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Introduction: Cellular senescence (CS) plays a critical role in cancer

development, including clear cell renal cell carcinoma (ccRCC). Traditional

RNA sequencing cannot detect precise molecular composition changes within

tumors. This study aimed to analyze cellular senescence’s biochemical

characteristics in ccRCC using single RNA sequencing (ScRNA-seq) and

traditional RNA sequencing (Bulk RNA-seq).

Methods: Researchers analyzed the biochemical characteristics of cellular

senescence in ccRCC using ScRNA-seq and Bulk RNA-seq. They combined

these approaches to identify differences between malignant and non-malignant

phenotypes in ccRCC across three senescence-related pathways. Genes from

these pathways were used to identify molecular subtypes associated with

senescence, and a new risk model was constructed. The function of the gene

DUSP1 in ccRCC was validated through biological experiments.

Results: Thecombinedanalysisof ScRNA-seqandBulkRNA-seq revealed significant

differencesbetweenmalignantandnon-malignantphenotypes inccRCCacrossthree

senescence-related pathways. Researchers identified genes from these pathways to

identify molecular subtypes associated with senescence, constructing a new risk

model. Different subgroups showed significant differences in prognosis level, clinical

stage and grade, immune infiltration, immunotherapy, and drug sensitivity.

Discussion: Senescence signature markers are practical biomarkers and

predictors of molecular typing in ccRCC. Differences in prognosis level, clinical

stage and grade, immune infiltration, immunotherapy, and drug sensitivity

between different subgroups indicate that this approach could provide valuable

insights into senescence-related treatment options and prognostic assessment

for patients with ccRCC. The function of the gene DUSP1 in ccRCC was validated

through biological experiments, confirming its feasibility as a novel biomarker for

ccRCC. These findings suggest that targeted therapies based on senescence-

related mechanisms could be an effective treatment option for ccRCC.
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Introduction

Renal cell carcinoma (RCC) is the most typical malignant tumor in

the kidney from renal epithelial cells. RCC patients’ five-year overall

survival (OS) is below 20% (1). Clear cell RCC (ccRCC) is the most

common histology subtype and contributes about 70% to all cases of

RCC (2). Surgical excisions are the preferred method of ccRCC

treatment. However, the outcome is disappointing and is expected to

be recurrent (3). The pathogenesis of ccRCC is influenced by the tumor

microenvironment (TME), which includes malignant tumor cells,

tumor-associated macrophages (TAMs), CD8 T cells, and fibroblasts

(4). Even though many biomarkers have been proposed to assess risk

models of ccRCC, a significant insufficient value remains with these

models (5). Therefore, developing a new predictive model based on the

significant genes and pathways of ccRCC is critically essential.

Cell senescence (CS) is a permanent break in the cell cycle and can

be caused by various physiological and pathological situations,

including tissue injury, aging, and tumorigenesis (6). CS can suppress

the unregulated proliferation of cancer cells, thus inhibiting tumor

progression (7). Studies also indicated that CS was a robust prognostic

biomarker for many cancers in which senescent cells in tumor tissues

may facilitate the proliferation and invasions of adjacent pre-neoplastic

cells (8). However, the biological mechanisms and prognostic roles of

senescence-related genes remain unclear. There is currently little

understanding of whether the characteristics of CS within the ccRCC

samples can be used for treatment guidance and screening out the

prognostic risk subgroups.

Traditional RNA sequencing (bulk RNA-seq) profiling is

conducted on a mixed population of cells, which is insufficient for

detecting particular cell types and unable to assess the complexity of

intra-tumor heterogeneity (9). In contrast, the single-cell RNA-seq

(scRNA-seq) technique has flourished recently, allowing

researchers to intuitively identify specific gene characteristics at a

genome-wide scale and investigate cellular heterogeneity. In this

study, we integrated scRNA-seq and bulk RNA-seq data to analyze

senescence-related pathways with “ccRCC characteristics” at

multiple levels. Based on the genes in these distinct senescence-

related pathways, we constructed senescence-related subtypes and

risk models and identified significant differences between different

subtypes and risk groups in biology and clinical phenotypes.

Additionally, we discovered a novel molecular marker, DUSP1, in

ccRCC. These findings highlight the important value of cellular

heterogeneity in ccRCC and lay the foundation for further

development of clinically relevant applications.
Materials and methods

Data acquisition

The scRNA-seq files were collected from GSE159115 via the

GEO database. The dataset includes 14 samples. Among them,

seven lesions were ccRCC tumor samples, one lesion was a

Chromophobe RCC tumor sample, and six lesions were cancer-

adjacent normal tissues. For ccRCC clinical phenotype data, 526
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ccRCC samples and 72 cancer-adjacent normal samples were

downloaded from The Cancer Genome Atlas (TCGA) dataset

that matched survival information (survival time and survival

status). TCGA ccRCC gene-level copy number variation (CNV)

data of Masked Copy Number Segment type assessed using the

GISTIC2 method was performed. The predictive value for the risk

model was validated using RECA-EU data of 91 ccRCC samples

downloaded from the ICGC Data Portal. Furthermore, we utilized

the GSE167573 dataset downloaded from the GEO database and the

E-MTAB-1980 dataset downloaded from the ArrayExpress

database (https://www.ebi.ac.uk/arrayexpress/) to further validate

the performance of our risk model. Finally, to validate the model’s

application in immunotherapy, we downloaded the datasets

GSE78220 and GSE135222, along with their respective clinical

information, from the GEO database. Additionally, we obtained

the expression matrix and clinical data for IMvigor210 using the R

package “IMvigor210CoreBiologies”.
Single-cell data processing

Data analysis was conducted using Seurat R package (version

3.6.3, https://satijalab.org/seurat/). At first, by setting the criteria

that each gene expressed in no fewer than 3 cells and no fewer than

250 genes expressed in each cell, single-cell data were filtered, and

32352 cells were obtained. Then, according to the criteria that each

cell expressed 100 to 5000 genes, 25% less mitochondrial content,

and 100 to 50000 unique molecular identifier (UMI) counts. The

proportions of mitochondria and rRNA were calculated using the

PercentageFeatureSet function. The data of the 14 samples were

individually normalized using log normalization. Hypervariable

genes were screened with the FindVariableFeatures function

(variant features were identified based on a variance stabilizing

transformation [vst]). Subsequently, we used the canonical

correlation analysis (CCA) method to identify the sample batch

with the FindIntegrationAnchors function and integrated the 14

samples using the IntegrateData method genes were subjected to

scaling using the ScaleData function, and anchors were obtained

through principal component analysis (PCA) dimensionality

reduction. The condition dim = 25 was set for cell clustering

using FindNeighbors and FindClusters functions (Resolution =

0.2). We next performed t-distributed Stochastic Neighbor

Embedding (tSNE) for dimension reduction on cells using the

RunTSNE function and annotated subpopulations using several

classical immune cell markers. Marker genes in subpopulations

were screened using the FindAllMarkers function with the

logarithm of fold change (log FC) = 0.5, minimal percent of the

differentially expressed gene (Minpct) = 0.5, and adjusted p< 0.05 as

screening thresholds.
Construction of molecular subtypes and
risk model

We conducted consensus clustering on gene expression profiles

using the ConsensusClusterPlus package. We simultaneously
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utilized the PAM algorithm and “Euclidean” metric distance and

performed 500 bootstraps, with 80% of patients in the training set

for each bootstrap. With the number of clusters set as 2 to 10, the

consensus matrix and the consensus cumulative distribution

function (CDF) were analyzed to calculate the optimal clusters.

LASSO Cox regression was achieved using the R package glmnet.

Then, the R package timeROC was utilized to perform the ROC

analysis of RiskScore for prognostic classification.
Acquisition and quantification of gene sets

31 genes related to cell cycle progression (CCP) and 24 genes

related to angiogenesis were obtained from previous studies (10). In

addition, we downloaded 27 genes related to the G1/S phase from the

KEGG website. To analyze differences in cell cycle scoring, tumor

metastasis scoring, inflammatory response scoring, and telomerase

scoring among different subtypes, several common gene sets,

including HALLMARK_G2M_CHECKPOINT, HALLMARK_

EPITHELIAL_MESENCHYMAL_TRANSITION, HALLMARK_

INFLAMMATORY_RESPONSE, HALLMARK_HYPOXIA and

REACTOME_TELOMERE_EXTENSION_BY_TELOMERASE

were downloaded from the GSEA website (https://www.gsea-

msigdb.org/gsea/msigdb/). Finally, we obtained relevant gene sets

for 10 tumor-related pathways previously reported in the study,

involving different cancer aspects (11). All gene sets were calculated

using ssGSEA analysis to obtain corresponding scores.
Cell culture and transfection

Human ccRCC cell line 786-O (KCB200815YJ) were obtained

from the Chinese Academy of Sciences (Kunming, China). Cells

cultured as described previously (12). Small interfered RNA (Si-

RNA) targeted DUSP1 (Shanghai Gene Chem Co., Ltd.) using

GV493 vectors (hU6-MCS-CBh-gcGFP-IRES-puromycin) to

silence the DUSP1 gene expression in 786-O cell.
Colony formation, transwell migration,
invasion, Western blot assay

The Colony Formation, Transwell Migration, and Invasion assay

of 786-O cell were performed as described previously (13). Aminimum

of five random fields of view were immediately captured on the 786-O

cell. For western blot assay, 786-O cell were incubated with anti-

DUSP1 (Cat# AF5286, Affinity Biosciences), anti-b-tubulin (Cat#

T0023, Affinity Biosciences), anti-p21 (Cat# AF6290, Affinity

Biosciences) and anti-p53 (Cat# AF0879, Affinity Biosciences),

following are the specific methods shown (14).
SA-b-galactosidase detection assay

The activity of SA-b-gal with 786-O cell was performed in

accordance with the manufacturer guidelines (C0602, Beyotime
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Biotechnology, Shanghai, China). The stained cells were visualized

under an inverted microscope.
Statistical analysis

Apart from the stated bioinformatic methods, R (version 4.1.0,

www.r-project.org) and GraphPad Prism 8.0 were used to analyze

this research. Spearman’s rank correlation was utilized to evaluate

the connection between two continuous variables. The relevance of

two group divergences was tested using Student’s t-test. p< 0.05 was

statistically significant.
Results

Single-cell clustering and dimension
reduction analysis

After filtering, a total of 27,300 cells were obtained. As shown in

Figure S1A, the UMI count was significantly related to the number

of mRNAs, while the amount of UMI/mRNAs was insignificantly

linked to the number of mitochondrial genes. Figures S1B, C

represents the violin plot before and after quality control. Next,

tSNE was performed on 27300 cells for dimension reduction using

the RunTSNE function, and 12 subpopulations were identified and

annotated using several classical immune cell markers (Figure S2).

Among these subpopulations, subpopulation 4 was T cell (CD2,

CD3D, CD3E, CD3G); subpopulation 10 was B cell (CD79A);

subpopulation 11 referred to Mast cell (TPSAB1 and CPA3),

subpopulation 1 referred to Macrophage (CD163, CD68, CD14);

subpopulations 3 and 9 referred to Fibroblast (ACTA2, PDGFRB,

NOTCH3); subpopulations 0, 5, 6, and 8 referred to ccRCC (CA9);

subpopulations 2 and 7 referred to Endothelial cell (KDR,

PECAM1, PLVAP, PTPRB, VCAM1).

The distribution of the 14 samples was summarized in a tSNE plot

(Figure 1A); different subpopulations after clustering were presented in

a tSNE plot (Figure 1B); the distribution of the annotated cells was

visualized in a tSNE plot (Figure 1C). The numbers of different sample

cells before and after filtering are statistically summarized in Table 1.

Marker genes in 7 subpopulations were selected using the

FindAllMarkers function with logFC = 0.5 and minpct = 0.5. After

screening with a corrected p-value< 0.05, we only presented the

expression patterns of the top 5 marker genes exhibiting the most

significant contribution in the subpopulations (Figure 1D). The results

of the marker genes are described in Table scRNA_marker_gene.txt.

Furthermore, we analyzed the percentages of these 7 subpopulations in

each sample (Figure 1E). Next, the CopyKat package was employed to

predict CNV changes in cells in single-cell data to distinguish tumor

cells from normal cells in each sample (although tumor and normal

tissues were selected at the time of sampling, it cannot be guaranteed

that tumor tissues did not contain normal cells). Among them were

1944 cancer cells and 25356 normal cells (Figure 1F).
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Cell senescence characteristics in single-
cell level

As shown in Figure 2, fibroblast senescence-related pathways

had higher scores in malignant cells than in non-malignant cells,

and endothelial cells were only present in non-malignant cells.
Validation of cell senescence abnormalities
based on bulk RNA-seq data

Our results demonstrate that malignant cells exhibit higher

expression of cell senescence-associated pathways than non-

malignant cells at the single-cell level. We examined expression

profiles in tumor and normal tissue samples using bulk RNA-seq

data to further analyze these pathways. Through GSEA software

analysis, we found that GOBP_REGULATION_OF_CELL_AGING,

GOBP_NEGATIVE_REGULATION_OF_CELL_AGING, and

KEGG_P53_SIGNALING_PATHWAY were significantly enriched

in tumor tissues from the TCGA dataset (Figure 3A).

Next, the scores of these senescence-associated pathways in

tumor tissues and normal tissues in each sample in the TCGA

dataset were subjected to a ssGSEA analysis. The significance of

each cell senescence-associated pathway in tumor tissues and

adjacent tumor tissues was calculated, and we found the

enrichment scores of GOBP_REGULATION_OF_CELL_AGING,

GOBP_NEGATIVE_REGULATION_OF_CELL_AGING,

KEGG_P53_SIGNALING_PATHWAY was higher in tumor tissues

than in tumor-adjacent tissues (Figure 3B). The scores of the

pathways mentioned above in the TCGA dataset are presented in

Table tcga.cellage.score.txt.
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Construction of cell senescence-
related subtypes

As described above, our analysis revealed three cell senescence-

related pathways, including (GOBP_REGULATION_OF_CELL_

AGING, GOBP_NEGATIVE_REGULATION_OF_CELL_AGING,

and KEGG_P53_SIGNALING_PATHWAY) were significantly

enriched in tumor tissues. Therefore, a univariate Cox analysis was

implemented on the genes in these three pathways in the TCGA and

ICGC datasets using the survival package and screened prognosis-

associated genes with p< 0.05. The results showed 57 prognosis-

associated genes in the TCGA dataset and 18 prognosis-associated

genes in the ICGC dataset. Furthermore, we found that 7 of these

genes were correlated with prognosis in both datasets. The results of

univariate Cox analysis on the genes in three senescence-related

pathways in TCGA and ICGC datasets are outlined in Table

tcga.cellage.cox.txt and icgc.cellage.cox.txt.

Next, based on seven prognostic genes, we performed clustering

using the ConsensusClusterPlus package on 526 ccRCC samples from

the TCGA dataset. CDF Delta area curves show that the clustering

with Cluster = 3 was more stable (Figures 4A, B). Ultimately, we

selected k = 3 and obtained three subtypes (cluster) (Figure 4C). A

subsequent analysis on the prognostic characteristics of these three

subtypes was conducted, the results of which revealed that these three

subtypes had notable differences in prognoses (Figure 4D). Overall,

the clust1 subtype exhibited the best prognosis, followed by the clust2

subtype (second) and clust3 subtype (worst).

Additionally, we used the same method to analyze the patients in

the ICGC dataset and observed marked differences in prognoses

among these three molecular subtypes (Figure 4E), which coincided

with the results of the TCGA dataset. The results above suggested the
TABLE 1 Statistics of cell numbers before and after sample filtration.

Sample raw_count clean_count Percentage(%)

GSM4819725 1704 1565 91.84

GSM4819726 1410 328 23.26

GSM4819727 1660 1357 81.75

GSM4819728 923 269 29.14

GSM4819729 3674 3360 91.45

GSM4819730 1097 754 68.73

GSM4819731 578 475 82.18

GSM4819732 2853 2236 78.37

GSM4819733 1644 1366 83.09

GSM4819734 2872 2854 99.37

GSM4819735 1896 1258 66.35

GSM4819736 1953 1787 91.5

GSM4819737 6453 6108 94.65

GSM4819738 3635 3583 98.57
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transferability of the three molecular subtypes based on feature scores

in different study cohorts. The TCGA and ICGC datasets subtypes are

presented in Table tcga.subtype.txt and icgc.subtype.txt. Meanwhile,

we further conducted PCA on 7 prognosis-related genes in cell

senescence-associated pathways. As depicted in Figures 4F, G, the

PCA results supported that the molecular subtypes constructed based

on cell senescence-associated genes were stable and reliable.
Differential analysis of clinical phenotypes
in cell senescence-related subtypes

For the patients in the TCGA dataset, the distribution of various

clinical features in the three molecular subtypes was compared. The

corresponding results demonstrated significant differences among

the three subtypes concerning gender, T stage, N stage, Stage,

Grade, and survival status of patients in the TCGA dataset

(Figure 5). Additionally, we performed a comparative analysis of
Frontiers in Immunology 05
various clinical features among the three molecular subtypes in 91

ccRCC patients from the RECA-EU dataset. The results of our

analysis demonstrated significant differences in the T stage and

nearly significant differences in the M stage among the three

subtypes. However, no significant differences were observed in the

N stage grouping. (Supplementary Table 1).
Differences in variations of cell
senescence-related subtypes

Wenext integrated copy-number variants (CNVs) in TCGA-KIRC

using the gistic2 software under a confidence level of 0.9, with hg38 as

the reference genome. As presented in Figures 6A–C, differences were

noted in CNVs among the three subtypes. Also, the maftools package

was employed to analyze the single nucleotide variant (SNV) data

downloaded from TCGA, from which the top 15 genes with the most

variations were selected and visualized (Figure 6D).
B C

D

E F

A

FIGURE 1

The single-cell landscape of clear cell renal cell carcinoma. (A) t-SNE plot showing the distribution of 14 samples; (B) t-SNE plot showing the
distribution of subclusters after clustering; (C) t-SNE plot showing the distribution of cells after annotation; (D) dot plot showing the expression of
the top 5 marker genes in annotated subclusters; (E) proportion and the number of cells in annotated subclusters across samples; (F) distribution of
malignant and non-malignant cells predicted by copykat.
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Biological characteristics of cell
senescence-related subtypes

The CCP score in each sample from the TCGA dataset was

calculated using the ssGSEA method. The results indicated that the

clust3 subtype, which had the worst prognosis, exhibited a higher

CCP score. (Figure 7A). Previous research has demonstrated that

tumor cells can suppress the induction of cell senescence in the cell

cycle, and an essential characteristic of senescent cells is that

upregulation of cyclin-dependent kinases such as INK4a and p21

can lead to cell cycle arrest (15).. It is noteworthy that the results
Frontiers in Immunology 06
also demonstrated an increase in G1/S phase- and G2 checkpoint-

related scores in the clust3 subtype (Figures 7B, C). These data

indirectly illustrated that the cell cycle was not the only influencing

factor for cell senescence, and other mechanisms in the body may

act together with the cell cycle to regulate cellular senescence.

Likewise, telomerase inhibition induces cellular senescence (15).

Tumor cells often activate the telomerase activity to prevent the loss

of telomeres in the body. Telomere Extension by Telomerase was the

primary function of this pathway. The results of this analysis indicate

that the clust3 subtype with a worse prognosis had a higher score of

telomere extension by telomerase (Figure 7D). Nevertheless, apart
B

A

FIGURE 3

Enrichment results of senescence-related pathways in TCGA dataset. (A) Results of GSEA enrichment analysis on TCGA data; (B) Heatmap showing
expression of senescence-related pathway ssGSEA scores in tumor and adjacent normal tissues of TCGA dataset. ***, p<0.001.
FIGURE 2

Differential analysis of senescence-related pathways at the single-cell level based on GSVA analysis.
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from transmitting a “please kill me” message, factors secreted by

senescent cells can impact adjacent cells, thus hastening tumor

migration and metastasis by inducing epithelial-mesenchymal

transition (EMT). Meanwhile, senescent tumor cells can expedite

the formation of blood vessels and lymphatic vessels by recruiting

specific macrophages and also supply oxygen and nutrients for the

growth of other tumor cells, thereby facilitating tumor growth and

metastasis. The results showed a higher EMT score of cluster 3

(Figure 7E). Furthermore, clustering analysis revealed that

angiogenesis and hypoxia scores were significantly lower in the

second cluster of patients (Figures 7F, G). Next, the immune score

and stromal score of samples from TCGA were estimated using the

ESTIMATE method. According to these two scores, a higher degree

of immune infiltration was noted in the clust3 subtype (Figure 7H).

The CIBERSORT method scored 22 immune cells from the TCGA

dataset. It was found that cell senescence-associated subtypes

significantly differed among some immune cells. Macrophages, in
Frontiers in Immunology 07
particular, exhibit a notable variance in their level of infiltration

across distinct senescence subgroups (Figure 7I). We scored the

enrichment of 10 tumor-related pathways in samples from TCGA-

KIRC and observed significant differences in all 10 pathways

(Figure 7J). Notably, the inflammation score of patients in the

clust3 subtype was significantly higher than that of patients in the

clust1 and clust2 subtypes, as shown in the clustering analysis results

(Figure 7K). These findings suggest a potential correlation between

the molecular subtype of ccRCC and the TME, which may have

implications for personalized treatment strategies in the future.
Construction and validation of cell
senescence-related risk model

As described above, we identified three different molecular

subtypes through 7 essential genes and found differences in
B C

D E

F G

A

FIGURE 4

Identification of senescence-related subtypes in ccRCC. (A) CDF curve of TCGA cohort samples; (B) Delta area curve of consensus clustering for
TCGA cohort samples, indicating the relative change in area under the cumulative distribution function (CDF) curve for each category number k
compared with k-1. The horizontal axis represents the category number k, and the vertical axis represents the relative change in area under the CDF
curve; (C) Sample clustering heatmap at consensus k=3; (D) KM curves of three subtypes for prognosis in TCGA cohort; (E) KM curves of three
subtypes for prognosis in ICGC cohort; (F) PCA analysis based on senescence-related genes in TCGA dataset; (G) PCA analysis based on
senescence-related genes in ICGC dataset.
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clinical phenotype, mutation, and immune characteristics among

subtypes. The clust3 subtype showed the worst prognosis, followed

by the clust2 subtype, while the clust1 subtype exhibited the optimal

prognosis. Then, we conducted differential analyses of the clust1 vs.

no_clust1 subtype, clust2 vs. no_clust2 subtype, and clust3 vs.

no_clust3 subtype with the limma package, the results of which

are summarized in Table tcga.diff.clust1.txt, tcga.diff.clust2.txt, and
Frontiers in Immunology 08
tcga.diff.clust3.txt, respectively. Here, we screened differentially

expressed genes (DEGs) with p< 0.05 and |log2 (Fold Change)|

>1 as thresholds. Ultimately, 314 up-regulated genes and 7 down-

regulated genes were found in clust1 vs. no_clust1; 4 up-regulated

genes and 754 down-regulated genes were identified in clust2 vs.

no_clust2; 95 up-regulated genes and 71 down-regulated genes were

obtained in clust3 vs. no_clust3. Lastly, we obtained 964 DEGs for
B C

D

A

FIGURE 6

Copy number variation landscape among different subtypes. (A) Peak plot of gene copy number amplifications (in red) and deletions (in blue) in clust1
subtype.; (B) Peak plot of gene copy number amplifications (in red) and deletions (in blue) in clust2 subtype.; (C) Peak plot of gene copy number
amplifications (in red) and deletions (in blue) in clust3 subtype.; (D) Waterfall plot of the top 15 genes with the most SNV mutations among subtypes.
FIGURE 5

Comparison of different clinical features distribution among three molecular subtypes in TCGA dataset.
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further analysis, as listed in Table all.diff.gene.txt. The results of

differential analysis of the clust1 vs. no_clust1 subtype, clust2 vs.

no_clust2 subtype, and clust3 vs. no_clust3 subtype are visualized in

volcano plots (Figures 8A-C).

Next, a univariate Cox analysis of the 964 DEGs was realized using

the coxph function of the survival package and identified 613 genes

showing significant effects on prognosis (p< 0.05), consisting of 100

“risk” genes and 513 “protective” genes (Figure 8D). The

corresponding results are summarized in Table tcga.cox.txt.

Furthermore, a LASSO regression analysis on the 613 essential genes

was implemented to reduce the number of genes for the risk model.

The trajectory of each independent variable was analyzed. It was

suggested that number of independent variables with a coefficient

close to 0 increased gradually as the lambda increased gradually
Frontiers in Immunology 09
(Figure 8E). We employed 10-fold cross validation for model

construction and analyzed the confidence interval for each lambda

(Figure 8F). It should be noted that the optimization model was

developed using lambda = 0.0386. Therefore, we selected 21 genes at

lambda = 0.0386 as target genes for subsequent analysis. Following

stepwise regression, the number of genes was reduced from 21 to 10.

Ultimately, a 10-gene signature including ITGA8, SEMA3G, DPYSL3,

IFITM1, ZNF521, SOCS3, PCSK6, DUSP1, SLC44A4, and IL20RB was

developed, and Senescore was calculated using the formula:

Senescore

= −0:158 ∗ ITGA8 − 0:153 ∗ SEMA3G + 0:17 ∗DPYSL3

+ 0:347 ∗ IFITM1 − 0:215 ∗ZNF521 + 0:288 ∗ SOCS3
−0:196 ∗ PCSK6 − 0:245 ∗DUSP1 − 0:103 ∗ SLC44A4 + 0:127 ∗ IL20RB :
B C D E
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FIGURE 7

Biological features comparison between different aging subtypes in ccRCC from TCGA dataset. (A) Comparison of CCP scores among three
subtypes in TCGA dataset; (B) Comparison of G1/S phase scores among three subtypes in TCGA dataset; (C) Comparison of G2M checkpoint scores
among three subtypes in TCGA dataset; (D) Comparison of telomerase activity scores among three subtypes in TCGA dataset; (E) Comparison of
EMT scores among three subtypes in TCGA dataset; (F) Comparison of hypoxia scores among three subtypes in TCGA dataset; (G) Comparison of
angiogenesis scores among three subtypes in TCGA dataset; (H) Comparison of immune scores calculated by ESTIMATE among three subtypes in
TCGA dataset; (I) Comparison of 22 immune cell scores calculated by CIBERSORT among three subtypes in TCGA dataset; (J) Comparison of
tumor-related pathway scores among three subtypes in TCGA dataset; (K) Comparison of inflammation scores among three subtypes in TCGA
dataset. ns, p≥0.05; *, p< 0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.
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The role of DUSP1 in ccRCC is shown in Supplementary

Figure 1. To deeper understanding the function of DUSP1 in 786-

O cell development, Si-RNA were preformed to silence the

expression of DUSP1 in 786-O cell. We found that cells

transfected with Si-DUSP1 significantly decreased the expression

of DUSP1 protein compared with the control (Figure 8). Colony

formation assay was used to evaluate cell proliferation. The count of

colonies established indicated that the proliferation ability of 786-O

cell was activated when transfected with Si-DUSP1, indicating that

inhibition of DUSP1 promote 786-O cell proliferation (Figure 8I).

Transwell assay showed that DUSP1 knockdown increased the
Frontiers in Immunology 10
number of 786-O compared with the control (Figures 8J, K). we

identified that knockdown of DUSP1 increased the proliferation,

migration, and invasion of 786-O cell. Furthermore, we detected

decreased expression of p21 and p53 proteins (canonical protein

targets of Cell Senescence), in 786-O cell with suppression of

DUSP1 (Figure 8L). We also stained for senescence-associated b-
galactosidase (SA-b-Gal), a commonly accepted marker for

senescent cells. The number of SA-b-Gal 786-O cell was

decreased in Si-DUSP1 group compared to control (Figure 8M),

suggesting that knockdown of DUSP1 suppress cellular senescence

of 786-O cell.
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FIGURE 8

Construction of risk model and functional validation of critical genes. (A) Differential analysis between clust1 and no_clust1 in TCGA dataset;
(B) Differential analysis between clust2 and no_clust2 in TCGA dataset; (C) Differential analysis between clust3 and no_clust3 in TCGA dataset; (D) A
total of 961 promising candidates were identified among the differentially expressed genes; (E) Trajectory of each independent variable as lambda
changes; (F) Confidence interval under lambda; (G) Coefficients of prognostic-related genes obtained from multivariate Cox analysis; (H) Western
blot assay of DUSP1 protein expression in 786-O cell after transfection of Si-DUSP1; (I) Colony formation assay was carried out to evaluate the
proliferation of 786-O cell; (J, K) Transwell assay was used to assess the migration and invasion of 786-O cell. (L) Western blot assay of p21 and p53
protein expression in 786-O cell after transfection of Si-DUSP1. *, p< 0.05; (M) SA-b-gal staining of 786-O cell. *, p< 0.05.
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Prognostic analysis and validation of the
risk model

Next, we calculated the risk score for each sample individually

based on the expression profiles of samples in the training dataset

from TCGA data. We separately analyzed the classification

efficiency of this model to predict 1-year to 5-year prognoses. As

depicted in Figure 9A, this model had a high area under the curve

(AUC) value; At last, we performed Z-score normalization on the

Riskscore and assigned the samples to a high-risk subgroup

(Riskscore > 0 after Z-score normalization) and low-risk

subgroup (Riskscore< 0 after Z-score normalization). Kaplan-

Meier (KM) curves were plotted accordingly. The analysis

indicated significant differences between the two groups in terms

of overall survival, disease-specific survival, and progression-free

survival in TCGA-KIRC cohort (Figure 9B, Supplementary

Figures 2E–G). To validate the robustness of the model, the same

method was applied for validation using the ICGC dataset. The
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AUC values of the risk model established with the 10 genes

mentioned above are presented in Figure 9C. After the Z-score

normalization of Riskscore. The samples were assigned to the high-

risk subgroup and low-risk subgroup. The KM curves showed

significant differences between these two groups in the ICGC

dataset (p< 0.05). Furthermore, we validated the robustness of

our model in two additional microarray datasets, as shown in

Supplementary Figures 2A-D by the Kaplan-Meier (KM) curves

and AUC values based on the risk model established using the 10

genes. The results indicated that the risk model established using

the 10 genes can be effectively applied to microarray data, further

confirming the reliability of our research findings.
Correlations between risk model and
clinical characteristics

To ascertain the correlations between the RiskScore and the

clinical characteristics of ccRCC, we analyzed the differences in the
B

C D

A

FIGURE 9

Prognostic analysis and validation of the risk model. (A) ROC curve of the risk model constructed by 10 genes in TCGA dataset; (B) KM curve of the risk
model in TCGA dataset; (C) ROC curve of the risk model constructed by 10 genes in ICGC dataset; (D) KM curve of the risk model in ICGC dataset.
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RiskScore among different TNM grades and Stages in the TCGA-

KIRC dataset. The results exhibited that a higher clinical grade was

associated with a higher risk score (Figure 10).
Biological characteristics of cell
senescence-related risk score

Based on the results mentioned above, cell senescence-

associated subtypes were associated with cell cycle, telomere

extension by telomerase, hypoxia, angiogenesis, and immunity.

Therefore, the correlations of those scores with the cell
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senescence-related risk score were analyzed using the rcorr

function in the Hmisc package (Figure 11).
Prediction of immunotherapeutic efficacy
with the cell senescence-related risk score

To assess the relevance of the Senescore to immunotherapy, we

evaluated the predictive capability of the Senescore for patient

response to ICB therapy. In the anti-PD-L1 cohort (IMvigor210

cohort), a high Senescore was associated with a worse prognosis

(Figure 12C; log-rank test, p< 0.05). Additionally, we found the
FIGURE 10

Senescore differences in clinical pathological features in TCGA dataset. ns, p≥0.05; *, p< 0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.
B
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FIGURE 11

Association between the Senescore and biological feature scores. (A) The correlation between CCP score and Senescore. (B) The correlation
between telomere extension score of telomerase and Senescore. (C) The correlation between hypoxia score and Senescore. (D) The correlation
between angiogenesis score and Senescore. (E) Heatmap showing the correlation between predicted immune cell score by CIBERSORT and
Senescore. *, p< 0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001.
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varied response of 348 patients in the IMvigor210 cohort to PD-L1

blockers, encompassing complete response (CR), partial response

(PR), stable disease (SD), and progressive disease (PD). The patients

with SD/PD had a higher Senescore versus those with CR/PR

(Figure 12A). Based on percentage statistics between the low- and

high-Senescore groups, significantly better treatment outcomes

were noted in patients with a low Senescore (Figure 12B). We

analyzed survival differences among all samples in the IMvigor210

cohort as well as the survival differences at different Stages. The

results showed significant survival differences among Stage I + II

samples (Figure 12D), but insignificant survival differences between

low- and high-Senescore groups in Stage III + IV samples

(Figure 12E). Particularly, the Senescore exhibited outstanding

predictive performance in early-stage clinical samples.

The result from TIDE showed that a higher TIDE prediction

score denoted a higher probability of immune escape, indicating a

lower probability that the patient might benefit from

immunotherapy. Furthermore, the Senescore and TIDE scores

were higher in non-responders to immunotherapy, which

indirectly suggested that patients with high Senescore were less

prone to benefit from immunotherapy (Figures 12F, G).

Additionally, we assessed the efficacy of Senescore on other

immunotherapy cohorts. Our findings indicate that the GSE135222

cohort shows a different response when compared to the IMvigor210

cohort. Patients with high Senescore performances exhibited

enhanced benefits from immunotherapy and sustained better
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prognoses. Nevertheless, in the GSE78220 immunotherapy cohort,

the high and low Senescore divisions did not function as dependable

predictive markers for patient outcomes (Supplementary Figure 3).
Correlations of cell senescence-related risk
scores and drug sensitivity

This study also compared the response of high- and low-risk

populations to conventional chemotherapeutic agents such as

Erlotinib, MG-132, and Paclitaxel. The high Senescore group

showed a higher sensitivity to the abovementioned agents (Figure 13).
Senescore integrated with
clinicopathological features for improved
prognostic models and survival prediction

Through univariate and multivariate Cox regression analyses of

the Senescore and clinicopathological characteristics, the Senescore

was identified as the most significant prognostic factor

(Figures 14A, B). To quantify patients’ risk assessment and

survival probability, we integrated the Senescore and other

clinicopathological characteristics to establish a nomogram

(Figure 14C). Based on the results. The Senescore exhibited the

most significant impact on survival prediction. Furthermore, a
B C D

E F G

A

FIGURE 12

Application of the Senescore in immune therapy. (A) Differences in Senescore among immune therapy responders in the IMvigor210 cohort. (B)
Distribution of immune therapy response among Senescore groups in the IMvigor210 cohort. (C) Differences in prognosis among Senescore groups
in the IMvigor210 cohort. (D) Differences in prognosis among early-stage patients in the Senescore groups of the IMvigor210 cohort. (E) Differences
in prognosis among late-stage patients in the Senescore groups of the IMvigor210 cohort. (F) Differences in Senescore among immune therapy
responders analyzed by TIDE in the IMvigor210 cohort. G: Differences in TIDE among immune therapy responders analyzed by TIDE in the
IMvigor210 cohort. **, p<0.01. ns, p≥0.05; ****, p<0.0001.
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calibration curve was utilized for the predictive accuracy

assessment. As presented in Figure 14D, the calibration curves for

the prediction at the three calibration points (1, 3, and 5 years)

almost coincided with the standard curves, suggesting the good

predictive performance of the nomogram. Also, decision curve

analysis (DCA) was carried out to evaluate the reliability of this

model. The benefit of either Senescore or nomogram was

remarkably higher than that of the extreme curve. Compared to

other clinicopathological characteristics, nomogram, and Senescore

exhibited more vital survival prediction ability (Figure 14E).
Discussion

Based on single-cell data analysis, this study interpreted the

abnormalities in cell senescence-associated pathways within the

TME. Meanwhile, we screened cell senescence-associated pathways

enriched in tumor tissues in bulk RNA-seq dataset by GSEA and

constructed cell senescence-associated subtypes and risk models

based on the genes in these pathways. Moreover, this study linked

the efficacy of immunotherapy to cell senescence-associated

risk scores.

ccRCC is a highly heterogeneous renal tumor developed by

different complex epigenetic driving mechanisms and molecular

pathways. Due to its malignant progression and high recurrence rate,

ccRCC is the deadliest type of renal tumor. Currently, postoperative

recovery in patients with ccRCC remains unsatisfactory, and only a few

patients may benefit from drug therapy targeting tyrosine kinase

inhibitors (TKI) and anti-PD-1 antibodies (16). Biomarkers that can

accurately predict prognosis and guide the treatment of ccRCC have

not been fully identified and applied clinically. Immunosenescence

refers to the age-related decline in immune system function, which can

impair the body’s ability to defend against infections, vaccines, and

tumors (17). As a result, older individuals are more susceptible to

infections and less capable of mounting an effective immune response
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to diseases. The increased risk of cancer in older adults is of particular

concern, as tumor cells often exploit deficiencies in the immune system

to evade detection and clearance, making treatment more challenging

(18). Consequently, immunosenescence has emerged as a prominent

topic in medical research. By exploring the underlying mechanisms of

immunosenescence and its impact on human health, researchers hope

to develop new strategies to enhance immune function and improve

the health and well-being of older individuals. Cellular senescence is a

permanent state of the arrest of the cell cycle, and senescent cells/genes

have been observed to accumulate during aging and play a role in

various tumors (19). Xu et al. constructed a senescence-associated

prognostic model significantly correlated with lung adenocarcinoma

diagnosis and prognosis (20). In addition, a previous study showed that

senescence-associated protein P400 is a prognostic marker for renal cell

carcinoma (21). However, senescence characteristics and senescence-

associated prognostic models of ccRCC are still rare. The specific

molecular markers for ccRCC also need to be further elucidated.

Many studies have attempted to build models based on gene

sequencing and clinical data to predict the prognosis of patients with

ccRCC (22, 23). However, the clinical application of these models has

had little effect. In this study, we used RNA-seq combined with bulk

RNA-Seq to analyze the cellular senescence characteristics of ccRCC.

Our assessment has recognized IFITM1, SOCS3, DPYSL3, IL20RB,

SLC44A4, SEMA3G, ITGA8, PCSK6, ZNF521, and DUSP1 as genes

that exhibit noteworthy differential expression in association with

senescence in patients with ccRCC. A prognostic model based on

these 10 genes is established. Our senescence-related prognostic

features showed good performance, with the AUC values of 1-year,

3-year, and 5-year OS predicted by the TCGA database being 0.84,

0.81, and 0.79, respectively. We also used the ICGC dataset to further

validate and evaluate the prognosis. The ICGC database predicted the

AUC value of 1-year, 3-year, and 5-year OS to be 0.6, 0.69, and 0.7,

respectively. The results showed that the senescence-associated

prognostic model we constructed could predict the survival rate of

ccRCC. Regrettably, extending this gene signature to other types of
FIGURE 13

Differential analysis of Senescore and IC50 drug sensitivity. ****, p<0.0001.
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tumors is unfeasible. Currently, the markers of aging in tumors remain

unclear and may vary depending on tumor type and subtype. Each

tumor type has distinct biological and genetic characteristics, which

could affect the expression of senescence markers in tumor cells.

Therefore, a more thorough analysis and evaluation must first be

conducted before investigating the applicability of aging markers in

specific tumors. In the future, we hope to identify more generalized,

broad-spectrum aging markers that can be utilized across different

tumor types, facilitating more precise and convenient guidance for

studying tumor subtypes.

DUSP1 is a threonine-tyrosine bispecific phosphatase that targets

negatively regulating the MAPK signaling pathway (24). Nevertheless,

its role in tumorigenesis is controversial. DUSP1 is highly expressed in

a range of tumors, including lung, breast, ovarian, gastric, and prostate

cancers (25–29), while low expression in HCC (30). Several studies

have demonstrated the involvement of DUSP1 in malignant tumor

progression through various signaling pathways (31). However, the role

of DUSP1 in ccRCC remains unknown. The results of this study

indicate that DUSP1 is one of the essential regulatory genes of

senescence characteristics in ccRCC. The results of specific staining

experiments demonstrated that DUSP1 plays an essential role in the

senescence of renal clear cell carcinoma cells by effectively inhibiting

the generation of senescent cells. In vitro experiments, we found that

DUSP1 knockdown significantly promoted the proliferation,

migration, and invasion of renal carcinoma cells. Targeting DUSP1
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may serve as a potential “senescence biomarker” for predicting clinical

outcomes in patients with ccRCC.

The tumor microenvironment (TME) comprises various types of

cells, including tumor cells, inflammatory cells, immune cells, stromal

stem cells, endothelial cells, and tumor-associated fibroblasts, which

play essential roles in the proliferation and drug resistance of tumor

cells. Cellular senescence in TME can trigger immune cell infiltration

and promote tumor progression (32, 33). This study found that T cells,

B cells, mast cells, macrophage, fibroblast, and endothelial cells were

significant tumor-infiltrating cell clusters compared to adjacent normal

tissues. We also found that fibroblast senescence-related pathway

scores were higher in ccRCC than adjacent normal tissue cells.

Tumor fibroblasts are the primary source of tumor extracellular

matrix (ECM) (34). Shi et al. demonstrated that the recruitment of

cancer-associated fibroblasts (CAFs) in the ccRCC microenvironment

occurs through interaction with malignant proximal renal tubular

epithelial cells (PTEC) (35). Peng et al. showed that infiltrating CAFs

could reduce CD8+ T cell infiltration in the TME of ccRCC by secreting

galactolectin 73 (Gal1) (36). The study found that CAFs can provide

metabolic support to cancer cells by releasing alanine and

deoxycytidine, thereby enhancing chemotherapy drug resistance (37,

38). Extracellular vesicles from CAFs have also been shown to contain

various surface proteins (CD105, Hsp70, TGF-b1, etc.) andmetabolites

(lactate, amino acids, lipids, etc.), which can affect tumor progression

and drug resistance (39). CAFs may represent a novel therapeutic
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FIGURE 14

The clinical applications of Senescore. (A, B) Univariate and multivariate Cox analyses of Senescore and clinical pathological features; (C) Construction of the
nomogram model; (D) Calibration curves of the nomogram in 1, 3, and 5 years; (E) Clinical applications of nomogram model and Senescore. ***, p<0.001.
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target to combat resistance to ccRCC treatment. Targeting CAFs with

immunotherapy is also emerging as an effective treatment for ccRCC.

This study investigated the correlation between multiple

molecular characteristics, such as telomerase, EMT, and

angiogenesis, representing different physiological processes and

cell senescence scores. Furthermore, the study explored the

relationship between immune infiltration levels in the tumor

microenvironment and cell aging scores. Although specific

impacts of each characteristic on immune infiltration have been

reported, for instance, the telomerase catalytic subunit (TERT)

activates endogenous retroviruses to promote the formation of a

tumor immune suppression microenvironment (40). At the same

time, epithelial-mesenchymal transition (EMT) plays a vital role in

immune evasion and tumor immune suppression. The EMT score

may be a predictive biomarker for clinical response to immune

checkpoint blockade. In addition, tumor angiogenesis is associated

with the infiltration of different immune cell types in the TME,

which could affect the response of tumors to immunotherapy. These

results suggest that cell aging affects immune infiltration through

multiple molecular mechanisms. However, further research is

necessary to understand the precise impact of cell aging on

immune infiltration. Through correlational analysis of these

results, it is expected to link cell senescence, immune infiltration,

and molecular features, providing a comprehensive understanding

and assistance for ccRCC treatment.

Furthermore, this study explored the potential use of risk scores

associated with cellular senescence in immune therapy by linking

them to its effectiveness. We conducted an effective analysis of the

correlation and difference between the senescence score and the

infiltration level of immune cells, which is critical when predicting

the results of immune therapy using risk scores associated with

cellular senescence. Notably, both significant differences in

infiltration levels of macrophages among different subtypes and a

significant correlation between senescence score and macrophages

were shown by the results. M0 macrophages are undifferentiated

precursor cells that differentiate into either M1 (pro-inflammatory)

or M2 (anti-inflammatory) macrophages according to the needs of

the TME. Although we cannot accurately evaluate the precise effects

of cell senescence signatures on immune cells, we hypothesize that

genes in the model may facilitate the polarization of M0

macrophages toward tumor-promoting M2 macrophages during

polarization. For example, SOCS3 plays an important role in the

polarization of M2 macrophages (10), but the roles of other genes in

macrophage polarization remain unclear. Our main goal is to guide

immune therapy for patients by reflecting the infiltration of

immune cells in complex TMEs and highly heterogeneous

backgrounds using senescence scores. Overall, these results

suggest that it is possible to evaluate the infiltration of immune

cells in the TME or the molecular characteristics of different tumor

patients by using senescence scores. Senescence scores can be used

as a useful marker to evaluate the infiltration level of immune cells

effectively and conveniently in TME.

Although current research provides a relatively clear

understanding of the senescence features in ccRCC and enhances
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our understanding of the role of cellular senescence in ccRCC, some

limitations still cannot be ignored. Although this study validated the

results using multiple ccRCC patient cohorts, the limited sample size

may not fully represent the characteristics of the entire ccRCC patient

population. Additionally, the data used in this study may come from

limited datasets or databases and, therefore, may not fully cover all

relevant information. Finally, this study did not consider potential

external factors such as environmental factors and lifestyle, which may

impact the conclusions drawn in this study. In summary, this study

uncovered abnormal senescence-related pathways in the TME of

ccRCC using a combination of single-cell data and bulk RNA-seq.

Based on these dysregulated aging signaling pathways, senescence-

related subtypes and risk models were created, which offer new

methods to evaluate prognosis, guide clinical drug selection, and

assess immune therapy response in ccRCC patients. Targeting

essential senescence-related genes may lead to a new understanding

of the molecular mechanisms of aging in ccRCC and their

clinical applications.
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