteoglycans,

glycosaminoglycans and glycoproteins) (21), hormones, cytokines,

proteases, and growth factors. Early in 1971, Gabbiani et al. first

reported that myofibroblasts could be seen in granulation tissue

during wound healing (22). Then, in 1986, Dvorak proposed the

concept of cancer as a wound that does not heal (23). Therefore,

myofibroblasts exist not only in wounds but also in the stroma of

malignant tumors (24). CAFs or activated fibroblasts, also called

myofibroblasts, acquire higher abilities of proliferation and

migration compared with normal fibroblasts (NFs) (25).
2.2 Biomarkers

Various proteins have been reported to show higher expression

in CAFs, including alpha smooth muscle actin (a-SMA) (26),

tenascin-C (27), chondroitin sulfate proteoglycan (NG2) (28),

fibroblast-specific protein (FSP)-1/S100A4 (28), platelet-derived

growth factor receptors (PDGFR)a/b (29), fibroblast activation

protein (FAP) (30), and podoplanin (31). These are classic

biomarkers of CAFs because of their wide application. Different

molecular markers, however, have been identified in different CAF

subtypes, demonstrating that CAFs represent heterogeneous

populations of cells with distinct roles in regulating cancer

progression and metastasis (28). Moreover, the expression of

these markers in CAFs varies at different metastasis sites. Kim

et al. analyzed 132 specimens of breast cancer metastases by

immunohistochemistry and found that the expression of CAF-

related proteins in the stroma varies with the location of breast

cancer metastasis: in lung metastasis, PDGFRa is highly expressed;

in liver metastasis, S100A4 and PDGFRa have low expression; and

in bone metastasis, podoplanin, S100A4, and PDGFRa are highly

expressed (32). Using immunofluorescence, Jaroslaw S. et al.

observed that PDPN-positive CAFs colocalized with blood vessels

stained with anti-CD34 antibodies in tumor stroma of IDC patients

(33). It was Yamazaki and Eyden who first described CD34+

fibroblasts in mammary stroma and intralobular fibroblasts in the

breast. But the majority of tumor stroma in ductal carcinoma in situ

(DCIS) and invasive breast cancer of no special type (IBC-NST)

were characterized by a-SMA positive myofibroblasts rather than

CD34+ fibroblasts, several CD34+ fibroblasts are preserved in

invasive lobular carcinomas (ILC) (34). In mouse triple-negative

breast cancer (TNBC), multiple CAF subpopulations coexist, and

the abundance and dynamics of each marker depend on the tumor

type and time (35).

In addition to these classic markers, many other markers have

been identified. Recently, studies have reported other molecules

with higher expression in breast CAFs, including FGF2 (36) and

EZH2 (37). One study used bioinformatics analysis to identify a

CAF subtype based on gene expression profiles (COL10A1,

COL11A1, CXCL11, CXCR6, ADAMTS12, AEBP1, EDNRA,

EPPK1, and WNT7B), which was associated with significantly

different overall survival rates, proportions of immune cells, and

immunotherapy response rates in TNBC (38). In both mouse

models and in patients, interleukin (IL)-33 is upregulated in
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fibroblasts associated with breast cancer metastases, especially lung

metastases (39). IL-33 can activate type 2 inflammation in the

metastatic microenvironment and facilitate enrollment of

eosinophils, neutrophils, and inflammatory monocytes to

metastasis sites (39). Integrin a11 is a cell-surface receptor that

binds to collagen and other ECMmolecules. When it is expressed in

CAFs, it helps them to remodel collagen in the TME, allowing them

to migrate and contribute to tumor progression (40). CAFs and

breast cancer patients’ stroma express high levels of PYCR1, which

plays a key part in proline synthesis. In vivo and in vitro, reducing

PYCR1 levels in CAFs reduces tumor collagen production, tumor

growth, and metastatic spread (41).
2.3 Cellular origins and activation pathways

CAFs comprise a complex and heterogeneous group of cells

(42). Their characteristics and molecular markers differ, possibly

because of their different cellular origins, which are presumed to

form six dominant categories. The majority are NFs, followed by

human mesenchymal stem cells (hMSCs) (43–46), and other

transdifferentiated cells including endothelial cells, epithelial cells,

adipocytes, and pericytes (47–52). Especially in invasive lobular

carcinoma of the breast, resident CD34+stromal cells/Telocytes

provide a significant proportion of CAFs (53). Compared with

these cells of different origin, the process of converting CAF

deserves more attention. Multiple pathways have been reported,

predominantly involving induction by tumor cells.

2.3.1 Induction by tumor cells
NFs are typical tumor suppressor cells (54), but they are turned

into “friends” by tumor cells to assist proliferation, migration, and

invasion. Much evidence indicates that this transition is induced by

secretion of cytokines by tumor cells. Some cytokines, including IL-

6, basic fibroblast growth factor and PDGF-a/b, activate NFs

through paracrine effects (55–59). In addition, the miR-9/

EFEMP1 axis is crucial for activation (60). Another study

demonstrated that as well as IL-6, breast cancer secretes TNF-a
to stimulate KDM2A expression in normal mammary fibroblasts

and transform them into CAFs (61). Butti et al. reported that

tumor-derived osteopontin (OPN) engages CD44 and avb3
integrins on the fibroblast surface to induce myofibroblast

differentiation and CXCL12 expression (62). These cytokines also

take part in tumor metabolism. For instance, HMGB1 secreted by

breast cancer cells promotes fibroblast activation via RAGE/aerobic

glycolysis, and activated fibroblasts enhance breast cancer cell

metastasis through increased lactate levels (63). Cancer cells also

produce extracellular vesicles (EVs) that participate in this

transition. Molecules including miR-370-3p, miR-125b, and miR-

9 are carried by EVs to facilitate activation of NFs (64–66). The

effects of cancer-cell-derived micro vesicles on fibroblast activation

are regulated by the physical properties of the microenvironment

(67). A joint medical-industrial study showed that pre-metastatic

breast cancer cells could align ECM fibrils in a force-dependent
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manner, thereby allowing tumor-derived exosomes to reach the

stroma more easily and convert NFs to CAFs (68) (Figure 1).

Mishra observed that both in vitro and in vivo, long-term co-

culture of breast cancer cell condition medium and hMSCs led to

differentiation of hMSCs into a myofibroblast phenotype, with

upregulation of a-SMA, vimentin, fibroblast surface protein, and

stromal derived factor 1 (SDF-1) (43). Another study showed that

tumor-derived OPN transferred hMSC-to-CAF though the OPN-

MZF1-TGF-b1 pathway (44). Moreover, Strong reported that co-

culture of breast cancer cells and obese adipose derived stem cells

(obASCs) also led to an increase in CAF biomarkers of obASCs

(69). In tumors, bone mesenchymal stem cells (BMSCs) are

recruited to tumor sites, resulting in their conversion into CAFs

that aid tumor growth (70).

2.3.2 Other pathways
As well as breast tumor cells, normal breast epithelial cells can

induce the transition. De Vincenzo reported that c-Myc-expressing

mammary epithelial cells could mobilize and activate NFs through

the IGFs/IGF-IR axis, thereby establishing an environment for

malignant transformation (71). Previous studies have reported that

deletion of certain tumor suppressor genes in NFs, such as p53, p21,

Pten and caveolin-1 (Cav-1), could activate oncogenic effects (72–75).

Cav-1 downregulation may play a critical part in maintaining the

aberrant status of breast-cancer-associated fibroblasts (76).

Subsequently, a study reported that downregulation of p53 could

transform NFs to CAFs, in a manner dependent on c-Ski-induced

upregulation of SDF-1 (77). In low-stiffness stroma, loss of SPIN90-

mediated microtubule acetylation was involved in CAF activation,

which was associated with breast cancer progression (78).

Epithelial and endothelial cells become CAFs via epithelial–

mesenchymal transition (EMT) and endothelial–mesenchymal

transition, respectively (24, 79–81). A study showed that FOXF2-

deficient breast cancer epithelial cells adopted a CAF-like

phenotype (82). These cells are more likely to migrate to visceral

organs by increasing autocrine TGF-b expression and enhancing

aggressiveness of neighboring cells through increased paracrine

TGF-b expression (82). The differentiation of CAFs gradually

increases during tumor progression and may depend on the

combined stimulation of TGF-b and SDF-1/CXCR4 autocrine

signaling loops in CAFs to maintain stable differentiation (83,

84). TGF-b also plays this part through autophagy under

oxidative stress in the TME (85, 86). Exhaustion of USP27X

could inhibit TGFb-induced fibroblast activation (87).

OPN could facilitate the transformation of mesenchymal stromal

cells into CAFs, as well as increasing levels of CAF markers such as a-
SMA, CXCL12, FSP-1, and tenascin-c specifically at tumor metastatic

sites (88). Overexpression of miR-222 or knockdown of the LBR gene is

enough to induce NFs to show CAF characteristics such as enhanced

migration, invasion, and senescence; furthermore, conditioned

medium from these cells increased migration and invasion of breast

cancer cells (89). Chronic inflammation can induce the conversion of

BMSCs to CAFs, leading to the production of pro-tumor inflammatory

CAFs (90), a subtype of CAFs.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1194835
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1194835
3 Subtypes of breast-CAFs

As mentioned above, CAFs are not a single cell type but comprise

many subtypes, possibly owing to their various origins. Different

methods are used to identify CAFs in breast cancer TME, results in

different subtypes according to variety biomarkers (Tables 1, 2). The

subtypes of breast-CAFs, are supposed to play the same role in

promoting breast cancer aggression via distinguished pathways,

however, several CAFs can bring benefit for breast cancer treatment.
3.1 Identified by immunohistochemical
(IHC) staining

In an earlier publication, breast CAFs were described as two

types by IHC staining, depending on whether they were positive or

negative for CD146, and this description was used to evaluate their

role in estrogen receptor (ER)-dependent proliferation and

tamoxifen sensitivity (91). The results showed that tamoxifen

sensitivity of tamoxifen-resistant breast cancer cells could be

restored after co-culture with CD146-positive CAFs. On the other

hand, CD146 negativity was correlated with inferior clinical

response to tamoxifen and worse patient outcomes (91). Recently,

the same research team reported that CD146-negative CAFs could

promoted tumor metastasis and predict the possibility of lymph

node metastasis in small primary tumors (92). These findings

provide an experimental basis for clinical precision therapy.
Frontiers in Oncology 04
3.2 Identified by multicolor flow cytometry

Mechta-Grigoriou et al. characterized four CAF subsets, CAF-

S1, S2, S3, and S4, using multicolor flow cytometry (fluorescence-

activated cell sorting) and found that the CAF-S1 subset had a

key role in the immunosuppressive milieu of breast cancer (93).

Two years later, they confirmed the presence of these four

subpopulations in metastatic lymph nodes and described their

biomarkers and functions (94).
3.3 Identified by single-cell sequencing

Single-cell sequencing has been a hot topic in recent years. Wu

SZ el al. used this technique to divide CAFs into myofibroblast-like

CAFs (myCAFs) and inflammatory CAFs (iCAFs) in TNBC (95).

The biomarkers of myCAFs are ACTA2, FAP, PDPN, COL1A1,

and COL1A2; and CXCL12 (SDF-1) is a biomarker of iCAFs (95).

Another study showed that iCAFs were from CD26 positive NFs

and myCAFs were from CD26 negative NFs (97). Bartoschek et al.

also used it to distinguish four subtypes of breast-cancer-associated

fibroblasts: vascular CAFs (vCAFs), matrix CAFs (mCAFs),

developmental CAFs (dCAFs), and cycling CAFs (cCAFs) (96).

The terms are relatively clear and easy to understand. This

description is more detailed than previous ones and includes

origin, significantly differentially expressed genes, gene ontology

(GO) sets, markers, and functions. The team validated expression
FIGURE 1

Breast cancer transfer normal fibroblasts (NFs) to cancer associated fibroblasts (CAFs) through secreting molecules including IL-6, TNF-a, PDGF a/b,
OPN, HMGB1 and extracellular vesicles (EVs). Activated CAFs express classic biomarkers like a-SMA, tenascin-C, NG2, S100A4, PDGFR a/b, FAP and
podoplanin.
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TABLE 2 Breast-CAFs identified by single-cell sequencing.

Subtypes DEGs/SDE genes GO sets Origin Markers Functions

Wu SZ et al. (95)

myCAFs MMP2/MMP11/FN1/LOX/
PDPN/FAP/COL1A1/
COL8A1/
COL11A1/COL12A1

Collagen biosynthesis and ECM
regulatory pathways

Unknown ACTA2/FAP/
PDPN/COL1A1/
COL1A2

Elevated capabilities for collagen
secretion and alignment

iCAFs IGF1/FIGF/CXCL12/DLK1/
CXCL13/CXCL1/IGF2/
PDGFD/
ALDH1A1/ID2/EGFR/FGF10

Developmental signaling
pathways and chemotactic
regulation

Unknown CXCL12 Associated with cytotoxic T-
lymphocyte dysfunction

Bartoschek et al. (96)

vCAFs Vascular regulators:
Notch3/Epas1/Col18a1/Nr2f2

Vascular development and
angiogenesis

Perivascular
location

Nidogen-2 Associated with blood vessels in
early stages of tumor development

mCAFs Glycoproteins: Dcn/Lum/
Vcan
Structural proteins: Col14a1
Matricellular proteins:
Fbln1/Fbln2/Smoc
Matrix-modifying enzymes:
Lox/Loxl1
Immune-cell-attracting
factor: CXCL14

Related to the ECM and EMT Descendants of
resident fibroblasts

Fibulin-1/
PDGFRa

Regulation of the tumor immune
response

cCAFs Vascular regulators:
Notch3/Epas1/Col18a1/Nr2f2
Cell cycle genes:
Nuf2/Mki67/Ccna2/Top2a/
Cep55

Related to the cell cycle Proliferating
segment of vCAFs

Unknown Represent the proliferative
segment of vCAFs

dCAFs Various stem cell types:
Scrg1/Sox9/Sox10

Connected to differentiation of
cells and development of tissues

Tumor cells that
have undergone
EMT

SCRG1 Tissue development
F
rontiers in On
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DEGs, differentially expressed genes; SDE, significantly differentially expressed; GO, gene ontology.
TABLE 1 Breast-CAFs identified by IHC or flow cytometry.

Subtypes Biomarkers Function

Brechbuhl HM et al. (91, 92)

CD146 associated
CAFs

CD146 positive Reversal of tamoxifen resistance in ER positive breast cancer (91)

CD146 negative
Enhance the drug resistance to tamoxifen (91)
Promoted cancer metastasis and indicate poor prognosis of breast cancer patients
(92)

Costa A et al. (93, 94)

FAP CD29 aSMA PDPN PDGFRb

CAF-S1 High
Med-
High

High High High
Play an important role in the immunosuppressive environment of breast cancer (93)
Stimulate cancer cell migration and initiate EMT through CXCL12 and TGF-b
pathways (94)

CAF-S2 Neg Low
Neg-
Low

Low Low Unknown

CAF-S3
Neg-
Low

Med
Neg-
Low

Low
Low-
Med

Unknown

CAF-S4
Low-
Med

High High Low Med Induce cancer cell invasion in three dimensions via NOTCH signaling (94)
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profiles in clinical samples (96). Experiments in vitro showed that

both vCAFs and mCAFs could promote tumor invasion and may

represent potential targets for clinical therapies (96). Sebastian et al.

also used single-cell sequencing to identify six CAF subsets in

BALB/c-derived 4T1 mammary tumors with distinct gene

expression profiles (98).
4 Functions of CAFs in breast
cancer metastasis

As mentioned in the introduction, cancer metastasis relies on

multiple steps, including growth at the primary site, EMT, invasion

into the systemic circulation, dissemination via circulation,

extravasation into the target organ, and finally growth at the

metastatic site (5). CAFs participate in all these steps. Most

previous reviews have summarized the roles of CAFs at different

stages. Our review, however, focuses on the ways in which CAFs

function and the results achieved.
4.1 Secret molecules to assist
cancer metastasis

Many of studies have demonstrated that CAFs assist the

progression of breast cancer cells though paracrine signaling by

various molecules, including biological macromolecules, cytokines,

and enzymes, as well as exosomes (99) (Figure 2).
Frontiers in Oncology 06
4.1.1 Chemokines
SDF-1, currently known as CXCL12, directly binds to its receptor

CXCR4, a G-protein-coupled receptor, to induce tumor angiogenesis,

thereby promoting breast cancer growth (100). OPN-driven CAFs

release CXCL12 to initiate EMT in tumor cells (62). CAF-enriched

primary tumor stroma can mimic the CXCL12-rich bone metastatic

niche and can thus be used to help identify potentially metastatic

cancer cells (101). CXCL12 stimulates the proliferation of CD44-

positive and CD24-negative breast cancer stem cells (102). The

diabetes drug metformin can prevent the production of CXCL12

and IL-8 by CAFs, which is associated with increased phospho-AMP

kinase levels. Therefore, metformin can be used to interrupt HIF-1a-
driven SDF-1 signaling in CAFs to decrease breast cancer invasion

(103). The same family member CXCL14 can promote tumor growth

by stimulating angiogenesis and recruiting macrophages through

nitric oxide synthase 1 (NOS1) (104). CXCL14-induced NOS1 or

ACKR2 downregulation attenuates EMT and migration (105). IL-32,

also known as NK4, secreted by CAFs stimulates the invasion and

metastatic potential of breast cancer cells via activation of integrin b3-
p38 MAPK (106). IL-6 produced by CAFs stimulates the signal

transducer and activator of transcription 3 (STAT3) pathway,

promoting breast cancer cell growth and radioresistance (107).

4.1.2 Growth factors
Growth factors are known to have significant effects on

mammary cells. Studies have shown that breast stromal

fibroblasts produce FGF7, which has profound effects on

epithelial and myoepithelial cells. For instance, Palmieri et al.
FIGURE 2

CAFs secret molecules to assist cancer EMT, invasion and metastasis, including chemokines, growth factors, MMPs, EVs and others.
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used immunohistochemistry to demonstrate FGF7 expression in

stroma of lobular carcinomas and invasive ductal carcinomas, and

illustrated with Matrigel-embedded organoids that FGF7 increases

cell proliferation (108). By secreting another growth factor, TGF-b1,
CAFs activate the TGF-b/Smad signaling pathway in breast cancer

cells, promoting their aggressive phenotype, which involves

enhanced cell–ECM adhesion, migration, invasion, and EMT (109).

4.1.3 MMPs
There are 26 human MMPs, which can be classified into six

groups according to their substrate specificity and homology.

During tumor invasion and metastasis, MMPs are essential for

the degradation of stromal connective tissue and basement

membrane components. During ECM remodeling, MMPs

contribute to tumor progression primarily by degrading ECM

(110). Studies have shown that CAF-derived MMP-1 and MMP-9

promote the invasion of breast cancer cells (111, 112). Another

study showed that MMP-11 (stromelysin-3) was preferentially

expressed in the stroma of tumors and was associated with poor

prognosis (113–115).

4.1.4 EVs
EVs are membrane-bound vesicles released into the

extracellular microenvironment by both prokaryotic and

eukaryotic cells. They are composed of several lipid-bilayer

nanosized vesicles. In a recent study, Luga et al. (116) reported

that CAFs secrete exosomes that activate Wnt-planar cell polarity

signaling in breast cancer cells, promoting cell motility and

metastasis. Moreover, in breast cancer stem cells, hypoxic CAFs

release exosomes to transfer circHIF1A, which regulates miR-580-

5p by sponging CD44 expression (117).

4.1.5 Others
CAF-derived Sdc1 is associated with significantly higher micro-

vascular density and larger vessel area, which stimulate breast

carcinoma growth and angiogenesis (118). Furthermore, another

secretory protein, biglycan (BGN) was found to be upregulated in

CAFs compared with normal cancer-adjacent fibroblasts. Notably,

BGN expression was negatively correlated with CD8+ T cells and

was associated with poor prognoses, possibly because of the

immunosuppressive TME (119).
4.2 Functions through other molecules

Some molecules are not secreted by CAFs but interact with

them to promote the progression of breast cancer. Some regulate

CAFs to assist cancer metastasis, whereas others are affected by

CAFs. Gene regulation techniques can be used to investigate the

function of CAFs.

Protein-kinase-R-like endoplasmic reticulum kinase (PERK),

which is selectively activated by Rho-associated kinase (ROCK) in

mammary tumor epithelium, recruits and persists cancer-

promoting CAFs (120). A CAF phenotype is generated by

myeloid zinc finger-1 phosphorylation in mesenchymal stem cells,
Frontiers in Oncology 07
which leads to an increase in the stemness of cancer cells (121).

Autophagy and survival are enhanced by Nox4 and Nrf2 pathway

activation in CAFs during tumorigenesis and metastasis of breast

cancers (122). In a mixed xenograft and indirect co-culture model,

estrogen was shown to induce CAFs to activate FGF2/FGFR1

paracrine signaling and trigger expression of connective tissue

growth factor (CTGF), leading to migration and invasion of

breast cancer cells (123). Conversely, CAF-conditioned media

induced ER ubiquitination and proteasomal degradation of MCF7

and T47D cells (124). The activation of PI3K-AKT signaling by

C3a-C3aR enhances pro-metastatic cytokine secretion and

expression of ECM components by CAFs. In mouse models of

breast cancer, treating mice with genetic or pharmacological

inhibitors of C3aR signaling effectively inhibits lung metastasis

(125). It has been shown that Gremlin1 (GREM1), which has

high expression in CAFs, abrogates bone morphogenetic protein

(BMP)/SMAD signaling and promotes the mesenchymal

phenotype, stemness, and invasion of breast cancer cells, which

are associated with poor prognosis regardless of molecular subtype

(126). Phosphodiesterase 5 (PDE5) is highly expressed in CAFs and

also contributes to the progression of breast cancer and affects

clinical outcomes (127). Furthermore, CAFs enhanced GPNMB

expression in breast cancer cells in an organotypic model of tumor-

stroma interactions (128); however, its mechanism is unclear.

According to Soon et al. (129), CAFs induce significantly more

EMT molecular markers in MCF7 cells than NFs, as manifested by

increased vimentin expression, whereas E-cadherin expression was

decreased in MCF7 cells.

The role of some molecules in CAF can be better understood

through gene regulation techniques. Overexpression of

mitochondrial uncoupling proteins (UCP-1) in CAFs can induce

mitochondrial dysfunction by enhancing b-oxidation to produce

ketone bodies and vesicles enriched with ATP, acting as fuel for

tumor growth (130). Knockout of adhesion kinase (FAK) in CAFs

did not affect primary tumor growth and proliferation but

significantly limited breast cancer metastasis via exosomal

microRNA-mediated intercellular communication (131). In

addition, STAT1 depletion in CAFs reduced periductal reactive

fibrosis and retarded the progression of early breast cancer in vivo,

suggesting that STAT1 contributes to tumorigenesis from the

stroma (132).
4.4 Function as a bodyguard for
breast cancer cells

4.4.1 Co-metastasis with cancer cells
When tumors invade blood vessels or lymphatic vessels, CAFs

form clusters with cancer cells. The CAFs protect the cancer cells

from immune attack, enable them to endure fluid mechanical force,

and reduce their apoptosis, as well as improving vessel invasion.

Metastatic lung cancer cells that co-metastasized with their own

CAFs from the primary site were found to grow more rapidly than

those that did not in a tumor metastasis mouse model (133).

Alternatively, removing cancer-associated factors results in a

significant reduction in metastatic cancer cells. Cancer cells and
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CAFs extravasate through blood vessels or lymphatic vessels,

resulting in metastatic lesions in the appropriate organs. In the

new environment, CAFs can survive and continuously secrete

growth factors and cytokines to stimulate the growth of

metastatic cancer cells. These findings warrant further

investigation into which subgroups of CAFs co-metastasize with

tumor cells and to find biomarkers that distinguish them and may

provide new targets for tumor therapy.

4.4.2 Suppressing immunity
There is evidence that tumors with CAF-rich microenvironments

exhibit immunologically cold environments, suggesting that

therapeutically targeting a specific CAF subpopulation in breast

could improve clinical outcomes (134). In addition, an animal

study demonstrated that CAFs impaired the function of tumor-

infiltrated immune cells in vivo and significantly promoted breast

tumor progression (135). The IL6-adenosine positive feedback loop is

mediated by CD73+ gamma delta regulatory T cells (Tregs), which

further promote IL6 secretion by CAFs via adenosine/A2BR/

p38MAPK signaling. The infiltration of CD73+ gamma delta Tregs

also impaired the tumoricidal activities of CD8+ T cells, and this

effect was associated with significantly worse patient prognosis. It

appears that IL6-adenosine loops between CD73+ gamma delta Tregs

and CAFs play a critical part in promoting tumor progression and

immunosuppression in breast cancer (136). Timperi E et al. suggests

that lipid-associated macrophages (LAM) recruited via the CAF-

driven CXCL12-CXCR4 axis support an immunosuppressive

microenvironment by acquiring protumorigenic functions (137).

4.4.3 Assisting tumor metabolism
In the TME, stromal cells cooperate with cancer cells

metabolically. Tumor cells can utilize CAF metabolic byproducts

to feed anabolic metabolism and proliferation, indicating that

metabolic symbiosis has an important role in tumor growth

(138). Some studies have helped to elucidate the metabolic

dynamics between cancer cells and CAFs. For example, FATP1,

which is relatively highly expressed in CAFs, has been proposed as a

potential target for disrupting breast cancer cell lipid transfer (139).

Another study showed that extracellular ATP promotes interactions

between breast cancer cells and fibroblasts, where S100A4 is

produced in collaboration with breast cancer cells to exacerbate

breast cancer metastasis (140). Aspartate derived from CAFs

sustains cancer cell proliferation, whereas glutamate derived from

CAFs promotes remodeling of the ECM (141).
4.5 Other findings

The authors recently proposed a novel tumor invasion

mechanism based on invasive cancer cells migrating independently

on elongated CAFs (CAF fibers) embedded in a three-dimensional

collagen matrix. This mechanism involves cancer cells interacting

with fibronectin fibrils assembled on CAFs primarily through

integrin-a5b1 (142). A study by Gao et al. (143) demonstrated that

CAFs located within human breast cancer interface zones have a
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significant role in inducing EMT. The same results can be obtained by

artificially altering the expression of certain molecules in CAFs. In

cancer tissue, mechanical pressure is also believed to play a part in the

mechanisms (144, 145). In cancer cells expressing the matrix-

remodeling CAF receptor Endo180 (MRC2), genetic deletion

profoundly limits tumor growth and metastasis (146). MDA-MB-

231 cells are accelerated (1) by direct physical interactions,

where activated fibroblasts penetrate the matrix and act as scaffolds

for coalescence and aggregation; and (2) through release of soluble

accelerating factors such as MMPs or, in the case of activated normal

human dermal fibroblasts (NHDFs), SDF-1a/CXCL12 (147).
5 Clinical value of CAFs in
breast cancer

CAFs have an important role in the development of breast

cancer and are involved in tumor cell occurrence, growth,

angiogenesis, cell invasion, and metastasis. Some of these

molecular markers can provide a data basis for the determination

of breast cancer types, the choice of treatment, and prediction of

patient prognosis. CAFs secrete products that regulate tumor cells

and have a positive impact on clinical outcomes. Therefore, the

clinical application value of CAFs for breast cancer has attracted the

attention of many researchers worldwide.
5.1 Relationship of CAF-associated
molecules with clinical diagnosis
and prognosis

CAF-associated molecules are related to the clinical outcomes of

breast tumors and metastasis, and survival of patients. They are

important indicators of prognosis and can enable early intervention

for breast cancer patients, as well as helping to provide new

strategies (148).

5.1.1 CAF biomarkers
After a-SMA was stained in 60 invasive breast cancer patients,

computer-aided image analysis showed that the expression of a-
SMA significantly differed between the metastasis group and the

non-metastasis group. The metastasis group showed high a-SMA

expression and a significantly lower overall survival rate (149). a-
SMA can cause cancer cell metastasis and reduce overall survival,

because a-SMA-positive CAFs can promote tumor growth through

OPN secretion (150).

PDGF receptor expression is associated with unfavorable

prognosis in breast cancer when the PDGF pathway is

dysregulated. High PDGFRa expression has been linked to

aggressive subtypes of breast cancer including TNBC, and high

PDGF-CC expression increases the risk of 5-year distant

recurrence. Moreover, PDGFR expression in tumor cells has been

reported to be significantly elevated in lymph node metastases and

asynchronous recurrences (151). Another study used double

immunostaining of a11 integrin and PDGFRb in human breast
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cancer samples and associated normal tissues of DCIS patients

(152). The results showed that invasive ductal cancer (IDC) had

higher densities of integrin-11 or PDGFR than DCIS tumors, which

suggested that integrin a11 is mainly expressed by a subset of

PDGFRb-positive CAFs in human breast cancer. Furthermore,

patient outcomes were analyzed with respect to the integrin a11/
PDGFRb+ CAF subgroup, showing that an increase in stromal

density of integrin a11/PDGFR was associated with higher tumor

grade, metastasis, and patient mortality. Recently, Akanda, M. R.

et al. reported that in breast cancer brain metastasis patients,

expression of PDGFR-b in the stroma of metastasis site was

associated with recurrence free survival (153).

In addition, FAP expressed by CAFs is an independent factor

predicting the prognosis of breast cancer patients, and the expression of

FAP is correlated with cancer cell metastasis and survival (154). An

IHC study of 449 patients with DCIS who had undergone extensive

resection and did not receive radiotherapy and chemotherapy

concluded that FAP-a and GOLPH3 overexpression were highly

specific for the recurrence and progression of DCIS and may thus

represent novel tumor markers for progression of DCIS to invasive

breast cancer (IDC) (155). In breast tumors with a high stromal

content, radiolabeled FAP-specific enzyme inhibitor (FAPIs) may

offer high contrast for fast imaging and could serve as anti-tumor

agents (156). In 68Ga-FAPI positron emission tomography/computed

tomography, remarkably high uptake and image contrast were

observed for several widely prevalent cancers. These findings could

lead to new applications such as noninvasive tumor identification,

staging examinations, or the use of radioligand therapy (157).

5.1.2 MMPs
Immunohistochemical analysis of 154 breast cancer patients

and 42 women without tumor disease revealed that postmenopausal

patients, hormone-receptor-positive patients, and histological

ductal carcinoma patients had higher MMP-1 staining intensity

and higher MMP3 staining percentages and intensities (158). A

clinical study of 48 patients with breast cancer and 13 patients with

benign breast disease found that expression levels of MMP-9

mRNA were significantly increased in breast cancer patients

compared with patients with benign breast disease. In addition,

plasma MMP-2 and MMP-9 were significantly reduced in breast

cancer patients after surgery, so both MMP-2 and MMP-9 could be

used as markers of breast cancer disease response to therapy (159).

On the other hand, MMP-2 expression was correlated with tumor

size and neovascularization, MMP-9 expression was correlated with

hormone receptor status, and stromal cell co-expression of MMP-2

and MMP-9 was significantly associated with tumor size. Therefore,

these markers could be used in combination to assess the prognosis

of breast cancer patients (160). MMP-9, MMP-11, and TIMP-2

expression by CAFs were also significantly associated with poor

prognosis in luminal A tumors (161).

5.1.3 CAV-1
CAV-1 is a structural protein involved in the trafficking of

vesicles and signaling in caveolae, which are sphingolipid-rich
Frontiers in Oncology 09
invaginations of the plasma membrane. Cell lines and primary

breast cancers from humans contain negative CAV-1 RNA and

protein levels, and CAV-1 reintroduced in vitro inhibits many

tumorigenic properties, including anchorage independent growth

(162). A study analyzed 669 tumor specimens with TNBC by

immunohistochemistry, showing that lack of stromal CAV-1

expression in TNBC was significantly associated with worse

overall survival; conversely, increased mRNA levels of CAV-1 in

141 tumor samples were associated with better overall survival

(163). Another study showed that low expression of CAV-1 in

breast cancer stroma was associated with early recurrence,

progression, tamoxifen resistance, and 5-year survival, especially

in invasive micropapillary carcinoma, whereas CAV-1 gene

expression promoted EGFR signal transduction, which mediates

tyrosine kinase activity and was found to be an effective marker for

breast cancer diagnosis and prognosis (164).

5.1.4 Others
It has been demonstrated that tumor grade is significantly related

to a high level of immunostaining for AUF1 in both cancer cells and

adjacent CAFs (165). Locally advanced breast cancer patients with

high levels of DNMT1 in breast stromal fibroblasts have poor

survival, because DNMT1 promotes angiogenesis through IL-8/

VEGF-A upregulation (166). In TNBC patients, increased CAF

activation was linked to increased infiltration of polarized CD163-

positive tumor-associated macrophages (TAMs), as well as lymph

node metastasis. CAF activation, TAM infiltration, and lymph node

metastasis were shown to be independent prognostic factors for

disease-free survival in TNBC patients (167). Din contrast to

factors with high expression, depletion of FAK in CAFs prompts

its activation of protein kinase A via CCR1/CCR2 on cancer cells,

leading to increased glycolysis in malignant cells, which mediates the

metabolism of malignant cells, reduces overall patient survival, and

leads to poor prognosis of breast cancer patients (168). There has

been evidence that the five-gene prognostic CAF signature (RIN2,

THBS1, IL1R1, RAB31, and COL11A1) is not only effective for

predicting prognosis, but also for estimating clinical

immunotherapy response (169).

To sum up, substances related to CAFs, transformation of CAFs

by deletion of molecular markers, and derivatives of CAFs and

tumor suppressor genes have clinical applications in the diagnosis,

prognosis, and treatment of breast cancer. They can also be used to

provide data and information for precision treatment of breast

cancer patients and speed up the process of breast cancer treatment.
5.2 Relationship of CAF-associated
molecules with treatment

As mentioned above, CAFs and related molecules have an

important impact on the prognosis of breast cancer and can thus

be explored as targets for the treatment of breast cancer. Treatment

plans for breast cancer include vaccines, reducing drug resistance,

and mediating the radiation resistance of CAFs.
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5.2.1 Anti-FAP vaccines
FAP is one of the most important biomarkers of CAFs and is

primarily expressed on the CAF surface. Many anti-tumor therapies

focus on FAP. It is possible to increase the potency of T-cell-mediated

anti-tumor effects by targeting FAPa, and combination of a dual-

targeting vaccine with doxorubicin effectively increased the anti-tumor

activity of the vaccine by decreasing immunosuppressive factors and

promoting the infiltration of tumor cells by lymphocytes; this finding

may provide useful guidance for clinical research on the combination

of DNA vaccination with low-dose chemotherapy (170). Another

chemotherapy drug, cyclophosphamide, together with FAPa-targeted
modified vaccinia Ankara, have been shown to be effective in

overcoming immunosuppression and improving specific anti-tumor

immune responses (171). Importantly, mice vaccinated with FAP and

given cyclophosphamide chemotherapy showed significant tumor

growth suppression (inhibition ratio: 80%) and longer survival times

(172). Another vaccine reduced the growth of 4T1 tumors by

promoting production of cytotoxic T lymphocytes that killed CAFs,

and the decrease in FAPa-expressing CAFs markedly decreased

collagen I and other stromal factors, resulting in a marked

attenuation of tumor progression (173). Another study developed a

tumor vaccine prepared from tumor-cell-derived exosome-like

nanovesicles (eNVs-FAP), which demonstrated excellent anti-tumor

effects in a variety of tumor-bearing mouse models. According to

mechanistic analysis, eNVs-FAP stimulated dendritic cell maturation,

increased infiltration of effector T cells into tumor cells and FAP+

CAFs and decreased the number of immunosuppressive cells such as

M2-like TAMs, myeloid-derived suppressor cells, and Tregs in the

TME. In addition, FAP+ CAF clearance enhanced ferroptosis via

interferon-gamma (174). Another drug delivery agent, functionalized

nanocaged HFn-FAP, could specifically enhance targeted therapy for

CAFs when administered intravenously in TNBC (175).

5.2.2 Reversal of drug resistance
Antitumor drug resistance is among the main culprits in breast

cancer recurrence and metastasis. Recent studies on drug resistance

involving CAFs have mainly focused on tamoxifen, anti-HER2

drugs, and chemotherapy. Drug resistance to breast cancer can be

reversed through treatments that reduce CAF activity, thereby

reducing recurrence and metastasis. Tamoxifen is an ER

modulator used for endocrine therapy in patients with ER-

positive breast cancer. According to a study, tamoxifen resistance

in breast cancer may be caused by CD63+ CAFs via exosomal miR-

22 (176). CAFs with upregulation of HMGB1 expression and

secretion via GPR30/PI3K/AKT signaling enhanced MCF-7 cell

resistance to TAM by increasing autophagy dependent on ERK

activity (177). The TAF/FGF5/FGFR2/c-Src/HER2 axis is

responsible for HER2-targeted therapy resistance in breast cancer,

which can be reversed by FGFR inhibitors (178). In patients with

HER2-positive breast cancer, CAF-derived NRG1 contributes to

trastuzumab resistance through high expression of HER3/AKT, but

combination with pertuzumab may reverse resistance (179).

Cancer-derived xenografts engraft successfully when CD10

+GPR77+ CAFs are present, and treating these CAFs with an

anti-GPR77 antibody eliminates tumor formation and restores
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tumor chemosensitivity (180). Claudin-low TNBCs are resistant

to chemotherapy when CAF activates IFN signaling. Inhibition of

this pathway could improve breast cancer outcomes in a novel way

(181). A study showed that gMG treatment significantly retards

tumor growth, reduces CAF production, and improves DOX

sensitivity in a DOX-resistant TNBC tumoroid-bearing mouse

model, because it was found that INFG/STAT1/NOTCH3 is a

molecular link between breast cancer stem cells and CAFs, and

it’s expression was increased in DOX-resistant TNBC cell lines, as

well as CAF-transformation and self-renewal ability (182).

5.2.3 Reversal of radiation resistance
CAFs have been shown to be radioresistant and to undergo

significant changes in oxidative metabolism indices. It is likely that

CAFs that survive radiation treatment influence the fate of

associated cancer cells. Identifying these CAFs, determining their

mode of communication with cancer cells, and eradicating them,

especially when they exist at the margins of a radiotherapy target

volume, may improve cancer treatment effectiveness (183).

Dendrigraft poly-L-lysine (DGL)/gemcitabine (GEM)@PP/GA

nanoparticles for TAF-targeted regulation and deep tumor

penetration have been reported. When MMP-2 was overexpressed

in the TME, GEM-conjugated small nanoparticles (DGL/GEM) are

released from DGL/GEM@PP/GA, causing the large nanoparticles

(PP/GA) loaded with 18beta-glycyrrhetinic acid (GA) to

accumulate at the tumor site. The released DGL/GEM can

penetrate deep into the tumor to release GEM intracellularly and

kill tumor cells. It is also possible that residual GA-loaded

nanoparticles may accumulate around tumor vessels and be

absorbed more efficiently by TAFs, which regulate the secretion

of Wnt16, an essential damage response program (DRP) molecule,

around tumor vessels. When DGL/GEM@PP/GA was applied to

breast cancer models with stroma-rich stroma, significant and long-

term anti-tumor effects were observed (184).
6 Conclusions and prospecs

CAFs, the most abundant cells in breast cancer stroma, secrete

various ECM components, growth factors, cytokines, proteins,

enzymes, and hormones. CAFs participate in the development

and progression of breast cancer by stimulating epithelial cell

malignant transformation, tumor initiation, tumor growth, ECM

degradation, tumor angiogenesis, and cancer cell invasion and

metastasis. Furthermore, CAFs are valuable in the clinical

diagnosis of breast cancer, as well as in therapy and prediction of

prognosis. However, many aspects remain unclear, including the

relationship between CAFs and other mesenchymal cells or stroma

structures, such as tunneling nanotubes, which are made by

exosomes derived from breast cancer cells but not CAFs (185),

the precise mechanism of their escape from immune attack, and

whether other valuable molecular markers of CAFs exist. The breast

cancer immune-microenvironment with tumor-associated tertiary

lymphoid structure (TA-TLS) usually have a higher representation

of tumor-infiltrating lymphocytes (TIL) and show a better response
frontiersin.org

https://doi.org/10.3389/fonc.2023.1194835
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1194835
to chemotherapy and immunotherapy (186). A study showed that

TA-TLS could be coordinated by FAPneg CAFs that exhibit

characteristics like lymphoid tissue organizers and their roles are

to facilitate anti-tumor immunity and immune response to

checkpoint immunotherapy (187). Unfortunately, this study was

done in melanoma, not breast cancer. In conclusion, the role of

CAFs in breast cancer warrant further investigation.
Author contributions

YL conceptualized the manuscript, YL and CW did literature

search and wrote it. TH designed the figures. XY and BT critically

reviewed it. All authors contributed to the article and approved the

submitted version.
Funding

This work was supported by grants from the University of

Electronic Science and Technology of China (ZYGX2021YGLH205).
Frontiers in Oncology 11
Acknowledgments

The authors thank Pro. Jingping Liu from department of breast

surgery, Sichuan Provincial People’s Hospital for his great support

in the writing of this paper.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49. doi: 10.3322/
caac.21660

2. Kwa M, Makris A, Esteva FJ. Clinical utility of gene-expression signatures in early
stage breast cancer. Nat Rev Clin Oncol (2017) 14(10):595–610. doi: 10.1038/
nrclinonc.2017.74

3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin
(2021) 71(1):7–33. doi: 10.3322/caac.21654

4. Hernandez RK, Wade SW, Reich A, Pirolli M, Liede A, Lyman GH. Incidence of
bone metastases in patients with solid tumors analysis of oncology electronic medical
records in the United States. BMC Cancer (2018) 18(44). doi: 10.1186/s12885-017-
3922-0

5. Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis:
historical perspective. Cancer Res (2010) 70(14):5649–69. doi: 10.1158/0008-
5472.CAN-10-1040

6. Paget S. The distribution of secondary growths in cancer of the breast. Lancet
(1889) 8(2):98–101. doi: 10.1016/S0140-6736(00)49915-0

7. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell (2000) 100(1):57–70.
doi: 10.1016/S0092-8674(00)81683-9

8. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al.
Molecular characterization of the tumor microenvironment in breast cancer. Cancer
Cell (2004) 6(1):17–32. doi: 10.1016/j.ccr.2004.06.010

9. Luo H, Tu G, Liu Z, Liu M. Cancer-associated fibroblasts: a multifaceted driver of
breast cancer progression. Cancer Lett (2015) 361(2):155–63. doi: 10.1016/
j.canlet.2015.02.018

10. Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the
breast cancer tumor microenvironment. Cancer Metastasis Rev (2018) 37(4):577–97.
doi: 10.1007/s10555-018-9768-3

11. Lorusso G, Ruegg C. The tumor microenvironment and its contribution to
tumor evolution toward metastasis. Histochem Cell Biol (2008) 130(6):1091–103. doi:
10.1007/s00418-008-0530-8

12. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW. The organizing
principle: microenvironmental influences in the normal and malignant breast.
Differentiation (2002) 70(9-10):537–46. doi: 10.1046/j.1432-0436.2002.700907.x

13. Guo M, Li W, Li B, Zou B, Wang S, Fan B, et al. Multiple immune features-based
signature for predicting recurrence and survival of inoperable LA-NSCLC patients.
Front Oncol (2020) 10:571380. doi: 10.3389/fonc.2020.571380

14. Yan X, Xie Y, Yang F, Hua Y, Zeng T, Sun C, et al. Comprehensive description of
the current breast cancer microenvironment advancements via single-cell analysis. J
Exp Clin Cancer Res (2021) 40(1):142. doi: 10.1186/s13046-021-01949-z
15. Pietras K, Ostman A. Hallmarks of cancer: interactions with the tumor stroma.
Exp Cell Res (2010) 316(8):1324–31. doi: 10.1016/j.yexcr.2010.02.045

16. Arendt LM, Rudnick JA, Keller PJ, Kuperwasser C. Stroma in breast
development and disease. Semin Cell Dev Biol (2010) 21(1):11–8. doi: 10.1016/
j.semcdb.2009.10.003

17. Kaushik N, Kim S, Suh Y, Lee SJ. Proinvasive extracellular matrix remodeling for
tumor progression. Arch Pharm Res (2019) 42(1):40–7. doi: 10.1007/s12272-018-1097-0

18. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K,
et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for
RhoGTPases in leading and following cells. Nat Cell Biol (2007) 9(12):1392–400. doi:
10.1038/ncb1658

19. Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associated fibroblasts
in cancer pathogenesis. Semin Cell Dev Biol (2010) 21(1):33–9. doi: 10.1016/
j.semcdb.2009.10.010

20. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer.
(2016) 16(9):582–98. doi: 10.1038/nrc.2016.73

21. Naba A, Clauser KR, Hoersch S, Liu H, Carr SA, Hynes RO. The matrisome: in
silico definition and in vivo characterization by proteomics of normal and tumor
extracellular matrices. Mol Cell Proteomics (2012) 11(4). doi: 10.1074/
mcp.M111.014647

22. Gabbiani G, Ryan GB, Majne G. Presence of modified fibroblasts in granulation
tissue and their possible role in wound contraction. Experientia (1971) 27(5):549–50.
doi: 10.1007/BF02147594

23. Dvorak HF. Tumors: wounds that do not heal. similarities between tumor
stroma generation and wound healing. N Engl J Med (1986) 315(26):1650–9.
doi: 10.1056/NEJM198612253152606

24. Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. (2006) 6(5):392–
401. doi: 10.1038/nrc1877

25. Polyak K, Kalluri R. The role of the microenvironment in mammary gland
development and cancer. Cold Spring Harb Perspect Biol (2010) 2(11):a003244. doi:
10.1101/cshperspect.a003244

26. Desmouliere A, Guyot C, Gabbiani G. The stroma reaction myofibroblast: a key
player in the control of tumor cell behavior. Int J Dev Biol (2004) 48(5-6):509–17. doi:
10.1387/ijdb.041802ad

27. De Wever O, Nguyen QD, Van Hoorde L, Bracke M, Bruyneel E, Gespach C,
et al. Tenascin-c and SF/HGF produced by myofibroblasts in vitro provide convergent
pro-invasive signals to human colon cancer cells through RhoA and rac. FASEB J
(2004) 18(9):1016–8. doi: 10.1096/fj.03-1110fje

28. Sugimoto H, Mundel TM, Kieran MW, Kalluri R. Identification of fibroblast
heterogeneity in the tumor microenvironment. Cancer Biol Ther (2006) 5(12):1640–6.
doi: 10.4161/cbt.5.12.3354
frontiersin.org

https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/nrclinonc.2017.74
https://doi.org/10.1038/nrclinonc.2017.74
https://doi.org/10.3322/caac.21654
https://doi.org/10.1186/s12885-017-3922-0
https://doi.org/10.1186/s12885-017-3922-0
https://doi.org/10.1158/0008-5472.CAN-10-1040
https://doi.org/10.1158/0008-5472.CAN-10-1040
https://doi.org/10.1016/S0140-6736(00)49915-0
https://doi.org/10.1016/S0092-8674(00)81683-9
https://doi.org/10.1016/j.ccr.2004.06.010
https://doi.org/10.1016/j.canlet.2015.02.018
https://doi.org/10.1016/j.canlet.2015.02.018
https://doi.org/10.1007/s10555-018-9768-3
https://doi.org/10.1007/s00418-008-0530-8
https://doi.org/10.1046/j.1432-0436.2002.700907.x
https://doi.org/10.3389/fonc.2020.571380
https://doi.org/10.1186/s13046-021-01949-z
https://doi.org/10.1016/j.yexcr.2010.02.045
https://doi.org/10.1016/j.semcdb.2009.10.003
https://doi.org/10.1016/j.semcdb.2009.10.003
https://doi.org/10.1007/s12272-018-1097-0
https://doi.org/10.1038/ncb1658
https://doi.org/10.1016/j.semcdb.2009.10.010
https://doi.org/10.1016/j.semcdb.2009.10.010
https://doi.org/10.1038/nrc.2016.73
https://doi.org/10.1074/mcp.M111.014647
https://doi.org/10.1074/mcp.M111.014647
https://doi.org/10.1007/BF02147594
https://doi.org/10.1056/NEJM198612253152606
https://doi.org/10.1038/nrc1877
https://doi.org/10.1101/cshperspect.a003244
https://doi.org/10.1387/ijdb.041802ad
https://doi.org/10.1096/fj.03-1110fje
https://doi.org/10.4161/cbt.5.12.3354
https://doi.org/10.3389/fonc.2023.1194835
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1194835
29. Pietras K, Sjöblom T, Rubin K, Heldin C-H, Ostman A. PDGF receptors as
cancer drug targets. Cancer Cell (2003) 3(5):439–43. doi: 10.1016/S1535-6108(03)
00089-8

30. Strell C, Paulsson J, Jin SB, Tobin NP, Mezheyeuski A, Roswall P, et al. Impact of
epithelial-stromal interactions on peritumoral fibroblasts in ductal carcinoma in situ. J
Natl Cancer Inst (2019) 111(9):983–95. doi: 10.1093/jnci/djy234

31. Kawase A, Ishii G, Nagai K, Ito T, Nagano T, Murata Y, et al. Podoplanin
expression by cancer associated fibroblasts predicts poor prognosis of lung
adenocarcinoma. Int J Cancer. (2008) 123(5):1053–9. doi: 10.1002/ijc.23611

32. Kim HM, Jung WH, Koo JS. Expression of cancer-associated fibroblast related
proteins in metastatic breast cancer: an immunohistochemical analysis. J Transl Med
(2015) 13:222. doi: 10.1186/s12967-015-0587-9

33. Suchanski J, Tejchman A, Zacharski M, Piotrowska A, Grzegrzolka J, Chodaczek
G, et al. Podoplanin increases the migration of human fibroblasts and affects the
endothelial cell network formation: a possible role for cancer-associated fibroblasts in
breast cancer progression. PloS One (2017) 12(9):e0184970. doi: 10.1371/
journal.pone.0184970

34. Barth PJ, Ebrahimsade S, Ramaswamy A, Moll R. CD34+ fibrocytes in invasive
ductal carcinoma, ductal carcinoma in situ, and benign breast lesions. Virchows Arch
(2002) 440(3):298–303. doi: 10.1007/s004280100530

35. Venning FA, Zornhagen KW, Wullkopf L, Sjolund J, Rodriguez-Cupello C,
Kjellman P, et al. Deciphering the temporal heterogeneity of cancer-associated
fibroblast subpopulations in breast cancer. J Exp Clin Cancer Res (2021) 40(1):175.
doi: 10.1186/s13046-021-01944-4

36. Suh J, Kim DH, Lee YH, Jang JH, Surh YJ. Fibroblast growth factor-2, derived
from cancer-associated fibroblasts, stimulates growth and progression of human breast
cancer cells via FGFR1 signaling. Mol Carcinog. (2020) 59(9):1028–40. doi: 10.1002/
mc.23233

37. Kang Y, Zhang Y, Sun Y. Comprehensive analysis of the expression
characteristics of the enhancer of the zeste homolog 2 gene in pan-cancer. Front
Genet (2021) 12:658241. doi: 10.3389/fgene.2021.658241

38. Wang M, Feng R, Chen Z, Shi W, Li C, Liu H, et al. Identification of cancer-
associated fibroblast subtype of triple-negative breast cancer. J Oncol (2022) 2022:1–14.
doi: 10.1155/2022/6452636

39. Shani O, Vorobyov T, Monteran L, Lavie D, Cohen N, Raz Y, et al. Fibroblast-
derived IL33 facilitates breast cancer metastasis by modifying the immune
microenvironment and driving type 2 immunity. Cancer Res (2020) 80(23):5317–29.
doi: 10.1158/0008-5472.CAN-20-2116

40. Zeltz C, Alam J, Liu H, Erusappan PM, Hoschuetzky H, Molven A, et al.
alpha11beta1 integrin is induced in a subset of cancer-associated fibroblasts in
desmoplastic tumor stroma and mediates In vitro cell migration. Cancers (Basel)
(2019) 11(6):765. doi: 10.3390/cancers11060765

41. Kay EJ, Paterson K, Riero-Domingo C, Sumpton D, Dabritz JHM, Tardito S,
et al. Cancer-associated fibroblasts require proline synthesis by PYCR1 for the
deposition of pro-tumorigenic extracellular matrix. Nat Metab (2022) 4(6):693–710.
doi: 10.1038/s42255-022-00582-0

42. Ohlund D, Handly-Santana A, Biffi G, Elyada E, Almeida AS, Ponz-Sarvise M,
et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic
cancer. J Exp Med (2017) 214(3):579–96. doi: 10.1084/jem.20162024

43. Mishra PJ, Mishra PJ, Humeniuk R, Medina DJ, Alexe G, Mesirov JP, et al.
Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells.
Cancer Res (2008) 68(11):4331–9. doi: 10.1158/0008-5472.CAN-08-0943

44. Weber CE, Kothari AN, Wai PY, Li NY, Driver J, Zapf MA, et al. Osteopontin
mediates an MZF1-TGF-b1-dependent transformation of mesenchymal stem cells into
cancer-associated fibroblasts in breast cancer. Oncogene (2015) 34(37):4821–33. doi:
10.1038/onc.2014.410

45. Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Cho M, et al. Cancer-derived
lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to
myofibroblast-like cells. Stem Cells (2008) 26(3):789–97. doi: 10.1634/stemcells.2007-
0742

46. Spaeth EL, Dembinski JL, Sasser AK, Watson K, Klopp A, Hall B, et al.
Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to
fibrovascular network expansion and tumor progression. PloS One (2009) 4(4):e4992.
doi: 10.1371/journal.pone.0004992

47. Giorello MB, Borzone FR, Labovsky V, Piccioni FV, Chasseing NA. Cancer-
associated fibroblasts in the breast tumor microenvironment. J Mammary Gland Biol
Neoplasia. (2021) 26(2):135–55. doi: 10.1007/s10911-020-09475-y

48. Arina A, Idel C, Hyjek EM, Alegre ML, Wang Y, Bindokas VP, et al. Tumor-
associated fibroblasts predominantly come from local and not circulating precursors.
Proc Natl Acad Sci U S A. (2016) 113(27):7551–6. doi: 10.1073/pnas.1600363113

49. LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins,
functions and translational impact. Dis Model Mech (2018) 11(4). doi: 10.1242/
dmm.029447

50. Bu L, Baba H, Yoshida N, Miyake K, Yasuda T, Uchihara T, et al. Biological
heterogeneity and versatility of cancer-associated fibroblasts in the tumor
microenvironment. Oncogene (2019) 38(25):4887–901. doi: 10.1038/s41388-019-
0765-y
Frontiers in Oncology 12
51. Kwa MQ, Herum KM, Brakebusch C. Cancer-associated fibroblasts: how do
they contribute to metastasis? Clin Exp Metastasis (2019) 36(2):71–86. doi: 10.1007/
s10585-019-09959-0

52. Ronnov-Jessen L, Petersen OW, Koteliansky VE, Bissell MJ. The origin of the
myofibroblasts in breast cancer. recapitulation of tumor environment in culture
unravels diversity and implicates converted fibroblasts and recruited smooth muscle
cells. J Clin Invest. (1995) 95(2):859–73. doi: 10.1172/JCI117736.
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