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Background: Soft tissue sarcoma (STS) is the malignancy that exhibits remarkable
histologic diversity. The diagnosis and treatment of STS is currently challenging,
resulting in a high lethality. Chronic inflammation has also been identified as a key
characteristic of tumors, including sarcomas. Although senescence plays an
important role in the progression of various tumors, its molecular profile
remains unclear in STS.

Methods: We identified the senescence-related genes (SRGs) in database and
depicted characteristics of genomic and transcriptomic profiling using cohort
within TCGA and GEO database. In order to investigate the expression of SRGs in
different cellular subtypes, single-cell RNA sequencing data was applied. The
qPCR and our own sequencing data were utilized for further validation. We used
unsupervised consensus clustering analysis to establish senescence-related
clusters and subtypes. A senescence scoring system was established by using
principal component analysis (PCA). The evaluation of clinical and molecular
characteristics was conducted among distinct groups.

Results: These SRGs showed differences in SCNV,mutation andmRNA expression
in STS tissues compared to normal tissues. Across several cancer types, certain
shared features of SRGs were identified. Several SRGs closely correlated with
immune cell infiltration. Four clusters related to senescence and three subtypes
related to senescence, each with unique clinical and biological traits, were
established. The senescence scoring system exhibited effectiveness in
predicting outcomes, clinical traits, infiltrations of immune cells and
immunotherapy responses.

Conclusion: Overall, the current study provided a comprehensive review of
molecular profiling for SRGs in STS. The SRGs based clustering and scoring
model could help guiding the clinical management of STS.
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Introduction

STS is rare but posesmany challenges regarding to its diagnosis and
treatment due to its high heterogeneity (Gamboa et al., 2020). More
than 100 distinct histologic and molecular subtypes have been
established for STS. According to the latest cancer statistics, the new
cases of STS will reach up to 13,400 in 2023 and the deaths will be up to
5,140 (Siegel et al., 2023). Traditionally, STS has been standardly
diagnosed with histology, referred as the gold standard. As
molecular biology techniques continue to advance, there has been
an increase in interest in the use of molecular profiling in STS, both
as a diagnostic and classification tool (Italiano et al., 2016). For instance,
the Ewing sarcomas are characterized by a fusion of the EWSR1 gene
and FLI1 gene (85% of cases) (Ludwig et al., 2021). Several studies have
explored the detailed maps of molecular and biomarkers for STS
(Barretina et al., 2010; Movva et al., 2015; Italiano et al., 2017). The
main characteristics of STS consist of prevalent copy number variations
(CNVs), chromosomal losses, or gene fusions. While in general STS
represents low mutation burden, genes including TP53, ATRX, RB1,
and BRCA2 are more commonly mutated across multiple subtypes.
Although there have been some novel treatment approaches like
immunotherapy for STS, our current understanding of
immunotherapy in STS is still at the very beginning (Martín-Broto
et al., 2020).

Senescence is a cellular process that responds to various stress
signals and contributes to several diseases and the aging process (Zhang
et al., 2022). It is characterized by cell cycle arrest and alteration in cell
morphology and physiology. Therefore, senescence serves as a
protective mechanism against tumor progression (Collado and
Serrano, 2010). Senescence in cancer could triggered by the
activation of oncogene, such as H-RASV12 (Muñoz-Espín and
Serrano, 2014), which referred as the oncogene-induced senescence
(OIS). Other cancer-related signaling pathway such as activated MYC
and hyperactivated WNT-β-catenin signaling also trigger senescence
(Wu et al., 2007; Zhang et al., 2011). Besides, chemotherapies and
radiotherapies can still force tumor cells to enter the senescence status,
namely the therapy-induced senescence (Collado and Serrano, 2010;
Ewald et al., 2010). The induction of senescence also leads to
modifications in the tumor microenvironment, including enhanced
infiltration of M1 macrophage, Th1 cells, and NK cells (Kang et al.,
2011; Eggert et al., 2016). Senescence has been implicated in STS in a
number of studies. Overexpression of p16 (INK4a) was identified in
multiple subtypes of STS, which was associated with the induction of
senescence (Knösel et al., 2014). The endogenous Ewing sarcoma gene
(Ews) was involved in Ewing sarcoma progression, deletion of Ews
enhances the entrance of hematopoietic stem progenitor cells into
senescence (Cho et al., 2011). Therefore, it is noteworthy that
targeting senescence may serve as potential therapeutics for STS.
There also is now evidence from epidemiological and experimental
studies that links the development of sarcoma to inflammation, which
could be regarded as the inflammatory disease.

In this investigation, a systematic investigation of senescence-
related genes (SRGs) in STS was presented by utilizing datasets
retrieved through TCGA and GEO databases. With machine-

learning algorithms, we defined the senescence-related clusters
and senescence-related subtypes, as well as a senescence score
model. Besides, we depicted the molecular (genome and
transcriptome) and TME characteristics among different clusters
or subtypes. Findings of this study could provide evidences for
senescence-related biology and senescence-based therapeutic
strategies for STS.

Methods and materials

Data preparation

The sequencing and corresponding clinical data for STS were
acquired via the GEO and TCGA databases. The transcriptome data
within the GTEx database for normal adipose andmuscle tissues was
employed as the control group. The UCSC bioinformatic pipeline
(TOIL RNA-seq) was utilized to perform co-analysis of the datasets
(Wang et al., 2018). The somatic mutation and CNVs were obtained
through TCGA-SARC cohort as well. TARGET Pan-Cancer
(PANCAN) cohort was utilized for pan-cancer analysis. We
identified two bulk RNA-sequencing datasets (GSE39055 and
GSE176307) and one scRNA-seq dataset through GEO database.
For examining relationships among SRGs with drug responses, the
study included a patient population who had undergone
immunotherapeutic therapy using concomitant inhibition of both
PD-1 and CTLA-4.

Unsupervised clustering of SRGs

A total of 279 gene candidates associated with cellular
senescence were acquired through the use of the CellAge
database, a comprehensive cellular senescence repository (https://
genomics.senescence.info/cells/). In order to perform Least Absolute
Shrinkage and Selection Operator (LASSO) regression analysis, we
implemented the “glmnet” package. Additionally, a tenfold cross-
validation approach was employed for determining the optimal
penalty regularization parameter λ. To minimize empirical error,
we utilized the support vector machine recursive feature elimination
(SVM-RFE) method, which follows the principle of structural risk
minimization, another machine learning approach. Genomic
locations of SRGs were virtualized by using “Rcircos” package.
Unsupervised clustering was performed to identify clusters and
subtypes associated with SRGs. MaxK = 9 and repetitions =
1,000 was set as key parameters for R package
“ConsensusClusterPlus” (Wilkerson and Hayes, 2010).

Gene set variation analysis (GSVA)

For comparing the signatures of pathways among different
clusters or subtypes, GSVA analysis was performed by utilizing
the R package “GSVA” (Hänzelmann et al., 2013) with predefined
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datasets from the MSigDB. We analyzed the data on the basis of
package “limma”, while modified t-statistics were employed for
visualization. We utilized the “clusterProfiler” package for
performing GO annotation and set the false discovery rate (FDR)
threshold as 0.05 (Yu et al., 2012). For visualizing the correlation
among SRGs in STS, we utilized the “corrplot” package. For the
purpose of visualizing the relationships among SRGs and prognosis,
we utilized the R package “igraph”.

Exploring the differentially expressed genes
(DEGs)

We determined DEGs among the senescence-related clusters or
subtypes using the R package “limma”. The p-values were adjusted
based on Benjamini-Hochberg method for addressing the issue of
multiple comparisons. We defined a statistically significant
difference as the adjusted p-value <0.05. Specific threshold was
adopted to assess the expression difference of genes.

Quantification of immune infiltration in TME

We conducted an analysis for assessing the infiltration levels of
immunocytes in STS based on single-sample gene set enrichment
analysis (ssGSEA), as previously described (Bindea et al., 2013). The
degree of immune infiltrations was scaled to range from 0 to 1.
Relationships of TME with other biological process was evaluated by
using signatures of tumor mutation burden (TMB) (Mariathasan et al.,
2018). We also utilized the R package “ESTIMATE” to compute
ESTIMATE scores based on gene signatures (Yoshihara et al., 2013),
to assess the levels stromal and immune infiltrations within tumor.
Potential signatures involved in immunotherapy response and cancer-
immunity cycles were retrieved from previous research (Chen and
Mellman, 2013; Qi et al., 2023). The association between senescence
scores and GSVA scores was evaluated by using the R package “ggcor”.

Development of the scoring system of
senescence

For the quantification of senescence, we introduced the
senescence scoring system, following the establishment of
senescence-related clusters. We picked up the DEGs among
different senescence-related clusters and conducted the PCA to
obtain senescence score. On this setting, genes related to most set
factors will display a high score and vice versa, as previously reported
(Zhang et al., 2020; Chong et al., 2021). Equation used to calculate
the senescence socre was Σ (PC1i + PC2i) (i indicates the expression
levels for the selected genes based on the PCA).

Transcriptome analysis at single-cell level

The single-cell sequencing dataset GSE131309 (Jerby-Arnon et al.,
2021) was analyzed following the standard pipelines, using the Seurat
package. We applied LogNormalize (scale factor = 10,000) for
normalizing the gene expression. Subsequently, we used

FindVariableGenes to recognize the 2,000 highly variable genes. Cell
sub-population was labeled using the annotation methods described in
previous publication (Jerby-Arnon et al., 2021).

Predicting chemotherapy sensitivity

The Genomics of Drug Sensitivity in Cancer (GDSC) is the publicly
available source that contains molecular features of cancers predicting
response to anti-cancer drugs. The database records thousands of tumor
cell lines and 518 compounds. For determining corresponding
IC50 and drug sensitivity score, we used the “pRRophetic” and
“oncoPredict” (Iorio et al., 2016; Maeser et al., 2021).

Cell lines and clinical samples

Four STS cell lines were used in this study, including SW-872,
hSS-005R, SW-982 and HSF. SW-872, SW-982 and HSF were
obtained from ATCC while hSS-005R was established by our
laboratory. In the 37°C environment with 5% CO2, the cell lines
were grown in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% fetal bovine serum (FBS).

We collected and further sequenced four pairs of STS samples as
well as their corresponding normal tissues using Oxford Nanopore
Technologies (Oxford, United Kingdom). The sequencing matrix is
available under accession number GSE198568. We further verified
corresponding expression for SRGs in this dataset.

Real time quantitative PCR (RT-qPCR)

We used the RNA Express Total RNA Kit (M050, NCMBiotech,
China) to extract total RNA from the cells. Following the removal of
genomic DNA, we used The RevertAid First Strand cDNA Synthesis
kit (K1622, Thermo Fisher Scientific, United States) for synthesizing
cDNA from the total RNA. Detailed steps were similar to previous
study (Qi et al., 2022; Qi et al., 2023). As shown in Supplementary
Table S1, this study utilized the following primers.

Cell transfection

The Hanbio (Shanghai, China) designed and synthesized the
siRNA for E2F1 knockdown, as well as the corresponding negative
control (siNC). The cells were seeded into a 6-well plate with the
concentration of 1.5 × 105 cells per well. The 50 nmol of siRNA or siNC
was further transfected into the cells using 5 μL of Lipofectamine
2000 reagent. Following a 6-h transfection period, fresh medium
was further added to the culture medium. The siRNA sequences
were listed in Supplementary Table S2. We collected or analyzed the
cells 48 h after transfection and used them for subsequent experiments.

Cell proliferation assay

We plated cells into a 96-well plate with the concentration of
2000 cells per well and cultured overnight. The cell counting kit-8
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(CCK-8) was utilized for testing the cells that underwent
transfection after being cultured after the indicated periods of
time. For each well, we added 100 μL of 10% CCK-8 solution
was added, followed by 1.5 h of incubation. The absorbance at
450 nm for each well was detected by using the Tecan Spark®

multimode microplate reader.

Clone formation assay

After transfection with siRNA, cells were seeded in 6-well plates
with the concentration of 1,000 cells per well and subsequently
cultivated for the indicated durations. At the end of experiment,
cellular clones were fixed utilizing 4% paraformaldehyde (PFA) and
subsequently subjected to staining by using 0.2% crystal violet
solution with an additional period of 15 min.

Wound healing assay

In order to assess the migratory capabilities of the cells, we
utilized the wound healing assay. Cells were seeded into 6-well plates
with the concentration of 4 × 105 cells per well. Upon achieving
approximately 80% cellular confluence, we created a scratch
employing the 100 μL pipette tip. Subsequently, cells were
cultivated in DMEM with 2% FBS. The area covered by the
migrated cells was then measured after indicated duration, by the
light microscope.

Statistical analysis

This study employed the R statistical analysis software
(version 4.1.0) as part of its methodological approach.
Spearman’s correlation test was employed for determining the
associations among the studied SRGs. Parametric comparisons
were calculated by utilizing Student’s t-tests while nonparametric
comparisons were determined through the Wilcoxon signed-
rank test. Comparisons across multiple groups were
ascertained through the implementation of one-way ANOVA
or the Kruskal-Wallis test. Patient survival outcomes were
comparatively analyzed utilizing the Log-rank test. Utilizing
both univariate and multivariate Cox regression analyses, the
predictive determinants were identified. In order to establish the
threshold value for the senescence score, the “surv_cutpoint”
function within the “survminer” package was employed. After
determining optimal senescence score cutoff value, The patients
were stratified into two groups characterized by high and low
senescence levels. Following this, Chi-square tests or Fisher’s
exact tests were applied to compare their clinical attributes.

Results

Selection of candidate SRGs

Collectively, 279 SRGs were identified based on the database.
Two machine learning-based algorithms, namely LASSO regression

analysis and SVM-RFE, were employed to analyze the input data, in
which 45 and 73 SRGs were identified respectively (Figures 1A–D).
33 SRGs overlapped by result of two algorithms were used for
downstream analysis (Figure 1E).

Pan-cancer analysis of SRGs

For shedding lighting on illumination of the characteristics of
SRGs in STS. We explored the SCNV in pan-cancer level. Results
indicated the SCNV gain in ASPH, BLVRA, CEBPB, E2F1,
IGFBP3, PMVK, SENP7, SPOP, SRC, and ZMAT3 (Figure 1F).
Interestingly, E2F1 was highly expressed in most cancer types
(Figure 1G). TP53 and SMARCA4 showed high frequency of
mutation among the 33 analyzed SRGs (Figure 1H). ASPH,
CDKN2A, E2F1, P3H1, and PTTG1 were identified as
prognostic indicators of unfavorable outcomes within multiple
cancer types (Figure 1I). Additionally, the CNV condition and
expression level of ASF1A, CDKN2A, MAGOHB, NADK, SPOP,
and ARC were remarkably correlated in most cancer types
(Figure 1J).

Genome and transcriptome characteristics
of SRGs

We identified mutations related to SRGs in TCGA-SARC
cohort. Results demonstrated that a large number of samples
present SRGs-associated mutations (altered in 100 of
237 samples) (Figure 2A). The frequency of CNV of SRGs is
displayed in Figure 2B. PMVK showing the highest CNV gain
while TP53 acquiring the highest CNV loss. Most SRGs locate at
chromosome 1 and 17 (Figure 2C). Interaction among somatic
mutations of SRGs was measured by somatic interaction
function. KL and CBX8 exhibited high co-occurrence with
each other (p < 0.05) (Figure 2D). We found that expressing
levels of 33 SRGs were effective in discriminating between tumors
and normal tissues (Figures 2E, F).

Expression pattern of SRGs was further analyzed at single-cell
level using data from GSE131309 (Figure 3A). We noticed that
ASPH, BHLHE40 and ITSN2 showed wide expression in
different cell types while IGFBP3, CDKN2A, HK3 and
MAP4K1 expressed in specific cell types (Figures 3B, C;
Supplementary Figure S1). Consistently, expression of
MAGOHB and E2F1 were upregulated while CEBPB was
downregulated in STS cell lines and our clinical samples
(Figures 3D–I).

TME is a critical mediator of within tumor characteristics, as it
involves interactions among immune cells and cancer cells and can
influence their fate. We conducted an analysis to examine
associations among immune signatures and expression of genetic
factors. The results of the analysis showed that NINJ1, MAP4K1,
HK3, and CEBPB exhibited a positive correlation with the majority
of immune cell types (Figure 4A). A comprehensive correlation
analysis of SRGs was also conducted, which showed the wide
positive association between most SRGs. However, N3H1, NINJ1,
HK3, and CEBPB were negatively correlated with most SRGs
(Figure 4B).
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Senescence-related clusters and
interactions

Consensus unsupervised clustering was performed on TCGA-
SARC cohorts, which resulted in the division of patients into
distinct groups according to the expressing levels of 33 SRGs
(Supplementary Figure S2A–F). Consequently, four clusters were
identified according to the optimal clustering number, containing
117 cases within cluster C1, 70 cases within cluster C2, 41 cases
within cluster C3 and 36 cases within cluster C4. They showed

difference in survival rate, in which the cluster C4 displaying best
prognosis (Figure 4C). The four clusters had distinct expression patterns
of 33 SRGs (Figure 4D). Further, we applied the GSVA analysis to
compare the clusters enriched in different clusters. As a result, cluster
C2was found to be exhibit negative enrichment within pathways related
to cytokine-cytokine receptor interaction, complement and coagulation
cascades, lysosome, sphingolipid metabolism, and amino sugar and
nucleotide sugar metabolism (Figures 4E, F; Supplementary Figure
S2G–J). Interestingly, cluster C2 showed significant downregulated
adaptive immune cell infiltration (Figure 4G).

FIGURE 1
Identification of senescence-related genes (SRGs) based on machine learning algorithms and pan-cancer analysis. (A) LASSO coefficient profiles of
the 279 SRGs. (B) LASSO cross-validation for selecting optimal tuning parameter (λ). (C) The error rate of SVM-RFE modeling across varying feature
counts. (D) The accuracy rate of SVM-RFEmodeling across varying feature counts. (E) The overlapping of selected SRGs based on two algorithms. (F) The
somatic copy number variance (SCNV) of SRGs across various cancers. (G) Comparative analysis for expressing levels of SRGs in tumor tissues with
corresponding normal tissues across various cancers. (H) The frequency of SRGmutations across various cancers. (I) The prognostic roles of SRGs across
various cancers. The use of red and blue colors corresponds to factors associated with poor and favorable prognosis, respectively. (J) The correlation
analysis for the expressing levels of SRGs and SCNV across various cancers.
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Identification of senescence-related
subtypes

To further reveal the characteristics of different clusters, we
calculated the senescence-related DEGs, only four overlapping
DGEs were identified among different clusters (Figure 5A).
Unsupervised consensus clustering was carried out by utilizing
DEGs, for identifying subtypes associated with senescence
(Supplementary Figure S3A–F). Consequently, the study
identified three distinct subtypes, denoted as S1, S2, and S3,
containing 72, 137, 48 patients respectively. They showed
significant difference in outcomes and heterogeneity in clinical

features (Figures 5B, C). Moreover, the GSVA analysis indicated
that subtype S3 was positively enriched in sugar metabolism while
negatively enriched in DNA repair pathways such as the DNA
replication, mismatch repair, cell cycle, homologous recombination
(Figure 5D; Supplementary Figure S3G).

Development and verification of senescence
score

To establish an individualized predictive model for
senescence, we subsequently calculated the senescence score

FIGURE 2
Characteristics of SRGs in genome and transcriptome. (A) The frequency of SRGmutations (Top 8) within TCGA-SARC cohort. (B) The CNV gain and
loss of SRGs in TCGA-SARC cohort. (C) The chromosomal localization of SRGs within humans. (D) Analysis of co-occurring and mutually exclusive
mutations in SRGs. (E) Principal component analysis (PCA) was conducted for differentiating STS from normal tissues on the basis of the expression
patterns of SRGs. (F) Comparative analysis for expressing levels of SRGs in STS and normal tissues by utilizing the TCGA-GTEx database.
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based on senescence related DEGs (Figure 6A). As expected,
senescence-related clusters showed significant differences in
senescence score (Figure 6B). A marked disparity in tumor

mutation burden was observed between the high and low
senescence scoring cohorts (Figure 6C). Notably, individual
exhibiting high senescence scores exhibited unfavorable

FIGURE 3
The single-cell resolution expressing patterns of SRGs and validation in cell lines. (A) The t-distributed stochastic neighbor embedding (t-SNE) of
different cellular clusters in GSE131309. (B) The expression patterns of specific SRGs across diverse cellular types. (C) The violin plots illustrating
expressing levels of specific SRGs. (D–G) The expressing levels of specific SRGs in STS cell lineswere validate by using qPCR. (H,I)Comparative analysis for
SRGs among STS and matched adjacent normal tissues by using own sequencing data.
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prognosis, as validated in three datasets (TCGA-SARC,
GSE39055, GSE176307) (Figures 6D–F). The TME scores,
encompassing stromal, immune, and ESTIMATE scores,

demonstrated marked variation between the high and low
senescence score cohorts (Figure 6G). Interestingly, we found
a positive correlation among the senescence scoring and tumor

FIGURE 4
Interaction between SRGs and identification of clusters related to senescence. (A) The association of expressing levels of SRGswith the immune cells
signatures. (B) The interaction networks of SRGs within TCGA-SARC cohort. (C) Kaplan-Meier analysis for different senescence-related clusters. (D–F)
The gene set variation analysis (GSVA) showing different enriched pathways among various senescence-related clusters. (G) The infiltrations of various
immune cells among different senescence-related clusters.
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mutation burden (Figure 6H). Distinct clinical characteristics
were observed between the high and low senescence score groups,
including age (p = 0.048) and histology (p < 0.001) (Figure 6I).
Moreover, a positive correlation was discovered between
senescence score and several immune cell subtypes, including
activated CD4+ T cell, γδT cell, MDSC and macrophage
(Figure 6J). In addition, the multivariate Cox regression
analysis demonstrated that the senescence scoring exhibited
significant prognostic value as a unfavorable prognostic
indicator within STS (Figure 6K; Supplementary Figure S4A–I).

Biological features associated with
senescence scores

We subsequently depicted the differences of genomic and
transcriptomic profiles between high and low senescence scores
groups. As illustrated, a lower mutation frequency was noticed
within the cohort exhibiting higher senescence score, wherein
alterations within 129 (66.15%) of 195 individuals (Figures 7A, B).
Notably, the arm level amplification was more prevalent in high
senescence score cohort while depletion was more common in low

FIGURE 5
The biological and prognostic role of senescence-related subtypes. (A) The overlapping of differentially-expression genes (DEGs) with senescence-
related clusters. (B) The Kaplan-Meier analysis of different senescence-related subtypes. (C) The heatmap showing the clustering of senescence-related
subtypes based on overlapped DEGs. (D,E) The GSVA showing different enriched pathways among different senescence-related subtypes.
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FIGURE 6
Construction and validation of senescence score. (A) The alluvial diagram illustrating the relationships within senescence-related clusters, subtypes,
scores and survival status. (B) Box plots showing senescence scores of different senescence-related clusters. (C) Box plots showing tumor mutation
burden (TMB) within low and high senescence scores. (D–F) Kaplan-Meier analysis of validation for the prognosis role of senescence scores in
TCGASARC, GSE39055 and GSE176307 cohorts. (G) The scores of tumor microenvironment (TME) between low and high senescence scores based
on ESTIMATE algorithm. (H) The correlation analysis of senescence scores, senescence-related subtypes and TMB. (I) The table of pie plots showing the
clinical characteristics within low and high senescence scoring cohorts. (J) Correlational analysis between senescence scores with immune cell
signatures. (K) The forest plot showing the multivariate Cox regression analysis of senescence scoring model and clinical characteristics.
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FIGURE 7
The genomic and transcriptional characteristics of senescence scoring model in TCGA-SARC cohort. (A,B) The top mutated genes among low and
high senescence scoring cohorts. (C) Bar plots showing the GSVA for hallmark pathways between low and high senescence scoring cohorts. (D) The
association between senescence score and predicted pathways for immunotherapy and cancer immunity cycles. (E) The frequencies of amplification and
deletion at the arm level among the low and high senescence scoring cohorts. (F) Kaplan-Meier analysis was utilized to compare the low and high
senescence score groups in the immunotherapy-treated cohort. (G) The proportion of clinical response among low and high senescence score groups
treated with immunotherapy. (H) The drugs with significantly different estimated IC50 among low and high senescence scoring cohorts.
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senescence score group (Figure 7E). GSVA analysis indicated the
positive enrichment of unfolded protein response, TNF signaling via
NFKB, p53 pathway, TGFβ pathway and MYC targets in high
senescence score group (Figure 7C), but the pathways of myogenesis
was negatively enriched (Figure 7C). Furthermore, we analyzed
senescence score’s association with immunotherapy-related pathway
and cancer immunity cycles. Senescence score was positively correlated
with several subtypes of immune cells including CD8+ T cell, dendritic
cell, macrophage and NK cell (Figure 7D). Meanwhile, a positive
correlation between senescence score and several immunotherapy-
related pathways was identified, including IFN-γ signature, APM
signal and Proteasome (Figure 7D).

To examine the association among senescence scoring system and
response to immunotherapy, we analyzed a cohort of patients who had
received immunotherapy. The findings revealed an unfavorable

prognosis among patients exhibiting elevated senescence scores (p =
0.013) and a higher non-response rate when treated with
immunotherapy (p < 0.001) (Figures 7F, G). We further screened
the GDSC database and noticed a statistically significant increase in
IC50 values for CCT007093, KIN001.135, and Lapatinib among the
group with high senescence scores (Figure 7H).

Effects of E2F1 on STS cells

As aforementioned, E2F1 showed high expression in STS, thus
we further explored its role in STS. Our findings revealed that
demonstrated that the downregulation of E2F1 significantly
suppressed STS proliferation, as evidenced by CCK-8 assay and
clone formation (Figures 8A–C). Moreover, scratch assay

FIGURE 8
E2F1 promotes the malignant biological traits of STS cell lines. (A) Knockdown efficiency for E2F1 in hSS-005R cell lines. (B) CCK-8 assay between
hSS-005R cell lines treated with E2F1 siRNA versus those treated with control siRNA. (C) Clone formation between hSS-005R cell lines treated with
E2F1 siRNA versus those treated with control siRNA. (D) Scratch assay between hSS-005R cell lines treated with E2F1 siRNA versus those treated with
control siRNA.
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demonstrated that suppression of E2F1 significantly impeded the
migration of STS cell lines (Figure 8D).

Discussion

While personalized cancer management shows advantages, it is
evident that themolecular profiling is indispensable in STS classification
and treatment decision (Conrad et al., 2017). With high heterogeneity,
diagnosis and classification of STS remain challenging. To cope with
this limitation, accumulating studies have attempted to discriminate the
subgroups of STS by genomic or transcriptomic alterations. Unlike
other epithelial malignancies, STS is characterized by high prevalence of
CNV but low mutational burden (Abeshouse et al., 2017). The varied
genomic and regulomic profiles can assist in defining molecular
subtypes that are associated with patient prognosis. Approximately
31.7% of patients with sarcoma exhibited detectable changes in their
genome, which included rearrangements of a significant proportion of
kinase genes (Gounder et al., 2022). The DNA methylation pattern is
also efficient in classification of sarcoma (Koelsche et al., 2021).
Therefore, the molecular profiling is a useful tool in STS diagnosis
and classification. Senescence is known to play a key role in the
initiation and advancement of neoplastic growths, as it can induce
growth arrest of tumor cells and against tumor cell proliferation
(Calcinotto et al., 2019). Studies have shown that the overexpression
of certain oncogenes or drug therapy can induce cell senescence in
tumors (Prasanna et al., 2021). Therefore, the expression characteristics
of senescence-related genes can also serve as molecular basis for tumor
diagnosis and treatment. This study involved an in-depth examination
for genes associated with cellular senescence and the development of the
predictive model based on senescence for STS.

To depict common characteristics of SRGs in different cancer types,
we first analyzed SRGs at a pan-cancer level. SCNV gain was identified in
several genes such as E2F1, ASPH, BLVRA, and CEBPB across multiple
cancers. Previous studies also uncovered high burden of E2F1 CNVs
which drive tumor susceptibility inmany caner types (Nelson et al., 2006;
Rocca et al., 2017; Rocca et al., 2019; Rocca et al., 2021).Notably, E2F1 and
ASPHwere associatedwith poor outcomes ofmultiple cancers, consistent
with previous studies (Lin et al., 2019; Holtzman et al., 2021; Mandigo
et al., 2021; Jing et al., 2022). Next, we explored mutations of SRGs in
TCGA-SARC cohort. In spite of facts that STS harbors low mutation
burden, the mutation rate for SRGs was relatively high (altered in 100 of
237 samples). As similar to pan-cancer, PMVK also showed high CNV
gain in STS. Differentially expression of most SRGs were found between
STS tissues and normal tissues. Using STS cell lines and our clinical STS
samples, we further confirmed the significantly different expression of
MAGOHB, E2F1 and CEBPB in STS. At single cell resolution, we found
that several SRGs such as ASPH, BHLHE40 and ITSN2 were widely
expressed inmultiple cell types while genes including IGFBP3, CDKN2A,
HK3 and MAP4K1 expressed in specific cell types. Such expression
profiles of SRGs may help uncovering the cell type-specific therapeutics.

Subsequently, we build the clustering system for STS on the basis of
33 SRGs. Four clusters were established (C1, C2, C3, C4), in which
cluster C2 exhibited negative enrichment in immune-related pathways
such as cytokine-cytokine receptor interaction and complement, as well
as metabolism-related pathways inclduing sphingolipid metabolism
and amino sugar and nucleotide sugar metabolism. Consistently,
immune infiltration analysis also indicated the decreased immune

cell infiltration in cluster C2. In order to classify patients based on
SRGs, we calculated DEGs among different clusters and utilized
unsupervised consensus clustering for identifying senescence-related
subtypes. Further identification of three subtypes (S1, S2, S3) was
accomplished. Our observations revealed that subtype S3 was
positively enriched in sugar metabolism pathway but negatively
enrich in several DNA repair pathways. Sugar metabolism activation
or reprograming is an important driver of cancer progression (Hay,
2016; Abdel-Wahab et al., 2019). Targeting sugar metabolism in STS
belonging to S3 subtype may be effective. Unsupervised clustering has
been reported as an efficient tool for clustering distinct subtypes in
specific cancer types (Chu et al., 2020; Cao et al., 2021). Further study
could focus on comprehensively analyzing the characteristics of
metabolism to uncover novel therapeutic targets for STS patients
with specific sugar metabolism niche.

Furthermore, we established a senescence scoring system for
quantification of senescence molecular profiles in individual patients.
We observed significant differences of tumor mutation burden, patient
outcome, TME and several clinical characteristics between high and low
senescence score cohort. The high senescence score groupwas positively
enriched in TNF signaling via NFKB, p53 pathway and TGFβ pathway.
These pathways were all associated with cancer progression, as reported
in other cancers (Joerger and Fersht, 2016; Colak and Ten Dijke, 2017;
Schlein and Thamm, 2022). Not surprisingly, patients with high
senescence score displayed poor prognosis. Additionally, high
senescence score also indicated poor response to immunotherapy.
Although this senescence scoring system is effective, the high
heterogeneity among patients may limit its application, thus larger
scale cohort is required to improve the current model.

More specifically, E2F1 was observed to be highly expressed in STS
and closely related to CNV events and prognostic outcome. We further
explored its role in STS by experiments. The findings of the study
indicated that the suppression of E2F1 resulted in a notable reduction
within the growth, proliferation, and migratory capacity of STS cells.
Similarly, high expression of E2F1 promotes the occurrence and
progression in other cancers (Farra et al., 2019; Jing et al., 2022; Lin
et al., 2022). Therefore, E2F1 may act as a potential therapeutic
senescence-related target for STS. However, the oncogenic role of
E2F1 in STS was not well explored in the current study, while our
findings still valuable insights of E2F1. Subsequent investigations could
further analyze the underlying mechanism of E2F1’s oncogenic
function in STS. Especially, this regulatory role may be attributed to
the modulation of cell cycle progression, given that E2F1 is a renowned
transcription factor that governs cell cycle genes (Ertosun et al., 2016).
Besides, E2F1 could also participate in other oncogenic pathways such
as DNA damage response or apoptosis (Biswas and Johnson, 2012;
Pützer and Engelmann, 2013).

Conclusion

Taken together, we comprehensively analyzed the senescence
pattern and SRGs in STS, part of them were confirmed by
experiments. For the first time, we revealed the profiling of SRGs
in STS and established the senescence-related clusters and subtypes.
To broaden the application of our results, we build a senescence
scoring system that enables personalized evaluation of both prognosis
and immune response in STS patients. These findings could deepen
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our understanding of senescence in STS and help uncovering novel
senescence-based therapeutics.
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