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Epilepsy is a chronic central nervous system disorder characterized by recurrent

seizures. Not only does epilepsy severely affect the daily life of the patient,

but the risk of premature death in patients with epilepsy is three times higher

than that of the normal population. Magnetoencephalography (MEG) is a non-

invasive, high temporal and spatial resolution electrophysiological data that

provides a valid basis for epilepsy diagnosis, and used in clinical practice to

locate epileptic foci in patients with epilepsy. It has been shown that MEG

helps to identify MRI-negative epilepsy, contributes to clinical decision-making in

recurrent seizures after previous epilepsy surgery, that interictal MEG can provide

additional localization information than scalp EEG, and complete excision of the

stimulation area defined by the MEG has prognostic significance for postoperative

seizure control. However, due to the complexity of the MEG signal, it is often

difficult to identify subtle but critical changes in MEG through visual inspection,

opening up an important area of research for biomedical engineers to investigate

and implement intelligent algorithms for epilepsy recognition. At the same time,

the use of manual markers requires significant time and labor costs, necessitating

the development and use of computer-aided diagnosis (CAD) systems that use

classifiers to automatically identify abnormal activity. In this review, we discuss in

detail the results of applying various different feature extraction methods on MEG

signals with different classifiers for epilepsy detection, subtype determination,

and laterality classification. Finally, we also briefly look at the prospects of

using MEG for epilepsy-assisted localization (spike detection, high-frequency

oscillation detection) due to the unique advantages of MEG for functional area

localization in epilepsy, and discuss the limitation of current research status and

suggestions for future research. Overall, it is hoped that our review will facilitate

the reader to quickly gain a general understanding of the problem of MEG-based

epilepsy classification and provide ideas and directions for subsequent research.
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1. Introduction

Epilepsy is a chronic central nervous system disorder with
a prevalence of 1–2% of the world’s population (Mormann
et al., 2007). Patients with epilepsy have a three times higher
risk of premature death compared to the normal population,
however, if timely and correct diagnoses and treatments are
obtained in the early stage of the disease, 70% of patients may
be effectively controlled (Beghi et al., 2019). Therefore, it is
particularly important to reduce the rate of misdiagnosis and
underdiagnosis of epilepsy.

Epilepsy is usually caused by abnormal neuronal discharges
and is characterized by recurrent seizures. Suddenly recurrent
and transient perceptual or behavioral disturbances due to hyper
synchronization of cortical neuronal networks, where individuals
experience prolonged abnormal discharges in the brain. Seizures
are classified according to their clinical presentation as partial or
focal, generalized, or unilateral (James, 1997; Tzallas et al., 2007,
2009). Focal seizures involve only a part of the cerebral hemisphere
and produce symptoms in the corresponding part of the body or in
some associated mental function. Generalized seizures involve the
entire brain, producing bilateral motor symptoms and usually loss
of consciousness.

One of the diagnostic tools for epilepsy is
Magnetoencephalography (MEG) (Hamandi et al., 2016),
which is a neurophysiological examination procedure that
uses a superconducting quantum interference device (SQUID)
to measure brain signals for the diagnosis of many neurological
disorders such as Parkinson’s disease (Olde Dubbelink et al., 2014),
Alzheimer’s disease and autism (Stam, 2010; O’Reilly et al., 2017).
MEG is a non-invasive whole-head neuroimaging modality that
uses a highly sensitive magnetometer and gradiometer to record
magnetic fields associated with postsynaptic neuronal currents
within brain cells (Cohen and Cuffin, 1983). People generally
use EEG to diagnose whether a patient has epilepsy clinically.
And the EEG is widely used, the examination is affordable, and
there is extensive and in-depth research accumulation in the field
of research EEG. However, EEG with high temporal resolution
and insufficient spatial resolution can suffer from the problem
of inaccurate source localization. For reviews on EEG source
localization/source estimation source localization/estimation can
be found in the literature (Wennberg et al., 2011; Wennberg and
Cheyne, 2014). On the other hand, the magnetic signal measured
by MEG can pass through the dura, skull, and scalp relatively
undistorted and has a higher signal-to-noise ratio (SNRMEG = 2.2
db, SNREEG < 1 db) and spatial resolution (SRMEG = 2–3 mm,
SREEG = 7–10 mm) than EEG (Fred et al., 2022). Thus, MEG can
exactly compensate for the lack of EEG and play a better role in
functional localization. Complete excision of the irritative zone
defined by the MEG has prognostic significance for postoperative
seizure control (Fischer et al., 2005). Magnetic resonance imaging
(MRI) re-evaluation guided by MEG helps to detect previously
unidentified lesions (Moore et al., 2002), and interictal MEG
is superior to scalp EEG and can provide additional, decisive
localization information (Papanicolaou et al., 2005). Intracranial
electroencephalography (iEEG), stereo-electroencephalography
(SEEG), and electrocorticography (ECoG) are invasive tests that
are considered the gold standard in the diagnosis of epilepsy.

Among them, iEEG is an electrode surgically implanted in the
patient’s brain to obtain a continuous recording of local field
potentials for several hours (Lachaux et al., 2003), and this
continuous data provides valuable information about seizures and
anatomical seizure areas (Balaji and Parhi, 2022), as well as local
brain tissue stimulation applied through these electrodes. iEEG
can be broadly divided into SEEG, which places electrodes in deep
brain tissue, and ECoG, which places electrodes in the cerebral
cortex. The review of the use of ECoG to assess the location
of epileptic pathological activity can be found in the reference
(Crone et al., 2006), and the review of studies on the localization
of epileptic lesions using SEEG can be found in the reference
(Ramantani et al., 2013; Bartolomei et al., 2017). However, MEG,
as a non-invasive method, can play a full role in pre-screening and
can avoid in advance the harm that some patients receive during
invasive examinations. Therefore, we need to vigorously develop
pre-screening and then use invasive instruments such as iEEG
for validation in the face of more severe situations. Functional
magnetic resonance imaging (fMRI) techniques have been applied
as a well-established noninvasive brain imaging method to
demonstrate intrinsic abnormalities in various types of epilepsy
(Vlooswijk et al., 2010), which can indirectly reflect brain activity
and possess high spatial resolution, however, fMRI has a temporal
low resolution is relatively. In contrast, MEG source localization
has been shown to improve the possibility of sampling the seizure
onset zone (SOZ) in iEEG assessment, helping to determine the
location of iEEG electrode placement (Stefan et al., 2011): non-
invasive localization of the sources of MEG epileptiform discharges
are not necessarily detected by simultaneous EEG, whereas MEG
combined with detailed MRI and functional imaging studies can
be effectively used for epilepsy surgery planning (Rosenow and
Lüders, 2001; Seo et al., 2011). MEG has been recognized as an
effective tool for diagnosing epilepsy and finding the location of
cortical pathological activity or damage in epileptic foci (Burns
et al., 2014). In patients with epilepsy, MEG is used in two main
phases of treatment (Englot et al., 2015; Stefan and Trinka, 2017):
(i) to localize areas of the brain that generate abnormal electrical
activity causing neurological disorders, and (ii) to assess the
effectiveness of surgery.

The most common methods of detecting epilepsy from brain
signals are through visual inspection and manual annotation. MEG
is a laborious and time-consuming task for physicians due to
the number of sensors (Halford, 2009; Chahid et al., 2020), the
complex pre-processing required to extract cortical signals, and
the experience required to classify the various waveforms. Due to
the limited number of MEG instruments available worldwide and
their high cost, the use of MEG signals for epilepsy diagnosis and
abnormality detection is still rare, although in recent years there
has been a growing number of scholars who have analyzed MEG
signals for activity (van Diessen et al., 2015). Therefore, the use
of computer-aided detection is of great importance in solving the
problem of clinical diagnosis of neurological disorders.

2. Materials and methods

In this section, we describe the use of classification in relation
to epileptic disorders. We searched Web of science, Google scholar
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and other websites for over a hundred papers by searching
for the keywords including MEG (or Magnetoencephalography),
epilepsy, classification. Then, more than ten studies related to the
tpoic were selected (i.e.,MEG data using classification for epilepsy
diagnosis), which are described in the Section “2.1. The methods for
epileptic patients classification based on MEG signals”. In addition,
we added the keyword of spike/HFO to the previous search in
order to illustrate the use of classification using MEG signals
for the auxiliary localisation of epilepsy, and after removing any
irrelevant content on the topic there were more than ten research-
based papers, which are described in the Section “2.2. Epilepsy-
assisted localization methods using MEG signals”. To highlight
the topic of this review, we will focus on studies related to the
classification/diagnosis of epileptic disorders on MEG modalities,
and we will outline the studies on the use of MEG signals for
auxiliary localisation of epilepsy.

As can be seen in Figure 1, the methods section of this review
describes methods concerning epilepsy classification using data
from MEG, addressing mainly epilepsy diagnosis (Section “2.1. The
methods for epileptic patients classification based on MEG signals”)
and epilepsy auxiliary localization (Section “2.2. Epilepsy-assisted
localization methods using MEG signals”). Furthermore, epilepsy
diagnosis is divided into healthy control v.s. epilepsy patients, and
epilepsy patients can be divided into epilepsy subtypes or laterality.
The auxiliary localization of epilepsy can be divided into methods
of spike detection and HFO detection. In this paper we discussed
them in the order of machine learning, deep learning, and other
classification methods.

2.1. The methods for epileptic patients
classification based on MEG signals

Direct signal-based computer-aided diagnosis (CAD) of
epilepsy is a relatively intuitive method. The vast majority of
these studies have been carried out using machine learning
classification methods, which broadly consist of three steps: signal
pre-processing, feature extraction and classification, while only a
few studies have performed classification by deep learning. In this
section, we review the classification methods that have been used so
far for epilepsy diagnosis using deep learning for MEG signals. An
overview of all the studies mentioned in this section can be viewed
in Tables 1, 2.

2.1.1. Machine learning
2.1.1.1. Linear discriminant analysis and threshold method

Linear Discriminant Analysis (LDA) is a classical linear
learning method, introduced by Fisher in 1936 for binary
classification problems, hence the name Fisher Discriminant
Analysis, and is a supervised learning technique for dimensionality
reduction. The idea is that given a set of training samples, the
samples are projected into a straight line so that the projections
of the same samples are as close as possible and the projection
points of dissimilar samples are as far apart as possible, i.e. the
projection minimizes the intra-class variance and maximizes the
inter-class variance.

In 2015, Kahlid et al. first classified epilepsy patients versus
healthy subjects using the LDA approach (Khalid et al., 2015). They

found that the subjects’ MEG data followed a normal distribution
within eight brain regions (right frontal, left frontal, right temporal,
left temporal, right parietal, left parietal, right occipital, and left
occipital), but with different standard deviations. Therefore, the
standard deviation of the fitted normal distribution for these
eight brain regions was used as the feature vector and then LDA
classification was performed, resulting in a sensitivity of 94.4% and
a specificity of 100%. This study also provided an initial exploration
for subsequent epilepsy detection based on the MEG signal.

Another new attempt was made by Khalid et al. (2016a), which
they observed that the ratio of Delta-band and Theta-band energy
was influenced by epilepsy versus healthy subjects. Therefore, by
calculating the band energies of the Delta and Theta band spectrum,
and then calculating their ratio (R = D/T), and then comparing
it to a pre-determined threshold (Tr), which is the average of the
minimum value of the energy ratio in epileptic patients and the
maximum value of the energy ratio in healthy subjects, to determine
whether the MEG data considered was epileptic, yielded mean
sensitivity of 96.66% and specificity of 98.66%.

MEG has rarely been applied to solve the problem of
classifying temporal lobe epilepsy (TLE). Matsubara et al. made
an attempt in 2018 (Matsubara et al., 2018), and found that
neural synchronization induced by unilateral pure tone stimulation
provided useful information for determining the lateralization
of mesial temporal lobe epilepsy (mTLE). This study applied
monaural auditory stimuli to subjects and then analyzed auditory
evoked magnetic fields (AEFs) data using source estimates of M100
responses in bilateral auditory cortices (ACs), and used the phase-
locking factor (PLF) and phase-locking value (PLV) to assess the
neural synchronization of the auditory cortex. While, the PLF
represents an index of the inter-trial synchronous change from a
local brain region, while the PLV indicates an index of the difference
in phase synchronous change between source activities from two
different brain regions. Finally, PLFs and PLVs from all neural
synchronization data were used for epilepsy diagnosis and laterality
diagnosis using LDA. The results showed that the classifier achieved
accuracy, sensitivity, and specificity of 81–82%; and for mTLE
laterality, 92–93% results were achieved, which is comparable to the
results of a study with an EEG (Verhoeven et al., 2018). The results
suggest that PLFs are sufficiently sensitive to distinguish between
the mTLE group and the healthy controls group (HCs); PLVs show
altered functional connectivity between bilateral ACs in patients
with right and left mTLE compared to HCs; monaural stimulation
reveals AC asymmetry and provides important lateralization
information about the epileptic lesion, especially in patients with
right mTLE; and LDA works well in this study.

2.1.1.2. Support vector machine
Support Vector Machine (SVM) is a supervised machine

learning algorithm proposed in 1964 and has been rapidly
developed since the 1990s. It has become one of the most
popular machine learning algorithms (Boser et al., 1992), and has
been successfully applied as a classifier in different fields. As a
classification tool, the SVM technique is flexible, automated, and
fast enough to operate in a clinical setting (Focke et al., 2012). SVM
algorithms have been applied to measure brain morphology (Rudie
et al., 2015), including cortical thickness, volume, curvature, and
identifying medial temporal sclerosis (MTS) in TLE patients. SVM
has also been used to determine the laterality of TLE epileptogenic
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FIGURE 1

Diagram of methods concerning epilepsy classification based on MEG data.

foci and diffusion tensor imaging (DTI) structural connectomes
(Kamiya et al., 2016). Another study validated the use of SVM
for voxel-based MRI classification, where TLE with MTS could be
distinguished from TLE without MTS with an accuracy of over 88%
(Focke et al., 2012). SVM was also applied to word decoding and
MEG recording in schizophrenia (Ince et al., 2008; Chan et al.,
2011). In addition, SVM has been used on fMRI to classify TLE
patients from healthy subjects (Hao et al., 2022).

It has been shown that unilateral TLE is not a disease with
a single focal region, but a network disease (Pittau et al., 2012;
Chiang and Haneef, 2014; de Campos et al., 2016), and in
addition graph-theoretic metrics are able to summarize network
properties with less computational cost than voxel-based and
skeleton-based approaches. Wu et al. investigated the problem of
unilateral classification for epilepsy based on network properties
(Wu et al., 2018). The brain network was first constructed from
MEG data, then the connection matrix was obtained to calculate
the network parameters associated with the nodes (node degree,
node efficiency, and inter-node sex), incorporated into the feature
vectors, dimensionality reduction was performed using PCA, and
the best feature vectors were fed into the radial basis function
kernel SVM (RBF-SVM) for classification. The results found that
nodal degree performed best in distinguishing left/right TLE from
healthy subjects with accuracy of 80.76 and 75.00%, respectively;
betweenness centrality achieved the least accuracy when used as a
feature to distinguish left/right TLE from healthy controls, while
it performed best in distinguishing left TLE from right TLE with
accuracy of 88.10%, which is consistent with its performance on
the DTI (Kamiya et al., 2016). This study illustrates the better
effectiveness of nodal degree when classifying epilepsy versus
controls using brain network features, and the greater clinical
value of betweenness centrality when addressing the lateralization
of unilateral TLE.

Alotaiby et al. proposed a statistical feature-based MEG signal
classification technique (Alotaiby et al., 2019). The multichannel
MEG signal was first segmented into time segments of less than
1 minute, and then eight statistical features (maximum, minimum,
mean, standard deviation, median, kurtosis, quartile, and skewness)

were extracted from the signal, and the features were fed into
an SVM classifier for training, with an average sensitivity and
specificity of 99.35 and 95.47% for classification. Using the method
on the same dataset (mean sensitivity 100%, mean specificity
90.63%) (Khalid et al., 2015), the sensitivity was found to be
almost unchanged, while the specificity was increased by 4.84%
(Alotaiby et al., 2019).

Tanoue et al. established specific oscillatory distribution and
laterality of oscillatory power by analyzing the frequency of
unilateral mTLE, calculated the laterality index (LI) for four brain
regions (frontal, temporal, parietal, and occipital) in the frequency
band (Tanoue et al., 2021), and performed a comparison between
subject groups (left mTLE vs HC, right mTLE vs HC). The
predictions were then made using an SVM with a linear kernel
function, achieving a correct rate of over 91%, a specificity of over
96%, and a sensitivity of 68–75%.

Network disturbance has been shown to exist in multiple
frequency bands in the TLE (Bettus et al., 2010; Cataldi et al., 2013),
and this is supported by the overlapping nodes of many resting-
state networks, where communication between different network
elements may be affected by their residual frequencies. Therefore,
the optimal function must be included within a given frequency
band as well as effective information transfer with other frequency
bands. Gautham et al. used the phase-amplitude coupling (PAC) of
the resting state MEG to automatically determine the lateralization
of TLE lesions (Gautham et al., 2022). PAC assumes that
information transfer occurs between the high-frequency power
envelope and the low-frequency phase. The phase modulation
or entrainment of higher frequency power. There is evidence of
specific PAC in physiological recordings as well as during epilepsy
(Tort et al., 2010; Nariai et al., 2011; Szczepanski et al., 2014; Amiri
et al., 2016). This study used decision tree (DT), SVM-RBF, and
naive Bayes (NB) to classify PACs for source-transformed resting
states of subject data after feature selection by chi-square test. The
results showed that the highest accuracy was achieved between the
control and left TLE in terms of the low gamma-low frequency
band using SVM (92.92%), between the control and right TLE
in terms of the low gamma-low frequency band using DT and
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TABLE 1 The methods for classifying epilepsy using machine learning in MEG data.

References Moda-
lity

Problem
that
was
solved
in that
study

Database Data acquisition Source
locali-
zation

Fea-
tures

Classifi-
cation

Performance metrics

Sample
size

Age
range

Sex
(M:F)

Source Total
dura-
tion

Cha-
nnels

Seg-
ment/
epoch
length

Fre-
quency
samp-
ling

Pre-
process-
ing

Sensiti-
vity
(%)

Specifi-
city
(%)

Accu-
racy
(%)

Khalid et al.,
2015

MEG EP vs HC 18 EPs,
15 HCs

/ / KFMC 15 min more
than
300

/ 1,000 Hz / / Standard
deviation

LDA 94.4 100 95.7

Khalid et al.,
2016a

MEG EP vs HC 35Eps,
35HCs

/ / KFMC 15 min 306 / 1,000 Hz / / Energy of
the Delta
and Theta
component

Threshold
method

96.66 98.66 /

Matsubara
et al., 2018

MEG mTLE vs
HCs

25 left
mTLE,
14 right
mTLE,
32 HCs

20–68 females Kyushu
University

at least
120
evoked
responses
were
counted

306 / 1,000 Hz band-pass
filter:
0.1–330
Hz

minimum
norm
estimate
(MNE)
software

phase-
locking
factor
(PLF) and
phase-
locking
value
(PLV)

LDA 82.1 81.3 81.7

left TLE
vs right
TLE

92 92.9 92.3

Wu et al., 2018 MEG left / right
TLE vs
HCs

15
left/15
right
TLEs, 15
HCs

15–62 / Nanjing
Brain
Hospital,
Nanjing
Medical
University

30 min 275 120 s 1,200 Hz band-pass
filter:
1–4 Hz

standardized
low
resolution
brain
electro-
magnetic
tomography
(sLORETA)
was based
on
minimum-
norm
estimation
(MNE)

nodal
degree,
betweenness
centrality,
and nodal
efficiency

RBF-
SVM

/ / 77.38

left TLE
vs right
TLE

/ / 88.1

(Continued)

Fro
n

tie
rs

in
N

e
u

ro
scie

n
ce

0
5

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fnins.2023.1183391
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1183391
July

6,2023
Tim

e:15:1
#

6

P
an

e
t

al.
10

.3
3

8
9

/fn
in

s.2
0

2
3

.118
3

3
9

1

TABLE 1 (Continued)

References Moda-
lity

Problem
that
was
solved
in that
study

Database Data acquisition Source
locali-
zation

Fea-
tures

Classifi-
cation

Performance metrics

Sample
size

Age
range

Sex
(M:F)

Source Total
dura-
tion

Cha-
nnels

Seg-
ment/
epoch
length

Fre-
quency
samp-
ling

Pre-
process-
ing

Sensiti-
vity
(%)

Specifi-
city
(%)

Accu-
racy
(%)

Alotaiby et al.,
2019

MEG EPs vs
HCs

32 EPs,
32 HCs

/ / KFMC ≈

19 min
306 1 min 1,000 Hz band-pass

filter:
0.03–
330 Hz

/ 8
statistical
features

RBF-
SVM

99.35 95.47 /

Gautham
et al., 2022

MEG left TLE
vs HCs

54 TLE,
21 HCs

15–37 36:18 the MEG
Research
Centre at
NIMHANS,
Bangalore,
India

5 min 306 / 2,000 Hz down-
sampled
to 500 Hz

beamformer phase
amplitude
coupling
(PAC)

SVM / / 92.92

right TLE
vs HCs

/ / 93.54

left TLE
vs right
TLE

/ / 92.04

Wang et al.,
2022

MEG CPS vs
SPS

16 SPS,
16 CPS

17–38 13:19 Nanjing
Brain
Hospital,
Nanjing
Medical
University

40 min 275 120 s 1,200 Hz low-pass
filter:70 Hz,
high-pass
filter:
1,000 Hz,
notch-
filter:
50 Hz,
down-
sampled
to 100 Hz

partial
canonical
correlation/
coherence
(PCC),
Fieldtrip

resting
state
functional
connectivity
features

SVM 81.1 81.54 81.37
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TABLE 1 (Continued)

References Moda-
lity

Problem
that
was
solved
in that
study

Database Data acquisition Source
locali-
zation

Fea-
tures

Classifi-
cation

Performance metrics

Sample
size

Age
range

Sex
(M:F)

Source Total
dura-
tion

Cha-
nnels

Seg-
ment/
epoch
length

Fre-
quency
samp-
ling

Pre-
process-
ing

Sensiti-
vity
(%)

Specifi-
city
(%)

Accu-
racy
(%)

Soriano et al.,
2017

MEG EPs vs
HCs

14
frontal
focal
EPs,
14
idiopathic
generalized
EPs,
14 HCs

16–52 1:1 the
University
General
Hospital
of Ciudad
Real

10 min 306 5 s 1,000 Hz band-pass
filter: 0.1–
330 Hz

/ total and
relative
power

ELM 93 86 90

generalized
vs focal
epilepsy

spectral
densities
(PSD), the
phase-
locking
value
(PLV) and
the
phase-lag
index
(PLI)

1 86 93

Bhanot et al.,
2022

MEG localize
the brain
region
from
where the
seizure
originated

15 EPs 14–34 9:6 the MEG
Research
Centre at
NIMHANS,
Bangalore,
India

12 min 306 / 2,000 Hz
or
50,000 Hz

band-pass
filter: 0.1–
100 Hz,
down-
sampled
to 250 Hz

/ short-time
permutation
entropy
(STPE),
gradient
of STPE
(GSTPE),
short-time
energy
(STE),
and
short-time
mean
(STM)

RUSBoost 93 93 93.4

EPs, Epileptic patients; HCs, Healthy controls; TLE, temporal lobe epilepsy; SPS, simple partial seizure; CPS, complex partial seizure; SCI, spinal cord injury patients; NNI, National Neuroscience Institute; KFMC, King Fahad Medical City, Riyadh, Saudi Arabia.
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TABLE 2 The methods for classifying epilepsy using deep learning in MEG data.

References Moda-
lity

Problem
that
was
solved
in that
study

Database Data acquisition Source
locali-
zation

Fea-
tures

Classi-
fication

Performance metrics

Sample
size

Age
range

Sex
(M:F)

Source Total
dura-
tion

Cha-
nnels

Seg-
ment/
epoch
length

Fre-
quency
samp-
ling

Pre-
process-
ing

Sensiti-
vity
(%)

Specifi-
city
(%)

Accu-
racy
(%)

Aoe et al., 2019 MEG EPs vs
HCs

140 EPs,
26 SCIs,
67 HCs

21–86 123:110 Osaka
University
hospital

4 or 5
min

160 800 ms 1,000 Hz
or
2,000 Hz

low-pass
filter:
50 Hz,
high-pass
filter:
1,000 Hz,
down-
sampled
to
1,000 Hz

/ / MNet / / 63.4 ±
12.7

EPs vs
SCIs

/ / 79.8 ±
11.7

EPs vs
SCIs vs
HCs

/ / 70.7 ±
10.6

Gu et al., 2020 MEG SPS vs
CPs

32 EPs 20–32 1:1 Nanjing
Brain
Hospital,
Nanjing
Medical
University

40 min / 2 min 1,200 Hz band-pass
filter:
0.03–
300 Hz

/ / MSAM 90.8 90.7 83.6

Fujita et al.,
2022

MEG EPs vs
HCs

90 Eps,
90 HCs

7–86 93:87 Osaka
University
hospital

4 or 5
min

160 2,400 ms 1000 Hz
or
2,000 Hz

low-pass
filter:
500 Hz,
high-pass
filter:
0.1 Hz,
bandstop
filter:
60 Hz,
down-
sampled
to
1,000 Hz

/ relative
power,
functioncal
connectivity
(FC),
phase-
amplitude
coupling
(PAC)

MNet
(Aoe
et al.,
2019)

90 90 90
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SVM (93.54%), and in distinguishing between the left/right TLE
using delta-low gamma coupling, theta-low gamma coupling as
features and the best results when using the SVM classifier (both
92.04%). It was found that overall PAC values were higher in
TLE patients compared to healthy controls. In sub-band analysis,
differences were found between controls, left and right TLE: PAC in
TLE resting state recordings showed that TLE patients had altered
network dynamics on multiple time scales, even in the absence
of seizures and interictal discharges. Among the three algorithms
used in this study, SVM-RBF provides a non-linear separation
between classes for high-dimensional electrophysiological data
with small sample sizes, and this classification method is also more
straightforward for clinicians.

Wang et al. used differences between functional networks to
classify two subtypes of TLE, Simple partial seizure (SPS) and
Complex partial seizure (CPS) (Wang et al., 2022). The MEG brain
network functional connectivity matrix was constructed and then
SVM was used to identify differences in resting state functional
connectivity. The results showed that the SVM classification model
achieved an average accuracy of 81.37%, sensitivity of 81.1%, and
specificity of 81.54% using the best set of 28 features of functional
connectivity calculated from the MEG data. The results showed
that compared to SPS, CPS patients showed hyper-connectivity
in several major regions, including intraparietal sulcus, transverse
parietal sulcus of brissaud, middle frontal gyrus, callosal suleus.
By comparing the differences in functional connectivity between
the SPS and CPS, the pathological basis for the impairment of
consciousness and cognitive abnormalities can be explored.

2.1.1.3. Deep learning
Machine learning methods can certainly assist in diagnosis,

however, the appropriate features need to be extracted manually.
Deep learning methods, on the other hand, can automatically
find features and have been successful in other neuroimaging
diagnostics, such as MRI imaging of Alzheimer’s disease and brain
tumors (Payan and Montana, 2015; Chang et al., 2018).

Aoe et al improved a deep neural network for MNet based on
the previous EnvNet-v2 that can classify a variety of neurological
disorders based on resting-state MEG signals (Tokozume and
Harada, 2017; Tokozume et al., 2017; Aoe et al., 2019). This study
attempts to classify MEG signals from spinal cord injury patients,
epilepsy patients, and normal controls. MNet is designed to extract
the global features of the 160 original MEG signal channels mainly
through the first convolutional layer over the entire channel of
64 ms, with the later layers used to extract the time-frequency
components of the global features. In this study, the dataset was
expanded by slicing. In addition, some of the band power of the
800 ms MEG signal was used as input to the fully connected
layer, as these are known classical features that can inform disease
classification (Hill et al., 2006; Chaturvedi et al., 2017). The
results showed that the classification accuracy was 70.7 ± 10.6%
when distinguishing between healthy subjects, epileptic patients,
and patients with spinal cord injury, which greatly exceeded the
accuracy of classification using SVM when the relative power of
the six frequency bands was used as a feature. The classification
accuracy was 88.7 ± 9.3% when distinguishing between epileptic
and healthy subjects, and accuracy of 79.8 ± 11.7% when
distinguishing between epileptic and spinal cord injured patients,
both of which also outperformed the SVM classifier. This study

is the first to use the MEG signal to classify different neurological
disorders based on a single classifier that is not dependent on
gender differences and age, and has some generalization, as well as
the expanded dataset approach compensates to some extent for the
lack of data and has a high specificity in identifying disorders. This
study demonstrates that global features of characterized diseases
can be successfully extracted using MNet.

Gu et al. proposed a multi-head self-attention model (MSAM)
to classify SPS and CPS (Gu et al., 2020). In this case, the original
MEG signal was used as input, and a self-attentive mechanism
analyzed the effect of the location of the sampled signals to set
different weights for the classification algorithm, separating the pre-
ictal and interictal periods, and then a multilayer perceptron model
was used to extract frequency- and time-domain information for
feature extraction and epileptic subtype classification. Experimental
results of this study using the MSAM model showed an accuracy
of 83.6%, a recall of 90.9%, an accuracy of 90.7%, and an F1
score of 83.4%, significantly outperforming classifiers such as
convolutional neural networks, SVM and random forests (RF).
This study demonstrates the effectiveness of MSAM in classifying
temporal lobe epilepsy subtypes, but further attempts at other
datasets, long-term follow-up experiments, and research into the
prevention and early treatment of epilepsy are needed.

Yuya et al. hypothesized that resting-state PAC would be
different for epileptic patients and healthy subjects in the interictal
period (Fujita et al., 2022). This study used the average of the
synchronization index (SI) to assess PAC and then used features
such as PAC, relative power, and functional connectivity in the δ (1–
3 Hz), θ (4–7 Hz), α (8–13 Hz), β (13–30 Hz), low γ (35–55 Hz), and
high γ (65–90 Hz) bands, and by individuals or a combination of
extracted features followed by classification using MNet (Aoe et al.,
2019), to test whether PAC improves discrimination accuracy. The
results found that the mean SI was significantly different between
epileptic and healthy subjects and that the difference in SI values
for theta/low gamma was highest in the temporal lobe, with the
highest classification accuracy of 90% when using a combination of
PAC and deep learning. This was a slight improvement in accuracy
compared to be used only MNet (Aoe et al., 2019).

2.2. Epilepsy-assisted localization
methods using MEG signals

As previously mentioned, the advantages of MEG in the assisted
localization of epilepsy, and both spikes and high-frequency
oscillations (HFO) have been clinically shown to be associated with
seizures. Therefore, in this section we will review the classification
studies of spike detection and high-frequency oscillation detection
using the CAD approach. The outline of the studies mentioned in
this section can be viewed in Table 3.

2.2.1. Spike detection
A large number of studies have shown that nearly 80% of

patients with epilepsy are accompanied by abnormal neuronal
discharges during the epileptic see period, which are mainly
manifested in EEG waveforms as isolated spikes, spike trains, sharp
waves, and spike-wave complexes (Tzallas et al., 2012; Spyrou et al.,
2016). Clinically, it is common to choose to extract epileptiform
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TABLE 3 The methods of using artificial intelligence for epilepsy-assisted localization in MEG data.

References Moda-
lity

Problem
that
was
solved
in that
study

Database Data acquisition Source
locali-
zation

Fea-
tures

Classifi-
cation

Performance metrics

Sample
size

Age
range

Sex
(M:F)

Source Total
dura-
tion

Cha-
nnels

Seg-
ment/
epoch
length

Fre-
quency
samp-
ling

Pre-
process-
ing

Sensiti-
vity
(%)

Specifi-
city
(%)

Accu-
racy
(%)

Khalid et al.,
2016b

MEG spike
detection

20 Eps / / KFMC 15 min 306 / 1,000 Hz band-pass
filter:
1–50 Hz

/ CSP
features

CSP-
LDA

91.03 94.21 /

Alotaiby et al.,
2017

MEG spike
detection

30 Eps 14–43 22:8 KFMC 15 min 306 100 ms 1,000 Hz band-pass
filter:
1–50 Hz

/ statistical
features

KNN 91.75 92.99 /

Khalid et al.,
2017

MEG spike
detection

28 Eps 14–43 / KFMC 15 min 306 100 ms 1,000 Hz band-pass
filter:
1–50 Hz

/ amplitude
threshold-
based
features

Dynamic
Time
Warping
(DTW)

92.45 95.81 /

Chahid et al.,
2019

MEG spike
detection

8 Eps, 8
HCs

/ / KFMC 15 min 306 sliding
window
of size
100
sample-
points
with a
step of 2
sample-
points

1,000 Hz band-pass
filter:
1–50 Hz

/ Semi-
Classical
Signal
Analysis
(SCSA)
method-
based
features

SVM 92.52 89.1 90.88

Chahid et al.,
2020

MEG spike
detection

8 Eps, 8
HCs

/ / KFMC 15 min 306 sliding
window
of size
100
sample-
points
with a
step of 2
sample-
points

1,000 Hz band-pass
filter:
1–50 Hz

/ QuPWM-
based
features

SVM 87 97 /
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TABLE 3 (Continued)

References Moda-
lity

Problem
that
was
solved
in that
study

Database Data acquisition Source
locali-
zation

Fea-
tures

Classifi-
cation

Performance metrics

Sample
size

Age
range

Sex
(M:F)

Source Total
dura-
tion

Cha-
nnels

Seg-
ment/
epoch
length

Fre-
quency
samp-
ling

Pre-
process-
ing

Sensiti-
vity
(%)

Specifi-
city
(%)

Accu-
racy
(%)

Sdoukopoulou
et al., 2021

MEG+
EEG

spike
detection

1 Eps 20 female / 8 min 304 400 ms 2,400 Hz band-pass
filter:
1–100 Hz

/ EMEG
features
(statistical,
spectral,
functional
connectivity
metrics)

SVM 95.1 90.2 92.8

Kaur et al.,
2022

MEG spike
detection

20 EPs 15–52 / Magnetoence-
phalography
Center of
Xuanwu
Hospital of
Capital
Medical
University

60 min 306 10 s 1,000 Hz band-pass
filter: 0.1–
500 Hz

/ Phase
locking
value
(PLV)

SVM / / 93.8

Zheng et al.,
2019

MEG spike
detection

20 focal
Eps

10–49 11:9 the Sanbo
Hospital of
Capital
Medical
University,
Beijing,
China

10 min
(90
min)

306 300 ms 1,000 Hz band-pass:
1–100 Hz

/ / EMS-Net 91.61–
99.53

91.60–
99.96

91.82–
99.89

Hirano et al.,
2022

MEG spike
detection

375 EPs 0–79 1:1 Osaka
University
hospital

4 or 5
min

160 2,048 ms 1,000 Hz
or
2,000 Hz

band-pass
filter:
3–35 Hz;
downsampled:
1,000 Hz

/ / SE-
ResNet+
DeepUNet

79.52 99.71 /
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TABLE 3 (Continued)

References Moda-
lity

Problem
that
was
solved
in that
study

Database Data acquisition Source
locali-
zation

Fea-
tures

Classifi-
cation

Performance metrics

Sample
size

Age
range

Sex
(M:F)

Source Total
dura-
tion

Cha-
nnels

Seg-
ment/
epoch
length

Fre-
quency
samp-
ling

Pre-
process-
ing

Sensiti-
vity
(%)

Specifi-
city
(%)

Accu-
racy
(%)

Guo et al.,
2018

MEG HFO
detection

20 EPs 6–60 1:1 / 60 min 306 2 s 2,400 Hz band-pass
filter:
1–70 Hz,
80–
250 Hz,
250–
500 Hz;
down-
sample
factor: 10

/ SSAE
model-
based
features

SMO 88.2 91.6 89.9

Guo et al.,
2020

MEG HFO
detection

20 EPs 6–60 1:1 / 60 min 306 1,000 ms 4,000 Hz band-pass
filter: 80–
250 Hz,
250–
500 Hz

/ / ARF-
AttNN

82.6 92.7 89.3

Liu et al., 2020 MEG HFO
detection

20 EPs 6–60 1:1 / 60 min 306 500 ms 2,400 Hz band-pass
filter: 80–
250 Hz,
80–500 Hz

/ / MEGNet 94 / 94

Tanoue et al.,
2021

MEG HFO
detection

16 left
mTLE,
19 right
mTLE

8–71 2:3 Osaka City
University
Hospital

5 min 160 10 s 1,000 Hz band-pass
filter: 0.3–
200 Hz

COH
algorithms
imple-
mented in
SPM-12,
which is
similar to
sLORETA

the
laterality
index (LI)
in

SVM 68–75 96 91

Guo et al.,
2022

MEG HFO
detection

20 EPs 6–60 1:1 / 60 min 306 1 s 2,400 Hz band-pass
filter:
1–70 Hz,
80–500 Hz

/ / TransHFO 92.86 100 96.15
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spikes and spike-waves during interictal periods and to obtain
epilepsy-related pathological information by quantitative analysis.
Although spikes and sharp waves are clinically defined differently,
in the field of automatic identification, the two are uniformly
referred to as epileptic transients or spikes. The first attempt
to extract epileptiform spikes from long-duration EEG signals
was made by Stevens et al. (1972), which initiated the study of
automatic spike detection. Since then, numerous spike detection
algorithms have been generated, involving different directions such
as morphology-based (Liu et al., 2012; Zhang et al., 2013), signal
correlation (Lodder et al., 2013; Karacor et al., 2014; Khalid et al.,
2017), sub-band decomposition (Casson and Rodriguez-Villegas,
2009) and feature engineering correlation (Oikonomou et al., 2007;
Azami and Sanei, 2014; Young et al., 2018). Although there is no
formal definition of MEG spikes to date (Nowak et al., 2009) and
direct application of the definition of spikes in EEG may not always
be applicable (Kakisaka et al., 2013), spikes and spikes in the MEG
signal can be used to assist in the diagnosis of epilepsy. Compared
to EEG spikes, MEG spikes are typically shorter in duration and
have a steeper rise frequency (Ossenblok et al., 2007), and the MEG
signal also has a higher SNR than EEG for more superficial sources,
suggesting that MEG is more suitable for accurate localization
of neocortical epileptic sources (Hillebrand and Barnes, 2002;
Goldenholz et al., 2009). As a result, interictal MEG is increasingly
being used for the preoperative assessment of epilepsy. MEG
localization of interictal spike-wave regions has been shown to be
in good agreement with intracranial video EEG (Knowlton and
Shih, 2004; Knowlton, 2008). The most common clinical spike-
wave detection is manual determination of the MEG signal by
an experienced neurophysiologist. However, the subjective review
process is very time-consuming (Wilson and Emerson, 2002) and
the results can vary between experts (Scheuer et al., 2017).

We briefly summarize the studies on spike detection using CAD
methods. Ossadtchi et al. was the first to detect spike components
from multichannel MEG signals using independent component
analysis (ICA) and clustering. This study laid the foundation for
the subsequent research on MEG-based spike detection (Ossadtchi
et al., 2004). Khalid et al. used common spatial patterns (CSP)
to extract spike features and used LDA for classification and
achieved average sensitivity and specificity of 91.03% and 94.21%
(Khalid et al., 2016b). Alotaiby et al. used statistical features and
genetic programming (GP) with the K-nearest neighbor (KNN)
for interictal spike detection in MEG signal, achieved an average
sensitivity and specificity of 91.75 and 92.99% (Alotaiby et al.,
2017). Khalid et al. used dynamic time warping (DTW) to detect
spikes and achieved sensitivity of 92.45% and a specificity of
95.81% (Khalid et al., 2017). Chahid et al. proposed to use the
largest negative eigenfunction in the absolute value of the discrete
spectrum of the Schrödinger Operator as feature, and used SVM for
classification and achieved 92.51% and 89.10% average sensitivity
and average specificity (Chahid et al., 2019). Chahid et al. used
position weight matrix (PWM) combined with uniform quantizer
method (QuPWM) for feature extraction of epileptic spike and
then used RBF-SVM for classification, achieved sensitivity of
87.20%, specificity of 97.76%, and accuracy of 92.48% as the results
(Chahid et al., 2020). Sdoukopoulou et al. considered a combined
MEG and EEG approach to develop a multi-feature and iterative
classification scheme and achieved a classification result of recall
90.2%, specificity 95.1%, and accuracy 92.8% (Sdoukopoulou et al.,

2021). Kaur et al. proposed a strategy of locating spikes in the phase
locking functional brain connectivity network using a machine
learning method which achieved a classification accuracy of up to
93.8% (Kaur et al., 2022).

MEG deep learning-based spike detection algorithms are still in
the exploration stage. Zheng et al. proposed a new multi-channel
spike detection algorithm for MEG based on the deep learning
framework EMS-Net (Zheng et al., 2019), achieving 91.60–99.96%
accuracy, sensitivity, and specificity. Hirano et al. performed an
AI-based identification for NEG interictal epileptiform discharges
and estimated equivalent current dipoles equivalent current dipoles
(ECD) (Hirano et al., 2022): a SE-ResNet-based classification model
was designed to classify the data (Hu et al., 2018), followed by a
DeepUNet-based splitting architecture (Li et al., 2018) for spike
detection showed that 79.52 and 99.71% sensitivity and specificity
were achieved and that the ECD was comparable to that estimated
by neuroscientists.

2.2.2. HFO detection
Clinical studies of HFO have made great progress in recent

decades: there is a large body of research demonstrating that areas
of HFO are strongly correlated with the epileptogenic zone and that
HFO appears to delineate the epileptogenic focus better than spikes
and can be considered as a potential marker of the epileptogenic
zone. MEG uses the HFO of the interictal brain signal to localize
the lesion, reducing recording time and patient distress. Because
HFOs are short-lived, low-amplitude events, visual detection is
very time-consuming, taking a minimum of 10 hours to mark
an HFO in a 10-minute and 10-channel recording. Due to the
low feasibility of manually labeling HFOs on a large scale, there
is an urgent need for automated detection algorithms to assist
physicians in the diagnosis and help with preoperative localization.
Xiang et al. published the first study to detect HFOs in MEG
of pediatric epilepsy patients in 2010 (Xiang et al., 2010). In
2016, Papadelis et al. described a method to simultaneously detect
HFOs in scalp EEG and MEG signals of pediatric epilepsy patients
(Papadelis et al., 2016): first, the envelope with communication
signals was calculated using the Hilbert transform and the z-score
of the envelope was calculated, and the z-score threshold was set
to mark candidate HFOs in the time domain. Then, the Morlet
transform was used to time-frequency transform the candidate
HFOs, analyze the instantaneous power spectrum and check
for "islands" in the time-frequency map to distinguish artifacts.
Finally, the results were compared with invasive recordings. The
results show that scalp EEG and MEG can detect and localize
HFOs non-invasively and reliably. von Ellenrieder et al. found
that (von Ellenrieder et al., 2016): pre-detection was performed
when the root-mean-square value of the narrow-band amplitude
was larger than the root-mean-square of the background activity.
Afterward, some candidate HFOs were then discarded based on
the definition that high-frequency oscillations are those in which
at least four consecutive oscillations occur in a short of period
time. The detection results agreed 85% with the results of the
expert visual inspection. In 2017, van Klink et al. improved on
the detector proposed by Burnos (Burnos et al., 2014, 2016; van
Klink et al., 2017) to automatically detect Ripple in the sensor:
first by calculating the Stockwell entropy to determine the baseline,
and then using the Hilbert transform to calculate the envelope
to determine Ripple. The automatically detected Ripple agreed
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with the patient’s MEG spike by 87.5%, indicating that automatic
detection of MEG fluctuations in the time domain is feasible. The
above study shows that the automatic detection of HFO signals
in the MEG can be useful in aiding the diagnosis of patients
with epilepsy. It can be seen that such algorithms are typically
divided into two stages: first, extraction of features to pre-detect
HFOs; and second, classification of previously detected candidate
events to distinguish real HFOs from artifacts and noise in the
signal. HFO feature extraction includes time-domain features,
frequency-domain features, and time-frequency-domain features.
Classification methods mainly include thresholding and machine
learning methods. Thresholding methods are more common, but
the amplitude and frequency of HFO are highly variable and a
fixed threshold may limit the performance of the detector, so
the thresholding method has unavoidable limitations. Machine
learning methods include ordinary machine learning algorithms
including SVM, LDA, and deep learning algorithms.

In the following, we will briefly summarize the research on
HFO detection using deep learning methods. Guo et al. proposed
a stacked sparse autoencoder-based MEG HFO detector (SMO),
which achieved 88.2, 91.6 and 89.9% sensitivity, specificity and
accuracy, respectively, which is the first study using deep learning
approach for HFO detection of MEG signals (Guo et al., 2018).
Guo et al. also proposed a method for automatic detection of
ripple and fast ripple in 2020, using virtual sample generation
based on adaptive synthetic, and attention neural networks to
build models for classification, achieving an average accuracy of
89.3% (Guo et al., 2020). Liu et al. applied MEGNet, an improved
CapsuleNet model, to classify MEG,and achieved the result of
95% accuracy, 94% recall, 94% F1-score and 94% accuracy (Liu
et al., 2020).Guo et al. developed a Transformer-based model for
classifying HFO (TransHFO), which combined the advantages of
virtual sample generation and multi-head attention mechanism to
achieve classification results with 96.15% accuracy, 100% precision,
92.86% sensitivity, and 100% specificity (Guo et al., 2022).

3. Discussion

We will discuss the research on epilepsy classification of MEG
signal using CAD approach of Section 2.1 in Section 3.1, epilepsy-
assisted localization methods using MEG signals of Section 2.2 in
Section 3.2, then limitations and suggestions of the current study in
Section 3.3.

3.1. Classification for epilepsy detection
using MEG signals

The discussion in Section “2. Materials and methods” shows
that the classification methods for MEG-based CAD systems are
still more oriented towards machine learning, with only a few
studies employing deep learning methods. This is mainly because
of the complexity of MEG signals, which have relatively few
features if viewed directly from the signal, especially resting-state
MEGs. Moreover, deep learning requires a large number of training
samples, and MEGs are not specifically or publicly available in

databases due to the rarity of the data, thus limiting extensive
research by academics.

In addition, some scholars have used other methods to classify
epilepsy in MEG signal. Soriano et al. used the Extreme Learning
Machine (ELM) machine learning method to classify patients with
frontal lobe partial epilepsy, idiopathic generalized epilepsy, and
healthy subjects using resting state MEG (Soriano et al., 2017):
this study extracted the total and the relative power spectral
densities (PSD), PLV and the phase-lag index (PLI) as features,
which were then classified using ELM. The best results were
obtained when using the PSD as a feature to differentiate between
epileptic and healthy subjects (90% accuracy), and the best results
were obtained when using the combination of PSD and PLV as
input to differentiate between frontal and generalized epilepsy
(93% accuracy).

Bhanot et al. labelled the brain into eight regions (left-
frontal, left-occipital, left parietal, left-temporal, right-frontal,
right-occipital, right-parietal and right- temporal) and locate the
epileptogenic zone using a classification approach (Bhanot et al.,
2022). To our knowledge, this is the first exploration of using MEG
data to broadly classify epileptogenic zones. The study extracted
four statistical features that are sensitive to the seizure period,
that is, short-time permutation entropy (STPE), gradient of STPE
(GSTPE), short-time energy (STE), and short-time mean (STM),
and were classified using the RUSBoost algorithm, achieving an
accuracy of 93.4%, specificity of 93%, sensitivity of 93% and area
under the curve (AUC) of 0.97, respectively.

Tables 1, 2 demonstrate the methods of classification of
epilepsy discussed above. As previously mentioned, the processing
flow of machine learning consists of three main steps: pre-
processing of the signal, finding and extracting relevant features,
and inputting a classifier. The deep learning approach does
not require manual extraction of relevant features, but only
two steps of pre-processing and classification. While machine
learning methods such as LDA, thresholding, SVM and ELM are
mainly used for epilepsy classification based on MEG signals,
deep learning includes the EnvNet-v2 based MNet method and
the MSAM method. This is mainly because of the series of
machine learning and deep learning methods that have gradually
been born with the development of artificial intelligence. Deep
learning will undoubtedly go for better results if there is a
sufficient amount of sample data, however at this stage, machine
learning can also get good classification results as long as relatively
suitable features are extracted. In terms of feature selection,
statistical features (Khalid et al., 2015; Alotaiby et al., 2019), phase
features (Soriano et al., 2017; Matsubara et al., 2018; Gautham
et al., 2022), and graph theoretical features are mainly used
for the classification of MEG-based signals (Wu et al., 2018).
We can see that a proportion of studies use traditional time-
domain signal analysis methods, and over time, more still use
frequency-domain and phase-based signal analysis methods or
brain signal analysis methods, as these methods better highlight
epileptic abnormalities. Alternatively, they can be divided into
signal features (Khalid et al., 2015; Alotaiby et al., 2019)versus
network features (Soriano et al., 2017; Matsubara et al., 2018; Wu
et al., 2018; Gautham et al., 2022; Wang et al., 2022) and the
results using network features are generally better than those using
signal features.
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3.2. Spike detection and HFO detection
using MEG signals

Because of the advantages of MEG signals for epilepsy-assisted
localization, several studies have focused in recent years on the
detection of abnormal MEG epileptic signal waveforms (spike,
HFO) using the CAD approach. A brief review of these studies is
presented in Section “3. Discussion” and summarized in Table 3.
Similarly to epilepsy detection using MEG signals, studies on spike
detection, and HFO detection have mainly focused on machine
learning, with only a relatively small number of studies using deep
learning methods.

The spike detection algorithm based on traditional machine
learning is mainly divided into three steps: (i) firstly, the MEG
signal is pre-processed; (ii) secondly, features are manually
extracted according to the characteristics of the spike, reducing
the dimensionality of the signal while highlighting the differences
between the spike and the background signal; and (iii) finally,
the spike and background signal are bifurcated according to the
obtained features. Deep learning, on the other hand, combines
the two steps of feature extraction and classification, reducing
the laborious step of manually extracting features. Similar to
spike detection, HFO detection is also divided into three steps:
(i) first pre-processing the signal; (ii) then pre-detecting possible
HFOs; and (iii) classifying previously detected candidate events
in order to distinguish real HFOs from artefacts and noise
in the signal. In terms of feature selection, similar to the
use of MEG signals for epilepsy detection and classification,
statistical features (Alotaiby et al., 2017; Khalid et al., 2017;
Sdoukopoulou et al., 2021), phase features (Kaur et al., 2022),
graph theoretic/networks (Sdoukopoulou et al., 2021) and other
features have been explored in the time and frequency domains.
Overall, the detection of epileptogenic foci will be facilitated
by the use of CAD methods for the detection of abnormal
signals in epilepsy.

3.3. Limitations and suggestions of the
current study

Most of the existing epilepsy-based classification studies are
based on EEG, while only a few are based on MEG, and even
fewer are based on deep learning, so we believe that the use
of MEG for the classification of epilepsy is very innovative
and should be exploited more to better serve clinical needs.
The main problem with MEG-based psychiatric research is the
small sample size and the lack of a dedicated standard database
(previous studies have been based on non-public data from
hospitals), which cannot be fully compensated for by sample
augmentation. This is mainly due to the fact that MEG is a
relatively new imaging technology with expensive operating costs
and examination fees, and therefore has not yet become as popular
as EEG. However, with technological advances and more favourable
policies, MEG as an imaging tool will certainly become more
popular in the future.

Firstly, to address the problem of insufficient sample size of
MEG disease data, we are suggested to collect more data in the

future, and build up a standard database and explore more data
enhancement methods. Secondly, with the development of artificial
intelligence and deep learning, we can conduct more MEG research
based on deep learning while data are being expanded. In general,
we need to do more research on MEG and thus make more use of
the clinical value of MEG.

4. Conclusion

This paper provides a brief review and summary of the methods
used to classify epilepsy on MEG data, discussing the features used
in each work. It can be seen that classification based on MEG
epilepsy can be summarized as using signal features as well as
network features, and all have achieved good classification results.
The majority of the studies used machine learning methods, with
only a few using deep learning, and the results show that the
accuracy of machine learning and deep learning is comparable
as long as relatively appropriate features are selected. In the
meantime, this review discusses the progress of research on MEG
classification in epilepsy-assisted localization. Furthermore, all the
methods described in this paper are supervised learning, i.e. they
require labelled data for validation. Finally, we present a summary
of the unresolved issues and future research directions in the
field of epilepsy classification using MEG. We hope that this
review will provide the reader with a general understanding of the
classification problem of MEG and provide ideas and directions for
future research.

Despite the tremendous efforts of these studies to aid in the
diagnosis and localization of epilepsy, the algorithms developed
to date are still not as reliable as those developed by experienced
neuroscientists. Therefore, the development of a useful and
reliable automated diagnostic system will require the efforts of the
scientific community, and in addition, the creation of a standard
MEG epilepsy database would be a huge advancement for this
type of research.
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