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Introduction: Human and murine sickle cell disease (SCD) associated pulmonary 
hypertension (PH) is defined by hemolysis, nitric oxide depletion, inflammation, 
and thrombosis. Further, hemoglobin (Hb), heme, and iron accumulation are 
consistently observed in pulmonary adventitial macrophages at autopsy and 
in hypoxia driven rodent models of SCD, which show distribution of ferric and 
ferrous Hb as well as HO-1 and ferritin heavy chain. The anatomic localization of 
these macrophages is consistent with areas of significant vascular remodeling. 
However, their contributions toward progressive disease may include unique, 
but also common mechanisms, that overlap with idiopathic and other forms of 
pulmonary hypertension. These processes likely extend to the vasculature of 
other organs that are consistently impaired in advanced SCD.

Methods: To date, limited information is available on the metabolism of 
macrophages or monocytes isolated from lung, spleen, and peripheral blood in 
humans or murine models of SCD.

Results: Here we hypothesize that metabolism of macrophages and monocytes 
isolated from this triad of tissue differs between Berkley SCD mice exposed for ten 
weeks to moderate hypobaric hypoxia (simulated 8,000 ft, 15.4% O2) or normoxia 
(Denver altitude, 5000 ft) with normoxia exposed wild type mice evaluated as 
controls.

Discussion: This study represents an initial set of data that describes the 
metabolism in monocytes and macrophages isolated from moderately hypoxic 
SCD mice peripheral lung, spleen, and blood mononuclear cells.
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Introduction

Sickle cell disease (SCD) is a genetic hemoglobinopathy that 
disproportionally affects ethnic groups worldwide. In the US, 
approximately 1 out of every 365 African Americans and 1 out of 
16,300 Hispanic Americans are born with this disorder (1). SCD is 
caused by a single point mutation in the HBB gene that results in 
expression and accumulation of hemoglobin S (HbS) in red blood 
cells (RBC) (2–4). Under hypoxic conditions, HbS is polymerized and 
forms insoluble fibers that are responsible for RBC sickling and vaso-
occlusions. Although the genetic component of SCD is well defined, 
the disease progression manifests in a broad spectrum of 
hematological and vascular pathologies including pain, vision loss, leg 
ulcers, anemia, acute chest syndrome, splenic RBC sequestration, and 
pulmonary hypertension (PH) (5).

Advancements in metabolite analysis have created a new, 
unbiased, sensitive, high-throughput tool for scientists to 
investigate the etiology of SCD-related comorbidities at a 
molecular level and potentially inform on novel therapies. Tissue 
and cell specific metabolomics provide a versatile tool to help 
define and validate biomarkers for measurement of disease 
progression (6–10). Further, omics-based characterization of 
transgenic murine models of hemoglobinopathies provides a basic 
understanding of the altered metabolic state in murine SCD and 
beta thalassemia PH (11).

In the past decade it has become well recognized that dendritic 
cell and macrophage polarization contributes toward a wide range of 
pathophysiology in both the general and SCD patient populations, 
including PH (12–14). For instance, accumulation of pulmonary 
vascular macrophages is observed in the peripheral arterial adventitial 
sites of human SCD PH lungs at autopsy (12, 13). Our lab has shown 
that depletion of macrophages decreases both pulmonary vascular 
remodeling and right ventricular systolic pressures in a rat model of 
chronic Hb exposure and moderate hypoxia (8,000 feet, 15.4% 
O2) (12).

Macrophage metabolic reprogramming is associated with a 
pro- or anti-inflammatory state of tissue resident macrophages 
(e.g., lung, heart, spleen), with glycolysis, the Krebs cycle, and 
arginine/polyamine metabolism representing critical hubs 
regulating cell functional fates (15). Studies to date also suggest 
that cell origin dictates the metabolic reprogramming (at the 
transcriptional and functional levels) of resident versus recruited 
macrophages in the context of acute lung injury (16, 17). Thus, it 
is reasonable to suggest that macrophages in SCD have an altered 
tissue specific metabolic state and that studying these differences 
in tissues and blood will further define their role in PH 
development and other sequela of SCD.

In the current study macrophages were obtained from 
homozygous Berkeley (Berk) SCD mice following exposure to 10 
weeks of moderate simulated hypobaric hypoxia to accelerate PH 
progression (18). Here, we test the hypothesis that the metabolism 
of lung and spleen tissue macrophages as well as PBMCs is altered 
in cohorts of Berk mice housed at either 8,000 feet (15.4% O2) or sea 
level (21% O2). The hypothesis is formed based on our studies 
that   demonstrate chronic moderate hypoxia induces PH in 
Berk  SCD mice that associates with sickling, accelerated 
erythrophagocytosis of injured RBCs and macrophage accumulation 
of iron (12, 19, 20).

Materials and methods

Animals

Aged matched (8 to 10 weeks old) female C57Bl/6 WT and Berk 
mice were either obtained from Jackson Laboratories (Bar Harbor, ME, 
United States) or our in-house Berk mouse colony. Mice were housed 
and bred in an AAALAC accredited animal facility at the University of 
Colorado, Denver, Anschutz Medical campus and were maintained on a 
12:12 light–dark cycle with food and water available ad libitum. Female 
heterozygous Berk mice were bred with male homozygous Berk mice to 
generate homozygous offspring. Specifically, Berk mice with genotype 
Tg(Hu-miniLCR α1 Gγ Aγ δ βs) Hba0/0 Hbb0/0 and the hemizygous with 
genotype Tg(Hu-miniLCR α1 Gγ Aγ δ βs) Hba0/0 Hbb0 Hbb+ were 
littermates. Genotyping of mice used for breeding and experiments was 
performed by TransnetYX (Cordova, TN, United States). A total of 24 
mice (n = 8 per group) were used to evaluate cardiovascular changes and 
a subset of 12 mice were utilized for metabolomics (WT: n = 6, Berk 
mice: n = 6) were used in the present investigation. Levels of discomfort 
and distress were monitored daily by the in-house animal care staff, with 
a veterinarian available as needed. Mice presented with no pain or 
discomfort associated with moderate hypoxia and were alert as well as 
eating, drinking, and grooming normally while housed. Hypoxia 
exposure consisted of mice housed at 8,000 feet (15.4% O2) for 10 weeks 
as previously described (11–13). All experimental procedures were 
conducted under the guidelines recommended by The Journal of 
Physiology (21), the National Institutes of Health and were approved by 
the Institutional Animal Care and Use Committee at the University of 
Colorado, Denver, Anschutz Medical Campus.

Open chest solid state catheterization for 
right ventricular systolic pressure analysis

After 10 weeks in either normal or hypoxic environmental 
conditions, mice underwent terminal open chest right ventricular 
pressure measurements (RVSP) function measurements with a 1.2F, 
FTE-1212B-4,018 pressure volume catheter (Transonic Systems Inc., 
Ithaca, NY) inserted by direct cardiac puncture. Mice were induced 
inhaled isoflurane (4–5%), and tracheal incision (~1 cm) was performed. 
Next, a tracheal tube was inserted and connected to an Anesthesia 
Workstation or Hallowell EMC Microvent and an anesthetic plain was 
maintained at 1.0–2.5% isoflurane in 100% oxygen. After which, a 
thoracotomy was performed exposing the heart, the pericardium was 
resected, and a small hole made at the base of the right ventricle with a 
30 g needle for insertion of the pressure-volume catheter. Steady state 
RVSPs, followed by contractility (Ees), and afterload (Ea) (during an 
occlusion by retracting the inferior vena cava), were captured and mice 
were humanely euthanized by exsanguination and cervical dislocation. 
Data was recorded continuously using LabScribe2 and analyzed offline.

Peripheral blood mononuclear cell 
isolation

Peripheral blood mononuclear cell
Whole blood samples (1 mL) were obtained from animals via 

cardiac puncture, using a syringe with a 26-gage needle, and placed in 
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an EDTA treated tube. The blood was transferred to a 15 mL conical 
tube and diluted 2:1, sterile PBS: blood, and gently mixed. 
Lympholyte® Mammal Cell Separation media (Cedarlane Labs, 
product # CL5115) was gently added to the bottom of the blood 
solution and spun at 1400 rpm for 30 min in a refrigerated centrifuge. 
After centrifugation, layers were visualized, the PBMC layer (midlayer) 
was extracted and resuspended in a new tube. The isolated PBMC’s 
were washed using ~14 mL sterile PBS, spun at 1800 rpm for 10 min, 
excess PBS was removed, cells were resuspended in 1-2 mL for 
counting, and the final pellet was frozen in liquid nitrogen and stored 
at -80C.

Tissue macrophage isolation

Lung and spleen tissue macrophage collection
The right lung and spleen organ tissues were harvested, finely 

minced, and each organ placed individually in 2 mL Eppendorf tubes 
containing 1 mL of Collagenase D (Sigma Aldrich, product 
#11088866001) and DMEM media. The tissues were incubated at 37C 
with agitation for 30 min. After incubation, 100 μL of 0.1 M EDTA was 
added to the tissue-containing tubes and placed on ice. A single cell 
suspension was created by addition of Hanks buffered salt solution 
(HBSS, Corning, product #MT21022CV), passing through a 100 μm 
filter, and collected in a 15 mL conical tube. The tissue/cell suspension 
was spun at 500 g for 5 min and the supernatant discarded. The 
remaining tissue/cell solution was resuspended in 5 mL of RBC lysis 
buffer (Invitrogen eBiosciences, product #00–4,333-57), incubated at 
room temperature for 15 min, and centrifuged at 500 g for 5 min–this 
step was repeated if RBC presence was sustained. Next, the cells are 
washed with Miltenyi buffer (HBSS, 0.5 M EDTA, Fetal bovine serum), 
resuspended in 180uL Miltenyi buffer, and incubated on ice with 
CD11b Microbeads (Miltenyi Biotech, product #130–093-636) for 
15 min. Positive cells were isolated using magnetic Ls columns 
(Miltenyi Biotech, product #130–042–401), collected in 2 mL 
Eppendorf tubes, counted, and then final pellet aliquots were frozen 
in liquid nitrogen and stored at -80C.

Metabolomics

Lung and spleen macrophages and PBMCs were extracted in 
methanol:acetonitrile:water (5,3,2 v/v/v – at a 1 × 106/ml and 10 mg/
mL ratios) prior to UHPLC–MS analyses (Vanquish-QExactive, 
Thermo Fisher), as previously described.

Statistical analysis

Hemodynamics: statistical comparisons for tissue and 
hemodynamic data measurements were completed with the analysis 
of variance (ANOVA) and Post-hoc analyses were completed with the 
Tukey–Kramer multiple comparison tests with statistical software 
package GraphPad (version 9.0). Other multivariate analyses, 
including hierarchical clustering analyses, heat maps, partial least 
square-discriminant analyses (PLS-DA), two-way ANOVA were 
performed with MetaboAnalyst 5.0 (22). Bar plots with superimposed 
dot plots were generated with Metabolite Autoplotter (23, 24). Data 

are presented as a mean ± standard error of the mean (SEM). Statistical 
comparisons for data measurements were completed with an a priori 
analysis using one tailed students t test for comparisons between 
wildtype vs. normoxic Berk and normoxic Berk vs. Berk hypoxia 
exposed. Statistical analysis was completed using the statistical 
software package GraphPad (version 9.1). Statistical significance was 
defined as p ≤ 0.05.

Results

Cardiovascular phenotypes are different in 
wild type and Berk mice exposed to 
moderate hypoxia

To demonstrate differences in cardiovascular function between 
healthy wild type and Berk mice housed at sea level and moderate 
hypoxia, right ventricular systolic pressures (RVSP), ventricular to 
vascular coupling (ratio of contractility to afterload), and the Fulton 
index (RV/LV + S) were also compared between the four groups. At 
20 weeks of age there was no differences in RVSP pressures (a 
reflection of pulmonary arterial pressure), ventricular vascular 
coupling ratio (contractility / afterload; a measure of energy transfer 
between heart and lung with a normal ratio ~ 1), and Fulton index 
(measurement of right ventricular hypertrophy) between the wild type 
(WT) and Berk Sea level cohorts (Figure  1). After 10 weeks of 
moderate hypoxia exposure Berk mice had higher RVSPs 
(27.44 ± 1 mm Hg wild type and 32.65 ± 1.1 Berk; p < 0.001; Berk 
hypoxia vs. wild type hypoxia; Figure  1A), lower ventricular to 
vascular coupling ratio (0.48 ± 0.06 Berk vs. 0.91 ± 0.07 wild type; 
p < 0.005; Figure 1B), and higher Fulton index (0.42 ± 0.03 Berk vs. 
0.308 ± 0.013 wild type; p < 0.004; Figure  1C). As expected and 
congruent with our prior studies, these data demonstrate that unlike 
WT mice Berk mice exposed to moderate hypoxia develop a different 
pulmonary vascular phenotype more closely resembling active 
progression of pulmonary hypertension than wild type mice. These 
aberrant hemodynamic observations appear to be consistent with lung 
vascular pathology in human SCD-PH (Figure 1D).

Metabolic phenotypes of PBMCs, spleen or 
lung macrophages are significantly 
different

Metabolomics analyses were performed on circulating PBMCs 
and resident splenic and lung macrophages (Figure 2A). Two-way 
ANOVA highlighted significant differences based on cell origin, 
with PBMCs clustering apart from resident macrophages. 
Hierarchical clustering analysis of the significant metabolites by 
ANOVA (Figure 2B) showed that the metabolic profiles of lung and 
spleen macrophages were overall comparable to each other, which 
was to be  expected as they are fully differentiated resident 
macrophages. PBMCs from Berk mice were significantly different 
from WT PBMCs, while in resident macrophages differences 
emerged only upon 10-week exposure to moderate hypoxia 
(Figure 2B). Currently, it is unknown if splenic macrophages are 
recruited to the lung in PH pathogenesis and is a target of our 
ongoing studies.
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Glycolysis and Krebs cycle alterations in 
PBMCs from Berk mice in hypoxia

Focusing on PBMCs, we noted a significant difference between 
WT and Berk mice, which was evident by clustering across principal 
component 1 (explaining 47.7% of the total variance) in PLS-DA 
analyses (Figure 3A). An overview of the top 20 metabolites across 
PC1 is provided in Supplementary Figure 1 – mostly comprising of 
amino acids and free fatty acids. Altitude also had a lesser, albeit 
still significant effect on PBMC metabolism in both WT and Berk 
mice, effect that was captured by PC2 (17.1% of the total variance). 
In Figure  3B, we  report the top  50 metabolites across the four 
groups as determined by two-way ANOVA. Metabolites in this list 
are enriched for glycolytic metabolites (fructose bisphosphate, 
lactate), amino acids (lysine, phenylalanine, proline, tyrosine – 
increasing in Berk mice), tryptophan metabolites (anthranilate, 
indole – increasing in Berk mice; serotonin, indoxyl, indole-acetate, 
indole-pyruvate – decreasing in Berk mice), free fatty acids 
(heptanoate, octanoate, linoleate, octadecatrienoate, 
eicosatetraenoate, eicosapentanoate, docosahexanoate – all 
increasing in Berk, but decreasing in hypoxia), acetyl-carnitines 
(AcCa C2, C4, C4-OH, C5-OH – increasing in hypoxia, only in 

WT). To further expand on these observations, we then focused on 
metabolites from the main energy-generating pathways, glycolysis 
and the Krebs cycle (Figure  3C). Results show that hypoxia 
promoted increases in the levels of all glycolytic metabolites in WT 
mice, but not in Berk mice. Elevated levels of carboxylic acids 
(including citrate, alpha-ketoglutarate – aKG, 2-hydroxyglutarate, 
succinate, fumarate) were observed in the hypoxic WT PMBCs, but 
not in Berk mice. Similar considerations can be made for short 
chain acyl-carnitines, all increasing in WT PBMCs upon exposure 
to hypoxia, but in Berk mice. Hypoxia was accompanied by 
consumption of reduced glutathione (GSH) and accumulation of 
the oxidized form (GSSG) in WT, but not in Berk mice.

Spleen macrophages from Berk mice show 
distinct metabolic responses to moderate 
hypoxia compared to control mice

Metabolomics analyses of WT and Berk splenic macrophages 
following exposure to moderate hypoxia revealed a significant effect of 
reduced oxygen availability on metabolism (Figure  4A). Following 
exposure to hypoxia, splenic macrophages from WT mice, but not Berk 

FIGURE 1

Cardiovascular phenotypes of wildtype and berk-ss exposed to hypoxia. (A) Right ventricular systolic pressures (RVSP); (B) Right ventricular to 
pulmonary vascular coupling ratio; (C) Right ventricular hypertrophy or Fulton index. *p<0.05, **p<0.005, ***p<0.002, ****p<0.001. RV-right ventricle; 
LV+S left ventricle plus septum; Ees- contractility; Ea- Afterload. (D) Pulmonary vascular changes in in human SCD-PH at autopsy: Top – peripheral 
lung vasculature macrophage iron accumulation in adventitia and Middle, iron loaded vascular and alveolar macrophages (tissue sections from patient 
reported in previous studies. Bottom image shows established plexiform lesion associated with advanced pulmonary vascular remodeling). Pathologies 
suggest consistency with results from Berk mice (A-C).
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mice, were characterized by lower levels of several glycolytic metabolites, 
including hexose phosphate, fructose bisphosphate, phosphoglycerate 
(Figures 4B,C). Hypoxia also promoted decreases in 2-hydroxyglutarate, 
fumarate in WT splenic macrophages, and decreases in reduced and 
oxidized glutathione in both WT and Berk macrophages. Berk mice 
were characterized by higher levels of multiple acyl-carnitines (C3, C4, 
C6, C8) in splenic macrophages (Figures 4B,C). Berk mouse splenic 
macrophages were characterized by higher (than WT) levels of highly 
unsaturated fatty acids (especially eicosapentaenoic and 
docosahexaenoic acid), a phenomenon that was exacerbated by hypoxia 
(Figure 4C). Together, these data highlight that wildtype mice have a 
rapid glycolytic flux, whereas the Berk mice rely on carnitine 
metabolism (an indication of pulmonary hypertension).

Lung macrophages from Berk mice show 
distinct metabolic phenotypes in response 
to moderate hypoxia

PLS-DA analysis of metabolomics data from lung 
macrophages showed distinct metabolic phenotypes between WT 

controls and Berk mouse lung macrophages, in normoxia and 
hypoxia (PC1 explaining 35% of total variance–Figure  5A). 
Hierarchical clustering analysis of the top  50 metabolites by 
two-way ANOVA highlighted significant increases in the levels 
of several saturated and monounsaturated fatty acids (C12, 14 
and 16 series) in WT lung macrophages exposed to moderate 
hypoxia, compared to the other groups. Consistent with 
observations in splenic macrophages, lung macrophages were 
characterized by lower levels of multiple glycolytic metabolites 
following exposure to hypoxia (hexose phosphate, fructose 
bisphosphate, phosphoglycerate) and carboxylic acids (citrate, 
fumarate in Berk mice–Figure  5C). Unique signature in Berk 
mouse lung macrophages, reduced and oxidized glutathione 
levels were higher than WT counterparts at baseline and upon 
exposure to hypoxia (Figure 5B). Consistent with observations in 
splenic macrophages, hydorxyisovaleryl-carnitine (AcCa C5-OH) 
was the lowest in WT hypoxic lung macrophages (Figure 5C). To 
summarize, hypoxic exposure caused the WT lung macrophages 
mice to utilize the TCA cycle and fatty acids for energy. The berk 
mice, however, used amino acids and the glutathione pathway. 
The glutathione pathway is critical to maintaining redox 
homeostasis, which is disrupted in PH pathogenesis.

Discussion

To date our studies in human and murine sickle cell disease 
(SCD) associate pulmonary hypertension (PH) have focused on 
hemoglobin (Hb), heme, and iron accumulation in pulmonary 
macrophages and their potential contributions toward progressive 
disease (11–13, 19, 25, 26). SCD is associated with increased 
incidence of PH and splenomegaly (27, 28). Although the 
development of PH is consistent with increasing age, the spleen 
is one of the most common and early organs to be affected in 
SCD (29-31). From a perspective of both PH and spleen function 
in SCD, it is recognized that macrophages are critically important 
in both the development of PH and processing of damaged red 
blood cells, respectively (12, 28, 34). While both the lung and 
spleen are capable of recruiting macrophages from the circulating 
monocyte pool, the metabolic differences between peripheral 
blood mononuclear cells (PBMC), lung, and spleen macrophages 
is unclear. In the current study, we  hypothesized that the 
metabolomic profile of PBMCs, lung, and spleen macrophages 
would be altered in cohorts of Berk mice housed in normoxic 
(21% O2) and moderate hypoxia (8,000 feet equal to 15.4% O2). 
This hypothesis is formed on the basis that moderate hypoxia 
induces disease progression and accelerates erythrophagocytosis 
in Berk mice. To date we are unaware of any study that compares 
metabolomic profiles of circulating, lung, and spleen 
macrophages between healthy and SCD mice in normoxic and 
moderate hypoxic environments.

Confirming our previous work Berk mice housed in moderate 
hypoxia show increased RVSPs, ventricular to vascular coupling 
ratio, and RV hypertrophy that is consistent with the development 
PH associated with increased hemolysis (11, 19).

The metabolomic profiles of PBMC show dysregulation in 
amino acids, free fatty acids, and tryptophan metabolism in 
between Berk housed in both normoxic and hypoxic 

FIGURE 2

Experimental design for wild type and berk mice exposed to chronic 
hypoxia. (A) After 10-week exposure to either normoxic conditions 
or mild hypoxic conditions, peripheral blood mononuclear cells 
(PBMCs) and lung and splenic macrophages were isolated, and 
metabolomics were analyzed. (B) All metabolites analyzed from all 
samples.
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environments. Furthermore, moderate hypoxia alters the 
metabolomic profile in both strains of mice, demonstrating that 
even mild hypoxia can induce metabolic reprogramming of 
PBMCs. The metabolomic profile of PBMC populations in Berk 
mice show higher amino acids, free fatty acids, and tryptophan 
metabolites in comparison to wild type cohorts. Previous studies 
have shown that these pathways are all up-regulated in bone 
marrow-derived macrophages following erythrophagocytosis, 
ex-vivo. As such, the observation of elevated amino acid levels in 
Berk mice is consistent with phagocytosis of RBCs associated 
with hemoglobin polymerization, RBC sickling, and tissue 
damage from vaso-occlusion. Further, circulating PBMC are 
recruited to the lung and contribute to pulmonary vascular 
disease (11, 12). However, macrophages isolated from the lungs 
of wild type and Berk mice housed in either normoxia or hypoxia 
do not demonstrate a similar metabolic signature to PBMCs. This 
observation provides evidence to suggest that PBMC recruited to 
the lung may be  metabolically reprogrammed within the 
pulmonary microenvironment. Although less clear, increases in 
free fatty acid and tryptophan metabolites, indole and 

anthranilate, suggest a macrophage driven process of 
inflammation (21, 35, 36, 37). Though speculative at this stage, it 
is interesting to note that these pathways are largely influenced 
by the interaction of blood and blood cells within the microbiome. 
Dysregulation of iron metabolism in SCD may thus affect 
siderophilic bacteria in the gut microbiome, and ultimately 
impact circulating cell levels of tryptophan metabolites and 
fatty acids.

Lung macrophages isolated from wild type and Berk mice 
housed in a normoxic environment show similar metabolic 
profiles. Compared to normoxic cohorts wild type mice exposed 
to moderate hypoxia showed both increases in glycolytic and 
fatty acid metabolites, consistent with hypoxia as a pro- 
inflammatory stressor. In contrast, lung macrophages in hypoxic 
Berk mice showed suppressed glycolytic metabolites, and 
increased pyruvate generation to meet the higher energy 
requirements caused from chronic exposure to hypoxia (21). 
Further, Berk mice exposed to hypoxia demonstrated higher 
ascorbate, and higher reduced and oxidized glutathione 

FIGURE 3

Metabolites from peripheral blood mononuclear cells (PBMCs). (A) 3D PCA analysis of PBMCs isolated from wildtype or Berk mice exposed to 
normoxic conditions or mild hypoxic conditions. (B) Top 50 metabolites via heatmap analysis. (C) Major metabolites from different metabolic 
pathways.
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metabolites consistent with a hemolysis driven compensatory 
antioxidant processes (11, 19).

Splenic macrophages isolated from Berk mice exposed to 
hypoxia show a unique metabolomic signature consisting of 
higher levels of short (C3, C4) and medium (C6, C8) chain 
acylcarnitines. The well-established biologic function of 
acylcarnitines is to transport acyl groups from the cytosol into 
the mitochondria matrix for B-oxidation and sustain cell activity 
(38, 39). However, acycarnitines are increasingly identified as 
important indicators of metabolic disorders (38). It is possible 
that iron does alter mitochondria metabolism in iron overloaded 
macrophages. An equally plausible explanation is that altered 
iron metabolism or heme synthesis in SCD results in the 
dysregulation of catabolism of branched chain amino acids that 
fuel succinyl-CoA synthesis in mitochondria. This in turn results 
in the accumulation of short chain fatty acyl-carnitine metabolites 
(in equilibrium with their CoA counterparts). Notably, similar 
phenotypes are observed in other hemolytic disorders, such as 
pyruvate kinase deficiency or propionic acidemia.

In conclusion, this study was designed to address an initial 
understanding of how macrophages may contribute to PH, splenomegaly, 
vascular, or other metabolic disorders associated with SCD. To better 
understand mechanistic underpinnings of macrophage function in the 
sequela of SCD, future studies will focus on interrogating macrophages, 
analyzing metabolomic signatures and associating these findings with end 
organ injury and disease endpoints. The work presented herein provides 
a platform to expand on these concepts.
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FIGURE 5

Metabolites from lung macrophages. (A) 3D PCA analysis of lung macrophages isolated from wildtype or Berk mice exposed to normoxic conditions or 
mild hypoxic conditions. (B) Top 50 metabolites via heatmap analysis. (C) Major metabolites from different metabolic pathways.
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