
Simulated Self-Organization of a Peer To Peer Awareness Network
David Nutter

University Of Lincoln
dnutter@hemswell.lincoln.ac.uk

Introduction
Software engineers working in distributed teams
are deprived of much “out of band”
communication with their colleagues, with
consequent effects on the coherence of team
work [3]. Distribution itself has deleterious
effects on team work due to problems rarely
suffered by colocated teams including a language
barrier, time differences and cultural differences.
Consequently, to help alleviate these problems,
software tools instead of colocation must provide
context awareness for software engineers
working in distributed teams.
Many awareness systems are real time
(synchronous awareness), facilitating tasks such
as collaborative editing of documents [4, 1] by
highlighting changes made by other users. While
useful at times they do not provide a
developmental history of the collaborative object
In distributed software engineering domains,
particularly Libre software, this knowledge is
often incompletely contained in mailing list
archives and the log files of configuration
management repositories.
Therefore the concept of historical awareness has
been defined[5]:

The complete context of an artefact’s creation,
derived from a collection of heterogenous
artefacts (source code, design etc) rather than
a contextless view of a single artefact’s
evolution.

Certain elements of such information should be
presented to the user for a specific artefact or
collection of artefacts.

•Details of previous conflicts
• “Proximity” of current user activities
•Artefacts related to current artefact

Tool In Use

Awareness Distribution Model
In order to provide ad-hoc context awareness
capabilities for distributed teams without
complex setup the Peer To Peer model of
distribution has been selected. Rather than all
awareness information passing through a central
reflector, with attendant scalability and
robustness problems, users’ clients exchange
awareness information with a limited number of
peers.
As an additional benefit, given a suitably
organised network, peers will be “close enough”
to all other peers working on artefacts relevant to
them that awareness information may be given a
Time To Live (TTL) in hops from the originating
peer. Once information has travelled this
“distance” it will no longer be relevant and may
be discarded, keeping network load down.
Therefore, the remaining problem is the
organisation of the network. Much research has
been carried out in the area of Semantic Overlay
Networks[2] though most implementations rely
on the concept of a Super Peer or Edge
Rendezvous Peer to incorporate new nodes into
the network. Whilst appropriate for large
networks (such as filesharing or messaging)
Super Peers are not required for small, ad hoc
awareness networks.

The simulation tool
Prior to deployment of the awareness toolset in a
controlled experiment, the algorithms used to
organise the network will be tested in a
simulation environment. This environment will
allow:

•Algorithms to be refined without costly,
complex experiments
•Algorithm performance evaluation in multiple

network environments that would be difficult
or disruptive to simulate for real.
•Reproducible experiments and test cases, with

total parameter control. Other activities on a
“real” network may disrupt experiments
unpredictably.
• Simple demonstration of the self-organization

concept.

Architecture & algorithms
The tool is based on an Open Source graph
framework (JGraph) and associated layout
algorithms. Consequently, operations on the
network (connection/disconnection of peers,
routing of information) may be expressed as
operations on the graph.
The simulation packages offers the experimenter
various parameters including:

•The Message Time To Live (MsgTTL)
•Max and Min connections permitted per node.
•Event frequency (tick)
•Automatic content generation, within bounds
•Length of the simulation run
•Number of seed nodes to generate

At simulation launch, nodes will be randomly
connected to one other node. No guarantee is
made that the network will be fully connected.
Subsequently, algorithms are applied by each node
to organise the network into an optimum state.
An example of the current algorithm operating
on four distinct peers may be shown as follows:

Peer A
connect−−−−→ Peer B

Peer A
send details of A−−−−−−−−−→ Peer B

Peer B
send details of A−−−−−−−−−→ Peer C

Peer B
send details of A−−−−−−−−−→ Peer D

Peer B
reconnect D−−−−−−→ Peer A

Peer A
disconnect←−−−−− Peer B

Peer A
connect−−−−→ Peer D

The tool architecture is as follows:

Org Algorithm

Timer Thread

Node

Simulation

OrgAlgorithm Connection

Graphical ViewAnnotation View

Evaluation Testbed
By using the simulation, a refined algorithm for
network organisation will be developed.
Subsequently, the algorithm will be ported to the
Sun JXTA framework and the awareness timeline
view implemented as an Eclipse plugin. The
eclipse plugin will also start the JXTA back end to
connect to other clients and exchange awareness
information.
The items being edited in Eclipse will indicate to
the awareness system what items are currently
“relevant” to the user and consequently what
nodes the network organisation algorithm
decides to connect to.
The current experimental plan[5] is to validate
the testbed by deploying it with existing Eclipse
users in the research group. Once successfully
validated, a controlled experiment based on
simple collaborative programming exercises is
planned, with awareness and without.

Awareness project goals
This loose requirement for historical awareness
may be decomposed into some high-level project
goals for implementing historical awareness for
distributed teams:

•Contextual view of an artefact’s development,
displayed using the timeline visualisation
•Reflector-free distribution model, for ad-hoc

construction of awareness networks. By
contrast, the most common method of CSCW
application development relies on a centralised
reflector to distribute information
• Integration with existing development

environment for evaluation purposes.
•Evaluation driven development of the

prototype implementaiton.

References

[1] P. Dourish and V. Belotti. Awareness and coordination in shared
workspaces. In ACM Conference on Computer Supported Cooperative
Work (CSCW’92), pages 107–114, Toronto, Ontario, November 1992.
ACM Press, New York City.

[2] D. Doval and D. O’Mahony. Overlay networks: A scalabale
alternative for P2P. IEEE Internet Computing, August 2003.

[3] J. A. Espinosa, R. E. Kraut, S. A. Slaughter, J. F. Lerch, J. D.
Herbsleb, and A. Mockus. Shared mental models, familiarity, and
coordination: A multi-method study of distributed software teams.
In Proceedings of the 23rd International Conference in Information
Systems (ICIS), pages 425–433, Barcelona, Spain, 2002.

[4] C. Gutwin, S. Greenberg, and M. Roseman. Workspace awareness
support with radar views. In CHI Conference Companion, pages
210–211, 1996.

[5] D. Nutter and C. Boldyreff. Historical awareness support and its
evaluation in collaborative software engineering. In Proceedings of
WETICE 2003, pages 171–176. IEEE Computer Society, June 2003.


