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Abstract 

Sympatric speciation is typically presented as a rare phenomenon, but urban subcultures frequently 

emerge even in absence of geographic isolation. Is there perhaps something that culture has but 

biological inheritance does not that would account for this difference? We present a novel model that 

combines assortative interaction and multidimensional inheritance. Our computer simulations show 

that assortment alone can lead to the formation of cohesive clusters of individuals with low within -

group and large between-group variability even in absence of a spatial separation or disruptive natural 

selection. All it takes is a proportionality between the variance o f inputs (cultural ‘parents’) and 

outputs (cultural ‘offspring’). We argue that variability-dependent inheritance cannot be easily 

accomplished by genes alone, but it may be the norm, not the exception, in the transmission of culture 

between humans. This model explains the frequent emergence of subcultures and behavioural 

clustering in our species and possibly also other cultural animals. 

 

Social Media summary 

New model shows how subcultures, unlike species, pop-up from preferences to interact with self-

similar individuals. 

 

1 Introduction 

There is a long-standing debate about the possibility of speciation that is sympatric, i.e., the emergence 

of multiple species from one species without geographic isolation (Coyne & Orr, 2004; Dieckmann & 

Doebeli, 1999; Gavrilets, 2014; Kondrashov & Kondrashov, 1999; Mayr, 1947; Nosil, 2008; Smith, 

1966; Via, 2001). Although the importance of the geographical aspect of speciation had lately been 

questioned (Hubert, Calcagno, Etienne, & Mouquet, 2015; Schluter, 2009), spatial isolation is still 

believed to play a pivotal role in divergent evolution because it limits the gene flow between adjacent 

populations (Chakraborty & Nei, 1982; Mallet, Meyer, Nosil, & Feder, 2009). The conundrum of the 

emergence of distinct groups of organisms, coined as the ‘mystery of mysteries’ by Charles Darwin, 

was not originally reserved just for the formation of species (Mank, 2009). It referred to the unfolding 

of ruptures in the continuum between groups with high between-group and low within-group variation 

(Pavlinov, 2013), because Darwin stressed the absence of fundamental differences between varieties, 

subspecies, species, and higher taxa (Darwin, 1859). Differences between such categories, e.g. 

between varieties and species, were supposed to be a question of scale rather than quality. Current 

research tends to support this view (Ereshefsky, 2010; Schluter, 2009). It seems that reproductive 

isolation can emerge quite easily even under conditions characterised by an uninterrupted gene flow 

(Nosil, 2008). Two distinct varieties may develop into two separate species via several broadly 

overlapping stages: 1. A homogeneous gene flow between populations, 2. a heterogeneous gene flow 
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where the alleles directly linked to diverging traits rarely cross boundaries between populations, and 

finally 3. separate species that meet the condition of full reproductive isolation (Roux et al., 2016). It 

should be noted, however, that resistance from the mainstream against this view is still quite 

considerable (Mallet et al., 2009). 

Nevertheless, the whole subject of structured biota is no less challenging than its best-known species-

oriented incarnation (Pavlinov, 2013). Why do, for example, distinct cultures, subcultures, or ethnic 

groups exist?  To find an answer, we must clarify what we mean by ‘subculture’. We use this term 

because we focus on models from the field of cultural evolution. Strictly speaking, there is no formal 

difference between a ‘subculture’ as we use the term in this study and a morphologically defined 

species (M. F. Claridge, Dawah, & Wilson, 1997). A subunit within a higher-order (structured) biota is 

a cluster of individuals in a trait space distinguished from other similar clusters by a gap in the 

continuum of transitive forms. Modern clustering algorithms, such as the HDBSCAN (Hierarchical 

Density-Based Spatial Clustering of Applications with Noise (Campello, Moulavi, & Sander, 2013)), 

are designed to detect precisely that: distinct groups of observations separated by gaps, not arbitrary 

chunks of elongated clusters or continuous clines (the usual outcome of K-means clustering and many 

other popular methods (Pedregosa et al., 2022), see also (Rosenberg et al., 2005) for a detailed 

discussion of clines vs clusters in the context of human populations). Our definition of subculture is 

therefore a rather pragmatic one: When multiple distinct clusters in a trait space (culture space) are 

detected, we call them subcultures. If  clustering does not occur we conclude that subcultures are 

absent. 

One of the cornerstones of divergence and speciation is a positive assortment, that is, an increased 

likelihood of interaction between mutually similar individuals (Gavrilets, 2004; Jokinen et al., 2017). 

Straightforward “phenotype matching” is a more potent diversification driver than parental imprinting, 

and both these processes stand in contrast to homogenizing effect of oblique imprinting, in which case 

individuals form preferences on the basis of the whole adult population and any correlation between 

their own and preferred partner’s phenotype is absent (Verzijden, Lachlan, & Servedio, 2005). Both 

assortative social learning and mating seem almost omnipresent in human populations (Luo, 2017) and 

have been abundantly documented also in nonhuman animals (Huber, De León, Hendry, Bermingham, 

& Podos, 2007; Jiang, Bolnick, & Kirkpatrick, 2013). They have been previously identified as a 

necessary but not sufficient condition of sympatric speciation  (Dieckmann & Doebeli, 1999). 

Many authors have verbalized the intuition that social learning and imprinting must play an important 

role in bird speciation since songbirds are responsible for roughly 60% of all bird species diversity and 

they also represent the clade that relies on cultural transmission the most (Nottebohm, 1972; 

Vaneechoutte, 1997) Yet, standard models that represent culture in a particulate “memetic” manner 

suggest that a situation, where a behaviour under sexual selection is fixed genetically , favours the 
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diversification and speciation more than if the behaviour is socially transmitted (Olofsson, Frame, & 

Servedio, 2011; Olofsson & Servedio, 2008). 

We propose that the key difference between biological inheritance and cultural transmission may lie in 

the probability density function which approximates the generation of a new trait value (of an 

offspring or learner) from multiple predecessors (parents or role models).  

1.1 Nonparticulate inheritance models 

Besides models that assume discrete cultural replicators (Axelrod, 1997; Creanza & Feldman, 2014; 

Gavrilets, 2004; Mcelreath, Boyd, & Richerson, 2003; Olofsson et al., 2011) and Henrich’s 

uniparental model, where a single, most successful individual is imitated by everyone else  (Henrich, 

2004), two models of continuous trait inheritance have recently been employed in studies of cultural 

evolution (Cavalli-Sforza & Feldman, 1981; Tureček, Slavík, Kozák, & Havlíček, 2019) . These 

models do not rely on – in this context restrictive – beliefs about additional genetic variation. Rather, 

they can be viewed as general inheritance models such as those which preceded or existed in parallel 

with Mendelism. They have been overlooked due to evolutionary biologists’ focus on genetic models 

which are believed to provide a good approximation of the elementary form of organismal inheritance. 

Both continuous probabilistic models are based on simple blending inheritance but replace the 

problematic assumption of a trait of the offspring (𝑡𝑜) being exactly in the arithmetic mean of parental 

values (𝑡𝑝1, 𝑡𝑝2) by the assumption of a random normal distribution around the arithmetic mean 

representing mutation. 

The Galton-Pearson (GP) model, used previously to approximate continuous cultural inheritance, 

assumes a mutation term characterised by a constant standard deviation (𝜂) independent of the 

difference between parental values. In symbols, we have 

 𝑡𝑜 = 𝜇(𝑡𝑝1
,𝑡𝑝2

) + N(0, 𝜂2),  (1) 

where 𝜇(𝑡𝑝1
, 𝑡𝑝2

) =
𝑡𝑝1+𝑡𝑝2

2
 denotes the arithmetic mean and N(𝑚, 𝑉) is a normal distribution with 

mean 𝑚 and variance 𝑉. The model in Eq. (1) can be generalised to account for multiple (say 𝑀) 

parents by using 𝜇(𝑥1, … , 𝑥𝑀) =
1

𝑀
∑ 𝑥𝑖

𝑀
𝑖=1  instead. But, for the sake of clarity, we will further discuss 

only the variant with two parents. This model is based on Galton’s experiments with inheritance of the 

seed size in sweat pea and investigations of heredity of human height (Stanton, 2001). It can very well 

approximate genetic inheritance if we assume a large population and a high number of freely 

recombining genes with additive genetic variance (Fisher, 1918). Despite its genetic roots, it has been 

used in approximations of cultural inheritance of continuous traits (Cavalli-Sforza & Feldman, 1976, 

1978, 1981). 

The GP model assumes that a pair of highly diverse parents and a pair of identical parents have the 

same distribution of offspring if they have equal mean trait values. This assumption is acceptable 
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when a large number of freely recombining elements, such as genes, execute the inheritance for their 

bearers. It is, however, quite unrealistic when individual agents directly observe and imitate the 

phenotypes of multiple role models. It is so for two reasons: 1. It is more difficult to intuitively assess 

the average of two values when they are further apart; 2. When two successful individuals differ more, 

it is safe to assume that the span of acceptable trait values is wider. 

Imagine a young seamstress who wants to fit into a town she has just moved to. She approaches two 

prestigious individuals, perhaps older seamstresses, to see about the length of skirts that people tend to 

buy around there. She soon discovers that each of her role models makes quite different skirts. One 

makes short skirts, while the other makes rather long ones. Eventually, the new seamstress opts for a 

practical skirt length somewhere in-between. Then another seamstress approaches the same two older, 

well-established, seamstresses and develops a strategy inspired by both but closer to the one with the 

short-skirt strategy. When multiple youngsters learn from the same pair of elders, we can describe the 

distribution of their resulting skirt lengths by a bell curve around the mean of the two ‘cultural 

parents’.  

The Galton-Pearson model implicitly assumes that the distribution of young seamstresses’ strategies 

would remain unchanged even if the two master seamstresses produced and recommended identical 

skirts of average length: there would be an identical mean to imitate but no variance. There is no 

reason to assume that the apprentice seamstresses would use the information on mean acceptable trait 

value but remaining oblivious of the range of acceptable trait values. 

The Parental Variability-Dependent Inheritance (PVDI), suggested as an alternative to the GP model 

(Tureček et al., 2019), supposes that the standard deviation of offspring is proportional (with ratio 𝜈) 

to the standard deviation of parental trait values. In biparental inheritance, this is equal to one-half of 

the parental distance. In symbols, we write 

 𝑡𝑜 = 𝜇(𝑡𝑝1
,𝑡𝑝2

) + N (0, 𝜈2𝜎2(𝑡𝑝1
, 𝑡𝑝2

)), (2) 

where 𝜎2(𝑡𝑝1
, 𝑡𝑝2

) =
|𝑡𝑝1−𝑡𝑝2|

2
. Similarly as above, one could generalise the formula to 𝑀 parents by 

considering 𝜎(𝑥1, … , 𝑥𝑀) = √
1

𝑀
∑ (𝑥𝑖 − 𝜇(𝑥1, … , 𝑥𝑀))

2𝑀
𝑖=1 . In the PVDI system, homogeneous 

parents (or cultural parents) produce homogeneous offspring (cultural offspring), while heterogeneous 

parents produce heterogeneous offspring. 

Despite a rich discussion between modellers that showed that discrete cultural replicators may emerge 

from continuous transmission dynamics (Henrich & Boyd, 2002) and their opponents who claimed 

that assumptions leading to such extreme scenarios are unrealistic (Claidière & Sperber, 2007), little 

attention has been paid to the cognitive realism of a constant error term in cultural transmission. PVDI 

does not require agents to have an inherent source of constant cultural “noise”. Rather, it assumes that 
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the deviation is relative to the observed sources of culturally transmitted information. This approach is 

in line with works on conformity and distinctiveness, where agents strive to be, for instance, 1 

standard deviation left from the mean on the left-right political spectrum, rather than “15 ideological 

units" from the mean regardless of the distribution of other agents (Smaldino & Epstein, 2015). 

Moreover, in contrast to such relativistic models, PVDI does not require agents to perceive and assess 

the whole population of conspecific at once. We believe that many classical models might benefit 

from the introduction of variance-dependent terms. 

Both nonparticulate models from Eqs. (1) and (2) can be easily combined and generalised to a 

multidimensional form,  

 𝐴𝑜 = 𝜇(𝐴𝑝1
, 𝐴𝑝2

) +
𝐴𝑝1

− 𝐴𝑝2

‖𝐴𝑝1
− 𝐴𝑝2

‖
N (0, 𝜂2 + 𝜈2

‖𝐴𝑝1
− 𝐴𝑝2

‖
2

4
), (3) 

where 𝐴𝑖 = (𝑡𝑖,1, 𝑡𝑖,2, … , 𝑡𝑖,𝐷) 𝜖 ℝ𝐷 represents an individual’s position in a Euclidean D-dimensional 

trait space (see Supplement S1 for a detailed derivation). There, the offspring assumes a position on a 

vector connecting her parents. Her distance from the point in-between parental positions is normally 

distributed. The lower the coefficient of proportional variability (𝜈) relative to the constant offspring 

variation (𝜂), the closer is the model to a pure Galton-Pearson inheritance. A visual comparison of the 

models is shown in Figure 1. Vectorizing the inheritance function deals with previous criticism that 

older models of cultural transmission assume independence of every cultural feature of other cultural 

features (Axelrod, 1997). 

 

Figure 1. Model comparison. Offspring distribution function is given by the arithmetic mean of 

parental values and phenotypic mutation, see Eqs (1) and (2). In a system with pure PVDI, the 

proportion of offspring between parental values is constant. In a system with GP inheritance, the 

proportion depends on the distance between parental values. 
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2 Methods 

2.1 Overview 

We employ an agent-based simulation to study the emergence of a structured biota under the 

assumption of assortative pairing. Individuals close to each other in a multidimensional trait space are 

considered similar. We assume no external natural selection acting on the population and only relative 

preferences for pairing between individuals. In our simulations, relative preferences between agents 

are determined by a homophily coefficient (ℎ) expressing a preference for self-similarity. If ℎ is 

negative, we observe a negative assortment where dissimilar individuals are more likely to pair. When 

ℎ is positive, there is a positive assortment and similar individuals pair with a higher probability. For 

ℎ = 0, there is no assortment, and the pairing is completely random. 

In each step, each agent selects an interaction partner (‘role model’) and modifies her position along a 

vector between her and her interaction partner. The value 𝑡𝑝1
 in Figure 1, can be in this context 

interpreted as the agent’s original position, 𝑡𝑝2
 as the selected role model’s position, and offspring 

density as the agent’s resulting position distribution after the interaction . 

We use the continuous inheritance model, with PVDI and GP terms combined, since pure PVDI model 

implies that if cultural parents share a trait value, the offspring become perfect learners who cannot 

make errors. The standard deviation in the combined model is controlled by two parameters, constant 

offspring variation 𝜂 and coefficient of proportional variability 𝜈, that are introduced in the description 

of continuous cultural inheritance models above. 

We offer this narration for the combined model: Agent preferences are centred around a mean of their 

cultural parents and their standard deviation is proportional to the standard deviation of cultural 

parents: N (𝜇(𝑡𝑝), 𝜈2𝜎2(𝑡𝑝)), where the variance of the distribution is just the standard deviation 

squared. Because an agent is not always able to match its preferences exactly, the resulting position is 

a sum of the preferred position and some random influence independent of parental traits: N(0, 𝜂2). 

The additivity of variance (Fisher, 1918), N (𝜇(𝑡𝑝), 𝜈2𝜎2(𝑡𝑝)) + N(0, 𝜂2) ~ N(𝜇(𝑡𝑝),𝜈2𝜎2(𝑡𝑝) +

𝜂2), allows us to draw just one random number per modification of cultural position and yet consider 

both sources of randomness in cultural inheritance simultaneously (see Supplement 1 for details). With 

the probability proportional to the pink area in Figure 1, the agent will end up between its original 

position and the role model’s position. For cases where 𝜂 = 0, this probability 𝑝between can be 

calculated from 𝜈 using 

𝑝between =
2

𝜋
∫ 𝑒−𝑡2

d𝑡

1

𝜈√2

0

, 
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which is derived from the normal cumulative distribution function (see Supplement S2 for details). 

Because normal distribution is symmetric, the agent extremizes own position away from the role 

model with the same probability as it overshoots the role model’s position along the vector that 

connects them, therefore 

𝑝extremize = 𝑝overshoot =
1 − 𝑝between

2
. 

For 𝜂 > 0 these formulas would depend on the distance between the agents. However, for pure PVDI, 

we can calculate that e.g. 𝑝between = 0.68 for 𝜈 = 1, and 𝑝between = 0.38 for 𝜈 = 2, or for many 

regularly spaced values of 𝜈 and find out that 𝑝between = 0.5 when 𝜈 = 1.48 or that 𝑝between =

𝑝extremize = 𝑝overshoot when 𝜈 = 2.32. (The values of 𝜈 were obtained using numerical methods and 

rounded to 2 decimal places. Analytical solution is not possible, because Gaussian error function has 

no closed-form expression.) On a similar note, it is possible to run a series of simplified simulations 

and find out that for  𝜈 ≥ 2.10 two points that serve as role models to each other are more likely to end 

up further apart after the cultural exchange than they were before it.  

While the example with skirt length (or canoe size, spear length, ratio of red and white cattle, age at 

marriage, amount of milk to put in coffee…) represents a special unidimensional case of our model, 

we focus on cultural transmission or procreation in a multidimensional trait space. We do not need to 

suppose that in reality, the trait space that is used to represent differences and similarities between 

individuals has such a straightforward one-to-one correspondence with the design-space of an artefact 

(Mesoudi & O’Brien, 2008). The model bears a strong resemblance to the idea of a broad underlying 

culture space described in the work of Dan Sperber (Sperber, 1996). It represents a useful tool that 

generalizes to discrete cultural variants if the probability (continuous) that certain behaviour is 

executed becomes the centre of the analysis instead of the behaviour’s single occurrence (binary). 

  

2.2 The formal model 

In each simulation run, each agent 𝐴𝑖  in a population 𝑃 of size 𝑛 is represented by its position in a 

Euclidian 𝐷-dimensional space (a ‘trait space’ or ‘culture space’):  

 𝑃 = (𝐴1 , 𝐴2, … , 𝐴𝑛),  𝐴𝑖 = (𝑡𝑖,1, 𝑡𝑖,2, … , 𝑡𝑖,𝐷) 𝜖 ℝ𝐷 .  (4) 

The difference between any two individuals in the trait space can be calculated as the distance between 

two points in a 𝐷-dimensional space: 

 ‖𝐴𝑖 − 𝐴𝑗‖ = √∑(𝑡𝑖,𝑑 − 𝑡𝑗,𝑑)
2

𝐷

𝑑=1

 . (5) 
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In this trait space, we are simulating a process of non-particulate position inheritance. There is no 

external natural selection operating on the population and only relative preferences for pairing between 

individuals. In each time step or ‘generation’ 𝑔, each agent selects a partner probabilistically. Relative 

preference of the focal individual 𝐴𝑖  for agent 𝐴𝑗 is given by 

 rel. pref(𝐴𝑖 , 𝐴𝑗) = (
1

1+‖𝐴𝑖−𝐴𝑗‖
)

ℎ

, (6) 

where ℎ is a homophily coefficient, that is, a measure of preference for self -similarity. This well-

behaved function ensures that self-preference, i.e., a preference for individuals whose distance from an 

agent is zero, serves as a referential value of 1, and other preferences follow proportionally depending 

on ℎ. 

Relative preference of agent 𝐴𝑖  for agent 𝐴𝑗 divided by the sum of all relative preferences of 𝐴𝑖  

defines probability  

 prob(𝐴𝑖 , 𝐴𝑗) =
rel. pref(𝐴𝑖 , 𝐴𝑗)

∑ rel. pref(𝐴𝑖 , 𝐴𝑘)𝑛
𝑘=1

  (7) 

that 𝐴𝑖  selects 𝐴𝑗 as role model. Role models are sampled with replacement, one agent can therefore 

serve as the selected role model to more than one agent. 

If ℎ is negative, we observe heterophily, that is, negative assortative mating where dissimilar 

individuals pair with a higher probability. For a positive ℎ, pairing follows homophily, positive 

assortative mating, where similar individuals pair with a higher probability. For ℎ = 0, there is no 

assortment, relative preference for all individuals is 1, and pairing is completely random. The absolute 

value of homophily |ℎ| corresponds to the strength of assortment. For ℎ = 1, agent 𝐴𝑗 who is twice 

closer to the focal agent 𝐴𝑖  than agent 𝐴𝑘  will be selected as a partner by 𝐴𝑖  approximately twice as 

often as 𝐴𝑘  (assuming ‖𝐴𝑖 − 𝐴𝑗‖ and ‖𝐴𝑖 − 𝐴𝑘‖ are significantly larger than 1). For ℎ = 2, 𝐴𝑗 will be 

selected approximately four times as often as 𝐴𝑘 . For ℎ = 3, 𝐴𝑗 will be selected approximately eight 

times as often as 𝐴𝑘 , etc. Similarly, for ℎ = −1, 𝐴𝑘  will be selected twice as often as 𝐴𝑗 etc. mutatis 

mutandis.  

Because each individual 𝐴𝑖(𝑔) at time step 𝑔 selects one role model 𝐴𝑗(𝑔), we obtain 𝑛 pairs of 

parents in all time steps. Each pair of parents creates one offspring, denoted for this purpose 𝐴𝑖(𝑔 +

1), whose position in the trait space is given by probabilistic non-particulate inheritance combining 

Galton-Pearson and PVDI terms (see Eq. 3), that is,  

 𝐴𝑖(𝑔 + 1) = 𝜇 (𝐴𝑗(𝑔), 𝐴𝑖(𝑔)) +
𝐴𝑗(𝑔) −  𝐴𝑖(𝑔)

‖𝐴𝑗(𝑔) −  𝐴𝑖(𝑔)‖
N (0, 𝜂2 + 𝜈2

‖𝐴𝑗(𝑔) −  𝐴𝑖(𝑔)‖
2

4
). (8) 
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Agent’s position in the following 𝑔 + 1 timestep, 𝐴𝑖(𝑔 + 1), therefore always lies on a line connecting 

the parental points (a variant of the model with additional normal noise can be found in Supplement 

S7). The distance of 𝐴𝑖(𝑔 + 1) from the arithmetic average of 𝐴𝑖(𝑔) and 𝐴𝑗(𝑔) is normally 

distributed. This approach has the advantage of arriving at identical results under any coordinate-base 

rotation. 

The construction of agent configuration of a population 𝑃 in 𝑔 + 1, 𝑃(𝑔 + 1), from 𝑃(𝑔) takes only a 

single time step, which means that all agents in our simulation alter their positions in synchrony. 

A similar model that pairs individuals exclusively for each time step can also be constructed. With this 

modification, 𝑛/2 pairs of agents are formed in generation 𝑔, each creating two new agents, ensuring 

that the population size remains constant, whereby the subsequent time step 𝑔 + 1 follows the same 

inheritance algorithms. This modification invites new interpretations: (a) a vertical cultural transfer 

from biological parents to biological offspring, meaning that one step is identified with a biological 

generation, or (b) exclusive interactions, such as discussions, conversations, exchanges of opinions, 

after which the positions of both interacting individuals change simultaneously. In this model, an 

additional specification of the algorithm must provide for within-pair exclusivity. The selection of 

interaction partners in step 𝑔 is decided one agent at a time in a random order. If an agent is already 

selected as an interaction partner, she does not select a partner of her own. In any case, both models – 

let us refer to them as ‘inspirational’ and ‘interactional’ respectively – are highly similar and lead to 

equivalent conclusions. The ‘inspirational’ model, which is the focus of this manuscript, does not 

require any additional specifications. 

2.3 Computer simulation 

The initial state of the computer simulation was set to a single cloud of normally distributed points 

with standard deviation 𝜎 = 100 along each trait value. Simulation results were obtained for 𝐷 = 10. 

Simulation parameters (𝑛 = 250, 500, 1000, 𝜂 = 1, 10, 100, 0 ≤ ℎ ≤ 4, 0 ≤ 𝜈 ≤ 3.0) were chosen so 

as to demonstrate important transitions between systems with different frequencies of divergence. 

From the initial configuration, the partner selection + position inheritance algorithm was iterated for 

200 steps in each simulation run (1,000 runs per parameter combination depending on the detail 

required given the variation in the number of distinct clusters).  

2.4 Analysis and visualisation 

The average distance between agents in the trait space was calculated to to assess whether trait space 

collapses into a single point (variability loss) or enters a feedback loop of ongoing expansion 

(variability explosion, see Supplement S4, Figure S3). Effective dimensionality of the trait space was 

quantified by the proportion of variance of agent positions explained by the first three principal 

components (PCs) of the 𝐷-dimensional trait space and by the number of PCs necessary for capturing 
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99% of all variance. These measures were highly correlated (cor = 0.9), so in the following we only 

worked with the first measure. We chose variance explained by the first three dimensions because it 

has an intuitive interpretation in the context of the resulting images: what proportion of overall 

variance in 10 dimensions is captured in the 3D scatterplot. If this proportion is for example 95%, we 

can conclude that despite the model running in 10 dimensions, the effective dimensionality of the 

population is lower because we would obtain an almost identical distance matrix capturing differences 

and similarities between agents if we used only the PC1–PC3 space. The number of distinct clusters 

was evaluated using the HDBSCAN algorithm (for a description of the algorithm, see Supplement S3), 

a hierarchical version of DBSCAN (Density-Based Spatial Clustering of Applications with Noise), 

which is an important part of the rich tradition of density-based clustering methods in biology (Edla & 

Jana, 2012). Unlike DBSCAN, HDBSCAN sidesteps the problem of how close should points be to be 

considered a part of the same cluster. 

The development of agent network in the trait space is visualised across time steps as a series of static 

images and as an animation capturing the dynamical process of clustering (see Supplementary 

animations). The 3D scatterplots work with the first three Principal Components (standardised to have 

mean=0 and sd=1 along each PC) and summarise the layout of points in a 𝐷-dimensional trait-space. 

To minimise scatterplot rotation between adjacent frames, PC1, PC2, and PC3 are mapped to axes x, 

y, and z through PC rearrangement and reversion, such that cor(𝑥𝑔, 𝑥𝑔+1) + cor(𝑦𝑔, 𝑦𝑔+1) +

cor(𝑧𝑔, 𝑧𝑔+1) is maximised. The points indicating agents’ relative positions in PC1–PC3 space are 

coloured according to their assignment to distinct clusters. The biggest subgroup from cluster Γ in time 

step 𝑔 that belongs to a single cluster in time step 𝑔 + 1 inherits the colour of Γ from the previous 

step. The measure of dimensionality reduction (Figure S2), the number of distinct clusters (Figure 2), 

average distance between agents (Figure S3), and the proportion of non-clustered noise (Figure S4) are 

visualised as variables dependent on time in a graphical summary of a single simulation run.  

The average values of measures for all simulation runs with the same parameter configuration are 

visualised as colour shades depending on parameters 𝑛,  ℎ, 𝜈, and 𝜂. 

A straightforward extension of the model allows us to focus on relative rather than absolute 

differences between individuals in processes that drive cultural acquisition. In such  a model, we 

normalise the positions of agents so as to maintain the average distance between agents constant after 

each step. Thanks to this additional step, the model leads neither to variability loss (where 𝜈 and 𝜂 are 

too low) nor to variability explosion (where 𝜈 is too high), which were both present in the original 

model. In effect, normalisation binds 𝜂 to the overall population variance while keeping it independent 

of the two particular values selected as parental traits. This resembles Fisher’s genetic model which 

reconciled biometric inheritance with Mendelism under the assumption of additive genetic variance 

(Fisher, 1918). In the main manuscript, we abstained from any extensions, including normalisation, 
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because our aim was to demonstrate the potential of a very simple model, one relying only on bilateral 

relationships between interacting agents, to sustain a reasonable cultural variation. A more detailed 

exposition of the normalised model can be found in Supplement S6.  

Demonstrative examples were run using R (RCoreTeam, 2019). The code for parallel runs was written 

in Python (Van Rossum & Drake, 2009) using Numpy (Van Der Walt, Colbert, & Varoquaux, 2011) 

infrastructure and delegated to processor cores using R package parallel (RCoreTeam, 2019) and 

reticulate(Allaire & Ushey, 2020). Visualisations were created using the base R graphics. 

3 Results 

We found that distinct groups with a high between-group and low within-group variance emerge from 

positive assortment alone when PVDI prevails over GP, that is, when constant standard deviation 𝜂 in 

an inheritance model that combines the GP with PVDI is small (see an example run in Figure 3B). The 

emergence of distinct subcultures was observed even though we did not introduce any explicit 

threshold in mutual similarity below which agents tend to coordinate their positions and above which 

they tend to actively differentiate (Turner & Smaldino, 2018).  

In a system with a considerable influence of constant offspring variation (such as 𝜂 = 100), 

assortment alone cannot lead to the emergence of distinct groups (Figure 2). Instead, the agents form a 

single uniform cluster (Figure 3A). This outcome is affected neither by homophily nor by the 

population size. In some intermediate cases (for instance Supplementary Figure S6C, 𝑛 = 1000, ℎ =

3.6, 𝜈 = 1.5, 𝜂 = 10) we may see clusters forming and later collapsing into a single bulk of points. 

This scenario is likely when the simulation starts with enough initial variance but relatively low 𝜈 and 

homophily that allows occasional selection of role models from clusters other than the agent’s own 

bring clusters closer together. With narrowing the gaps between clusters, higher constant 𝜂 starts 

playing a significant role and further blurs the distinctions. Because there is higher chance of agent 

bridging two existing clusters by ending up between them in large populations, the domain where 

clusters are present at generation 200 shifts upwards with the increase in population size (Figure 2, 

Figure S4). 

We shall focus rather on the distinction between the white regions of the parameter space, where no 

distinct clusters form and prevail over 200 generations, and the purple region , which indicates the 

tendency to form distinct clusters, rather than at the difference between, say, 5 and 20 clusters on 

average after 200 generations. The effects of variance constancy and magnitude are to some extend 

conflated. When both the constant contribution to variance (𝜂) and the coefficient of proportional 

variability (𝜈) are small (consider, for example, a limiting case where 𝜂 = 0 and 𝜈 = 0, or 

Supplementary Figure S14A) but homophily is very high, one can observe the emergence of distinct 

clusters. On the other hand, when we expect the offspring variance to be huge, even when it is due to 

very high 𝜈 and not 𝜂, clusters need not form if homophily is not high enough (see Figure S14B). 
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The proportion of points that are indicated not to be a part of any cluster by HDBSCAN (i.e. the 

proportion of noise) corroborates the conclusion about parameter values that lead to clustering. In the 

purple region of Figure 1, very few points are marked as noise (see Supplementary Figure S4 for the 

visualization of this measure). Pearson’s correlation between the number of clusters and the proportion 

of noise was -0.56 at a level of individual simulation runs and -0.65 at averages per parameter 

combinations. The proportion of noise emphasises the area in which clustering consistently happens 

but the number of clusters is small (in Figure 2, this area is still very light). A lower number of clusters 

means larger clusters for a given population size, so the adherence of points to their clusters is higher 

and the probability that a point is identified as noise between distinct clusters is low (Figure S4). 

Regardless of the constant offspring standard deviation 𝜂, smaller populations face a reduction of 

effective trait-space dimensionality (Supplement S4, Figure S2), which conforms to a line of empirical 

and theoretical work on cultural diversity and covariation in small-scale societies (Smaldino, 

Lukaszewski, von Rueden, & Gurven, 2019). The effective dimensionality also decreases when 

relative offspring variability 𝜈 is high. In smaller populations, unidimensional polarisation or 

variability loss is more likely, which conforms to the results of  previous research (Derex, Beugin, 

Godelle, & Raymond, 2013; Powell, Shennan, & Thomas, 2009). We thus arrive at an interesting 

interplay between agent positions and the effective trait space, where one depends on the other and 

influences it at the same time. Our simulations thus show that the formation of diverse cultural 

systems, where individuals differ along multiple dimensions, requires larger populations. 

We obtain qualitatively similar results using the algorithm with normalisation (Figure S15) with 

exception of the more likely occurrence of low number of clusters in a model with low 𝜈 and 

intermediate ℎ despite high 𝜂 (Figure S19). The results of simulations with additional 

multidimensional noise were also very similar to those of the basic model (Figure S20). The extra 

noise only served as a potential source of agents bridging neighbouring clusters, so the domain with 

intensive clustering is smaller and shifted towards higher homophily values ℎ. 
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Figure 2. A graphical summary of the number of subcultures after 200 model generations. The 

points in the 10-dimensional culture space were normally distributed across all dimensions at the 

beginning of each simulation run, and 1,000 simulation runs were executed for each parameter 

combination. Red crosses indicate the values of parameters used for single-run examples included in 

the main article. Blue crosses indicate examples available in the Supplementary material. 
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Figure 3. Two simulation runs, one of a system strongly influenced by Galton-Pearson 

inheritance (A) and one strongly influenced by PVDI (B).  A configuration of points across the first 

three principal components is displayed at the beginning and after each third of the simulation run. 

The system with PVDI inhabits the culture space in a discontinuous manner and forms distinct clusters 

which are stable over time. (See also Supplementary animations 3A and 3B; all supplementary 

animations are deposited in a separate folder at https://doi.org/10.17605/osf.io/pvyhe, see S6B in the 

Supplement and the corresponding animation for an approximately intermediate case.) Standardised 

first three Principal Components (PC1–PC3 scaled space; for further elucidation see Methods) rotated 

to minimise changes between adjacent images are used to visualise the 10-dimensional configuration 

in 3D scatterplots. 
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4 Discussion 

Over time, various models were proposed in an attempt to explain the formation of human groups with 

low intra-group and high inter-group cultural variance (Axelrod, 1997; Creanza & Feldman, 2014; 

Turner & Smaldino, 2018). Most of these models rely on concepts of conformity or the notion of 

discrete ethnic markers (Ross et al., 2018). The model presented here works with probability density 

functions and continuous culture space. It differs from the previously suggested models in one 

important aspect: Whereas particulate models require the existence of mutually exclusive traits that 

can be employed as ethnic markers prior to the accumulation of cultural differences between groups, 

our model demonstrates the possibility of the emergence of distinct clusters regardless of presence or 

absence of such markers. If distinct cultural groups form spontaneously within a continuum of agents 

and are only later recognized, labelled and possibly conspicuously marked, our model should be given 

a priority over the older models. 

It is interesting to compare the presented results with works that demonstrate how cultural clusters can 

emerge from anti-conformity (Smaldino & Epstein, 2015). The model based on Durkheim’s theory of 

counteraction between integrating (conformity towards the societal average) and individualizing 

(tendency to differentiate more if there are too many self-similar individuals) forces in society, yields 

clusters of agents if the individualizing tendencies are strong (Mäs, Flache, & Helbing, 2010). Despite 

the superficial similarity of the manifested clusters, the models have opposite expectations about 

agents in densely/sparsely populated domains of culture space. By definition, the Durkheimian model 

assumes that agents in the densest domains deviate most from the mean value of their neighbours, 

while in PVDI model with homophily such agents deviate the least, since they can choose from lot of 

self-similar agents, and the standard deviation is proportional to the distance between interacting 

agents. Apparently, functions of variance can secure clustering regardless of the direction of the 

association between variances in subsequent generations. While the Durkheimian model leads to 

pulsation between one and several unstable clusters, PVDI seems to render stability or irreversible 

merging of clusters. It is possible that each of the two processes occurs at a different level of human 

social interaction. In the few-to-one, or one-to-one transmission, PVDI may dominate, because the 

differences between sources of cultural information provide perspective for adequate cultural 

differentiation, but when a person attempts to perceive society as a whole to adapt her role in it, 

Durkheim’s individualization may come into play.    

Future studies should aim to combine both models for a whole new level of understanding of human 

subculture formation. More complex, e.g. polynomial functions between the variance of cultural inputs 

and the variance of cultural outputs may be also worth exploring. 

Assortative interaction and proportionality between traits of  the ‘parents’ and the ‘offspring’ are 

sufficient conditions for the formation of subcultures (see purple regions in Figure 2). The inability of 

a typical Galton-Pearson system, which approximates the model of polygenic additive inheritance, to 
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form distinct varieties in the presence of assortative pairing alone might be interpreted as providing 

support for ecological theories of sympatric divergence (Mallet et al., 2009; Mank, 2009; Nosil, 2008; 

Rabeling, Schultz, Pierce, & Bacci, 2014; Schluter, 2009; Tyers et al., 2015). In absence of any 

cultural inheritance, natural and sexual selection must take place concurrently to generate separate 

ecotypes or species (Gavrilets, 2014; Kondrashov & Kondrashov, 1999; Mank, 2009).  

On the other hand, if  an inheritance system, such as culture, of an unfragmented species of sexually 

reproducing organisms follows the PVDI, we must conclude that species homogeneity is due to 

stabilising natural selection or other external force. For instance, if we added Gaussian fitness function 

that would decrease the probability that an individual is selected as a role model proportionally to its 

distance from the coordinates origin (point 0,0,…,0), homophily might be trumped by the convergence 

of all agents towards this point. In a system, where homophily is strong and the variance of outputs is 

proportional to the variance of inputs, sympatric speciation, however, should not be viewed as an 

exception but rather as a norm. 

The problem with sympatric speciation is in the evolution of reproductive barriers in the presence of s 

geneflow: cultural differences between spontaneously emerging homogenous groups can potentially 

limit the geneflow between them and facilitate speciation. If there is then a potential for divergent 

selection, distinct groups can subsequently settle into distinct ecological niches (Cameron, 2003; 

Riesch, Barrett-Lennard, Ellis, Ford, & Deecke, 2012). Such clusters are precursors of cultures, 

subcultures, guilds, alternative subsistence strategies, political factions, etc. (Olsson & Paik, 2016). 

While biological species are usually viewed as stable, separate, and enduring entities, subcultures may 

be only temporal clusters (Chandler, 2020). On the other hand, the clusters that emerge in our model 

are also relatively stable, which clearly calls into question the persisting stress on the species level in 

research of structured biota (Pavlinov, 2013). 

We suggest that the process of culturally facilitated clustering in trait space enables organisms with the 

capacity for social transmission to establish and maintain distinct ecotypes defined by rituals, ethnic 

markers, and dialects even prior to the emergence of any genetic differences between the groups 

(Mcelreath et al., 2003). Moreover, the behavioural clustering and limited information flow between 

interconnected groups of individuals enable to increase the realized niche of a species with cultural 

transmission (Derex, Perreault, & Boyd, 2018; Lazer & Friedman, 2007). Species like Homo sapiens, 

Orcinus orca, or Corvux corax should be therefore capable of exploiting natural resources in ways 

which are out of the reach of organisms that rely solely on genetic inheritance. Sympatric fission, that 

is, cases where cultural divergence precedes any spatial dislocation of individuals, may play a vital 

role in the distribution of cultural variants across time and space (Olsson & Paik, 2016; Riesch et al., 

2012). Gradually, one may see an accumulation of genetic differences aiding further differentiation 

between groups (Roux et al., 2016). Cultural assortment sparked by preference for self -similar 

individuals may be the key factor that limits gene flow between emerging subpopulations. The attested 
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historical adaptive radiations of hominins (Foley, 2002; Wood, 1992), cetaceans (Filatova & Miller, 

2015; Morin et al., 2010; Riesch et al., 2012), and songbirds (Huber et al., 2007; Nottebohm, 1972; 

Vaneechoutte, 1997) may be in part due to the vast cultural capacity of these lineages. 
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