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Abstract. We propose and study a family of formally second-order accurate schemes to approximate weak solutions
of hyperbolic systems of conservation laws. Theses schemes are based on a dissipative property satisfied by the
second-order discretization in space. They are proven to satisfy a global entropy inequality for a generic strictly
convex entropy. These schemes do not involve limitation techniques. Numerical results are provided to illustrate
their accuracy and stability.
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1. Introduction

This work is concerned with the numerical approximation of weak solutions of systems made of d ≥ 1
conservation laws in one space dimension given by the following Cauchy problem{

∂tw + ∂xf(w) = 0, t > 0, x ∈ R,

w(x, t = 0) = w0(x).
(1.1)

The unknown state vector w(x, t) is assumed to belong to Ω, a non-empty convex open subset of
Rd. Here, f : Ω → Rd is a given smooth flux function. For all w ∈ Ω, the d × d Jacobian matrix ∇f(w)
is assumed to be diagonalizable in R. The system (1.1) is then a hyperbolic system of conservation
laws. The initial data w0 : R → Ω is a given measurable function in L1

loc(R).
Even though the initial data is smooth, it is well-known that the solutions to (1.1) may develop, in

a finite time, discontinuities [29, 30, 31, 38]. Weak solutions are in general non unique and one has to
select a physically admissible solution among many others. In this regard, the system (1.1) is usually
endowed with entropy inequalities. We consider in this work to be given a strictly convex function
η ∈ C2(Ω,R), called entropy function, and an entropy flux function G ∈ C1(Ω,R) such that we have

∀w ∈ Ω, ∇η(w)T ∇f(w) = ∇G(w)T . (1.2)
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It is then required that weak solutions verify an entropy inequality given in the weak sense by
∂tη(w) + ∂xG(w) ≤ 0. (1.3)

Instead of (1.3), we shall focus in this work on the weaker inequality
d
dt

∫
R

η(w(x, t)) dx ≤ 0, (1.4)

which results from an integration in space of the inequality (1.3) for compactly supported solutions.
This inequality will be called throughout this work a global entropy inequality. Our main concern
is to design a family of schemes that are formally second-order accurate in space and that verifies
a discrete analogue to (1.4). We consider uniform meshes in space and time (xi+ 1

2
)i∈Z ⊂ R and

(tn)n∈N ⊂ [0, +∞) of respectively constant size ∆x > 0 and ∆t > 0. We have xi+ 1
2

= xi− 1
2

+∆x for all
i ∈ Z and tn+1 = tn + ∆t for all n ∈ N. Weak solutions to (1.1) are approximated within the standard
finite volume framework. At time tn, we consider the following piecewise constant function

w∆(x, tn) = wn
i if x ∈ [xi− 1

2
, xi+ 1

2
), (1.5)

where the quantities wn
i are approximations of the average of the solution over the cell [xi− 1

2
, xi+ 1

2
),

wn
i ≈ 1

∆x

∫ x
i+ 1

2

x
i− 1

2

w(x, tn) dx,

where w(x, tn) naturally belongs to L1
loc(R).

Many strategies are known to define an updated sequence (wn+1
i )i∈Z starting from (wn

i )i∈Z (for
instance, see [10, 22, 36, 43] and references therein). The crux of the problem lies in the discrete
analogue to (1.3) which is known to ensure the stability of the scheme and to avoid non-admissible
discontinuous waves (for instance, see [8, 26]). Several first-order accurate finite volume schemes are
known to satisfy (1.3): Godunov [17, 22], the kinetic schemes [3, 27], the HLL scheme[21, 22], the
HLLC scheme[44], Suliciu relaxation approaches [2, 4, 7, 9, 12, 24, 25] or many other schemes [7,
12, 12, 14, 15, 23, 24, 25] based on the strategy introduced by Tadmor [41, 42]. As far as second-
order accurate in space schemes are concerned, the literature is less exhaustive. Several results have
nevertheless been obtained in the semi discrete case [6, 41] or in the fully discrete case using an
entropy averaging technique [1, 5, 34, 35]. Both strategies are however not sufficient to rule out non-
admissible discontinuities in the converged solutions. Other strategies such as MUSCL technique [45]
or ENO/WENO schemes [33, 39, 40, 46] or DG schemes [11, 24, 40] which require limitation techniques
are also of common use. However efficient, in this work we shall not use limitation techniques.

We propose here to study a family of formally second-order accurate schemes that verifies a dis-
crete analogue to (1.4). Although such a global criteria is clearly not sufficient to avoid non-entropic
solutions, it provides an upper bound of the global discrete entropy and thus guarantees a form of
computational stability for the approximated solution. The here designed schemes are derived start-
ing from the HLL scheme [22] (also called Rusanov scheme [37]) complemented with a second-order
correction in space which is asked to verify a dissipative property. In Section 3, a quadratic stability
study in the simpler case of the scalar linear transport equation, using both algebraic and Fourier
approaches is performed. The purpose of this section is twofold: to explicit the dissipative property
in a simple setting, and then to justify the use of a second-order in time discretization to recover
the quadratic stability under a hyperbolic CFL (Courant, Friedrichs,Levy) condition. In Section 4, we
establish the global entropy inequality (1.4) in the general case of non linear systems (1.1) for a given
single entropy-entropy-flux pair (η, G). The proof relies on the following ingredients: a second-order
Taylor expansion of the entropy, a reformulation of the global entropy dissipation, the use of the dis-
sipative property granted by the second-order discretization in space and the choice of a large enough
viscosity coefficient. Because the proof is also intended to be made in the general case of an open
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convex subset Ω ⊂ Rd, a topological restriction on the approximate solution is also needed. Namely, it
is required to belong to a compact subset of Ω. It is somehow restrictive but it is up to our knowledge
very standard in the literature, notably in the case of the Euler equations where it consists in assuming
the solutions to be bounded and uniformly far away from the vacuum [38]. In Section 5, we perform
numerical experiments that assess the stability and the accuracy of our schemes. Eventually, a short
conclusion is given at the very end of this paper.

2. Unlimited second-order space HLL type schemes

The starting point is the original symmetric first-order HLL scheme [22] also called Rusanov
scheme [37], that reads as follows:

wn+1
i = wn

i − ∆t

∆x

(
FO1

λ (wn
i , wn

i+1) − FO1
λ (wn

i−1, wn
i )
)

, (2.1)

where the numerical flux function is given by

FO1
λ (wn

i , wn
i+1) = 1

2
(
f(wn

i ) + f(wn
i+1)

)
− λ

2
(
wn

i+1 − wn
i

)
. (2.2)

Here, λ > 0 stands for the numerical viscosity coefficient. Under the following CFL condition:
λ∆t

∆x
≤ 1

2 with λ ≥ λHLL = max
i∈Z

(|µ(wn
i )|) , (2.3)

where µ(w) denotes the spectral radius of the jacobian matrix ∇f(w), the scheme (2.1) is first-order
in space, entropy preserving and convergent (see [22]). Equipped with the first-order scheme (2.1),
we are now going to increase the order of accuracy in space. For the sake of clarity of this work, we
remind of the notion of second-order consistency in space (some details can be found in [4] and [13]).
We consider here only five-points finite volume schemes.

Definition 2.1 (Second-order weak consistency [4]). Let F : (Rd)4 → Rd be a continuous function
which verifies the consistency relation:

∀u ∈ Ω, F(u, u, u, u) = f(u). (2.4)

Consider the semi-discrete numerical scheme defined for t ∈ [0, T ) with T > 0 and for i ∈ Z by:
dui

dt
(t) = − 1

∆x
(F(ui−1, . . . , ui+2) − F(ui−2, . . . , ui+1)) . (2.5)

Assume for all i ∈ Z, ui(t) = wi(t) = 1
∆x

∫ x
i+ 1

2
x

i− 1
2

w(x, t)dx where w is a smooth solution to (1.1) defined
on R × [0, T ). The semi-discrete scheme is second-order consistent in the weak sense, if for all times
t ∈ [0, T ) and for any smooth compactly supported function φ ∈ C∞

c (R) we have∫
R

dw∆(t)
dt

φ(x)dx =
∫
R

(∂tw(t, x)) φ(x)dx + O(∆x2), (2.6)

where w∆(t) =
∑

i∈Z wi(t)1[x
i− 1

2
,x

i+ 1
2

).

This definition is based on the notion of weak convergence in space and does not prevent a semi-
discrete scheme from being at a lower order of space accuracy when assessing the error in a strong
topology. We now give the following result which gives a sufficient condition for the second-order
consistency in the weak sense. It is somehow a standard result but we give a proof for the sake of
completeness of this work.
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Lemma 2.2 (Weak consistency [4]). Let F : (Rd)4 → Rd be a continuous function which verifies the
consistency relation:

∀u ∈ Ω, F(u, u, u, u) = f(u).

Consider a semi-discrete numerical scheme defined for t ∈ [0, T ) with T > 0 and for i ∈ Z by:

dui

dt
(t) = − 1

∆x
(F(ui−1, . . . , ui+2) − F(ui−2, . . . , ui+1)) . (2.7)

Let t ∈ [0, T ) being fixed. Assume for all i ∈ Z,

F(ui−1, . . . , ui+2) = f(u(xi+ 1
2
, t)) + O(∆x2) (2.8)

where the O(∆x2) term is uniform with respect to i ∈ Z and where we have set for a given smooth
enough function u(x, t),

ui(t) = 1
∆x

∫ x
i+ 1

2

x
i− 1

2

u(x, t) dx, (2.9)

then the scheme is second-order consistent in the weak sense.

Proof. Let w be a smooth solution on R × [0, T ) to (1.1) and consider the semi-discrete scheme
defined by (2.7) associated with w. Let t ∈ [0, T ) and set for all i ∈ Z, Fi+ 1

2
= F(wi−1, . . . , wi+2)

where wi(t) = 1
∆x

∫ x
i+ 1

2
x

i− 1
2

w(x, t) dx. Let φ ∈ C∞
c (R) then we have,∫

R

dw∆(t)
dt

φ(x)dx =
∑
i∈Z

∫ x
i+ 1

2

x
i− 1

2

dwi

dt
(t)φ(x)dx =

∑
i∈Z

∫ x
i+ 1

2

x
i− 1

2

− 1
∆x

(Fi+ 1
2

− Fi− 1
2
)φ(x)dx

= −
∑
i∈Z

(Fi+ 1
2

− Fi− 1
2
) 1
∆x

∫ x
i+ 1

2

x
i− 1

2

φ(x)dx =
∑
i∈Z

Fi+ 1
2
(φi+1 − φi),

where we have set φi = 1
∆x

∫ x
i+ 1

2
x

i− 1
2

φ(x)dx. Using the consistency of the numerical flux (2.8), we obtain∫
R

dw∆(t)
dt

φ(x)dx =
∑
i∈Z

f(w(xi+ 1
2
, t))(φi+1 − φi) + O(∆x2)

∑
i∈Z

(φi+1 − φi).

To conclude the proof, it suffices to prove that
∑

i∈Z f(w(xi+ 1
2
, t))(φi+1−φi) =

∫
R f(w(x, t))∂xφ(x)dx+

O(∆x2). Decomposing the integral as a sum of integrals over each interval (xi, xi+1) we have∫
R

f(w(x, t))∂xφ(x)dx =
∑
i∈Z

∫ xi+1

xi

f(w(x, t))∂xφ(x)dx.

Using the smoothness of the functions f , w and φ and a Taylor–Lagrange expansion at the second order
around xi+ 1

2
, we have the existence of a function ξ : x∈ [xi, xi+1) 7→ ξ(x)∈(min(x, xi+ 1

2
), max(x, xi+ 1

2
))

such that∫ xi+1

xi

f(w(x, t))∂xφ(x)dx

= f
(
w(xi+ 1

2
, t)
)
∂xφ(xi+ 1

2
)∆x +

∫ xi+1

xi

(x − xi+ 1
2
)2

2 ∂xx (f(w( · , t))∂xφ( · )) (ξ(x))dx,
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where the first-order term has vanished because xi+ 1
2

is the mid point of the interval (xi, xi+1) and
the function x 7→ (x − xi+ 1

2
) is symmetric with respect to xi+ 1

2
. By summation, we thus have∫

R
f(w(x, t))∂xφ(x)dx

=
∑
i∈Z

f
(
w(xi+ 1

2
, t)
)

∂xφ(xi+ 1
2
)∆x +

∑
i∈Z

∫ xi+1

xi

(x − xi+ 1
2
)2

2 ∂xx (f(w( · , t))∂xφ( · )) (ξ(x))dx.

Since φ is compactly supported the second sum is a O(∆x2) term, so one has∫
R

f(w(x, t))∂xφ(x)dx =
∑
i∈Z

f
(
w(xi+ 1

2
, t)
)

∂xφ(xi+ 1
2
)∆x + O(∆x2).

Using again a Taylor–Lagrange expansion, we obtain that φi+1 − φi = ∂xφ(xi+ 1
2
)∆x + O(∆x3) and

by summation we eventually deduce∫
R

f(w(x, t))∂xφ(x)dx =
∑
i∈Z

f
(
w(xi+ 1

2
, t)
)

(φi+1 − φi) + O(∆x2)

where the O(∆x2) term is uniform with respect to i ∈ Z because φ is compactly supported. Using the
fact that w is a smooth solution to (1.1) concludes the proof.

The numerical HLL flux function (2.2) is first-order consistent. Indeed, with (2.9), a standard Taylor
expansion in a neighborhood of xi+ 1

2
gives

FO1
λ (wn

i , wn
i+1) = f

(
w(xi+ 1

2
, tn)

)
− λ∆x

2 ∂xw(xi+ 1
2
, tn) + O

(
∆x2

)
. (2.10)

From the above Taylor expansion, we see that it is sufficient to propose a correction which is consistent
with +λ

2 ∂xw(xi+ 1
2
, tn). We therefore consider second-order space accuracy numerical flux functions of

the form

FO2
λ (wn

i−1, . . . , wn
i+2) = FO1

λ (wn
i , wn

i+1) + 1
2
(
αn

i + αn
i+1
)

, (2.11)

where the corrective terms αn
i (which will be defined here after) must satisfy the following consistency

αn
i = λ∆x

2 ∂xw(xi, tn) + O(∆x2), (2.12)

for a smooth function w. Therefore the second-order numerical flux function FO2
λ will be composed of

both an approximation of the term −λ∆x
2 ∂xw which inherits from the HLL flux function FO1

λ and an
approximation of the same term but with the opposite sign +λ∆x

2 ∂xw which comes from the corrective
term αi. Of course, at the continuous level the sum of these two terms is equal to zero. However at
the discrete level, since these two terms will not be discretized within the same stencil, they will not
generally cancel. The difference will be asked to control the numerical dissipativity of the scheme and
thus its stability. This is why our family of schemes will be called dissipative according to the following
definition.

Definition 2.3 (Entropy dissipative numerical flux). Let an integer l ∈ N and F : (Rd)2l+2 → Rd be
a continuous function. Consider a numerical scheme in the conservative form:

wn+1
i = wn

i − ∆t

∆x

(
F
(
wn

i−l, . . . , wn
i+l+1

)
− F

(
wn

i−l−1, . . . , wn
i+l

))
, ∀i ∈ Z.
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Let η ∈ C1(Ω,R) be a convex entropy function. The numerical flux F is said globally dissipative
relatively to the entropy function η if the following inequality holds

∑
i∈Z

∇η(wn
i ) ·

F
(
wn

i−l, . . . , wn
i+l+1

)
− F

(
wn

i−l−1, . . . , wn
i+l

)
∆x

> 0, (2.13)

for any non-constant sequence (wn
i )i∈Z ⊂ Ω.

In view of the previous definition, we propose the following definition of the second-order correction
term αn

i ,

αn
i := λ

2 ∆x∂xwn
i := λ

2
[
Θn

i

(
wn

i+1 − wn
i

)
+ (I − Θn

i )
(
wn

i − wn
i−1
)]

, (2.14)

where I stands for d × d identity matrix while Θn
i is a free d × d diagonal matrix parameter to be

defined in such a way that the scheme is globally dissipative. More precisely, the numerical flux (2.11)
will be asked to satisfy (2.13) which in our proof of stability reformulates as the inequality (4.4). For
the sake of the simplicity, we consider only diagonal matrices, but more general matrices could be
considered. Equipped with the corrective terms αn

i , one can establish the following.

Proposition 2.4 (Weak second-order consistency). Let a smooth function u(x, t) compactly supported
in space and let ui defined for all i ∈ Z by (2.9). Consider the numerical flux FO2

λ defined by (2.11),
(2.14). Assume the sequence of matrices (Θn

i )i∈Z be uniformly bounded with respect to i ∈ Z and
bounded as ∆x → 0 then the scheme is second-order consistent in the weak-sense.

Proof. Invoking Lemma (2.2), it suffices to use a Taylor expansion of FO2
λ given by (2.11), (2.14)

and the fact that u is compactly supported in space.

To conclude this section, the numerical scheme to be studied throughout this work writes for all
n ∈ N and i ∈ Z :

wn+1
i = wn

i − ∆t

∆x

(
Fn

i+ 1
2

− Fn
i− 1

2

)
, (2.15)

with,
Fn

i+ 1
2

= FO1
λ

(
wn

i , wn
i+1
)

+ 1
2
(
αn

i+1 + αn
i

)
,

αn
i = λ

2

(
Θn

i δn
i+ 1

2
+ (I − Θn

i )δn
i− 1

2

)
,

δn
i+ 1

2
= wn

i+1 − wn
i ,

(2.16)

where FO1
λ is defined in (2.2).

3. Quadratic stability for the scalar linear transport equation

The purpose of this section is to explicit (in a simple case) the dissipative property (2.13) required by
the second-order discretization in space, and to establish a global entropy stability property (1.4) under
a suitable CFL condition. We therefore consider momentarily the scalar linear transport equation with
velocity a ̸= 0, {

∂tw + a∂xw = 0, t > 0, x ∈ R,

w(x, t = 0) = w0(x).
(3.1)

In this particular case, our numerical scheme (2.15) reads

wn+1
i = wn

i − ν

2

(
a

λ

(
δn

i+ 1
2

+ δn
i− 1

2

)
− δn

i+ 1
2

+ δn
i− 1

2
+ 1

λ

(
αn

i+1 − αn
i−1
))

, (3.2)
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where ν = λ∆t/∆x, αn
i and δn

i+ 1
2

are defined in (2.16). For the stability analysis, it will be convenient
to consider the standard discrete Sobolev spaces defined by

l2(Z) =

v ∈ RZ

∣∣∣∣∣∣
∑
i∈Z

|vi|2∆x < +∞

 , (3.3)

h2(Z) =
{

v ∈ l2(Z)
∣∣∣∣ (vi+1 − vi

∆x

)
i∈Z

∈ l2(Z),
(

vi+1 − 2vi + vi−1
∆x2

)
i∈Z

∈ l2(Z)
}

. (3.4)

We begin with the following easy preliminary lemma.

Lemma 3.1 (Existence of dissipative corrections). For any non zero sequence (wn
i )i∈Z in h2(Z), there

exists (Θn
i )i∈Z such that the scheme (3.2) is globally dissipative in the sense of Definition 2.3 relatively

to the quadratic entropy η(s) = s2. Moreover, the dissipative inequality (2.13) is equivalent to the
following inequality

∑
i∈Z

((
δn

i+ 1
2

− δn
i− 1

2

)2
− 2Θn

i

(
(δn

i+ 1
2
)2 − (δn

i− 1
2
)2
))

> 0. (3.5)

Proof. Using Definition 2.3, we compute the discrete l2-scalar product of the divergence of the flux
with (wn

i )i∈Z. We then obtain,∑
i∈Z

wn
i

(
a

λ

(
δn

i+ 1
2

+ δn
i− 1

2

)
− δn

i+ 1
2

+ δn
i− 1

2
+ 1

λ

(
αn

i+1 − αn
i−1
))

= 1
2
∑
i∈Z

(δn
i+ 1

2
)2 − 1

2
∑
i∈Z

Θn
i

(
(δn

i+ 1
2
)2 − (δn

i− 1
2
)2
)

− 1
2
∑
i∈Z

δn
i+ 1

2
δn

i− 1
2
,

= 1
4
∑
i∈Z

(
δn

i+ 1
2

− δn
i− 1

2

)2
− 1

2
∑
i∈Z

Θn
i

(
(δn

i+ 1
2
)2 − (δn

i− 1
2
)2
)

.

Now, the case Θn
i = 0 for all i ∈ Z shows the existence because the sequence (wn

i )i∈Z is non constant
and in h2(Z).

The inequality (3.5) is the mathematical expression of the dissipative property relatively to the
quadratic entropy that we want to ensure for the second-order in space discretization. It takes a
more general form when considering non linear hyperbolic systems with a general entropy η (it is
the inequality (4.4)). Several choices of the sequence (Θn

i )i∈Z are possible. For example the choice
Θn

i = − sign((δn
i+ 1

2
)2 − (δn

i− 1
2
)2) is another possibility. Some are very promising as we shall see in the

numerical examples. We now prove the following.

Proposition 3.2 (Quadratic stability with a parabolic CFL condition). Let (wn
i )i∈Z be a non zero

sequence in h2(Z) and (Θn
i )i∈Z be a sequence such that the inequality (3.5) holds. Let λ > 0 and set

ν = λ∆t
∆x such that

0 < ν ≤

∑
i∈Z

((
δn

i+ 1
2

− δn
i− 1

2

)2
− 2Θn

i

(
(δn

i+ 1
2
)2 − (δn

i− 1
2
)2
))

∑
i∈Z

(
a
λ

(
δn

i+ 1
2

+ δn
i− 1

2

)
− δn

i+ 1
2

+ δn
i− 1

2
+ 1

λ

(
αn

i+1 − αn
i−1

))2 , (3.6)

then the first-order in time scheme (3.2) is L2-stable,
∑

i∈Z |wn+1
i |2∆x ≤

∑
i∈Z |wn

i |2∆x.
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Proof. Using the scheme (3.2), we develop the square∑
i∈Z

(wn+1
i )2∆x =

∑
i∈Z

(wn
i )2∆x − ν

∑
i∈Z

wn
i

(
a

λ

(
δn

i+ 1
2

+ δn
i− 1

2

)
− δn

i+ 1
2

+ δn
i− 1

2
+ 1

λ

(
αn

i+1 − αn
i−1
))

∆x

+ ν2

4
∑
i∈Z

(
a

λ

(
δn

i+ 1
2

+ δn
i− 1

2

)
− δn

i+ 1
2

+ δn
i− 1

2
+ 1

λ

(
αn

i+1 − αn
i−1
))2

∆x.

Now, we develop the second term of the above equation and recall that δn
i+ 1

2
= wn

i+1 − wn
i , so we have

∑
i∈Z

wn
i

(
a

λ

(
δn

i+ 1
2

+ δn
i− 1

2

)
− δn

i+ 1
2

+ δn
i− 1

2
+ 1

λ

(
αn

i+1 − αn
i−1
))

= a

λ

∑
i∈Z

wn
i

(
wn

i+1 − wn
i−1
)

−
∑
i∈Z

wn
i δn

i+ 1
2

+
∑
i∈Z

wn
i δn

i− 1
2

− 1
λ

∑
i∈Z

αn
i

(
δn

i+ 1
2

+ δn
i− 1

2

)
,

where we have used a translation of indices for the third term. Using now the fact that 2αn
i

λ =
Θn

i δn
i+ 1

2
+ (1 − Θn

i )δn
i− 1

2
and again a translation of indices, we have

∑
i∈Z

wn
i

(
a

λ

(
δn

i+ 1
2

+ δn
i− 1

2

)
− δn

i+ 1
2

+ δn
i− 1

2
+ 1

λ

(
αn

i+1 − αn
i−1
))

= 1
2
∑
i∈Z

(δn
i+ 1

2
)2 − 1

2
∑
i∈Z

Θn
i

(
(δn

i+ 1
2
)2 − (δn

i− 1
2
)2
)

− 1
2
∑
i∈Z

δn
i+ 1

2
δn

i− 1
2
,

= 1
4
∑
i∈Z

(
δn

i+ 1
2

− δn
i− 1

2

)2
− 1

2
∑
i∈Z

Θn
i

(
(δn

i+ 1
2
)2 − (δn

i− 1
2
)2
)

.

As a consequence, we obtain∑
i∈Z

(wn+1
i )2∆x =

∑
i∈Z

(wn
i )2∆x + ν

4

(
−
∑
i∈Z

((
δn

i+ 1
2

− δn
i− 1

2

)2
− 2Θn

i

(
(δn

i+ 1
2
)2 − (δn

i− 1
2
)2
))

∆x

+ ν2

4
∑
i∈Z

(
a

λ

(
δn

i+ 1
2

+ δn
i− 1

2

)
− δn

i+ 1
2

+ δn
i− 1

2
+ 1

λ

(
αn

i+1 − αn
i−1
))2

∆x

)
,

Because of the inequality (3.5) the second sum after the equality is negative, therefore the inequal-
ity (3.6) yields the result.

A consistency analysis of the CFL condition (3.6) for smooth solutions yields an order of magnitude
which is such that ∆t

∆x2 =
∆x→0

O(1). The CFL condition of the scheme (3.2) is then of parabolic type.
Such a CFL condition has already been obtained in [46] for the TECNO schemes. It is possible to
recover a hyperbolic CFL magnitude ∆t

∆x =
∆x→0

O(1) using a second-order in time extension of our
scheme. Indeed, if we adopt an explicit second-order in time discretization based on the SSP Runge–
Kutta methods introduced in [18, 19, 20] then we are led to the following scheme:

w
n+ 1

2
i = wn

i − ν

2

(
a

λ
(δn

i+ 1
2

+ δn
i− 1

2
) − δn

i+ 1
2

+ δn
i− 1

2
+ 1

λ
(αn

i+1 + αn
i−1)

)
,

wn+1
i = wn

i

2 + 1
2

(
w

n+ 1
2

i − ν

2

(
a

λ
(δn+ 1

2
i+ 1

2
+ δ

n+ 1
2

i− 1
2

) − δ
n+ 1

2
i+ 1

2
+ δ

n+ 1
2

i− 1
2

+ 1
λ

(αn+ 1
2

i+1 + α
n+ 1

2
i−1 )

))
.

(3.7)

Chosing the sequences (Θm
i )i∈Z for m ∈

{
n, n + 1

2

}
to be constant in the above scheme, then yields

the following.
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Proposition 3.3 (Quadratic stability with hyperbolic CFL). Consider (Θn
i )i∈Z and (Θn+ 1

2
i )i∈Z be

constant sequences both equal to a constant Θ ∈ R and (wn
i )i∈Z ∈ l2(Z). Let λ > 0 and ν = λ∆t

∆x
such that

0 < ν max
(

1,

(
a

λ

)2
,

(
1 − 2Θ + a

λ

)2
)

≤ 1, (3.8)

then the second-order in time scheme (3.7) is L2-stable,
∑

i∈Z |wn+1
i |2∆x ≤

∑
i∈Z |wn

i |2∆x.

Proof. We denote ŵ∆(ξ, tn), the Fourier transform of w∆(x, tn) given by (1.5). We have

ŵ∆(ξ, tn) = sin(πξ∆x)
πξ

∑
j∈Z

wn
j e−2πiξj∆x,

where i2 = −1. Using the scheme (3.7), we deduce ŵ∆(ξ, tn+1) = g(ξ∆x)ŵ∆(ξ, tn) where g(ξ∆x) is the
amplification factor at the frequency ξ associated with the scheme (3.7). Thanks to the Fourier isometry
property, to prove the L2 stability of the scheme (3.7) it is sufficient to prove |g(ξ∆x)| ≤ 1 for all ξ ∈ R.
For the sake of conciseness in the notation, we set ϕξ = sin2(πξ∆x) and hΘ = (1 − 2Θ) sin(πξ∆x) + a

λ .
It can be shown that the amplification factor g(ξ∆x) verifies

|g(ξ∆x)|2 =
(
1 − 2νϕξ

(
ϕξ − νϕ3

ξ + ν (1 − ϕξ) h2
Θ

))2
+ 4ϕξ (1 − ϕξ)

(
νhΘ

(
1 − 2νϕ2

ξ

))2
,

= 1 − 4νϕξ

(
ϕξ − νϕ3

ξ + ν (1 − ϕξ) h2
Θ

)
+ 4ν2ϕ2

ξ

(
ϕξ − νϕ3

ξ + ν (1 − ϕξ) h2
Θ

)2

+ 4ϕξ (1 − ϕξ)
(
νhΘ

(
1 − 2νϕ2

ξ

))2
,

= 1 − 4νϕ2
ξ

(
1 − νϕ2

ξ

)
+ 4ν2ϕξ (1 − ϕξ) h2

Θ

(
−1 +

(
1 − 2νϕ2

ξ

)2
)

+ 4ν2ϕ2
ξ

(
ϕξ − νϕ3

ξ + ν (1 − ϕξ) h2
Θ

)2
.

We then notice that −1 +
(
1 − 2νϕ2

ξ

)2
= −4νϕ2

ξ

(
1 − νϕ2

ξ

)
, so that

|g(ξ∆x)|2 = 1 − 4νϕ2
ξ

(
1 − νϕ2

ξ

) (
1 + 4ν2ϕξ (1 − ϕξ) h2

Θ

)
+ 4ν2ϕ2

ξ

(
ϕξ − νϕ3

ξ + ν (1 − ϕξ) h2
Θ

)2
.

We remark that the restriction of |g(ξ∆x)| in the case where ϕξ = 1, yields
|g(ξ∆x)|2|ϕξ=1 = 1 − 4ν (1 − ν) + 4ν2 (1 − ν)2 = (1 − 2ν (1 − ν))2 .

We see that if ν ≥ 1 then |g(ξ∆x)|2|ϕξ=1 ≥ 1, therefore it is necessary to consider ν ≤ 1. So we now
consider 0 ≤ ν ≤ 1. Since for all ξ ∈ R, 0 ≤ ϕξ ≤ 1 we have

0 ≤ (1 − ϕξ) ≤
(
1 − νϕ2

ξ

)
and

(
1 − νϕ2

ξ

)2
≤
(
1 − νϕ2

ξ

)
. (3.9)

Consequently,(
ϕξ − νϕ3

ξ + ν (1 − ϕξ) h2
Θ

)2
=
(
ϕξ

(
1 − νϕ2

ξ

)
+ ν (1 − ϕξ) h2

Θ

)2
,

=
(
1 − νϕ2

ξ

)2
ϕ2

ξ + 2νϕξ

(
1 − νϕ2

ξ

)
(1 − ϕξ) h2

Θ + ν2 (1 − ϕξ)2 h4
Θ,

≤
(
1 − νϕ2

ξ

) (
ϕ2

ξ + 2νϕξ (1 − ϕξ) h2
Θ + ν2

(
1 − νϕ2

ξ

)
h4

Θ

)
,

≤
(
1 − νϕ2

ξ

) (
ϕ2

ξ + 2νϕξ (1 − ϕξ) h2
Θ + ν

(
1 − νϕ2

ξ

)
h4

Θ

)
,
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where we have used (3.9) and the fact that ν2 ≤ ν. We eventually obtain
|g(ξ∆x)|2 ≤ 1 − 4νϕ2

ξ

(
1 − νϕ2

ξ

) (
1 + 2ν2ϕξ (1 − ϕξ) h2

Θ − νϕ2
ξ − ν2

(
1 − νϕ2

ξ

)
h4

Θ

)
,

≤ 1 − 2ν3ϕ2
ξϕ2ξ

(
1 − νϕ2

ξ

)
h2

θ − 4νϕ2
ξ

(
1 − νϕ2

ξ

)2 (
1 − ν2h4

Θ

)
,

which is upper bounded by 1 because of the CFL condition (3.8) and the definition of hΘ.

In this proof, the sequences (Θn
i )i∈Z and (Θn+ 1

2
i )i∈Z are taken to be constant which is convenient

for the Fourier analysis. However, in this very particular case, the scheme does not enjoy the extra
dissipation in the inequality (3.5): the second sum vanishes. We believe that taking (Θn

i )i∈Z non-
constant and ensuring (3.5) improves the stability.

4. Global entropy inequality in the general case

In this section, we establish the global entropy inequality (1.4) for the second-order in space and
first-order in time scheme (2.15) in the general case of the system (1.1) with a given pair of entropy,
entropy flux (η, G) defined in Ω. For the forthcoming developments, it is convenient to condense the
scheme (2.15) in the form

wn+1
i = wn

i + ∆t

∆x
Rn

i , (4.1)

where
Rn

i = −1
2
(
f(wn

i+1) − f(wn
i−1)

)
+ λ

2

(
δn

i+ 1
2

− δn
i− 1

2

)
− 1

2
(
αn

i+1 − αn
i−1
)

. (4.2)

Note that in the general case Ω is not necessarily equal to Rd. Typically, for the Euler equations we
have Ω = {w = (ρ, ρu, ρE) ∈ R3 : ρ > 0, ρE−ρu2/2 > 0}. Since our proof is based on Taylor expansion
of the entropy of the updated state η(wn+1

i ), we have, at the very first, to make sure it belongs to
Ω. For second-order accurate in space scheme, it is a challenging issue to establish it without using
limitation techniques. We thus use a very simple topological argument which is also quite restrictive
from the CFL point of view. It is summarized in the following lemma.

Lemma 4.1 (Scheme robustness). Let Ω be a strict non empty convex open subset of Rd. Let
(wn

i )i∈Z ⊂ Kn, where Kn is a compact set of Ω and assume the sequence of matrices (Θn
i )i∈Z be

bounded. There exists a constant cn > 0 such that if 0 < ∆t
∆x ≤ cn then the sequence (wn+1

i )i∈Z given
by the scheme (4.1), or equivalently (2.15), is contained in Ω.

Proof. We recall that the signed distance function to the boundary of Ω associated with the Euclidean
norm ∥ · ∥2 on Rd is defined for all w ∈ Rd by:

dist(w, ∂Ω) =
{

infy∈∂Ω ∥w − y∥2, if w ∈ Ω,

− infy∈∂Ω ∥w − y∥2 if w ∈ Rd \ Ω.

It is a 1-Lipschitz continuous function on Rd. Therefore using the scheme (4.1), we have for all i ∈ Z,∣∣∣dist
(
wn+1

i , ∂Ω
)

− dist (wn
i , ∂Ω)

∣∣∣ ≤ ∥wn+1
i − wn

i ∥2 = ∆t

∆x
∥Rn

i ∥2. (4.3)
We then obtain

dist
(
wn+1

i , ∂Ω
)

≥ dist (wn
i , ∂Ω) − ∆t

∆x
∥Rn

i ∥2.

Since (wn
i )i∈Z ⊂ Kn and the signed distance function is continuous on the compact set Kn, one has

dist (wn
i , ∂Ω) ≥ minw∈Kn dist (w, ∂Ω) > 0 where the minimum is positive because Kn is a compact set

into an open set. Using the continuity of the physical flux f on the compact set Kn and the fact that
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the sequence (Θn
i )i∈Z is bounded, there exists a constant Rn such that for all i ∈ Z, ∥Rn

i ∥2 ≤ Rn. We
thus have for all i ∈ Z,

dist
(
wn+1

i , ∂Ω
)

≥ min
w∈Kn

dist (w, ∂Ω) − ∆t

∆x
Rn.

If 0 < ∆t
∆x ≤

min
w∈Kn

dist(w,∂Ω)

2Rn then for all i ∈ Z, dist
(
wn+1

i , ∂Ω
)

≥ 1
2 min

w∈Kn
dist (w, ∂Ω) > 0 which exactly

means that wn+1
i ∈ Ω.

Our main result is the following.

Theorem 4.2 (Global entropy inequality). Let Ω be a non-empty convex open subset of Rd. Consider
(η, G) ∈ C2(Ω,R) × C1(Ω,R) a pair of strictly convex entropy-entropy-flux which satisfies (1.2). Let
(wn

i )i∈Z be a non zero sequence in h2(Z) compactly supported and moreover such that
∑

i∈Z η(wn
i )∆x

is finite. Let (Θn
i )i∈Z, a sequence of bounded matrices such that

Sn :=
∫ 1

0

∑
i∈Z

Nn
i (s)P n

i (s)Dn
i · Dn

i ds > 0, (4.4)

where the block matrices (Dn
i , Nn

i , P n
i ) ∈ R2d × (M2d(R))2 are respectively defined by

Dn
i =

δn
i− 1

2
δn

i+ 1
2

 ,

Nn
i (s) =

∇2η

(
wn

i − sδn
i− 1

2

)
0

0 ∇2η

(
wn

i + sδn
i+ 1

2

)
 ,

P n
i (s) =

(
(1 − 2s)I + Θn

i −Θn
i

Θn
i − I 2(1 − s)I − Θn

i

)
,

(4.5)

for all s ∈ [0, 1]. Also assume there exists a compact set Kn ⊂ Ω such that (wn
i )i∈Z ⊂ Kn. Let the

numerical diffusion λ be such that
λ > λn, (4.6)

where

λn =
2 max

(
0,
∑

i∈Z
∫ 1

0 s
(∫ 1

0 Nn
i (us)du

)
F n

i (s)Dn
i · Dn

i ds
)

∑
i∈Z

∫ 1
0 Nn

i (s)P n
i (s)Dn

i · Dn
i ds

≥ 0,

F n
i (s) =

−∇f

(
wn

i − sδn
i− 1

2

)
0

0 ∇f

(
wn

i + sδn
i+ 1

2

)
 , ∀s ∈ [0, 1],

(4.7)

and ∆t
∆x be such that

0 <
∆t

∆x
≤ −

∑
i∈Z ∇η(wn

i ) · Rn
i∫ 1

0 (1 − s)
∑

i∈Z ∇2η
(
wn

i + s ∆t
∆xRn

i

)
Rn

i · Rn
i ds

. (4.8)

If Ω = Rd, then one has the global entropy inequality,∑
i∈Z

η(wn+1
i )∆x ≤

∑
i∈Z

η(wn
i )∆x. (4.9)
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If Ω ̸= Rd then the global entropy inequality (4.9) still holds if moreover 0 < ∆t
∆x ≤ cn where cn is a

positive non explicit constant given by the Lemma 4.1.

Few remarks are in order about this result:

• The numerical diffusion λn given by (4.7) has an explicit formula and can be implemented.

• The inequality (4.4) ensures the dissipative property of the scheme in the sense of Definition 2.3.
It is an inequality to be satisfied by the matrix parameter (Θn

i ) and we shall prove that it has
always a solution (see Proposition 4.4).

• The condition (4.6) on λ ensures that there is enough diffusion in the scheme so that it can
be globally stable.

• The CFL condition (4.8) is a priori non linear (except when considering the quadratric entropy)
but it can be easily solved numerically.

Before proving this theorem, we shall need the first following Lemma.

Lemma 4.3 (Poincaré inequality). Let (wn
i )i∈Z ⊂ Ω be a compactly supported sequence in h2(Z). Let

η ∈ C2(Ω,R) a strictly convex entropy. Then there exists a constant C which depends on (wn
i )i∈Z and

η such that ∑
i∈Z

j∈{1,...,d}

|
(
∇η(wn

i+1) − ∇η(wn
i−1))

)
j

(δn
i+ 1

2
− δn

i− 1
2
)j | ≥ C

∑
i∈Z

j∈{1,...,d}

|δn
i+ 1

2
|2,

with δn
i+ 1

2
= wn

i+1 − wn
i .

Proof. At first, we use a Taylor expansion with an integral form of the remainder to write∑
i∈Z

j∈{1,...,d}

∣∣∣∣(∇η(wn
i+1) − ∇η(wn

i−1)
)

j

(
δn

i+ 1
2

− δn
i− 1

2

)
j

∣∣∣∣
=

∑
i∈Z

j∈{1,...,d}

∣∣∣∣∣
(∫ 1

0
∇2η

(
wn

i−1 + s(wn
i+1 − wn

i−1)
)(

δn
i+ 1

2
+ δn

i− 1
2

)
ds

)
j

(
δn

i+ 1
2

− δn
i− 1

2

)
j

∣∣∣∣∣ .
Since η is a strictly convex entropy and as (wn

i )i∈Z is compactly supported in h2(Z) there exists a
constant C(η, wn) > 0 such that∑

i∈Z
j∈{1,...,d}

∣∣∣∣∣
(∫ 1

0
∇2η

(
wn

i−1 + s(wn
i+1 − wn

i−1)
)(

δn
i+ 1

2
+ δn

i− 1
2

)
ds

)
j

(
δn

i+ 1
2

− δn
i− 1

2

)
j

∣∣∣∣∣
≥ C(η, wn)

∑
i∈Z

j∈{1,...,d}

∣∣∣∣(δn
i+ 1

2
+ δn

i− 1
2

)
j

(
δn

i+ 1
2

− δn
i− 1

2

)
j

∣∣∣∣ .
Now, since (wn

i )i∈Z ⊂ Ω is a compactly supported sequence, for all i in Z and for all j ∈ {1, . . . , d} we
have ∣∣∣∣δn

i+ 1
2

∣∣∣∣2
j

=
∑
l≤i

(
δn

l+ 1
2

+ δn
l− 1

2

)
j

(
δn

l+ 1
2

− δn
l− 1

2

)
j

≤
∑
l≤i

∣∣∣∣(δn
l+ 1

2
+ δn

l− 1
2

)
j

(
δn

l+ 1
2

− δn
l− 1

2

)
j

∣∣∣∣ .
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Let T be the support of (δn
i+ 1

2
)i∈Z which is of finite cardinal since (wn

i ) is compactly supported.
Summing over i ∈ Z we obtain,∑

i∈Z

∣∣∣∣δn
i+ 1

2

∣∣∣∣2
j

≤
∑
i∈T

∑
l≤i

∣∣∣∣(δn
l+ 1

2
+ δn

l− 1
2

)
j

(
δn

l+ 1
2

− δn
l− 1

2

)
j

∣∣∣∣ ,
≤ Card (T )

∑
l∈Z

∣∣∣∣(δn
l+ 1

2
+ δn

l− 1
2

)
j

(
δn

l+ 1
2

− δn
l− 1

2

)
j

∣∣∣∣ .
Finally, summing over the components j ∈ {1, . . . , d}, we eventually deduce,∑

i∈Z
j∈{1,...,d}

∣∣∣∣δn
i+ 1

2

∣∣∣∣2 ≤ Card (T )
C(η, wn)

∑
i∈Z

j∈{1,...,d}

∣∣∣∣(∇η(wn
i+1) − ∇η(wn

i−1)
)

j

(
δn

i+ 1
2

− δn
i− 1

2

)
j

∣∣∣∣ .

Proposition 4.4 (Existence of dissipative corrections). Let (wn
i )i∈Z ⊂ Ω be non constant sequence

compactly supported in h2(Z) and let η ∈ C2(Ω,R) a strictly convex entropy. If (Θn
i )i∈Z verifies

Θn
i = −θ diag1≤j≤d

(
sign

((
∇η(wn

i+1) − ∇η(wn
i−1)

)
j

(δn
i+ 1

2
− δn

i− 1
2
)j

))
, (4.10)

with

θ >
− min

(
0,
∫ 1

0
∑

i∈Z Qn
i (s)Dn

i · Dn
i ds

)
∑

i∈Z
j∈{1,...,d}

∣∣∣∣(∇η(wn
i+1) − ∇η(wn

i−1))
)

j
(δn

i+ 1
2

− δn
i− 1

2
)j

∣∣∣∣ ,

Qn
i (s) =

(1 − 2s)∇2η(wn
i − sδn

i− 1
2
) −∇2η(wn

i + sδn
i+ 1

2
)

0 2(1 − s)∇2η(wn
i + sδn

i+ 1
2
)

 ,

(4.11)

for all s ∈ [0, 1], then the dissipative inequality (4.4) holds.

Proof. We first remark that θ is always well-defined because, by virtue of Lemma 4.3, the denominator
in (4.11) cannot be zero since the sequence (wn

i )i∈Z is non-constant. Moreover since (wn
i ) is compactly

supported, the ratio in (4.11) is finite. Next, since the matrix (Θn
i )i∈Z defined by(4.10) are symmetric

(because they are diagonal) we have Θn
i a · b = a · Θn

i b, for all vectors (a, b) ∈ (Rd)2. As a consequence,
from the definition of the matrices P n

i , Nn
i given by (4.5) and the definition of Sn given in (4.4), we

have

Sn =
∫ 1

0

∑
i∈Z

Qn
i (s)Dn

i · Dn
i ds −

∑
i∈Z

Θn
i

(
∇η(wn

i+1) − ∇η(wn
i−1)

)
·
(

δn
i+ 1

2
− δn

i− 1
2

)
.

Using the (Θn
i )i∈Z formula (4.10), we eventually obtain

Sn =
∫ 1

0

∑
i∈Z

Qn
i (s)Dn

i · Dn
i ds + θ

∑
i∈Z

j∈{1,...,d}

|
(
(∇η(wn

i+1) − (∇η(wn
i−1))

)
j

(δn
i+ 1

2
− δn

i− 1
2
)j |,

which is positive with θ verifying the inequality (4.11).

4.1. Reformulation of the global dissipation

We have the following.
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Lemma 4.5 (Reformulation of the global entropy flux). Let the sequence (wn
i )i∈Z ⊂ Ω be in h2(Z) and

let (η, G) ∈ C2(Ω,R) × C1(Ω,R) a pair of strictly convex entropy-entropy-flux which satisfies (1.2).
Then

−1
2
∑
i∈Z

∇η(wn
i ) ·

(
f(wn

i+1) − f(wn
i−1)

)
=
∑
i∈Z

∫ 1

0

s

2

(∫ 1

0
Nn

i (us)du

)
F n

i (s)Dn
i · Dn

i ds,

where Dn
i , Nn

i (s), F n
i (s) are defined in (4.5)–(4.7) respectively.

Proof. Since η ∈ C2(Ω,R), G ∈ C1(Ω,R), f is assumed to be smooth and (wn
i )i∈Z belongs to Ω, a

Taylor expansion with an integral form of the remainder gives,

G(wn
i+1) = G(wn

i ) +
∫ 1

0
∇G

(
wn

i + sδn
i+ 1

2

)
· δn

i+ 1
2
ds,

∇η(wn
i + sδn

i+ 1
2
) = ∇η(wn

i ) + s

∫ 1

0
∇2η

(
wn

i + usδn
i+ 1

2

)
δn

i+ 1
2
du,

f(wn
i+1) = f(wn

i ) +
∫ 1

0
∇f

(
wn

i + sδn
i+ 1

2

)
δn

i+ 1
2
ds,

from which we deduce
∇η (wn

i ) ·
(
f(wn

i+1) − f(wn
i )
)

=
∫ 1

0
∇η(wn

i ) · ∇f

(
wn

i + sδn
i+ 1

2

)
δn

i+ 1
2
ds,

=
∫ 1

0
∇G

(
wn

i + sδn
i+ 1

2

)
· δn

i+ 1
2
ds

−
∫ 1

0

∫ 1

0
s∇2η

(
wn

i + usδn
i+ 1

2

)
∇f

(
wn

i + sδn
i+ 1

2

)
δn

i+ 1
2

· δn
i+ 1

2
duds,

= G(wn
i+1) − G(wn

i )

−
∫ 1

0

∫ 1

0
s∇2η

(
wn

i + usδn
i+ 1

2

)
∇f

(
wn

i + sδn
i+ 1

2

)
δn

i+ 1
2

· δn
i+ 1

2
duds.

(4.12)

In the same way, we have
∇η(wn

i ) ·
(
f(wn

i ) − f(wn
i−1)

)
= G(wn

i ) − G(wn
i−1) +

∫ 1

0

∫ 1

0
s∇2η

(
wn

i − usδn
i− 1

2

)
∇f

(
wn

i − sδn
i− 1

2

)
δn

i− 1
2

· δn
i− 1

2
duds, (4.13)

Using the equations (4.12), (4.13) and the definitions (4.5), (4.7) we deduce the expected result.

Lemma 4.6 (Reformulation of the global dissipation). Let the sequences (wn
i )i∈Z ⊂ Ω be in h2(Z)

and let η ∈ C2(Ω,R). Then
1
2
∑
i∈Z

(
λ∇η(wn

i ) · (δn
i+ 1

2
− δn

i− 1
2
) − ∇η(wn

i ) ·
(
αn

i+1 − αn
i−1
))

= −λ

4
∑
i∈Z

∫ 1

0
Nn

i (s)P n
i (s)Dn

i · Dn
i ds.

where the block matrices Dn
i , Nn

i , P n
i are defined in the equation (4.5).

Proof. Since (wn
i )i∈Z is included in Ω, using a Taylor expansion with an integral form of the remainder,

we get

η(wn
i+1) = η(wn

i ) + ∇η(wn
i ) · δn

i+ 1
2

+
∫ 1

0
(1 − s)∇2η

(
wn

i + sδn
i+ 1

2

)
δn

i+ 1
2

· δn
i+ 1

2
ds,

η(wn
i−1) = η(wn

i ) − ∇η(wn
i ) · δn

i− 1
2

+
∫ 1

0
(1 − s)∇2η

(
wn

i − sδn
i− 1

2

)
δn

i− 1
2

· δn
i− 1

2
ds,

(4.14)
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which yields
λ

2
∑
i∈Z

∇η(wn
i ) ·

(
δn

i+ 1
2

− δn
i− 1

2

)
= λ

2
∑
i∈Z

(
η(wn

i+1) − 2η(wn
i ) + η(wn

i−1)
)

− λ

2

∫ 1

0
(1 − s)

∑
i∈Z

∇2η

(
wn

i + sδn
i+ 1

2

)
δn

i+ 1
2

· δn
i+ 1

2
ds

− λ

2

∫ 1

0
(1 − s)

∑
i∈Z

∇2η

(
wn

i − sδn
i− 1

2

)
δn

i− 1
2

· δn
i− 1

2
ds,

= −λ

2

∫ 1

0
(1 − s)

∑
i∈Z

Nn
i (s)Dn

i · Dn
i ds.

(4.15)

For the second-order correction term, using a translation of indices, we have

−1
2
∑
i∈Z

∇η(wn
i ) ·

(
αn

i+1 − αn
i−1
)

= 1
2
∑
i∈Z

(
∇η(wn

i+1) − ∇η(wn
i−1)

)
· αn

i ,

= λ

4
∑
i∈Z

(
∇η(wn

i+1) − ∇η(wn
i−1)

)
· Θn

i δn
i+ 1

2

+ λ

4
∑
i∈Z

(
∇η(wn

i+1) − ∇η(wn
i−1)

)
· (I − Θn

i )δn
i− 1

2
.

But, using once again a Taylor expansion with an integral remainder, we have

∇η(wn
i+1) = ∇η(wn

i ) +
∫ 1

0
∇2η

(
wn

i + sδn
i+ 1

2

)
δn

i+ 1
2
ds,

∇η(wn
i−1) = ∇η(wn

i ) −
∫ 1

0
∇2η

(
wn

i − sδn
i− 1

2

)
δn

i− 1
2
ds,

from which we infer

−1
2
∑
i∈Z

∇η(wn
i ) ·

(
αn

i+1 − αn
i−1
)

= λ

4
∑
i∈Z

∫ 1

0
∇2η

(
wn

i + sδn
i+ 1

2

)
Θn

i δn
i+ 1

2
· δn

i+ 1
2
ds,

+ λ

4
∑
i∈Z

∫ 1

0
∇2η

(
wn

i + sδn
i+ 1

2

)
(I − Θn

i ) δn
i− 1

2
· δn

i+ 1
2
ds

+ λ

4
∑
i∈Z

∫ 1

0
∇2η

(
wn

i − sδn
i− 1

2

)
Θn

i δn
i+ 1

2
· δn

i− 1
2
ds

+ λ

4
∑
i∈Z

∫ 1

0
∇2η

(
wn

i − sδn
i− 1

2

)
(I − Θn

i ) δn
i− 1

2
· δn

i− 1
2
ds.

(4.16)

Rewriting (4.15) and (4.16) with the definitions (4.5) we deduce the result.

4.2. Proof of the main result

Let (η, G) ∈ C2(Ω,R) × C1(Ω,R) a pair of strictly convex entropy, entropy-flux which satisfies (1.2).
Consider the sequence (wn

i )i∈Z verifying the assumptions of Theorem 4.2. Consider the CFL condition
∆t
∆x given in Theorem 4.2. Therefore the sequence (wn+1

i )i∈Z is contained in Ω. Since η ∈ C2(Ω,R),
using a Taylor expansion, in the above equations, we deduce

η(wn+1
i ) = η(wn

i ) + ∆t

∆x
∇η(wn

i ) · Rn
i +

(∆t

∆x

)2 ∫ 1

0
(1 − s)∇2η

(
wn

i + s
∆t

∆x
Rn

i

)
Rn

i · Rn
i ds.
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It implies that,∑
i∈Z

η(wn+1
i )∆x =

∑
i∈Z

η(wn
i )∆x + ∆t

∆x

∑
i∈Z

∇η(wn
i ) · Rn

i ∆x

+
(∆t

∆x

)2 ∫ 1

0
(1 − s)

∑
i∈Z

∇2η

(
wn

i + s
∆t

∆x
Rn

i

)
Rn

i · Rn
i ds∆x.

To establish the global entropy inequality (4.9), it is sufficient to prove the following inequality∑
i∈Z

∇η(wn
i ) · Rn

i + ∆t

∆x

∫ 1

0
(1 − s)

∑
i∈Z

∇2η

(
wn

i + s
∆t

∆x
Rn

i

)
Rn

i · Rn
i ds ≤ 0. (4.17)

Thanks to the Lemmas 4.5 and 4.6, we deduce that the dissipation reformulates as∑
i∈Z

∇η(wn
i ) · Rn

i =
∑
i∈Z

∫ 1

0

(
s

2

(∫ 1

0
Nn

i (us)du

)
F n

i (s) − λ

4 Nn
i (s)P n

i (s)
)

Dn
i · Dn

i ds. (4.18)

But, as the sequence of matrices (Θn
i )i∈Z are selected in order to satisfy the inequality (4.4), and λ is

such that the inequality (4.6) is verified, we have∑
i∈Z

∇η(wn
i ) · Rn

i < 0,

which is the definition of a dissipative flux given by Definition 2.3. We may remark at this point that
the sequence (wn

i )i∈Z is in h2(Z), it is in particular bounded. The Hessian of the entropy ∇2η is positive
(because η is strictly convex) and continuous on a compact set that depends on the sequence (wn

i )i∈Z.
So for λn defined in (4.7) the numerator is finite because (wn

i )i∈Z is in h2(Z). The denominator is
non zero because (wn

i )i∈Z is a non zero sequence in h2(Z), so λn is finite. The ratio ∆t
∆x verifies the

inequality (4.8). In this inequality, the right hand side is positive because the numerator is positive
by construction of the sequences (Θn

i )i∈Z and the denominator is finite because the sequence (wn
i )i∈Z

is compactly supported so the sum is convergent. We thus deduce that (4.17) is satisfied. It ends the
proof of Theorem 4.2.

To conclude this section, we mention that a formal consistency analysis (which is laborious) for a
smooth compactly supported solution of the CFL condition (4.8) yields formally ∆t

∆x2 =
∆x→0

O(1).

5. Numerical results

In this section, we give several numerical examples to assess the accuracy and the stability of the
schemes (2.15). We consider the scalar Burgers equation, the Euler equations and a non-convex scalar
flux. For all these test cases, we propose several choices of the matrix parameter Θn

i . For the Burgers
equation, we compare our formula for the viscosity coefficient and the CFL number (4.7)–(4.8) with
the standard hyperbolic ones [16]. For the Burgers and the Euler equations, we measure the error in
L1, L2 and L∞ norms between the numerical solutions and the exact solution. To compute the errors,
we increase the time accuracy of the scheme (2.15) using the well-known SSP Rung–Kutta methods
introduced in [18, 19, 20]. Since this high-order time approach is based on convex combination of
first-order time sub-steps, our global entropy stability result 4.2 is preserved. Plots of the obtained
numerical solutions and the global entropy are also given.

5.1. Burgers equation

This section deals with the Burgers equation. It consists in taking Ω = R and the flux function is
given by f(w) = w2/2 for all w ∈ Ω. We consider the entropy function η(w) = w2/2. We shall present
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several tests with the following parameters:
Θn

a,i = −θ sign
(
(δn

i+ 1
2
)2 − (δn

i− 1
2
)2), Θn

b,i = −θ tanh
(
(δn

i+ 1
2
)2 − (δn

i− 1
2
)2),

Θn
c,i =

(
(δn

i− 1
2
)2 − (δn

i+ 1
2
)2)((δn

i− 1
2
)2 + (δn

i+ 1
2
)2)(

(δn
i− 1

2
)2 + (δn

i+ 1
2
)2)2 + ε

, Θn
d,i = 1

2 ,
(5.1)

where θ satisfies (4.11) and we fix ε = 10−12. We numerically verify that these choices of the matrix
parameter (Θn

i )i∈Z always satisfy the inequality (4.4). The numerical viscosity is taken equal to λ =
max

(
λn, λHLL

)
where λHLL, λn are respectively defined in (2.3) and (4.7), and the time step ∆t is

selected according to (4.8). In addition, we also compare our schemes (2.15) to the standard Rusanov
scheme given by (2.2) coupled to the standard MUSCL reconstruction [45] with the minmod slope
limiter.

5.1.1. Smooth solution

We take a smooth initial data w0(x) = 0.25 + 0.5 sin(πx) over a periodic domain [−1, 1). With a final
time small enough, here given by t = 0.3, the exact solution remains smooth so that the order of
accuracy can be evaluated.

The numerical solutions are displayed in Figure 5.1. We notice the good behavior of the approxima-
tions. This remark is completed by Table 5.1 where the order of accuracy are evaluated for different
Lp-norms. We observe asymptotically the expected second-order of accuracy whereas the Rusanov
MUSCL scheme yields the following rate of convergence given by: 1.89 for the L1-norm, 1.65 for the
L2-norm and 1.29 for the L∞-norm. The bottom of the Figure 5.1 shows the time evolution of the
numerical viscosity and the time step given by (4.8). We also compute τ being the ratio between the
CPU time needed to run the simulation with our scheme (2.15) and the CPU time required to run
the standard MUSCL scheme. Then we obtain

τΘn
i,a

= 3111.71, τΘn
i,b

= 3250.71, τΘn
i,c

= 1633.14, τΘn
i,d

= 3053.29.

According to these results, and as shown in the Figure 5.1, the scheme presented in this work coupled
to the formula (4.7)–(4.8) has a larger computation time. However, a direct measure shows that for
all the choices of the matrices Θn

i given in (5.1), around 97% of the CPU time is only devoted to the
computation of the formula (4.7)–(4.8). To illustrate this, we proceed to the same measure of the CPU
time but using a second-order SSP time discretization for which we used the usual hyperbolic CFL
condition (as adopted for the MUSCL Russanov scheme). Then we obtain

τΘn
i,a

= 0.78, τΘn
i,b

= 0.94, τΘn
i,c

= 0.61, τΘn
i,d

= 0.59.

In this case, the scheme introduced in this work is comparable to the standard Rusanov MUSCL
scheme and still, we observe the decrease of the global entropy.

5.1.2. Discontinuous solution

We take a discontinuous initial data over the periodic domain [−1, 1) defined by

w0(x) =
{

1 if − 0.25 ≤ x ≤ 0.25,

0 otherwise.

The exact solution is made of both rarefaction and shock waves. With a final time t = 0.3, the waves do
not interact. The numerical simulations are presented in Figure 5.2. The Table 5.2 gives the evaluated
orders of accuracy.
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Figure 5.1. On the top, second-order accurate approximations of the smooth Burgers
solutions at time t = 0.3 with a mesh made of 400 cells and with the Θn

i matrices given
by (5.1). On the bottom, comparison between (λ, ∆t) given by our results (4.6)–(4.8)
and the standard parameters used for the Rusanov MUSCL scheme endowed with the
minmod slope limiter.

With the specific choice Θc,i, we notice a nice behavior of the approximate solution. It seems that
the presence of a discontinuity improves the CFL condition (4.8). We also compute τ being the ratio
between the CPU time needed to run the simulation with our scheme (2.15) and the CPU time required
to run the standard MUSCL Rusanov scheme. Then, we have

τΘn
i,a

= 79.87, τΘn
i,b

= 77.24, τΘn
i,c

= 36.01, τΘn
i,d

= 69.33.

In the case of a discontinuous solution, our scheme has a large computation time. But, as in Sec-
tion 5.1.1, a direct measure shows that for all the choices of the matrices Θn

i given in (5.1), around
97% of the CPU time is spent on the computation of the formula (4.7)–(4.8). Once again, if we use a
second-order SSP time discretization then we have the following ratios:

τΘn
i,a

= 0.89, τΘn
i,b

= 0.93, τΘn
i,c

= 0.65, τΘn
i,d

= 0.73.

5.2. Euler system

We consider the Euler system where Ω = {(ρ, ρu, ρE) ∈ R3 : ρ > 0, ρE − ρu2/2 > 0}, for a
perfect diatomic gas where the unknown vector is w = (ρ, ρu, ρE)T and the flux function is f(w) =
(ρu, ρu2 + p, ρEu + pu)T , with p = (γ − 1)(ρE − ρu2

2 ). We fix γ = 1.4 and we consider the entropy
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Table 5.1. Errors and order evaluations for the second-order accurate scheme with
the smooth Burgers solution for Θn

i defined in (5.1).

Second-order scheme errors Θn
i = Θn

a,i

cells L1 order L2 order L∞ order
100 5.7E-04 - 6.8E-04 - 1.8E-03 -
200 1.4E-04 2.0 1.7E-04 2.0 4.5E-04 2.0
400 3.5E-05 2.0 4.1E-05 2.0 1.1E-04 2.0
800 8.8E-06 2.0 1.0E-05 2.0 2.8E-05 2.0
1600 2.2E-06 2.0 2.6E-06 2.0 6.9E-06 2.0

Second-order scheme errors Θn
i = Θn

b,i

cells L1 order L2 order L∞ order
100 5.7E-04 - 6.8E-04 - 1.8E-03 -
200 1.4E-04 2.0 1.7E-04 2.0 4.5E-04 2.0
400 3.5E-05 2.0 4.1E-05 2.0 1.1E-04 2.0
800 8.8E-06 2.0 1.0E-05 2.0 2.8E-05 2.0
1600 2.2E-06 2.0 2.6E-06 2.0 6.9E-06 2.0

Second-order scheme errors Θn
i = Θn

c,i

cells L1 order L2 order L∞ order
100 1.4E-03 - 1.6E-03 - 4.1E-03 -
200 2.4E-04 2.5 2.8E-04 2.6 7.6E-04 2.4
400 3.9E-05 2.7 4.3E-05 2.7 1.1E-04 2.8
800 8.7E-06 2.1 1.0E-05 2.1 2.7E-05 2.0
1600 2.2E-06 2.0 2.6E-06 2.0 6.8E-06 2.0

Second-order scheme errors Θn
i = Θn

d,i

cells L1 order L2 order L∞ order
100 4.4E-04 - 4.8E-04 - 1.1E-03 -
200 1.1E-04 2.0 1.1E-04 2.1 2.7E-04 2.1
400 2.6E-05 2.0 2.8E-05 2.0 6.6E-05 2.0
800 6.5E-06 2.0 6.8E-06 2.0 1.6E-05 2.0
1600 1.6E-06 2.0 1.7E-06 2.0 4.0E-06 2.0

η(w) = −ρ ln
(

p
ργ

)
. For the Euler problem, we perform four numerical simulations: one with a smooth

solution to measure the accuracy of the scheme, two with a shock tube solution and one with the
solution close to the vacuum. We use the following matrix parameter

Θn
a,i = −θ diag1≤j≤d

(
sign

((
∇η(wn

i+1) − ∇η(wn
i−1)

)
j

(δn
i+ 1

2
− δn

i− 1
2
)j

))
,

Θn
b,i = −θ diag1≤j≤d

(
tanh

((
∇η(wn

i+1) − ∇η(wn
i−1)

)
j

(δn
i+ 1

2
− δn

i− 1
2
)j

))
,

Θn
c,ε,i = diag1≤j≤d


((

δn
i− 1

2

)2
j

−
(
δn

i+ 1
2

)2
j

)((
δn

i− 1
2

)2
j

+
(
δn

i+ 1
2

)2
j

)
((

δn
i− 1

2

)2
j

+
(
δn

i+ 1
2

)2
j

)2
+ ε

 ,

(5.2)

where θ is defined in (4.11) and ε is equal to 10−12. To perform all the following numerical experiments
we increase the time accuracy of the scheme (2.15) using the SSP Rung–Kutta methods introduced
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Figure 5.2. On the top, second-order accurate approximations of the Burgers solution
made of rarefaction and shock waves at time t = 0.3 with a mesh made of 400 cells
with periodic boundary conditions. In the middle, compararison between (λ, ∆t) given
by our results (4.6)–(4.8) and the standard parameters used for the Rusanov MUSCL
scheme endowed with the minmod slope limiter. On the bottom, the decrease of the
global entropy.

in [18, 19, 20]. The numerical viscosity λ verifies λ = λHLL where λHLL is defined in (2.3). The
time step ∆t satisfies the usual CFL condition λ∆t

∆x ≤ 1
2 and we verify numerically at each time step

the decrease of the global entropy given by (4.9). As a global entropy reference, we use a numerical
solution computed with the standard first-order Rusanov scheme (2.2) on a fine grid having 50 000
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Table 5.2. Errors and order evaluations for the second-order accurate schemes with
the Burgers solution made of rarefaction and shock waves, for Θm

i defined in (5.1).

Second-order scheme errors Θn
i = Θn

a,i

cells L1 order L2 order L∞ order
100 3.4E-02 - 6.4E-02 - 3.3E-01 -
200 1.7E-02 1.0 4.3E-02 0.6 3.3E-01 0.0
400 8.5E-03 1.0 3.0E-02 0.5 3.2E-01 0.0
800 4.3E-03 1.0 2.1E-02 0.5 3.2E-01 0.0
1600 2.1E-03 1.0 1.5E-02 0.5 3.2E-01 0.0

Second-order scheme errors Θn
i = Θn

b,i

cells L1 order L2 order L∞ order
100 5.4E-02 - 9.0E-02 - 3.8E-01 -
200 2.7E-02 1.0 5.9E-02 0.6 3.8E-01 0.0
400 1.4E-02 1.0 4.0E-02 0.6 3.8E-01 0.0
800 7.0E-03 1.0 2.7E-02 0.6 3.8E-01 0.0
1600 3.5E-03 1.0 1.8E-02 0.5 3.8E-01 0.0

Second-order scheme errors Θn
i = Θn

c,ε,i

cells L1 order L2 order L∞ order
100 3.5E-02 - 7.1E-02 - 3.6E-01 -
200 1.8E-02 0.9 4.9E-02 0.5 3.6E-01 0.0
400 9.2E-03 1.0 3.4E-02 0.5 3.6E-01 0.0
800 4.6E-03 1.0 2.3E-02 0.5 3.6E-01 0.0
1600 2.3E-03 1.0 1.6E-02 0.5 3.6E-01 0.0

Second-order scheme errors Θn
i = Θn

d,i

cells L1 order L2 order L∞ order
100 3.1E-02 - 5.8E-02 - 2.8E-01 -
200 1.4E-02 1.1 4.0E-02 0.6 2.8E-01 0.0
400 7.1E-03 1.0 2.8E-02 0.5 2.8E-01 0.0
800 3.5E-03 1.0 1.9E-02 0.5 2.8E-01 0.0
1600 1.7E-03 1.0 1.4E-02 0.5 2.8E-01 0.0

cells. We graphically compare our results to the standard Rusanov MUSCL scheme [45] endowed with
the minmod slope limiter and extended with the same second-order in time discretization.

5.2.1. Smooth solution

The initial data is given as follows over the periodic domain [−1, 1):

ρ0(x) = 1 + 0.5 sin2 (πx) , u0(x) = 0.5, p0(x) = 1.

For a such initial data the Euler equations reduce to a linear transport problem and the solution
remains smooth for all time t > 0.

The numerical solutions are displayed in Figure 5.3. The second-order accuracy is observed in
Table 5.3 whereas the Rusanov MUSCL scheme with the minmod slope limiter provides the following
orders of accuracy: 1.88 for the L1-norm, 1.63 for the L2-norm and 1.27 for the L∞-norm.
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Figure 5.3. Second-order accurate approximation of the smooth Euler solution and
entropy at time t = 0.2 with a mesh made of 400 cells.

Table 5.3. Errors and order evaluations for the second-order accurate schemes with
the continuous Euler solution and for Θn

i described in (5.2).

Second-order scheme errors Θn
i = Θn

a,i

cells L1 order L2 order L∞ order
100 2.1E-03 - 1.7E-03 - 1.7E-03 -
200 5.3E-04 2.0 4.2E-04 2.0 4.2E-04 2.0
400 1.3E-04 2.0 1.1E-04 2.0 1.1E-04 2.0
800 3.3E-05 2.0 2.6E-05 2.0 2.6E-05 2.0
1600 8.4E-06 2.0 6.6E-06 2.0 6.6E-06 2.0

Second-order scheme errors Θn
i = Θn

b,i

cells L1 order L2 order L∞ order
100 2.1E-03 - 1.7E-03 - 1.7E-03 -
200 5.3E-04 2.0 4.2E-04 2.0 4.2E-04 2.0
400 1.3E-04 2.0 1.1E-04 2.0 1.1E-04 2.0
800 3.3E-05 2.0 2.6E-05 2.0 2.6E-05 2.0
1600 8.4E-06 2.0 6.6E-06 2.0 6.6E-06 2.0

Second-order scheme errors Θn
i = Θn

c,ε,i

cells L1 order L2 order L∞ order
100 7.3E-03 - 6.8E-03 - 1.1E-02 -
200 1.5E-03 2.3 1.5E-03 2.2 2.9E-03 1.9
400 2.1E-04 2.8 1.8E-04 3.0 3.7E-04 3.0
800 3.7E-05 2.5 2.8E-05 2.7 2.6E-05 3.8
1600 8.4E-06 2.1 6.6E-06 2.1 6.5E-06 2.0

5.2.2. Shock tube solution

We consider the initial data given by

ρ0(x) =
{

1 if x < 0.5,

0.125 otherwise,
u0(x) = 0, p0(x) =

{
1 if x < 0.5,

0.1 otherwise,
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Table 5.4. Errors and order evaluations for the second-order accurate schemes with
the Sod shock tube Euler solution and for Θn

i described in (5.2).

Second-order scheme errors Θn
i = Θn

a,i

cells L1 order L2 order L∞ order
100 1.9E-02 - 2.8E-02 - 9.5E-02 -
200 1.1E-02 0.8 1.9E-02 0.6 8.6E-02 0.1
400 6.3E-03 0.8 1.3E-02 0.5 9.2E-02 0.1
800 3.5E-03 0.8 9.1E-03 0.5 9.7E-02 0.1
1600 2.0E-03 0.8 7.0E-03 0.4 1.0E-01 0.1

Second-order scheme errors Θn
i = Θn

b,i

cells L1 order L2 order L∞ order
100 1.9E-02 - 2.8E-02 - 9.6E-02 -
200 1.1E-02 0.8 1.9E-02 0.6 8.7E-02 0.1
400 6.3E-03 0.8 1.3E-02 0.5 9.2E-02 0.1
800 3.5E-03 0.8 9.2E-03 0.5 9.7E-02 0.1
1600 2.0E-03 0.8 7.0E-03 0.4 1.0E-01 0.1

Second-order scheme errors Θn
i = Θn

c,ε,i

cells L1 order L2 order L∞ order
100 1.5E-02 - 2.2E-02 - 7.9E-02 -
200 8.2E-03 0.8 1.5E-02 0.6 6.7E-02 0.2
400 4.3E-03 0.9 9.9E-03 0.6 6.9E-02 0.0
800 2.3E-03 0.9 6.9E-03 0.5 7.6E-02 0.1
1600 1.3E-03 0.9 5.4E-03 0.4 8.4E-02 0.1

over the domain [0, 1]. The final time is 0.2. To respect the periodic conditions on the boundaries,
we work on the domain [−1, 1] and we symmetrize the shock tube problem on [−1, 0]. The numerical
solutions are displayed Figure 5.4.

The second discontinuous test case deals with the Lax shock tube problem [28] for which the initial
condition is

ρ0(x) =
{

0.445 if x < 0.5,

0.5 otherwise,
u0(x) =

{
0.698 if x < 0.5,

0 otherwise,
p0(x) =

{
3.528 if x < 0.5,

0.5710 otherwise,

over the domain [0, 1]. As previously, in order to respect the periodic conditions on the boundaries,
we work on the domain [−1, 1] and we symmetrize the shock tube problem on [−1, 0]. The final time
is 0.1. The Figure 5.5 shows our results and the Table 5.5 assesses the convergence of the solution.

Our matrix Θn
i,b given by the second equation of (5.2) does not ensure the decrease of the global

entropy for this test case. The matrix Θn
c,ε,i yields very satisfying results.
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Figure 5.4. On the top, second-order accurate approximation of the Euler solution
for the Sod shock tube problem at time t = 0.2 with a mesh made of 400 cells. On the
bottom, the decrease of the global entropy integrated over the grid.
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Figure 5.5. Second-order accurate approximation of the Euler solution for the Lax
shock tube problem at time t = 0.1 with a mesh made of 400 cells: on the top wave
profiles, on the bottom the decrease of the global entropy.
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Table 5.5. Errors and order evaluations for the second-order accurate schemes with
the Lax shock tube Euler solution and for Θn

i ∈ {Θn
a,i, Θn

c,ε,i} described in (5.2).

Second-order scheme errors Θn
i = Θn

a,i

cells L1 order L2 order L∞ order
100 4.0E-02 - 1.0E-01 - 5.7E-01 -
200 2.9E-02 0.5 9.2E-02 0.1 6.1E-01 0.1
400 1.7E-02 0.7 6.6E-02 0.5 5.9E-01 0.1
800 1.1E-02 0.7 5.3E-02 0.3 6.0E-01 0.0
1600 6.8E-03 0.7 4.4E-02 0.3 6.2E-01 0.0

Second-order scheme errors Θn
i = Θn

c,ε,i

cells L1 order L2 order L∞ order
100 4.9E-02 - 1.3E-01 - 6.3E-01 -
200 2.7E-02 0.9 9.7E-02 0.4 6.6E-01 0.1
400 1.5E-02 0.8 6.6E-02 0.5 5.9E-01 0.2
800 8.9E-03 0.8 5.1E-02 0.4 6.0E-01 0.0
1600 5.2E-03 0.8 4.0E-02 0.3 6.2E-01 0.0

5.2.3. Solution near the vacuum

The test case of this section concerns the solutions of the Euler equations near the vacuum. We consider
the following initial condition

ρ0(x) = 1, u0(x) =
{

−2.7 if x < 0.5,

2.7 otherwise,
p0(x) = 1,

over the domain [0, 1]. The final time is 0.05. Under these conditions, the solution is made of two
rarefaction waves. As previously, to respect the periodic conditions on the boundaries, we work on
the domain [−1, 1] and we symmetrize the problem on [−1, 0]. For this test case, we slightly increase
the numerical viscosity such that λ = 1.05λHLL with λHLL is given by (2.3) and the time step ∆t is
selected according to λ∆t

∆x ≤ 1
2 with a CFL number equals to 0.1. The Figure 5.6 shows our results

on several meshes and the Table 5.6 evaluates the convergence of the numerical solution toward the
exact solution.

Table 5.6. Errors and order evaluations for the second-order accurate schemes with
the double rarefaction wave solution and for the sequence (Θn

c,ε,i)i∈Z given in (5.2).

Second-order scheme errors Θn
i = Θn

c,ε,i

cells L1 order L2 order L∞ order
100 3.1E-02 - 5.4E-02 - 2.0E-01 -
200 2.5E-02 0.3 4.7E-02 0.2 2.1E-01 0.0
400 1.4E-02 0.8 2.9E-02 0.7 1.4E-01 0.6
800 7.9E-03 0.9 1.6E-02 0.9 7.3E-02 0.9
1600 4.1E-03 1.0 8.2E-03 0.9 4.3E-02 0.8

For this test case, our choices (Θn
a,i)i∈Z, (Θn

b,i)i∈Z generate spurious oscillations which lead to negative
pressures. Therefore these matrices do not work for this numerical test. The results for the matrices
(Θn

c,ε,i)i∈Z are robust. At the final time, the pressure stays positive (min ≈ 10−3) without spurious
oscillations.
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Figure 5.6. Second-order accurate approximation of the Euler solution for the double
rarefaction waves problem at time t = 0.05 with a refined mesh made of 400 cells to
1600 cells.

5.3. Non-convex scalar flux

In this section, we study the case of the non-convex scalar flux f . We reproduce the numerical test
case given in [32, Section 3.1]. In this regard, we consider f(w) = w3 endowed with the quadratic
entropy η(w) = w2/2. The domain is (−1, 1) and we consider the initial condition w0(x) = − sin(πx).
We prescribe periodic boundary conditions on both sides of the domain. We consider the matrices
(Θn

i )i∈Z given in (5.1). The Figure 5.7 shows the results at the final time 1.
For this test case, the choice of (Θn

c,ε,i)i∈Z yields a classical solution. But we observe, depending on
the choice of the matricies (Θn

i )i∈Z, that the numerical solution given by the genuinely second-order
scheme (2.15) may converge to a non classical solution. This behavior has already been observed in
the recent paper by LeFLoch et al. [32] where the authors shown that a genuinely high-order scheme
may arbitrary converge to a non classical solution in the case of non convex flux.

6. Conclusion

We have presented a family of unlimited and formally second-order accurate in space finite volume
schemes. They are designed in such a way that a dissipative property is required for the second-order
discretization in space. We have given a proof of a global entropy inequality under a CFL which is not
standard and probably far from being optimal. The proof requires the strict convexity of the entropy.
At a numerical level, we assessed the behavior of the schemes both for smooth and discontinuous
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Figure 5.7. Second-order accurate approximation of the scalar conservation law with
non convex flux (f(w) = w3) solution at time t = 1 with a mesh made of 400 cells:
on the left non classical wave profiles, on the right the decrease of the global entropy
integrated over the grid.

solutions in the case of convex fluxes. In the case of non convex fluxes, the numerical solution may
converge to a non-classical solution. In both context, we observed that there is one choice of the second-
order discretization in space which yields good stability results without losing the order of accuracy.
The thorough analysis of this particular second-order discretization in space will be the purpose of a
future work.
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