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Introduction: As recognition of myelin oligodendrocyte glycoprotein (MOG) 
antibody-associated disease becomes more widespread, the importance of 
appropriately ordering and interpreting diagnostic testing for this antibody 
increases. Several assays are commercially available for MOG testing, and based 
on a few small studies with very few discrepant results, some have suggested that 
live cell-based assays (CBA) are superior to fixed CBA for clinical MOG antibody 
testing. We aimed to determine the real-world agreement between a fixed and 
live CBA for MOG using two of the most commonly available commercial testing 
platforms.

Methods: We compared paired clinical samples tested at two national clinical 
reference laboratories and determined the real-world agreement between the 
fixed CBA and live CBA.

Results: Of 322 paired samples tested on both platforms, 53 were positive and 
246 were negative by both methodologies (agreement 92.9%, Cohen’s kappa 
0.78, [0.69-0.86]). Spearman correlation coefficient was 0.80 (p  <  0.0001). Of the 
discrepant results, only 1 of 14 results positive by the live CBA had a titer greater 
than 1:100, and only 1 of 9 results positive by the fixed CBA had a titer of greater 
than 1:80. Lower titers on the fixed CBA correlate to higher titers on the live CBA.

Conclusion: Overall, there is excellent agreement between fixed and live CBA 
for MOG antibody testing in a real-world clinical laboratory setting. Clinicians 
should be aware of which method they use to assess any given patient, as titers 
are comparable, but not identical between the assays.
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Introduction

Clinical testing for antibodies to myelin oligodendrocyte 
glycoprotein (MOG) is increasingly done in the workup of suspected 
immune-mediated inflammatory demyelinating disorders of the 
central nervous system, given the phenotypic overlap of MOG 
antibody-associated disease (MOGAD) with neuromyelitis optica 
(NMO) spectrum disorders and multiple sclerosis (MS). In adults, 
MOGAD most often presents with optic neuritis, myelitis, or a 
combination of the two (1). In pediatric patients, the initial 
presentation is most commonly acute disseminated encephalomyelitis 
(ADEM) or optic neuritis (2–4). When compared to those who are 
positive for antibodies to aquaporin-4 (AQP4), MOGAD patients 
tend to be younger, with equal numbers of males and females affected, 
and are more likely to have a monophasic disease course (5–10). The 
recognition that MOGAD represents a unique clinical syndrome with 
distinct epidemiology, relapse rates, and treatment responses has led 
to guidelines for diagnosis and antibody testing (11, 12).

As antibody testing for MOG becomes more widespread, it is 
critical that clinicians understand the differences between the various 
assays. Early studies of serum MOG antibodies used western blot or 
enzyme-linked immunosorbent assay (ELISA) to detect the presence 
of autoantibodies; these assays showed that up to 38% of MS patients 
and 53% of patients with other inflammatory neurologic diseases 
(viral or bacterial encephalitis) have detectable MOG IgG, compared 
to 3% in patients with noninflammatory neurologic diseases (13). 
However, when cell-based assays (CBAs) using cell lines expressing 
native proteins were subsequently developed to detect anti-MOG 
antibodies, they were able to more clearly distinguish MS patients 
(negative for MOG-IgG with nearly 100% specificity) from MOGAD 
patients (14, 15). The technical differences between assays which use 
peptide antigens or denatured proteins (e.g., western blot, ELISA) and 
those using native full-length proteins (e.g., CBAs) are important to 
consider when interpreting test results; currently, CBAs are 
recommended for the diagnosis of MOGAD (12, 16, 17).

When CBAs are used for detection of MOG-IgG, laboratories may 
use live CBAs with detection via immunofluorescence (CBA-IF) or 
flow cytometry (CBA-FC) or fixed CBAs with detection via IF (fCBA-
IF). Fixed CBAs are widely used in diagnostic laboratories because 
they allow for the purchase of validated, prepared slides from 
commercial sources. Live CBAs require maintenance and validation 
of the cell line within the individual laboratory, a technical hurdle, 
which limits their utility outside of specialized laboratory settings. 
Studies comparing these CBAs at multiple institutions using sera from 
patients with clinically defined syndromes or previously defined 
seropositive or seronegative samples have led to the dogma that live 
CBA are superior to fixed CBA (18–20). In this study, we sought to 
determine the real-world agreement between live CBA-FC and 
fCBA-IF performed at two major clinical reference laboratories in the 
United States using samples sent in for routine clinical testing.

Materials and methods

Standard protocol approvals, registrations, 
and patient consents

This study was approved by the University of Utah IRB 
(IRB_0082990 for the retrospective analysis and IRB_00068933 for the 

validation and prospective testing); participant consent was waived, 
as data were extracted using a limited dataset and all testing was 
performed on residual clinical samples. Patient sera were identified by 
retrospective analysis of results from samples received from 
United States medical centers and tested for MOG antibodies between 
February 2019 and November 2022 at both ARUP Laboratories and 
Mayo Clinic Laboratories (MCL). Patients were included if they had 
MOG antibody testing performed at both ARUP and MCL using 
serum collected within 30 days of one another (to limit the possible 
impact of treatment on antibody titer). If multiple serum pairs from a 
given patient were available, the earliest submitted samples were 
prioritized, followed by the samples with the smallest time difference 
between them, for analysis. Patients were excluded if they had a MOG 
antibody result from only one of the laboratories, or multiple results 
from the same patient using sera collected more than 30 days apart. In 
addition to the retrospective analysis, prospective testing was 
performed on residual serum available at ARUP from patients tested 
for MOG antibodies at MCL. Specimens tested prospectively were 
obtained in one of three ways: as split aliquots prior to being sent to 
the MCL, as additional samples collected at the same time as the MCL 
sample, or as additional samples collected within 30 days of the 
original sample. These residual specimens were stored at −20°C until 
the time of testing. Each case was crosschecked with the retrospective 
analysis by the patient identification number and date of birth to avoid 
duplication of results in the final analysis. Additional samples from a 
validation cohort tested between October 2017 and February 2019 at 
MCL and used in validating the ARUP assay were included.

ARUP laboratories MOG assay

Testing for antibodies to MOG using fCBA-IF was performed at 
ARUP Laboratories as recommended by the manufacturer 
(EUROIMMUN, FA 1156-1010-50 Anti-Myelin Oligodendrocyte 
Glycoprotein IIFT). Briefly, patient sera were screened at a 1:10 
dilution on a substrate of fixed HEK293 cells transiently transfected 
to express a full-length human MOG protein. Slides were washed and 
incubated with FITC-conjugated anti-human IgG and examined for 
positivity by visual observation using a fluorescence microscope. If 
positive fluorescence was observed at the 1:10 dilution, additional 
testing was performed at serial 1:2 dilutions, and the highest dilution 
demonstrating positive fluorescence was reported as the 
end-point titer.

Mayo clinical laboratory MOG assay

Testing for antibodies to MOG using live CBA-FC was performed 
at MCL as previously described (14). According to Mayo Clinical 
Laboratories reported protocols, patient sera are routinely screened 
at a 1:20 dilution on a substrate of live HEK293 cells expressing full-
length MOG protein. Cells are washed and incubated with anti-
human IgG1. Cells are washed again prior to evaluation by flow 
cytometry. Positivity is determined based on the ratio of mean 
fluorescence intensity (MFI) of transfected cells to MFI of 
non-transfected cells. A ratio of 2.5 or greater is considered positive. 
If samples screen positive at 1:20, additional testing is performed at 
1:40, 1:100, and subsequent 10-fold dilutions (1,100, 1:10,000, etc.) 
until MFI ratio drops below 2.5.
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Statistical analysis

Correlation of parameters was analyzed with Spearman’s rank 
correlation coefficient. Cohen’s kappa statistic was used to assess 
the agreement between assays. All statistical analyses were 
performed using R Statistical Software (v4.1.2; R Core Team 
2022) (21).

Data availability

Anonymized data not published within this article will be made 
available by request from any qualified investigator.

Results

In total, 322 serum samples were tested at both ARUP and 
MCL during the study period (Supplementary Figure 1). Of the 
76 samples positive by either methodology, 53 were concordant 
between both assays, nine were positive by the ARUP fCBA-IF 
assay only, and 14 were positive by the MCL live CBA-FC assay 
only. 246 samples were negative by both assays. Overall, percent 
agreement between the two assays was 92.9 (Cohen’s kappa 0.78, 
[0.69–0.86]). Spearman correlation coefficient was 0.80 
(p < 0.0001; Figure 1).

Of the 14 samples positive by live CBA-FC and negative by 
fCBA-IF, 8/14 (57%) had an antibody titer of ≤1:40, and 13/14 (93%) 
had an antibody titer of ≤1:100. Of the nine samples positive by 
fCBA-IF and negative by live CBA-FC, 7/9 (78%) had an antibody titer 
of ≤1:40 and 8/9 (89%) had an antibody titer of ≤1:80. Antibody titers 
are not identical between the live CBA-FC and fCBA-IF; of the 53 
samples positive by both assays, 45/53 (85%) had a higher titer by live 
CBA-FC than by fCBA-IF.

Discussion

In a set of 322 serum samples analyzed for MOG-IgG by both live 
CBA-FC and fCBA-IF at two different clinical reference labs, 
we found an overall agreement of 92.9%, with a strong Spearman 
correlation coefficient (0.80). Previous studies have compared live 
and fixed CBA using samples from clinically or serologically defined 
subsets of patients (18, 19). Specifically, Waters et al. performed a 
comparison between live CBA-FC, live CBA-IF, and fCBA-IF in a 
clinically defined group of patients with ADEM, seronegative NMO, 
optic neuritis, or longitudinally extensive transverse myelitis (n = 91) 
and found that of 25 samples positive by any of these methodologies, 
21 were concordant on all three assays. The live CBA-IF detected 25 
positives, the fCBA-IF detected 23 positives and the live CBA-FC 
detected 21 positives. In the control group of 244 MS patients, one 
false positive (FP) was identified by both the live CBA-FC and the 
fCBA-IF, and four additional FPs were identified by the fCBA-IF (18). 
Based on these results, the three assays have similar negative 
predictive values (ranging from 78.8 to 79.8) but diverging positive 
predictive value (100% for live CBA-IF, 95.5% for live CBA-FC, and 
82.1% for fCBA-IF). While these statistics are valid, it is important to 
consider that this analysis includes a small number of discordant 
samples overall. Concluding that these data “emphasize the 
superiority of live CBA testing,” as some have suggested, is an 
oversimplification (22).

Reindl et al. (19) conducted an international study to compare 11 
different assays for MOG antibodies at five different testing centers, 
using a strategy whereby a predefined set of positive or negative 
serum samples were tested across all platforms. Of note, predefined 
samples were determined based on testing via live CBA at four 
different institutions. Cell based assays tested in the study included 
seven live CBAs (four CBA-IF, three CBA-FC) and one fCBA-IF. Of 
the 39 clear positive samples tested, 32/39 were positive in all eight 
CBAs, and 36/39 were positive in all seven of the live CBAs. Of the 
40 samples tested as clear negatives, 39/40 were negative in all eight 
CBAs, and 40/40 were negative in all seven live CBAs. Overall, there 
was 90% concordance between all the CBA (similar to the 92.9% seen 
in our study) and 96% concordance across the live CBAs. In a second 
phase of the same study, low positive and borderline negative samples 
were compared between the assay platforms; there was 77% 
agreement between all eight of the CBA platforms tested, without a 
clear distinction between live or fixed CBA being superior (19). The 
inclusion of these borderline negative and low positive samples 
highlights the limitations of all of these assays when evaluating 
borderline results, and the key role treating clinicians play in 
interpreting the results of these assays within the clinical context of 
each patient.

Positive cutoffs vary from assay to assay. The live CBA-FC 
reported here is the same one used in a study looking at the positive 
predictive value (PPV) of MOG testing at various assay cutoffs (23). 
In that paper, two neurologists reviewed the charts of 92 positive 
MOG-IgG1 assays and found 26/92 (28%) were designated as FP by 
both raters. When the end-titer of the assay for MOG was 1:20–40, the 
PPV was 51%; this increased to 82% at an end titer of 1:100 and 100% 
when the end-titer of ≥1:1,000 was used (23). To better understand 
the correlation between positive antibody titers in different assays, 
we plotted the assay titers for the live CBA-FC against the fCBA-IF in 
our study. Most of the samples that were negative by fCBA-IF yet 

FIGURE 1

Distribution of MOG-IgG results by titer and frequency. Antibody 
titers of the live CBA-FC and fixed CBA-IF were plotted for all positive 
values. Size and color of plotted points represents the number of 
samples with the corresponding antibody titers.
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positive by live CBA-FC had titers below 1:1,000 (Figure 1). This figure 
also illustrates that lower titers on fCBA-IF correspond to higher titers 
by live CBA-FC. As these assays have different methodologies, the 
titers are not directly comparable. This is important to consider based 
on the recently published International MOGAD Panel proposed 
diagnostic criteria, which recommends a cutoff of ≥1:100 for both of 
the assays described here to be considered a “clear positive,” with lower 
titers needing additional supporting clinical or MRI criteria to 
be considered consistent with MOGAD (12). Future studies applying 
these diagnostic criteria to patients tested by both live CBA-FC and 
fCBA-IF are needed to better understand the ideal cutoff for each 
individual assay to optimize sensitivity and specificity.

As a reference laboratory receiving samples from around the 
country, we  did not have access to patient information in the 
discrepant cases to determine whether these incongruities 
represented false positives or false negatives in these assays. The 
absence of patient information in regard to the core clinical 
demyelinating event, supporting clinical or MRI features, and the 
temporal association of the tested sample with attack, relapse, or 
immunotherapy represents a clear limitation of this study. It is 
noteworthy that both the live CBA-FC and fCBA-IF identified some 
positives that the other assay did not, and that these discrepancies 
tended to occur at lower assay titers (see Figure 1). The preponderance 
of discrepancies at low titers reinforces the importance of applying 
clinical criteria in addition to antibody testing when making a 
diagnosis of MOGAD. Recognizing that different CBA testing 
methodologies will not give identical titers, and that higher titers by 
live CBA-FC generally correspond to lower titers by fCBA-IF is an 
important idiosyncrasy to be aware of when interpreting these results. 
Of the results positive by both assays in our comparison, 45/53 (85%) 
had a higher titer when measured by live CBA-FC than when tested 
by fCBA-IF.

Our study demonstrates that in a real-world reference 
laboratory setting, there is a high degree of agreement between 
fCBA-IF and live CBA-FC. This, along with data from prior studies 
comparing CBAs in clinically and serologically defined populations, 
confirms that both fixed and live CBA are a reasonable option for 
clinicians who suspect MOGAD in their patients and seek serologic 
confirmation. False positives and false negatives are a reality of all 
clinical laboratory testing; in the case of MOG, false positives may 
lead to treatment with an inappropriate immunosuppressive 
medication or delayed diagnosis of a different clinical entity. 
Avoiding indiscriminate testing for antineural antibodies and 
selecting tests based on clear clinical criteria is important to 
improve the positive predictive value of these assays. Clinicians 
need to consider testing availability, turnaround time, cost at their 
institution, and reliability when ordering any test. Future studies 
need to focus on improving testing reliability and determining 
markers of monophasic vs. relapsing disease to further inform 
treatment decisions.
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