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Abstract. 

Disease transmission and governmental interventions 

influence the spread of Covid-19. Models can be essential 

tools to optimise these governmental interventions. This 

requires the exploration of various ways to implement 

government agent behaviour. In Agent-Based Models 

(ABMs), government agent behaviour can be rule-based 

or data-driven, and the agent can be an isolated learner 

(using only its own data) or a social learner. We explore 

the creation of a data-driven social approach in which 

behaviour is based on a Machine Learning (ML) 

algorithm, and the government considers data from other 

European countries as input for their decision-making. 

Governmental actions start with risk perception,  based on 

several parameters, e.g. the number of disease cases, 

deaths, and hospitalisation rate. The interventions are 

measured via the stringency index, measuring the 

simultaneous number of interventions (working from 

home, wearing a facemask, closing schools, etc.) taken. 

We test four machine learning algorithms (Bayesian 

Network (BN), c4.5, Naïve Bayes (NB) and Random 

Forest (RF)), using a 5-class and a 3-class classification 

of the stringency level. The algorithms are trained on 

disease data from many European countries. The best-

performing algorithms were c4.5 and RF. The next step is 

to implement these algorithms into the ABM and evaluate 

the outcomes compared to the original model. 

Keywords. Agent-Based Modelling, Machine Learning, 

Covid-19  

1 Introduction 

During the Covid pandemic, we learned that governments 

play an important role in disease interventions. They can 

enforce lockdowns, make wearing face masks mandatory 

and implement vaccination campaigns. Governmental 

decision-making is based on a strategy of risk perception 

and coping appraisal. Governments decide on the risk 

level based on disease incidence, the number of available 

hospital beds etc. To understand the impact of 

governmental decisions on disease diffusion, we need to 

integrate disease models with policy models (Hadley et 

al., 2021).  

Agent-Based Models (ABMs) are good tools for 

modelling bottom-up disease diffusion and personal 

decision-making. In many cases, governments are not 

modelled as agents. When included, governments are 

modelled as isolated entities that apply rule-based 

behaviour to decide what interventions to use   (Augustijn 

et al., 2022). However, decision-making might be a more 

social activity in which governments of various countries 

collaborate and share experiences. 

Social agents are interactive; they communicate with their 

neighbours (in this case, other European governments) to 

learn effectively within their groups (Abdulkareem et al., 

2020). A complicating factor is that at the pandemic's 

beginning, nobody had much experience with policies for 

effective disease control of Covid-19. To simulate this 

learning process, the intelligence of the government agent 

should increase during the simulation. This type of 

learning is best achieved by replacing the rule-based agent 

decision-making in the ABM with a Machine Learning 

(ML) algorithm that learns directly from data.

When implementing agent learning via ML, many 

decisions have to be made concerning the type of ML 

algorithm, the data used to train the ML algorithm, and 

the architecture of linking the ML and ABM. 

In this research, we take the first step in replacing an 

isolated government agent that uses rule-based decision-
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making with a model where an ML algorithm drives the 

government agent’s decisions for a situation where the 

exchange of information with other European 

governments takes place. We do this by testing out several 

algorithms to depict governmental risk perception. 

2 Methods 

2.1 Agent-Based Model  

The ABM is a hybrid compartmental ABM simulating 

Covid-19 diffusion in the Netherlands (Augustijn et al., 

2022). The model contains three sub-models: a population 

and interaction model, a disease model and a mobility 

model. The simulated population is divided into nine age 

categories and split into commuters and non-commuters. 

The disease diffusion is modelled using a Susceptible, 

Infected, Recovered (SIR) model using age-dependent 

transmission rates. Four types of mobility are 

implemented for different age groups: school commuting, 

job commuting, gathering and event commuting (GAET) 

and Visit Travelling (VT). These commuting types match 

different Covid intervention strategies.  

The model contains a government agent that performs risk 

perception and coping strategies based on the theories of 

Rogers et al. (1983). Risk is based on two variables: the 

number of positive tests per 100000 inhabitants per week 

and the number of hospitalised individuals per day. It 

recognises five risk levels based on the Road Map used by 

the Dutch government (Ministerie van Volksgezondheid, 

2020). The model was implemented for the Netherlands 

and predicts the daily number of disease cases for all 

Dutch municipalities. 

 

2.2 Data 

We combined two open-source datasets, one on 

government interventions (Hale et al., 2021) and one on 

the number of disease cases in European countries 

(Edouard Mathieu, 2020). The data provided by Hale et 

al. (2021) provides a stringency index. This stringency 

index is based on nine metrics, including school closures, 

workplace closures and restrictions on all kinds of 

movements. On a scale of zero to 100, the stringency 

index expresses the severity of the restricting measures 

governments apply. We assume that the stricter the 

measures, the more risk. The stringency index is 

calculated daily.  

 
Figure 1. The overview of the methods 

Risk perception in our ML model is based on three 

aspects: The number of disease cases per 100000 

inhabitants (1), the number of ICUs per 100000 

inhabitants (2), and the number of deaths per 100000 

inhabitants (3). This does not precisely match the rule-

based implementation in the ABM (based on the number 

of tests and hospitalised individuals). These deviations 

were made to ensure that the data of the various countries 

in Europe are as comparable as possible. 

To test the ML algorithms, we included daily data from 

the following countries: Austria, Belgium, Denmark, 

France, Germany, Italy, Luxembourg, Sweden, 

Switzerland and the United Kingdom from 1-1-2020 to 9-

10-2021.  

2.3 Risk Perception 

We want to predict based on a limited number of variables 

(number of disease cases, number of deaths, 

hospitalisation rate, Intensive care Units (ICUs)) with 

stringency as the target variable. We classified the 

stringency in two ways, one set using five stringency 

classes and the other using three. We used natural breaks 

for this classification. Although we eventually want to 

couple this ML model with our ABM, we will perform the 

test separately to evaluate which algorithm will perform 

best.  

Four algorithms have been selected: Bayesian networks 

(BNs), decision trees (c4.5), naïve Bayes (NB), and 

Random Forest (RF). The algorithms have been trained in 

both 10-fold validation and are split into training and 

testing datasets (70% and 30%, respectively). With 10-

fold cross-validation, the data is split into ten random 

parts, and the model is trained ten times, using nine parts 

to train the model and one part to test it. For a 70% - 30% 

split, 70% of the data will go to the training set and 30% 

to testing (Xu & Goodacre, 2018). 

For all models, we evaluated the accuracy (correctly 

predicted stringency classes compared to the actual class).  
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We also evaluate the importance of the features to 

determine which feature has the highest impact. 

2.4 Data and Software Availability 

The analyses done for this paper were conducted using the 

WEKA tool: https://www.cs.waikato.ac.nz/ml/weka/ and 

the Python Sklearn library. Data and code used in this 

paper are available and can be accessed via the following 

DOI: https://doi.org/0.5281/zenodo.7844611. 

3 Results 

3.1 Data 

When we compare the number of cases in the Netherlands 

to those in other European countries (Figure 1), we see 

that The Netherlands is somewhere halfway in the graph. 

Some countries included in our training set have more, 

and other countries have fewer disease cases. 

 

 

 

 

Figure 2. Top: normalized number of infections per country (red 

is the Netherlands). Bottom: stringency index (red is the 

Netherlands)  

3.2 Results stringency prediction. 

Table 1. shows the accuracy of each algorithm per training 

type. When the algorithms were trained with all five 

features, the decision trees (c4.5) had higher accuracy 

when the data was split into 70% for training and 30% for 

testing. The accuracy was 76%. BNs showed the second-

highest accuracy. However, BNs gave a higher accuracy 

when the algorithm was trained using 10-fold cross-

validation (54%).  

Table 1. Results. 

Stringency 

classes 

Algorithm Accuracy 

  10-fold 

cross-

validation 

Split 70% - 

30% 

5 BNs 54% 53% 

 c4.5 48% 76% 

 Naïve Bayes 47% 42% 

 RF 49% 44% 

 BNs 52% 50% 

3 c4.5 60% 49% 

 Naïve Bayes 32% 32% 

 RF 67% 55% 

 

When three instead of five features were used, RF showed 

the highest accuracy, followed by decision trees (trained 

with 10-fold cross-validation) or BNs (trained with 

splitting data). In all training processes, Naïve Bayes 

showed the least accuracy (Table 1). This is explainable 

as Naïve Bayes are effective when there are many 

features, and their interactions are minimal. The Naïve 

Bayes algorithm is also sensitive to irrelevant or 

associated features. 

When we evaluate the importance of the features for RF 

with three stringency classes, this resulted in 0.21 for 

Disease cases per 100000 inhabitants, 0.41 for Deaths per 

100000 inhabitants and 0.38 for ICU per 100000.   

 

4. Discussion 

Based on the results in section 3.2, we can conclude that 

either c4.5 or RF would be the best algorithms. RF 

outperforms c4.5 when we use three classes, and c4.5 has 

the best scores for five classes. 

The current results are based on models trained on only 

three features (number of disease cases, number of deaths,  

and ICUs). The limited number of features was selected 

due to the original ABM that evaluates risk based on the 

number of positive tests per 100000 inhabitants and the 

number of hospitalised individuals. When we look at the 

importance of the features (RF), we see that the number 

of disease cases has the smallest impact. We used the daily 

number of disease cases in our test. A possibility would 

be to calculate weekly disease cases to come closer to the 

original model.   
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We also note that the number of deaths is not included in 

the original model, yet, it has the highest impact on our 

model. A re-evaluation of the rule-based model needs to 

occur, and other indicators besides the number of positive 

tests and hospitalised individuals should be considered. 

Our ultimate aim is to integrate ML into our ABMs to 

create learning. In our case, the government agent should 

gradually learn how much risk there is and how to best 

cope with this risk (select interventions). Our aim is not to 

create the most intelligent model, as this would ignore the 

learning aspect. 

When we link the ML with the ABM to steer the 

government agent decisions, we will use a partly trained 

ML algorithm or add data gradually to improve the 

model's intelligence. Stopping the algorithm to retrain 

with new data and then resuming the simulation is 

possible with Random Forest. It should also be noted that 

the ultimate aim is to simulate disease cases and not 

stringency. This can only be achieved by linking the two 

models, and the impact of risk perception on disease 

diffusion still has to be evaluated.  

In conclusion, RFs can be the best candidate to be 

integrated with the government agent for steering 

behaviour. This is because the relation between the 

features is well-defined and straightforward. In addition, 

RFs can avoid overfitting because it creates multiple 

decision trees and then averages their predictions. This 

usually gives stable and accurate results. Moreover, by 

assessing each feature's significance based on the 

decrease in prediction error when it is present, RFs can 

offer better feature selection. 

The next step is to implement the trained algorithm into 

our ABM model. As we already have a model without 

social learning (government as an isolated agent), we can 

compare the new output (number of disease cases) with 

our previous results. This new output will represent a 

hypothetical situation in which the Dutch Government 

would have taken decisions on intervention measures in a 

completely transparent European setting, taking the 

experience of all other European governments into 

account. These results will help to find the optimal 

decision-making strategy for future pandemics. 
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