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Introduction: Attention is a complex cognitive function of human brain that plays

a vital role in our daily lives. Electroencephalogram (EEG) is used to measure and

analyze attention due to its high temporal resolution. Although several attention

recognition brain-computer interfaces (BCIs) have been proposed, there is a

scarcity of studies with a su�cient number of subjects, valid paradigms, and

reliable recognition analysis across subjects.

Methods: In this study, we proposed a novel attention paradigm and feature fusion

method to extract features, which fused time domain features, frequency domain

features and nonlinear dynamics features. We then constructed an attention

recognition framework for 85 subjects.

Results and discussion: We achieved an intra-subject average classification

accuracy of 85.05% ± 6.87% and an inter-subject average classification accuracy

of 81.60% ± 9.93%, respectively. We further explored the neural patterns

in attention recognition, where attention states showed less activation than

non-attention states in the prefrontal and occipital areas in α, β and θ bands. The

research explores, for the first time, the fusion of time domain features, frequency

domain features and nonlinear dynamics features for attention recognition,

providing a new understanding of attention recognition.

KEYWORDS

electroencephalogram (EEG), brain-computer interfaces (BCIs), attention recognition,

valid paradigm, intra-subject, inter-subject, neural patterns

1. Introduction

Attention is a crucial cognitive process that allows individuals to selectively focus on

specific aspects of their environment while filtering out irrelevant information, thereby

enabling effective adaptation to their surroundings (Petersen and Posner, 2012). Poor

attention and concentration skills can contribute to mental health problems such as anxiety

and depression. If left unaddressed, these difficulties can develop intomore severe conditions

such as attention deficit hyperactivity disorder (ADHD) (Chen et al., 2019). Attention

recognition is an emerging research area that provides a window to monitor and understand

people’s attention states. It shows significant potential application value in the fields of

medicine (Moghaddari et al., 2020), military operations (Berka et al., 2004), and preventing

fatigue while driving (Luo et al., 2019). Existing research methods for attention recognition

have focused on psychological behavior scale tests, such as digital cancelation task (D-

CAT) (Fliege et al., 2009) and simple reaction time (SRT) Krupski and Boyle (1978),

Combined Raven’s Test (CRT) (Wang et al., 1989), Shure grid test scale, and Conners et al.

(1998). However, these methods are limited in their ability to provide real-time results

of a user’s attention states. Therefore, researchers turned to explore attention recognition
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based on neurophysiological signals with temporal information,

such as heart rate, skin electricity, electroencephalogram (EEG),

functional magnetic resonance imaging (fMRI), or multimodal

methods, which captured physiological changes related to attention

states. Compared to other peripheral physiological signals, EEG

signal, with their high temporal resolution, provided more

information about attention and showed great potential in the field

of attention recognition (Andrillon et al., 2021).

Research on attention recognition based on EEG signal

is of significant practical importance in brain–computer

interface (BCI) applications. In a study by Hamadicharef

Hamadicharef et al. (2009), they used a combination of

temporal filters, spatial filters, and Fisher linear discriminant

to classify attention states within five subjects and achieved an

accuracy of 89.4%. Mohammadpour built an EEG-based BCI,

which successfully recognized four levels of attention in five

individuals with an accuracy of 63.5% (Mohammadpour and

Mozaffari, 2017). Ac achieved an accuracy of 91.72% within

subjects using time-frequency features and SVM in 2019 (Acı

et al., 2019), while in 2021, Wang wan obtained an accuracy

of 95.36% ± 2.31% for two attention levels within subjects

using dynamical complexity (Wan et al., 2021). In light of

the preceding information, studies in EEG-based attention

recognition typically have fewer subjects than studies in other

EEG fields (Zheng et al., 2017; Gao et al., 2021), which results

in insufficient generalizablation on unseen data and obstacles in

inter-subject studies.

Attention recognition paradigms based on EEG commonly

involve the use of cues to prompt subjects to enter a state

of attention or relaxation. The state of attention is typically

associated with a task state, while the state of relaxation is

considered a task-independent state. Tasks used to induce a state

of attention include breath counting Braboszcz and Delorme

(2011); Hosseini and Guo (2019), reading comprehension (Li

et al., 2011), mental arithmetic (Hamadicharef et al., 2009),

imagination (Ke et al., 2014), and Stroop test (Kawashima

et al., 2023). However, how to induce participants under

specific cognitive load and enhance their attention is still a

challenging work.

Brain waves can be divided into different frequency bands,

including δ (0.5–4Hz), θ (4–8Hz), α (8–13Hz), β (13–30Hz), and

γ (30–50Hz), each of which is associated with specific physiological

functions. Previous research showed that these frequency bands can

reflect attention needs, emotional states, and cognitive processes

(Rao, 2013). For example, studies by Ray demonstrated that

EEG activities are related to attention (Ray and Cole, 1985).

Klimesch and other researchers found that α wave amplitudes

are smaller when individuals focused on mental arithmetic tasks

Klimesch et al. (1993). Despite these findings, the specific neural

patterns underlying attention-related EEG activities still require

further investigation.

The application of EEG-based BCI in attention recognition is

currently in its nascent stages. Researchers attempted to employ

feature extraction methods such as power spectrum or non-

linear dynamics (including approximate entropy and sample

entropy) to identify attention levels. However, the application of

attention recognition across subjects is hindered due to the lack

of significant datasets, effective paradigms, and comprehensive

feature analysis.

In this study, we first proposed a novel attention paradigm

based on mental arithmetic tasks and built an EEG dataset of

85 subjects for attention recognition. Second, we proposed a

composite EEG-based feature that took time domain, frequency

domain, and non-linear dynamic features into consideration and

constructed an attention recognition framework both across and

within subjects. The best intra-subject accuracy and inter-subject

accuracy are 85.05% ± 6.87% and 81.60% ± 9.93%, respectively.

Furthermore, we explored neural patterns within attention and

non-attention states and found that attention states showed less

activation than non-attention states in the prefrontal and occipital

areas across α, β , and θ bands.

This study is organized into five sections. Materials and

Methods are presented in Section 2. Experimental results are

presented in Section 3. Discussion is available in Section 4.

Conclusion is presented in Section 5.

2. Materials and methods

In this section, we collected EEG data, conducted a

preprocessing of raw EEG data, fused three types of features,

and classified features for both intra- and inter-subject attention

recognition. Additionally, we analyzed common neural patterns

between attention and non-attention across subjects. Figure 1

depicts the attention recognition analysis framework, which

encompasses EEG acquisition, data preprocessing, feature

extraction, and classification.

2.1. Data acquisition

2.1.1. Equipment
Our study collected EEG signals using a 32-channel Neuroscan

amplifier in accordance with the international 10–20 system

(Gao et al., 2021). The signals were sampled at a rate of

250Hz and band-pass filtered between 0.1 and 50 Hz. Figure 2

displays the layout of EEG electrodes on the cap. To obtain

high-quality data, we ensured that the impedance of each

electrode was below 5 k�. The experiment employed a 22-

inch external screen as a monitor and utilized the computer

with a 32-bit Windows 7 system to store EEG data and run

interface programs.

2.1.2. Subjects
Eighty-five subjects with healthy visual and cognitive abilities

were recruited from various universities in Guangzhou for this

experiment. The subjects had an average age of 25.3 ± 2.4, with 45

male subjects and 40 female subjects. According to the Edinburgh

Handedness Inventory (Robinson, 2021), all of these subjects were

right-handed, and none had prior experience with attention-related

BCI experiments. Moreover, all subjects were informed about

the content and purpose of the study, and informed consent

was obtained.
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FIGURE 1

Attention recognition framework is comprised of four integral components, namely data acquisition, data preprocessing, feature extraction, and

classification.

2.1.3. Paradigm
In the absence of a standard experimental paradigm for

attention recognition, we proposed our own based on mental

arithmetic and resting tasks for our study. Mental arithmetic

tasks in our experiment were able to induce cognitive load on

participants and improved their attention (Chin et al., 2018).

Mental arithmetic tasks require cognitive resources such as working

memory, attention control, and executive function (Hester and

Garavan, 2005). When performing mental arithmetic, individuals

need to retrieve numerical information from long-term memory,

hold that information in working memory, manipulate that

information to perform calculations, and monitor their progress

toward a solution (Grabner and De Smedt, 2011).

The subjects were seated in a quiet room, and their brain

activity was measured using an EEG acquisition device during the

experiment. Figure 3 depicts the experimental paradigm, which

contains 20 trials. Each trial includes a 3s cue, a 60s task, and a 10s

rest period. Subjects were asked to prepare to enter the attention or

non-attention state based on the screen cue during the cue period.

The attention cue is depicted in Figure 3b, while the non-attention

cue is depicted in Figure 3c. During the attention target state,

subjects were instructed to keep doing mental arithmetic, which

followed the rhythm of the screen, while a random number

(possibly positive or negative) appeared on the screen and were

continuously subtracted by 3 over time, as shown in Figure 3d.

During the non-attention state, a fixed plus sign appeared on the

screen as shown in Figure 3e; meanwhile, the subjects were asked

to rest quietly with their eyes open. At the end of each trial, the

subjects would be given 10 seconds to rest, called rest period.

Each experimental session contained 10 attention states and 10

non-attention states, with the order randomized.

2.2. Data preprocessing

The raw EEG signals were first filtered by a finite impulse

response (FIR) band-pass filter between 0.5 Hz and 50 Hz to

reduce noise and extract relevant information. Next, 15,000-point

data (60s) for each trial in each channel were equally cut into

6 epochs of equal length, each containing 2,500-point data (10
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FIGURE 2

EEG cap layout for 32 channels.

s), as illustrated in Figure 3f. By the above operations, the data

of each subject containing 20 trials were transformed into 120

epochs, of which 60 epochs corresponded to the labels of attention

states and the other 60 epochs corresponded to the labels of non-

attention states. To ensure the quality of the data, epochs with

high amplitude or significantmyoelectricity were removed from the

dataset. After preprocessing, a total of 10,188 epochs were obtained

from 85 subjects.

2.3. Feature extraction

It is now generally accepted that advanced cognition in the

brain is often associated with time–frequency and non-linear

dynamic features of EEG (Klimesch et al., 1993, 1998; Chun et al.,

2011). To comprehensively investigate the relationship between

these features and attention states, we exhaustively enumerated and

extracted time domain features, frequency domain features, and

non-linear dynamic features from the preprocessed EEG data, as

described in Table 1. To simplify notation, we utilized Tl, Fl, and

Dl to represent a time domain feature, a frequency domain feature,

and a non-linear dynamics feature, respectively, with the subscript

l denoting the order of the feature in Table 1. Additionally, we

used Tm
l
, Fm

l
, and Dm

l
to signify the m-th dimension of the time

domain feature Tl, frequency doamin feature Fl, and non-linear

dynamic featuresDl, respectively. For example, F34 denotes the third

dimension of power spectrum for frequency bands F4.

2.3.1. Time domain features
As EEG signals are time-series signals, time domain features

(such as mean T2, skewness T4, root-mean squared value T6,

standard deviation T10, and number of zero-crossings T12) have

great advantages in expressing the amplitude, time scale, and

complexity of signals. Numerous studies have shown that these

features can distinguish different mental states (Vourkas et al.,

2000; Wang and Guan, 2008). Furthermore, time domain features

have the added advantage of low computational complexity and

real-time calculation capability (Hu et al., 2016). Therefore, it is

worth exploring time domain features for attention recognition

based on EEG. Specifically, some time domain features used in this

study are defined as follows.

The formulas of Hjorth parameter (activity (h1), mobility (h2),

and complexity (h3)) are defined as follows:

h1 = σ 2
x , (1)

h2 = σd
/

σx, (2)

h3 =
σdd

σd

/

σd

σx
= σdd

/

σx, (3)
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FIGURE 3

Attention paradigm: (a) the recording protocol, (b) attention cue in screen, (c) non-attention cue in screen, (d) mental arithmetic task, (e)

non-attention task, and (f) a segmentation diagram.

where σ 2
x is the variance of the signal, σd is the standard deviation

of the first derivative of the signal, and σdd is the standard deviation

of the second derivative of the signal.

2.3.2. Frequency domain features
Frequency domain features are commonly used in EEG

research and have shown great potential in advanced cognitive

recognition, such as emotion recognition (Huang W. et al., 2021).

In this study, we selected the common EEG rhythms of δ, θ , α, β ,

and γ as the target frequency bands for analysis. Several frequency

domain features were employed in this study, and their partial

definitions are presented below.

The power spectrum density (PSD) of these bands F4, along

with their respective ratios, was utilized as features in the upcoming

study. Assuming that Xk represents the Fourier transform of the

time series x[n], the relevant PSD P is defined as follows:

P =
N−1
∑

n=0

∣

∣x2
∣

∣ =
1

N

N−1
∑

k=0

∣

∣X2
k

∣

∣ . (4)

Median frequency F9 represents the frequency point that

divides the power spectrum band of a signal into two equal

parts (Thongpanja et al., 2013). This can be expressed by the

following equation:

MF
∑

j=1

Pj =
M

∑

j=MF

Pj =
1

2

M
∑

j=1

Pj, (5)

where Pj denotes the power spectrum at frequency bin j, and MF

denotes median frequency. The frequency band is from 1 to M,

where 1 < MF < M. According to a previous study on the

application of median frequency to EEG (Gudmundsson et al.,

2005), median frequency of 10 frequency bands (0.5–2 Hz, 2–4 Hz,

4–5 Hz, 5–7 Hz, 7–10 Hz, 10–13 Hz, 13–15 Hz, 15–20 Hz, 20–30

Hz, and 30–40 Hz) were calculated in our study.

Discrete wavelet transform can be defined as follows (Blanco

et al., 1998):

C(j, k) =
∫ ∞

−∞
x(t)

1
√
2j
ψ

(

t − 2jk

2j

)

dt, (6)

where 2jk and 2j represent the time positioning and scale

coefficients respectively, and ψ(t) represents the mother wavelet

Frontiers inNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2023.1194554
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1194554

TABLE 1 List of representative EEG features extracted in our works.

Feature Type Extracted Features Feature Size References

1. Standard deviation. 1 Hjorth, 1970

2. Mean. 1 Dumermuth and Molinari, 1987

3. Peak-to-Peak Amplitude. 1 Barry et al., 2000

4. Skewness. 1 Pollock et al., 1990

5. Kurtosis. 1 Delorme et al., 2001

time domain features 6. Root-Mean Squared Value. 1 Lykken et al., 1974

7. Hjorth Parameter: Mobility. 1 Päivinen et al., 2005

8. Quantile 1 Grieszbach and Schack, 1993

9. Hjorth Parameter: Complexity. 1 Päivinen et al., 2005

10. Variance. 1 Dumermuth and Molinari, 1987

11. Decorrelation Time. 1 Teixeira et al., 2011

12. Number of zero-crossings. 1 Borbely and Neuhaus, 1979

1. Harmonic Parameters. 5 Van Hese et al., 2001

2. Energy of Wavelet decomposition coefficients. 6 Teixeira et al., 2011

3. Hjorth complexity parameter by the Power Spectrum. 1 Mormann et al., 2007

4. Power Spectrum for frequency bands. 15 Teixeira et al., 2011

frequency domain features 5. Linear regression of the the log–log frequency curve. 4 Demanuele et al., 2007

6. Hjorth mobility parameter by the Power Spectrum. 1 Mormann et al., 2007

7. Spectal Edge Frequency. 1 Schwender et al., 1996

8. Band Energy. 5 Kharbouch et al., 2011

9. Median Frequency. 10 Gudmundsson et al., 2005

1. Petrosian Fractal Dimension. 1 Mardi et al., 2011

2. Line length. 1 Esteller et al., 2001

3. Spectral Entropy. 1 Inouye et al., 1991

4. Hurst Exponent. 1 Kannathal et al., 2005

5. Sample Entropy. 1 Bai et al., 2007

6. Renyi Entropy. 10 Tong et al., 2003

7. Tsallis Entropy. 10 Capurro et al., 1998

8. Shannon entropy. 10 Papadelis et al., 2006

non-linear dynamic features 9. Approximate Entropy. 1 Srinivasan et al., 2007

10. SVD entropy. 1 Roberts et al., 1999

11. Permutation Entropy. 1 Li et al., 2010

12. Higuchi Fractal Dimension. 1 Spasic et al., 2011

13. Wavelet Entropy. 7 Rosso et al., 2001

14. Teager–kaiser energy. 14 Badani et al., 2017

15. SVD Fisher Information. 1 Roberts et al., 1999

16. Detrended fluctuation analysis. 1 Márton et al., 2014

17. Katz Fractal Dimension. 1 Esteller et al., 1999

function. The energy of each resolution level j = 1, · · · , J by wavelet
coefficients can be (Candra et al., 2015) defined as follows:

Ej =
N

∑

k=1

∣

∣Cj,k

∣

∣

2
, k = 1, . . . ,N, (7)

where N is the number of wavelet coefficients in each

decomposition layer. Ej can also be called Wavelet Coef

Energy F9. In this study, we used the mother wavelet

Daubechies with a decomposition level of 6, which means

J = 6.

Frontiers inNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnins.2023.1194554
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Chen et al. 10.3389/fnins.2023.1194554

2.3.3. Non-linear dynamic features
The theory of non-linear dynamics opened up a new window

for understanding EEG.One of the non-linear estimates of dynamic

EEG activity is complexity analysis. Among all complexity analysis

methods, entropy proved to be a useful and robust estimation

method for evaluating the regularity or predictability of EEG. The

17 features presented in Table 1 for each channel were calculated

in preparation for the next step. Here are some definitions for

non-linear dynamic features.

Teager–Kaiser energy D14 is a non-linear energy tracking

method can calculate the instantaneous energy of non-stationary

signals (Solnik et al., 2010). For the case of the discrete signals x[n],

the Teager–Kaiser energy ψ can be expressed as (O’Toole et al.,

2014; Badani et al., 2017):

ψ(x[n]) = x2[n]− x[n− 1]x[n+ 1]. (8)

We used the mean and standard deviation of Teager–Kaiser energy

as features for the wavelet transform coefficients of decomposition

level 6, which contained seven sets coefficients. This resulted in 14

(2× 7) dimensional features.

To normalize the energy Ej of resolution level j, as calculated

from Equation 7, the energy of the fixed resolution level j is

compared with the total energy of the signal Et :

pj =
Ej

Et
, (9)

where Et represents the sum of all frequency bands energy,

Ej represents the energy of the fixed resolution level j, and pj
represents the proportion of Ej to Et . According to Rosso et al.

(2001), wavelet entropy (D13) Hj can be defined as follows:

Hj = −
∑

pj ln pj. (10)

2.3.4. Feature fusion
Feature-level fusion involves integrating low-level or

intermediate-level features extracted from different sources or

modalities into a single representation before further analysis

or decision-making (Cai et al., 2020). It aims to capture

comprehensive and discriminative information provided by

multiple features to enhance the overall representation and

improve subsequent processing tasks (Chin et al., 2014).

We directly concatenated and fused the features extracted from

time domain, frequency domain, and non-linear dynamics analysis

methods. Considering that time domain features, frequency-

domain features, and non-linear features can be represented as

T ∈ R
Td , F ∈ R

Fd , and D ∈ R
Dd respectively, the fusion features

after concatenation can be represented as follows:

Featurefusion = [T1,T2, . . . ,TTd , F1, F2, . . . , FFd ,D1,D2, . . . ,DDd
],

(11)

where Td, Fd, and Dd represent the dimension of time domain

features, frequency domain features, and non-linear dynamic

features, respectively.

After extracting 12-dimensional time domain features, 48-

dimensional frequency domain features, and 63-dimensional non-

linear dynamic features, we concatenated them to form fusion

features, resulting in a total of 123 dimensions.

2.4. Classification

To valid the effectiveness of these extracted

features, we used three common classification methods,

including random forest (RF), decision tree (DT), and

support vector machine (SVM) to build our attention

recognition framework.

RF classifiers have been shown to be highly effective in

small EEG data sets as demonstrated by the studies conducted

by Amin et al. (2017), Lotte et al. (2018). In this study, the

random forest classifier held 100 evaluators and used Gini

impurity to measure the quality of a split as criterion. For DT,

the criterion and splitter were set to information entropy and

best. Linear kernel with a penalty parameter C of 2 and the

kernel function coefficients of 0.2 was used for constructing the

SVM classifiers.

We employed 5-fold cross-validation (CV) for intra-subject

classification, dividing the training set and testing set strictly in the

order of time. For inter-subject classification, leave-one-subject-out

(LOSO) CV was employed.

3. Results

3.1. Performance of intra-subject attention
recognition

In this section, we compared four types of features, namely

time domain features, frequency domain features, non-linear

dynamic features, and fusion features, in three different

classifiers: RF, DT, and SVM. It should be noted that fusion

features involve time domain, frequency domain, and non-linear

dynamic features.

For each type of feature and each classifier, we calculated the

mean accuracy based on a 5-fold CV approach, resulting in 85

mean accuracies in total. We then performed paired-sample t-tests

to compare the accuracies of fusion features with those of the other

types of features.

Figure 4 displays the mean and standard deviation of

intra-subject accuracies for four types of features and three

classifiers among 85 subjects. Fusion features demonstrate excellent

performance, achieving accuracies (%) of 85.1, 78.7, and 79.8 using

RF, DT, and SVM, respectively. For all classifiers (RF, DT, and

SVM), the accuracies of fusion features are significantly greater

than time domain features, frequency domain features, and non-

linear dynamic features. RF performs the best among the three

classifiers with different features, which is consistent with previous

research findings that RF performs well on small datasets (Amin

et al., 2017). The average accuracies (%) using RF are 81.4, 84.8,

84.0, and 85.1 for time domain features, frequency domain features,

non-linear dynamic features, and fusion features, respectively.

3.2. Performance of inter-subject attention
recognition

In terms of inter-subject analysis, we fixed features and

classifiers as those in the intra-subject analysis. For each
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FIGURE 4

Average intra-subject accuracies using di�erent types of features and di�erent classifiers. The ∗ and ∗∗ indicate that the intra-subject accuracies of

fusion features are significantly higher than those of the compared type of features with p < 0.05 and p < 0.01, respectively.

feature type and each classifier, we obtained 85 accuracies

using LOSO CV and performed paired-sample t-tests to compare

the accuracies of fusion features with those of other types of

features. Figure 5 presents the inter-subject results obtained

using different types of features and different classifiers, showing

that RF and SVM were found to perform relatively well.

Using RF, the average inter-subject accuracies (%) are 75.6,

78.7, 78.1, and 80.0 for the time domain features, frequency

domain features, non-linear dynamic features, and fusion

features, respectively. The best result (81.6%) of the average

accuracies is achieved by SVM for distinguishing fusion features

across subjects.

3.3. Assessment of our methods against
baseline methods

Our study demonstrates the superior performance of our

proposed method for the attention task, as compared to three

baseline methods: PSD-SVM (Huang H. et al., 2021), Dynamical

Complexity-XGBoost (Wan et al., 2021), and STFT-SVM (Acı

et al., 2019). While PSD-SVM uses PSD features in the δ, θ , α,

β , and γ bands and applies SVM for classification, Dynamical

Complexity-XGBoost employs Multiscale Approximate Entropy,

Sample Entropy, and Fuzzy Entropy as features and uses Extreme

Gradient Boosting (XGBoost) for classification. Additionally,
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FIGURE 5

Average inter-subject accuracies using di�erent types of features and di�erent classifiers. The ∗ and ∗∗ indicate that the inter-subject accuracies of

fusion features are significantly higher than those of the compared types of features with p < 0.05 and p < 0.01, respectively.

STFT-SVM utilizes the short-time Fourier transform (STFT) with

a Blackman window to calculate smoothed time-dependent power

spectra as features, which are then classified using SVM.

Our methods surpass the performance of baseline methods in

both intra-subject and inter-subject classification, as evidenced by

the results presented in Table 2. These findings demonstrate that

our methods outperform the baseline methods.

3.4. Individual feature analysis and
classification performance evaluation

To determine the effectiveness of features, we conducted

an individual feature analysis by evaluating the classification

performance. The results were calculated for intra-subject

classification by RF and inter-subject classification by SVM, as

depicted in Figure 6.

In the intra-subject experiment, numerous time domain,

frequency domain, and non-linear dynamic features demonstrate

an accuracy exceeding 70%. This finding suggests that the majority

of the features calculated in Section 2 are effective within

subjects. In the inter-subject experiment, only a few features

exhibit a accuracy exceeding 70%, such as power spectrum

for frequency bands F4, wavelet entropy D13, and Teager–

kaiser energy D14. These features demonstrate robustness across

subjects, indicating their effectiveness as more reliable features.

The highest inter-subject accuracy (%) achieved by an individual

feature is 75.24 ± 11.53. However, our proposed fusion feature
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TABLE 2 Average intra-subject and inter-subject accuracies using our methods (Fusion Feature-RF and Fusion Feature-SVM), PSD-SVM, Dynamical

Complexity-XGBoost, and STFT-SVM.

Intra-subject Fusion feature-RF PSD-SVM Dynamical complexity-XGBoost STFT-SVM

Mean(%)± std(%) 85.05 ± 6.87 63.36± 9.64∗∗ 77.25± 11.51∗∗ 68.84± 9.68∗∗

Inter-subject Fusion Feature-SVM PSD-SVM Dynamical Complexity-XGBoost STFT-SVM

Mean(%)± std(%) 81.60 ± 9.93 74.48± 13.36∗∗ 69.38± 11.98∗∗ 65.08± 10.62∗∗

The ∗ and ∗∗ indicate that the accuracies of our methods are significantly higher than baseline methods in intra-subject or inter-subject classification with p < 0.05 and p < 0.01, respectively.

Bold values indicate the superiority of our method over the basic method.

demonstrates a significantly higher accuracy (%) of 81.60 ±
9.93. This result further confirms the effectiveness of our fusion

feature method.

3.5. Neural patterns

First, we classified PSD features from different frequency bands

(δ, θ , α, β , and γ ) within and across subjects, respectively. The

inter-subject and intra-subject average accuracies with features

from different frequency bands are shown in Tables 3, 4,

respectively. The average accuracies in Tables 3, 4 indicate that

the PSD calculated from δ, θ , α, β , and γ bands exhibits distinct

separability, which suggests that δ, θ , α, β , and γ oscillations

of brain activity are related to the processing of attention states

(Brown, 1970; Ray and Cole, 1985; Klimesch et al., 1993; Klimesch,

1999; Prinzel et al., 2001).

Additionally, time–frequency analysis with Morlet wavelets

Cohen (2019) was employed in electrode position Fz in an

experiment, as depicted in Figure 7. This figure illustrates the

distinct patterns observed for different attention states. Notably, the

analysis reveals that frequencies below 30 Hz exhibit significantly

lower response energy during the attention state compared to the

non-attention state. These findings further support the relationship

between attention states and frequency bands such as α, β , and θ .

To further explore neural patterns associated with attention

and non-attention states across all participants, we calculated

the topographical maps of power features by averaging the

power features over all epochs in all subjects for each frequency

band between attention states and non-attention states. We then

normalized the features by Z-Score for all epochs within each

frequency band for each subject. Figure 8 depicts the topographical

maps of the power features corresponding to the attention state an

the non-attention state. The results demonstrate the existence of

neural patterns associated with attention and non-attention states.

Although the neural patterns of attention states and non-

attention states are similar, greater activation iobserved in the

prefrontal areas for both. In the α, β , and θ bands, the

lateral prefrontal and occipital areas exhibit less activation during

attention states than non-attention states. During non-attention

states, there are significant higher β responses in both prefrontal

and occipital regions. The existing studies (Klimesch et al., 1998;

Egner and Gruzelier, 2004) have showed that the changes in EEG

features are closely related to the degree of attention, with varying

degrees of amplitude and power of individual rhythmic brain

waves. For instance, when participants were in the state of attention,

their EEG signals exhibited a significant decrease in α and β waves

(Prinzel et al., 2001). Conversely, during non-attention processing,

the energy of β and α responses was increased. These findings on

neural patterns are consistent with previous attention studies (Ray

and Cole, 1985; Klimesch, 1999; Kelly et al., 2003; Swartwood et al.,

2003; K Binienda et al., 2011).

4. Discussion

In this study, we first designed a novel attention experiment

paradigm and collected a dataset consisting of 85 subjects.

Next, we extracted and fused time domain, frequency domain,

and non-linear dynamic features. These features were then

classified to construct a complete attention recognition framework.

Additionally, we suggested that conducting a separate analysis of

the differences in features and channels at the group level may be

useful in distinguishing between attention and non-attention states.

The following discussions will be divided into six parts. First,

we compared and analyzed the different features in different

channels of attention and non-attention states, which is useful in

the construction of our attention recognition framework. Second,

we conducted a group level analysis on connectivity estimators of

the attention and non-attention states. Third, we also discussed

the neural patterns of attention and non-attention states. Fourth,

we analyzed and compared different paradigms for attention

recognition. Fifth, we conducted an advantages analysis on our

method. Last, we described the limitations of this study and future

research perspectives.

4.1. A group level analysis on the features
of the attention and non-attention states

In our study, we conducted an analysis of the differences in the

different types of features across channels between attention and

non-attention states at the group level. Specifically, we collected

features extracted from each channel of different epochs for each

subject. We then divided the features into two parts for attention

and non-attention states, respectively. After removing outliers, we

averaged each part to obtain the average features, which represented

the average level of a specific feature for a given channel and subject

for attention and non-attention states.

To analyze whether there were significant differences in the

average features between attention and non-attention states at

the group level, paired t-tests were implemented on the average

features in the time domain, frequency domain, and non-linear

dynamic features, respectively. It is assumed that the average
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FIGURE 6

Average intra-subject accuracies by RF and inter-subject accuracies by SVM in di�erent features. The horizontal axis represents accuracy, while the

vertical axis represents di�erent features.

features of attention and non-attention do not significantly

differ at the group level. The p-value of 0.05 is used as a

significance level. This means that if the p > 0.05, the null

hypothesis is true; otherwise false. The results of the t-tests

in terms of time domain features, frequency domain features,

and non-linear dynamic features are, respectively, shown in

Figures 9–11.

Regarding the average features of time domain features, it was

found that for most of the channels corresponding to the feature

skewness T4 and decorrelation time T11, the p-values were much

less than 0.05, indicating a relatively significant difference. This

finding is consistent with the results of previous studies that have

investigated the relationship between skewness and cognition in

EEG signals Davis et al. (2020). Additionally, Figure 9 shows that

prefrontal channels such as Fp1, Fp2, F7, F3, Fz, and F4 exhibit

more significant features relative to other channels.

TABLE 3 Average intra-subject accuracies (%) of three classifiers for

features from di�erent frequency bands.

Frequency bands RF DT SVM

Delta (0.5–4 Hz) 79.62 74.06 67.73

Theta (4–8 Hz) 80.78 76.28 68.00

Alpha (8–13 Hz) 81.53 75.08 67.84

Beta (13–30 Hz) 80.76 74.28 65.58

Gamma (30–50 Hz) 80.28 74.93 64.53

Compared to the average features of time domain features, the

average features of frequency domain features performed better

in the t-test. The p-values of the average features of F4 (power
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TABLE 4 Average inter-subject accuracies (%) of three classifiers for

features from di�erent frequency bands.

Frequency bands RF DT SVM

Delta (0.5–4 Hz) 70.82 62.17 63.90

Theta (4–8 Hz) 69.38 60.62 62.71

Alpha (8–13 Hz) 70.57 60.99 62.71

Beta (13–30 Hz) 73.83 64.60 63.99

Gamma (30–50 Hz) 74.99 65.06 65.35

spectrum density) of θ , α, β , and power spectral density ratio δ/γ ,

δ/θ , δ/α, δ/β , δ/γ , θ/α, θ/β , θ/γ , α/β , and α/γ were less than

0.05 in frontal, occipital, and temporal brain regions, as shown in

Figure 10. These significant differences at the group level explain

the superior performance of frequency domain features compared

to time domain features in Figures 4, 5. This finding is consistent

with previous studies that cognitive tasks can enhance the power of

eeg, particularly in visual cortex Fitzgibbon et al. (2004).

As indicated in Figure 11, the average features of non-linear

dynamic features are very special, and most of the non-linear

features are significant for part of the channels. This finding is

consistent with previous attention studies that have found that the

value of entropy decreases with a decrease of attention states (Li

et al., 2012). For instance, the features D14 (Teager–kaiser energy)

exhibit a highly significant difference between attention and non-

attention states, as shown in Figure 11, which indicates that Teager–

kaiser energy D14 is an excellent feature. Furthermore, the first

eight dimensions of Teager–kaiser energy exhibit more significant

channels and a deeper degree than the last six dimensions.

According to the content in Section 2, the first eight dimensions

correspond to Teager–kaiser energy of the low-frequency portion

of wavelet decomposition, while the last six dimensions correspond

to Teager–kaiser energy of the high-frequency portion of wavelet

decomposition. This highlights that the contrast between attention

and non-attention states in low-frequency portion is much more

pronounced than in high-frequency portion, which is consistent

with previous research (Fiebelkorn and Kastner, 2019).

Taken together, some average features from time domain,

frequency domain, and non-linear dynamics exhibit significant

differences at the group level, which further validates the

effectiveness of our framework for attention recognition based

on EEG.

4.2. A group level analysis on connectivity
estimators of the attention and
non-attention states

Brain functional connectivity (FC) elucidating the statistical

dependencies and directed information flows unveils the functions

and intricate interactions of diverse brain regions (Cao et al., 2022).

We estimated correlations between different channels for each

epoch of each participant to construct FC matrices and separately

averaged the FC matrices of attention and non-attention states for

each participant. This allowed us to obtain the average FC matrices

for attention and non-attention states. We then conducted paired-

sample t-tests and corrected using the false discovery rate (FDR)

method for the average FC matrices corresponding to the two

states. Figure 12 shows significant differences in brain FCs between

attention and non-attention states across different frequency bands

at the group level.

From Figure 12, it is evident that the significant differences

in brain FCs between attention and non-attention states are

primarily concentrated in the low-frequency bands, including δ,

θ , lower α, and upper α (Zoefel et al., 2011) frequency bands.

Within δ and θ frequency bands, there are significantly different

connectivities distributed in various brain regions, including the

left and right temporal lobes, parietal lobes, prefrontal regions,

and occipital lobes. Within lower α and upper α frequency bands,

the connectivities are mainly concentrated in the left and right

temporal lobes. Overall, as the frequency range increases, there

is a decrease in the number of significant connectivities, which

further demonstrates that lower frequencies are more capable of

characterizing changes in attention states. This is consistent with

our discussion in section 4.1.

Furthermore, by comparing the differences in relatively low-

frequency connectivities between the left and right hemispheres,

we found that the number of significant connectivities in the right

hemisphere at the group level was significantly higher than that

in the left hemisphere. This indicates that the right hemisphere

interacts more closely with information during attention changes,

which is consistent with previous studies showing significant

hemispheric asymmetry and lateralization toward the right

hemisphere in the attention process of individuals (Bartolomeo and

Malkinson, 2019).

4.3. Neural patterns analysis on the
attention and non-attention states

In Section 3, we observed that neural patterns for attention

and non-attention states exist according to Tables 3, 4, Figure 8.

In this section, we analyzed these neural patterns of attention and

non-attention states in greater detail.

Figure 13 shows the time–frequency analysis using Morlet

wavelets for all epochs recorded from electrodes Fp1, Fp2, Fz,

F3, F4, T3, T4, FT7, FT8, O1, Oz, and O2 in an experiment. As

demonstrated by Figures 7 and 13, the time–frequency analysis

reveals different patterns for different attention states. Specifically,

the responses of low-frequency oscillations during attention states

are lower than during non-attention states, especially in the

temporal lobes and prefrontal regions. Additionally, the neural

patterns remain relatively stable over time for each epoch within

the experiment.

As shown in Figure 8, the average PSD in the θ , α, and β bands

across all subjects exhibits distinct differences between attention

and non-attention states, whereas this in the δ do not. This implies

that the 4–30Hz frequency bands are more closely associated with

attention than the other frequency bands in EEG signals, which

is consistent with prior research (Prinzel et al., 2001). For the δ

band, compared with non-attention states, the neural patterns of

attention states have a significantly lower response in the prefrontal.

For the θ , β , and α bands, compared with non-attention states,
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FIGURE 7

Time–frequency analysis by Morlet wavelets of the electrode position Fz in all epochs for one subject. The white line represents the labels of

attention states corresponding to time.

FIGURE 8

Topographical maps of power features in the canonical frequency bands. From left to right: δ, θ , α, β, and γ bands; from top to bottom:

non-attention and attention.

the neural patterns of attention states have a significantly lower

response in the lateral prefrontal and occipital areas.

4.4. A comparative analysis on paradigms

As described in Section 1, the tasks in paradigms of attention

recognition include the Stroop test, breath counting, and

reading comprehension. The Stroop test is inherently short

in duration (Kawashima et al., 2023), which makes it difficult

for participants to sustain their attention over time. The task

of counting the number of breaths can easily lead to mental

wandering (Braboszcz and Delorme, 2011). Additionally,

reading tasks are influenced by different materials, leading

to variations in attention and concentration levels among

individuals (Li et al., 2011). To address these limitations, we

proposed mental arithmetic tasks as an attention task in our

paradigm. Mental arithmetic tasks have a longer duration

and are not affected by different materials. Our framework’s

results provide strong evidence for the effective characterization

of attention and non-attention states under our proposed

paradigm. First, the excellent classification results in Figures 4,

5 demonstrate that attention states and non-attention states

can be distinguished accurately with our paradigm. Second,

different activation maps in Figure 8 between attention and non-

attention states further support the efficacy of our proposed

paradigm in characterizing attention and non-attention

states. Together, these findings highlight the potential value
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FIGURE 9

p-value of average features of time domain features paired t-test between attention and non-attention. The vertical axis represents 30 channels.

From top to bottom, the channel names are as follows: Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, T8, TP7, CP3, CPz, CP4,

TP8, P7, P3, Pz, P4, P8, O1, Oz, and O2. The horizontal axis represents the 24 dimensional time domain features, which are consistent with Table 1.

of our paradigm in advancing research and understanding of

attention states.

4.5. An advantages analysis on our method

First, our method can not only be used for intra-subject

attention recognition but also for inter-subject attention

recognition, making the application more convenient. Second,

we can see that our proposed fusion feature method achieves the

accuracy (%) of 85.05 ± 6.87 in intra-subject attention recognition

and 81.60 ± 9.93 in inter-subject attention recognition. Compared

with other attention classification methods, it achieves better

classification results both within and across subjects, making the

results of attention recognition more accurate.

4.6. Limitations and future study

There are three limitations to this study. First, this study

analyzed the EEG features between attention states and non-

attention states offline and did not perform some online validation.

Thus, we will perform online validation for the framework

presented in this study in future article. Second, in this study, all

EEG channels (30 channels) were used to calculate the features, and

it is difficult to collect 30 channels of EEG data for the complex

variety of application scenarios of attention recognition (such as
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FIGURE 10

p-value of average features of frequency domain features paired t-test between attention and non-attention. The vertical axis is the same as Figure 9.

The horizontal axis represents the 48-dimensional frequency domain features, which is consistent with Table 1. The 14-dimensional PSD features F4
represent δ, θ , α, β, γ , δ/θ , δ/α, δ/β, δ/γ , θ/α, θ/β, θ/γ , α/β, α/γ , and β/γ from left to right.

FIGURE 11

p-value of average features of non-linear dynamic features paired t-test between attention and non-attention. The vertical axis is the same as

Figure 9. The horizontal axis represents the 60 dimensional non-linear dynamic features, which are consistent with Table 1.

hospitals and schools). Therefore, reducing the number of channels

for attention recognition is also an important direction for our

future study. Third, in this study, for attention and non-attention

states, we analyzed and classified the manual features based on

EEG wthin and across subjects, and it is necessary to design an

end-to-end network framework on large dataset in future study.
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FIGURE 12

Significant di�erences in FC estimators across frequency bands (p < 0.05, FDR-corrected).

FIGURE 13

Time–frequency analysis by Morlet wavelets of the electrode position Fp1, Fp2, Fz, F3, F4, T3, T4, FT7, FT8, O1, Oz, and O2 in all epochs for one

subject a red color indicates a high amplitude).

5. Conclusion

Attention recognition is of great importance in various

fields such as medicine and industry. However, a reliable

inter-subject attention recognition framework that can be

effective is still missing. This study proposed a novel attention

experiment paradigm, built a dataset of 85 subjects, fused

three types of features, and classified features for attention

recognition based on EEG. Eighty-five subjects participated in

our experiment, and the experimental results demonstrated

the validity of our paradigm and analysis methods with an

average intra-subject attention recognition accuracy of 85.05%

and an average inter-subject attention recognition accuracy

of 81.60%. Additionally, our frequency band features analysis

revealed neural patterns of attention and non-attention states,

where attention states showed less activation than non-attention
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states in the prefrontal and occipital areas in α, β , and θ bands.

Furthermore, we identified the features that exhibited signification

corresponding channels between attention and non-attention

states. These findings may be useful for understanding attention

recognition based on EEG and may guide future study in

this area.
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