
SMAI-JCM
SMAI Journal of
Computational Mathematics

On the convergence of the
regularized entropy-based moment

method for kinetic equations

Graham W. Alldredge, Martin Frank & Jan Giesselmann
Volume 9 (2023), p. 1-29.
https://doi.org/10.5802/smai-jcm.93
© The authors, 2023.

The SMAI Journal of Computational Mathematics is a member
of the Centre Mersenne for Open Scientific Publishing

http://www.centre-mersenne.org/
Submissions at https://smai-jcm.centre-mersenne.org/ojs/submission

e-ISSN: 2426-8399

https://doi.org/10.5802/smai-jcm.93
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/
https://smai-jcm.centre-mersenne.org/ojs/submission


SMAI Journal of Computational Mathematics
Vol. 9, 1-29 (2023)

On the convergence of the regularized entropy-based moment
method for kinetic equations

Graham W. Alldredge 1

Martin Frank 2

Jan Giesselmann 3

1 Berlin, Germany
E-mail address: gwak@posteo.net
2 Department of Mathematics, Karlsruhe Institute of Technology, Karlsruhe, Germany
E-mail address: martin.frank@kit.edu
3 Department of Mathematics, Technical University of Darmstadt, Darmstadt, Germany
E-mail address: giesselmann@mathematik.tu-darmstadt.de.

Abstract. The entropy-based moment method is a well-known discretization for the velocity variable in kinetic
equations which has many desirable theoretical properties but is difficult to implement with high-order numerical
methods. The regularized entropy-based moment method was recently introduced to remove one of the main chal-
lenges in the implementation of the entropy-based moment method, namely the requirement of the realizability of
the numerical solution. In this work we use the method of relative entropy to prove the convergence of the regularized
method to the original method as the regularization parameter goes to zero and give convergence rates. Our main
assumptions are the boundedness of the velocity domain and that the original moment solution is Lipschitz contin-
uous in space and bounded away from the boundary of realizability. We provide results from numerical simulations
showing that the convergence rates we prove are optimal.

1. Introduction

Kinetic equations model systems consisting of large numbers of particles that interact with each
other or with a background medium and arise in a wide variety of applications including rarefied gas
dynamics [7], neutron transport [19], radiative transport [21], and semiconductors [20]. The numerical
solution of kinetic equations remains an area of active research. In this work, we consider the entropy-
based moment method [18], which is a discretization of the velocity variable in the kinetic equation.
It has many desirable theoretical properties but is computationally expensive and challenging to
implement.

Recently in [1] a regularized version of the entropy-based moment equations was proposed to simplify
the implementation of numerical methods for the entropy-based moment equations. These regularized
entropy-based moment equations require the selection of a regularization parameter, and the authors
in [1] proposed a rule for selecting the regularization parameter so that the error introduced by the
regularization was of the order of the error in the spatiotemporal discretization. With this selection
rule the authors produced numerical results which showed that the regularized equations could be
used to compute accurate results of the original entropy-based moment equations.

In this work, we prove that exact solutions of the regularized entropy-based moment equations con-
verge to the solutions of the original equations. We quantify the difference between these two solutions
using the relative entropy, and the convergence rate is quadratic in the regularization parameter. If
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we assume that the solution of the regularized problem is ’a priori’ known to live in some compact
subset of the set of realizable states, the error bounds in relative entropy imply linear convergence in
the regularization parameter in the L2 norm. When no such a priori bounds are available, only L1

convergence can be proven rigorously, see Corollary 2 for details.
In addition to the smoothness of the kinetic entropy function and some technical assumptions on

the basis functions, we make the following standing assumptions on the kinetic model:

(i) boundedness of the set of velocities of the kinetic equation, and

(ii) Lipschitz continuity of the function defining the collision term in the original entropy-based
moment equations.

We also assume periodic boundary conditions and that the solution of the original entropy-based
moment equations is Lipschitz continuous and bounded away from the boundary of the set of realizable
moment vectors.

The relative-entropy techniques we use are very similar to what was done in [3, 4, 12, 23]. In general,
relative entropy estimates are a widely applicable tool for comparing thermomechanical theories having
the form of hyperbolic balance laws that are endowed with a strictly convex entropy [11]. A general
limitation of this methodology is that it requires the solution to the limiting system to be Lipschitz
continuous - this property can (usually) only be expected for short times since shocks may form. There
is recent progress in overcoming this limitation, at least in one space dimension, by using the relative
entropy with shifts methodology that was developed by Vasseur and co-workers [17, 22]. However, this
condition can most probably not be removed in two or more space dimensions since it is connected to
non-uniqueness of entropy solutions to hyperbolic balance laws.

To present our results, we first introduce the entropy-based moment equations and their regularized
version in Section 2 and precisely state our assumptions. Then, in Section 3, we introduce the technique
of relative entropy and give a general version of our main result. We prove the estimates upon which
our main result relies and give the subsets of the realizable set on which they hold in Section 4.
Next we present the results of numerical experiments confirming the theoretically predicted rates of
convergence in Section 5, and finally we draw conclusions and discuss directions for future work in
Section 6.

2. Entropy-based moment equations and regularization

2.1. The kinetic equation

Kinetic equations evolve the kinetic density function f : [0,∞)×X × V → [0,∞) according to
∂tf(t, x, v) + v · ∇xf(t, x, v) = C(f(t, x, · ))(v) (2.1)

(when neglecting long-range interactions). The function f depends on time t ∈ [0,∞), position
x ∈ X ⊆ Rd, and a velocity variable v ∈ V ⊆ Rd. The operator C introduces the effects of parti-
cle collisions; at each x and t, it is an integral operator in v. In order to be well-posed, (2.1) must be
accompanied by appropriate initial and boundary conditions.

The results in this work depend strongly on the following assumption.

Assumption 1. The set of velocities V is bounded.

We will see the crucial consequences of this assumption in the next subsection. For any g ∈ L1(V )
we use the notation

⟨g⟩ :=
∫

V
g(v) dv. (2.2)
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Convergence of the entropy-based moment equations

We define

|V | := ⟨1⟩ =
∫

V
dv . (2.3)

Many of the constants below depend on maxv∈V ∥v∥, though for clarity of exposition we do not give
this dependence explicitly.

We consider kinetic equations where the collision operator satisfies an entropy-dissipation property:
Let η : D → R, where D ⊆ R, be a strictly convex function and F(V ) := {g ∈ L1(V ) : Range(g) ⊆ D}.
We call η the kinetic entropy function. Then the local entropy H : F(V )→ R is given by

H(f) := ⟨η(f)⟩ . (2.4)

This entropy is dissipated if the collision operator C satisfies〈
η′(g)C(g)

〉
≤ 0 (2.5)

for all g : V → D such that the integral is defined. Furthermore, we assume that η is sufficiently
smooth:

Assumption 2. The kinetic entropy satisfies η ∈ C3(D), η′′ > 0 on D, and (2.5), i.e., η is an entropy
dissipated by the kinetic equation (2.1).

2.2. The original entropy-based moment equations and realizability

The original entropy-based moment equations are a semidiscretization of the kinetic equation (2.1) in
the velocity variable v. For an overview, see [18]. The velocity dependence of f at each point in time
and space is replaced by the vector of moments

u(t, x) := (u0(t, x), u1(t, x), . . . , uN (t, x)) ∈ RN+1, (2.6)

which contains the approximations of velocity integrals of f multiplied by the basis functions

m(v) := (m0(v),m1(v), . . . ,mN (v)), (2.7)

that is, ui(t, x) ≃ ⟨mif(t, x, · )⟩ for all i ∈ {0, 1, . . . , N}. Usually the basis functions are polynomials.
We make the following assumptions on the basis functions:

Assumption 3.

(i) For every i ∈ {0, 1, . . . , N} we have mi ∈ L∞(V ). Without loss of generality, we assume that
∥mi∥L∞(V ) is bounded by one:

∥mi∥L∞(V ) = sup
v∈V
|mi(v)| ≤ 1 for i ∈ {0, 1, . . . , N}. (2.8)

(ii) The constant function is in the linear span of the basis functions. Without loss of generality
we assume m0(v) ≡ 1.

For each moment vector, the entropy-based moment method reconstructs an ansatz for the kinetic
density by solving the constrained optimization problem

minimize
g∈F(V )

H(g) subject to ⟨mg⟩ = u (2.9)

(recall the definition of H in (2.4)). Under Assumption 1, this problem has a unique solution for every
u ∈ R [5, 16], where

R := {u : there exists a g ∈ F(V ) such that ⟨mg⟩ = u} (2.10)
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is the set of all realizable moment vectors, and consequently, the system of moment equations is
well-defined and hyperbolic for all realizable moment vectors. 1

The solution to (2.9) takes the form Gα̂(u), where
Gα := η′

∗(α ·m) (2.11)

and α̂ : R → RN+1 maps a moment vector u to the solution of the dual problem
α̂(u) = argmax

α∈RN+1
{α · u− ⟨η∗(α ·m)⟩} ; (2.12)

here η∗ is the Legendre dual 2 of η (and thus η′
∗ is the inverse function of η′). The components of α

are the Lagrange multipliers for the primal problem (2.9).
Now we are ready to give the entropy-based moment equations:

∂tu +∇x · f(u) = r(u), (2.13a)
where the flux function f and relaxation term r are given by

f(u) :=
〈
vmGα̂(u)

〉
and r(u) :=

〈
mC(Gα̂(u))

〉
. (2.13b)

Classical solutions of the moment equations (2.13) satisfy the entropy dissipation law
∂th(u) +∇x · j(u) = h′(u) · r(u) ≤ 0 (2.14)

for the entropy and entropy flux

h(u) :=
〈
η(Gα̂(u))

〉
and j(u) :=

〈
vη(Gα̂(u))

〉
. (2.15)

Note that h′ = α̂, and that h is strictly convex as a consequence of Assumption 2 [14]. For readers
unfamiliar with the derivations of the dual problem and the entropy dissipation law and related
properties of the entropy-based moment equations, we review these in Appendix B.

A consequence of Assumption 1 is that α̂ is a smooth bijection from R to RN+1. Its inverse is the
function which gives the moment vector of the entropy ansatz corresponding to a given multiplier
vector:

û(α) :=
〈
mη′

∗(α ·m)
〉
. (2.16)

This function plays a role in the analysis later.
We make the following assumption on the collision term:

Assumption 4. The function r in the collision term of the original entropy-based moment equa-
tions (2.13) is Lipschitz continuous with constant Cr and satisfies limu→0 r(u) = 0.

This applies, for example, to linear collision operators like in the case of isotropic scattering. This
assumption cannot be expected to apply for the Boltzmann collision operator, at least not globally,
since it is quadratic. The assumption limu→0 r(u) = 0 is natural since otherwise there would be
collision effects in the moment equations when no particles are present.

Finally, we note that the flux f and the source r in (2.13) can only be defined when the optimization
problem (2.9) is feasible, i.e., when the u ∈ R. When D = [0,∞), this set corresponds to the set of
vectors which contain the moments of the nonnegative density functions, which are indeed the only
moment vectors we want to consider since the kinetic density f should be nonnegative. However, it
is in general difficult to guarantee that numerical solutions (particularly high-order ones) of (2.13)
remain within the realizable set R.

1When V is not bounded, such as in entropy-based moment equations for the Boltzmann equation for rarefied gas
dynamics, where V = R3, there are important examples of realizable moment vectors for which the primal problem has
no solution; see [14, 15, 16]. This is a significant open problem for entropy-based moment equations, and neither the
regularization nor our work here can get around this issue.

2See, e.g., [10, §3.3.2] or [6, §3.3], where what we call the Legendre dual is called the conjugate function.
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2.3. The regularized entropy-based moment equations

To work around the problem of realizability, the regularized entropy-based moment equations were
proposed in [1]. Let γ ∈ (0,∞) be the regularization parameter. Then the regularized entropy-based
moment equations are given by

∂tu +∇x · fγ(u) = rγ(u), (2.17a)

where

fγ(u) :=
〈
vmGα̂γ(u)

〉
and rγ(u) :=

〈
mC(Gα̂γ(u))

〉
. (2.17b)

The ansatz Gα̂γ(u) has the same form as above (i.e., Gα̂γ(u) = η′
∗(α̂γ(u) ·m)) but is the solution of

the unconstrained optimization problem

minimize
g∈F(V )

⟨η(g)⟩+ 1
2γ ∥⟨mg⟩ − u∥2 , (2.18)

which is feasible for any moment vector u ∈ RN+1 (again under Assumption 1). The new multiplier
vector α̂γ(u) is the solution of the corresponding dual problem

α̂γ(u) := argmax
α∈RN+1

{
α · u− ⟨η∗(α ·m)⟩ − γ

2∥α∥
2
}

(2.19)

and satisfies the first-order necessary conditions

u = û(α̂γ(u)) + γα̂γ(u). (2.20)

Classical solutions of the regularized equations (2.17) satisfy

∂thγ(u) +∇x · jγ(u) = h′
γ(u) · rγ(u) ≤ 0,

where

hγ(u) :=
〈
η(Gα̂γ(u))

〉
+ 1

2γ

∥∥∥〈mGα̂γ(u)
〉
− u

∥∥∥2
and jγ(u) :=

〈
vη(Gα̂γ(u))

〉
. (2.21)

Analogously to the original case, we have h′
γ = α̂γ . In this work, we are mostly concerned with entropy

solutions of the regularized equations, i.e. weak solutions of (2.17) satisfying the admissibility criterion

∂thγ(u) +∇x · jγ(u) ≤ h′
γ(u) · rγ(u). (2.22)

Note that any Lipschitz continuous solution of (2.17) is automatically an entropy solution.
Like h, the entropy hγ of the regularized equations is convex, and its Legendre dual (hγ)∗ will prove

to be useful in the analysis. The Legendre dual (hγ)∗ and its first and second derivatives are given
by [1]

(hγ)∗(α) = ⟨η∗(α ·m)⟩+ γ

2∥α∥
2, (2.23a)

(hγ)′
∗(α) =

〈
mη′

∗(α ·m)
〉

+ γα, and (2.23b)

(hγ)′′
∗(α) =

〈
mmT η′′

∗(α ·m)
〉

+ γI, (2.23c)

where I is the (N+1)×(N+1) identity matrix. Note that (hγ)′
∗◦h′

γ = (hγ)′
∗◦α̂γ = id, so we also have

h′′
γ = ((hγ)′′

∗ ◦ α̂γ)−1, where the inverse indicates the matrix inverse. One also immediately recognizes
from the form of (hγ)′′

∗ that (hγ)∗ and thus hγ are strictly convex for any γ > 0.
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3. Relative entropy for convergence

Let X ⊂ Rd be a d-cube and T ∈ (0,∞). We consider the initial-value problem
∂tu +∇x · f(u) = r(u) (t, x) ∈ (0, T ]×X, (3.1a)

u(0, x) = u0(x) x ∈ X, (3.1b)

where u0 are the given initial conditions, and we use periodic boundary conditions in space. For any
γ ∈ (0,∞), the regularized moment equations are

∂tuγ +∇x · fγ(uγ) = rγ(uγ) (t, x) ∈ (0, T ]×X, (3.2a)
uγ(0, x) = u0(x) x ∈ X, (3.2b)

and we also take periodic boundary conditions. Notice that the initial conditions are the same.
Let us briefly recall the notions of weak solution and entropy solution for (3.1), those for (3.2) are

analogous.

Definition 3.1. Let u0(x) ∈ L1(X,RN+1) then, we call u ∈ L∞(0, T ;L1(X,RN+1)) a weak solution
of (3.1) if is satisfies f(u) ∈ L1((0, T )×X,RN+1) and r(u) ∈ L1((0, T )×X,RN+1)∫ T

0

∫
X

u∂tΦ + f(u)∇Φ + r(u)Φ dx ds+
∫

X
u0Φ(0, · ) dx = 0

for all Φ ∈ C∞
0 ([0, T ), C∞

per(X,RN+1)). We call a weak solution of (3.1) an entropy solution with
respect to the pair (h, j) provided h(u) ∈ L∞(0, T ;L1(X)), and j(u), h′(u)r(u) ∈ L1((0, T )×X) and∫ T

0

∫
X
h(u)∂tϕ+ j(u)∇ϕ+ h′(u)r(u)ϕdx ds+

∫
X
h(u0)ϕ(0, · ) dx ≥ 0

for all ϕ ∈ C∞
0 ([0, T ), C∞

per(X, [0,∞))).

Following Dafermos [9], we introduce the relative entropy and relative entropy flux relative to hγ :

Definition 3.2. Given moments uγ , u ∈ RN+1 the relative entropy and relative entropy flux are
given by

hγ(uγ |u) := hγ(uγ)− hγ(u)− α̂γ(u) · (uγ − u) and (3.3)
jγ(uγ |u) := jγ(uγ)− jγ(u)− α̂γ(u) · (fγ(uγ)− fγ(u)), (3.4)

respectively.

Note that using the relative entropy with respect to hγ allows us (in principle) to use non-realizable
moment vectors in both arguments of the relative entropy. For our subsequent convergence result,
however, there will be a strong difference between the first and the second slot of the relative entropy.
In particular, in our convergence results, Corollaries 1 and 3, we will require the function in the second
slot of the relative entropy to have values only in some compact subset of the set of realizable vectors.

Lemma 3.3. Let u be a Lipschitz continuous solution of (3.1) and let uγ be an entropy solution
of (3.2), see Definition 3.1. Then, for almost all 0 ≤ t ≤ T the following inequality holds:∫

X
hγ(uγ(t, x)|u(t, x)) dx ≤ −

∫ t

0

∫
X

(∇xα̂γ(u)(s, x)) : fγ(uγ(s, x)|u(s, x))

− qγ(uγ(s, x),u(s, x))− Jγ(uγ(s, x),u(s, x)) : ∇xu(s, x) dx ds (3.5)
with

fγ(uγ |u) := fγ(uγ)− fγ(u)− f ′
γ(u)(uγ − u) (3.6)
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Convergence of the entropy-based moment equations

and

qγ(uγ ,u) := (h′
γ(uγ)− h′

γ(u)) · rγ(uγ)− r(u) · (h′′
γ(u)(uγ − u)) (3.7)

and
Jγ(uγ ,u) := (uγ − u)h′′

γ(u)(f ′(u)− f ′
γ(u)) (3.8)

Proof. The proof follows the proof of [9, Thm. 5.2.1]. We need, however, to account for the difference
of flux functions in (3.2) and (3.1). Therefore, we provide a brief proof that is to be understood in the
dual space of W 1,∞

0 ([0, T )×X, [0,∞)), i.e. nonnegative Lipschitz continuous functions with compact
support.

∂thγ(uγ |u) +∇x · jγ(uγ |u)
= ∂thγ(uγ) +∇x · jγ(uγ)− h′

γ(u) · ∂tu− j′
γ(u) : ∇xu− (h′′

γ(u)∂tu) · (uγ − u)
− (h′′

γ(u) · ∇xu) · (fγ(uγ)− fγ(u))− α̂γ(u) · (∂tuγ +∇x · fγ(uγ))
+ α̂γ(u) · (∂tu + f ′

γ(u) : ∇xu) (3.9a)
≤ h′

γ(uγ)rγ(uγ)− h′′
γ(u)(−f ′(u) : ∇xu + r(u)) · (uγ − u)

− (h′′
γ(u) · ∇xu) · (fγ(uγ)− fγ(u))− h′

γ(u)rγ(uγ) (3.9b)
= −(∇xα̂γ(u)) : fγ(uγ |u) + qγ(uγ ,u) + Jγ(uγ ,u) : ∇xu, (3.9c)

where in (3.9b) we have used
∂thγ(uγ) +∇x · jγ(uγ) ≤ h′

γ(uγ) · rγ(uγ), (3.10a)
− h′

γ(u) · ∂tu− j′
γ(u) : ∇xu + α̂γ(u) · (∂tu + f ′

γ(u) : ∇xu) = 0, (3.10b)
∂tu = −f ′(u) : ∇xu + r(u), and (3.10c)
α̂γ(u) · (∂tuγ +∇x · fγ(uγ)) = h′

γ(u)rγ(uγ). (3.10d)
where the equation (3.10b) expresses the fact that Lipschitz continuous solutions satisfy the entropy
inequality as an equality. We have also used the commutation property

h′′
γf ′

γ = (f ′
γ)Th′′

γ

that follows by taking the derivative of the compatibility relation h′
γf ′

γ = j′
γ [1].

Now we fix 0 ≤ t ≤ T and for ε > 0 we test
∂thγ(uγ |u) +∇x · jγ(uγ |u) ≤ −(∇xα̂γ(u)) : fγ(uγ |u) + qγ(uγ ,u) + Jγ(uγ ,u) : ∇xu,

with ψε ∈W 1,∞
0 ([0, T )×X, [0,∞))

ψε(s, x) :=


1 s < t

1− s−t
ε t < s < t+ ε

0 s > t+ ε

Sending ε to zero, we obtain (3.5) for all t that are Lebesgue points of the map [0, T ) → R,
t 7→

∫
X hγ(uγ(t, x)|u(t, x)) dx. Note that

∫
X hγ(uγ(0, x)|u(0, x)) dx = 0 since u, uγ satisfy the same

initial condition.

At this point, with relative-entropy methods it is typical to look to bound the integrand of the
right-hand side using hγ(uγ |u) so that Grönwall’s inequality can be used.

It turns out that such bounds can be obtained if we make some assumption on the original solution
u which bounds it away from the boundary of the realizable set R. The exact form this assumption
takes depends on the entropy; we will make this precise in Section 4.

7
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Theorem 3.4. Let there be a subset S of the set of realizable vectors R such that there exists γ0 > 0
and constants CJ , Cf , Cq > 0 and DJ , Df , Dq > 0 so that

∥Jγ(uγ ,u)∥ ≤ CJhγ(uγ |u) +DJγ
2

∥fγ(uγ |u)∥ ≤ Cfhγ(uγ |u) +Dfγ
2

qγ(uγ ,u) ≤ Cqhγ(uγ |u) +Dqγ
2
∀uγ ∈ RN+1,u ∈ S, γ ∈ (0, γ0). (3.11)

Let u be a Lipschitz continuous solution of (3.1), i.e. there exists Cu > 0 such that ∥∇xu∥L∞([0,T ]×X) ≤
Cu, satisfying u(t, x) ∈ S for all (t, x) ∈ [0, T ] ×X. Let {uγ}γ∈(0,γ0) be a family of entropy solutions
of (3.2). Furthermore assume that there is a Cα̂ > 0 such that ∥∇xα̂γ(u)∥L∞([0,T ]×X) ≤ Cα̂ uniformly
in γ. Then for γ sufficiently small,∫

X
hγ(uγ(T, x)|u(T, x)) dx ≤ exp(CT )DTγ2, (3.12)

where C := Cα̂Cf + CuCJ + Cq and D := Cα̂Df + CuDJ +Dq.

Proof. Inserting (3.11) into (3.5) implies∫
X
hγ(uγ(t, x)|u(t, x)) dx

≤
∫ t

0

∫
X

(Cα̂Cf + CuCJ + Cq)hγ(uγ |u) + (Cα̂Df + CuDJ +Dq)γ2 dx ds. (3.13)

The assertion of the Theorem follows by applying Grönwall’s lemma.

Remark 3.5. It is important to note that we need to bound the norms of fγ(uγ |u) and Jγ(uγ ,u)
while it is sufficient to bound qγ(uγ ,u) from above (no bound from below is needed). This is due
to the fact that, in (3.5), fγ(uγ |u) and Jγ(uγ ,u) are multiplied by ∇xα̂γ(u) and ∇xu, respectively,
whose directions are unknown.

Remark 3.6. We will work with sets S such that the derivative α̂′
γ(u) = ((hγ)′′

∗(α̂γ(u)))−1 is
uniformly bounded for u ∈ S and γ ∈ (0, γ0). Thus ∇xα̂γ(u) ∈ L∞([0, T ] × X) follows from
∇xu ∈ L∞([0, T ] × X) and the chain rule, and ∥∇xα̂γ(u)∥L∞([0,T ]×X) is bounded as γ → 0. Note
also that the fact that there exists Cu such that ∥∇xu∥L∞([0,T ]×X) ≤ Cu follows from the assumption
that u is Lipschitz continuos.

4. Estimates

In this section we give sets S over which the flux and source terms can be bounded as required in
Theorem 3.4.

First, we give some basic properties of realizable moment vectors and the functions û, f , and their
regularized counterparts which will be used repeatedly when estimating the flux and source terms.

4.1. Basic properties

For basis functions satisfying Assumption 3, the components of any realizable moment vector u ∈ R
satisfy

|ui| = |⟨mig⟩| ≤ ⟨g⟩ = u0, for all i ∈ {0, 1, . . . , N}, (4.1)
thus there exists a constant C0 ∈ (0,∞) such that

∥u∥ ≤ C0u0 for all u ∈ R. (4.2)
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Under Assumption 1 there is a C1 ∈ (0,∞) such that

∥f ′(u)∥ ≤ C1 (4.3)

for all u ∈ R [2, Lem. 3.1], so f is globally Lipschitz continuous on R. The same bound holds globally
for the regularized flux, i.e.,

∥f ′
γ(u)∥ ≤ C1 (4.4)

for all u ∈ RN+1 (this also follows from the argument used in [2, Lem. 3.1]). Since f(0) = 0 (in the
limit sense, since vector 0 lies on the boundary of R), we have

∥f(u)∥ ≤ C1∥u∥. (4.5)

The map û ◦ α̂γ plays an important role in our analysis. This map returns the realizable moment
vector that the regularization uses to compute the flux and source terms. It is globally Lipschitz
continuous. 3 If we let C2 be its Lipschitz constant, then in particular

∥û(α̂γ(w))∥ ≤ C2∥w∥+ ∥û(α̂γ(0))∥ (4.7)

In all cases we consider, limγ→0 û(α̂γ(0)) = 0 (see Appendix C), so we define

C3 := sup
γ∈(0,γ0)

∥û(α̂γ(0))∥ (4.8)

and generally use

∥û(α̂γ(w))∥ ≤ C2∥w∥+ C3 (4.9)

for appropriate values of γ. Furthermore, since fγ = f ◦ û ◦ α̂γ ,4 we can combine this bound with (4.5)
to get

∥fγ(w)∥ ≤ C1∥û(α̂γ(w))∥ ≤ C1(C2∥w∥+ C3). (4.11)

We conclude this section by recalling a handy property of the regularized problem. The partial
derivative of α̂γ with respect to γ was computed in [1, Thm. 3]:

∂

∂γ
α̂γ(w) = −h′′

γ(w)α̂γ(w). (4.12)

From the positive-definiteness of h′′
γ we can immediately conclude that ∥α̂γ(w)∥2 is a decreasing

function of γ for any w ∈ RN+1. We can further conclude that ∥α̂γ(w)∥ → 0 as γ → ∞: Since
∥α̂γ(w)∥ is a decreasing function of γ, it remains bounded for γ ∈ (γ0,∞), where γ0 ∈ (0,∞). Thus
the moment vector û(α̂γ(w)) associated with the ansatz Gα̂γ(w) is also bounded for γ ∈ (γ0,∞), since
û is a continuous map. Let

uγ0,w := sup
γ∈(γ0,∞)

∥û(α̂γ(w))∥. (4.13)

3Indeed, the singular values of its Jacobian are bounded by one: Let H := ⟨mmT η′′
∗ (α̂γ(u) · m)⟩, and recall that it is

symmetric positive definite. Then (û ◦ α̂γ)′(u) = H(H + γI)−1. For any eigenvalue-eigenvector pair (λ, c) of H, we have

(H + γI)−1H2(H + γI)−1c =
(

λ

λ + γ

)2

c, (4.6)

from which we concluded that the singular values have the form λ/(λ + γ) and thus are bounded by one.
4To see this, start from (2.17b) and apply the fact that α̂ is the inverse function of û to get

fγ(u) =
〈
vmGα̂γ (u)

〉
=
〈
vmGα̂(û(α̂γ (u)))

〉
= f(û(α̂γ(u))); (4.10)

here we have used α̂ ◦ û = id, and the last equality comes from the definition of f(u) in (2.13b).

9
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Then by rearranging the first-order necessary conditions (2.20) we have

∥α̂γ(w)∥ = ∥w− û(α̂γ(w))∥
γ

≤ ∥w∥+ uγ0,w
γ

, (4.14)

from which we conclude ∥α̂γ(w)∥ → 0 as γ →∞.
We can also use (4.12) to show that the entropy hγ is a decreasing function of γ. Using the formula

hγ(w) = h(û(α̂γ(w))) + γ
2∥α̂γ(w)∥2 (obtained by inserting (2.15) and (2.20) into (2.21)), we have,

after some basic manipulations,

∂

∂γ
hγ(w) = −1

2∥α̂γ(w)∥2 ≤ 0. (4.15)

4.2. Two classes of kinetic entropy functions

To prove the estimates (3.11), we need to assume that the true solution u is bounded away from the
boundary of realizability. This can be achieved in various ways, but the specific form of the assumption
must depend on properties of the kinetic entropy function η.

We consider two kinds of kinetic entropy functions. The first is defined with the Maxwell–Boltzmann
entropy,

η(z) = z log(z)− z, (4.16)

in mind. (The second term is purely for mathematical convenience.)

Definition 4.1. Let η : (0,∞)→ R satisfy Assumption 2. We call η superlinear if

Range(η′) = Dom(η∗) = R.

Since η′ is an increasing function, these entropies grow superlinearly as z →∞. Furthermore, since
0 ∈ Range(η′), the entropy η has a global minimum.

Remark 4.2. Note that we use the term superlinear even though the functions η(z) = zα for
α ∈ (1,∞) do not belong to our class of superlinear entropy functions.

The second kind of entropy we consider includes the Bose–Einstein entropy,

η(z) = z log(z)− (1 + z) log(1 + z), (4.17)

and the Burg entropy,

η(z) = − log(z). (4.18)

Definition 4.3. Let η : (0,∞)→ R satisfy Assumption 2. We call η sublinear if

Range(η′) = Dom(η∗) = (−∞, 0)

with limz→∞ η′(z) = 0 and limz→0 η
′(z) = −∞.

These entropies are monotonically decreasing functions with no global minimum. The decay as
z →∞ is sublinear.

Note that we have assumed Dom(η) = (0,∞) in both definitions. Since for Lagrange dual functions
Range(η′

∗) = Dom(η′), it follows that the ansätze Gα for both superlinear and sublinear kinetic entropy
functions take only positive values.

10
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4.3. The superlinear case

For superlinear entropies we consider the family of sets
RM := {û(α) : ∥α∥ ≤M} , (4.19)

for M ∈ (0,∞). For each M , we have RM ⊂⊂ R, i.e., RM is a compact subset of R, and as M →∞,
the set RM approaches the full realizable set R (since under Assumption 1 we have R = û(RN+1)).
We will show that the assumptions of Theorem 3.4 hold for superlinear entropies when S = RM for
any M .

First we give some properties on RM . Since RM is a compact set, both
uM := sup

w∈RM

∥w∥ and hM := sup
w∈RM

h(w) (4.20)

are finite. Since hγ is a decreasing function of γ (recall (4.15)), we have
hM = sup

w∈RM

γ∈(0,∞)

hγ(w). (4.21)

Another important consequence of restricting u to RM is that h′′
γ is bounded from above and below

over RM . First recall that h′′
γ = ((hγ)′′

∗ ◦ α̂γ)−1, so we work with (hγ)′′
∗. Let c be the unit-length

eigenvector associated with the largest eigenvalue of (hγ)′′
∗(α̂γ(u)) for some u ∈ RM . Then we have

λmax((hγ)′′
∗(α̂γ(u))) = c ·

(〈
mmT η′′

∗(α̂γ(u) ·m)
〉

+ γI
)

c (4.22a)

=
〈
(c ·m)2η′′

∗(α̂γ(u) ·m)
〉

+ γ (4.22b)

≤ |V |
(

sup
y∈[−M,M ]

η′′
∗(y)

)
+ γ0 (4.22c)

for γ ≤ γ0, where we have used that ∥α̂γ(w)∥ is a decreasing function of γ (recall (4.12)). Note that,
on RM , as γ → ∞, all eigenvalues of h′′

γ go to zero, and indeed the function hγ becomes flat. Since
the behavior of the regularized equations for large γ is not particularly interesting, we rule out these
problems by considering only γ smaller than some arbitrary γ0.

On the other hand, if we now let c be the unit-length eigenvector associated with the smallest
eigenvalue of (hγ)′′

∗(α̂γ(u)) for u ∈ RM we have

λmin((hγ)′′
∗(α̂γ(u))) =

〈
(c ·m)2η′′

∗(α̂γ(u) ·m)
〉

+ γ ≥ λmin(⟨mmT ⟩) inf
y∈[−M,M ]

η′′
∗(y) (4.23)

(where λmin(⟨mmT ⟩) > 0 because m span a basis). Note that Assumption 2 guarantees strict positivity
of η′′

∗ because η′′
∗(y) = 1/η′′(η′

∗(y)).
Thus for h′′

γ we can conclude the existence of positive constants λmin,h′′,M and Ch′′,M such that

v · h′′
γ(u)v ≥ λmin,h′′,M∥v∥2

∥h′′
γ(u)∥ ≤ Ch′′,M

for all v ∈ RN+1, u ∈ RM , and γ ∈ (0, γ0) (4.24)

The flux terms.

Lemma 4.4. Let η be a superlinear kinetic entropy function, M ∈ (0,∞), and γ0 ∈ (0,∞). Then
there exist positive constants Cf , CJ , and DJ such that

∥fγ(uγ |u)∥ ≤ Cfhγ(uγ |u)
∥Jγ(uγ ,u)∥ ≤ CJhγ(uγ |u) +DJγ

2 ∀uγ ∈ RN+1,u ∈ RM , γ ∈ (0, γ0). (4.25)

These constants depend on M and γ0 but are independent of uγ, u, and γ.
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In the proof of Lemma 4.4 we often use the following elementary lemma.

Lemma 4.5. Let f : [0,∞) → R be a twice continuously differentiable function such that f ′′(z) > 0
for all z, and let a ∈ (0,∞), b ∈ R, and c ∈ R be given. If K ∈ (0,∞) and C ∈ (0,∞) satisfy

f(K) + c > 0, f ′(K) > 0, and C ≥ max
{
aK + b

f(K) + c
,

a

f ′(K)

}
, (4.26)

then

az + b ≤ C(f(z) + c) (4.27)

holds for all z ≥ K.

Proof. The condition C ≥ aK+b
f(K)+c implies that (4.27) holds for z = K and C ≥ a

f ′(K) implies, together
with f ′′ > 0, that the z derivative of the right hand side of (4.27) is larger than the z derivative of its
left hand side.

In the proof of Lemma 4.4 we also use the following lemma to get a nonzero lower bound for the
relative entropy.

Lemma 4.6. Let M ∈ (0,∞), L ∈ (M,∞), and γ0 ∈ (0,∞). Then

Ch,M,L := inf
v∈RN+1\RL

u∈RM

γ∈(0,γ0)

hγ(v|u) (4.28)

is strictly positive.

The proof of Lemma 4.6 can be found in Appendix D.

Proof of Lemma 4.4. We partition RN+1 into three subsets and consider uγ on each of these three
subsets, which we illustrate in Figure 4.1. On the first set, RL for L ∈ (M,∞), we take advantage of
the fact that fγ , Jγ , and the relative entropy all look like ∥uγ − u∥2 locally, up to an O(γ2) term. On
the second set, BK \ RL, where BK is a norm ball in RN+1, we use the fact that neither fγ nor Jγ

nor qγ blow up on compact sets. Finally, in the third set we use that fγ and Jγ grow linearly in either
∥uγ∥ or û0(α̂γ(uγ)) for large ∥uγ∥ while hγ(uγ) grows at least linearly in ∥uγ∥ or û0(α̂γ(uγ)).

(i) We begin with (uγ ,u) ∈ RL×RM for an L ∈ (M,∞). (The reason for choosing L > M is given
in case (ii) below.) When fγ is sufficiently smooth there exists an w on the line connecting uγ

and u such that
fγ(uγ |u) = (f ′′

γ (w)(uγ − u))(uγ − u) . (4.29)
In our case, fγ indeed possesses the requisite smoothness: We can write fγ as fγ = g ◦ α̂γ ,
where g(α) = ⟨vmGα⟩. The function g is smooth and its derivatives are bounded over any
bounded set. Note that w ∈ Conv(RL), and since RL ⊂⊂ R and R is convex, we also know
Conv(RL) ⊂⊂ R. Thus we define

L̃ := sup
w∈Conv(RL)

∥α̂(w)∥ <∞. (4.30)

Since α̂γ(w) is continuous with respect to γ for γ ∈ [0,∞) (where α̂γ=0 = α̂ when w ∈ R) [1,
§3.1] and ∥α̂γ(w)∥ is a decreasing function of γ (recall (4.12)) we have

L̃ = sup
w∈Conv(RL)

γ∈(0,∞)

∥α̂γ(w)∥. (4.31)
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CONVERGENCE OF THE ENTROPY-BASED MOMENT EQUATIONS

BKR

RLRM

u0

u1

Figure 1. The sets used in the proof of Lemma 4.4. For this figure, we consider the
M1 case in slab geometry: V = [−1, 1], m(v) = (1, v). In this case, the realizable set is
given by R = {(u0, u1) : |u1| < u0}, and we used M = 1, L = 1.3, and K = 8.

Thus it is clear that we only consider g and its derivatives within a bounded set. Furthermore,
when bounded away from the boundary of R, α̂γ(u) is a smooth function of u, and this smooth-
ness is uniform for γ ∈ (0, γ0). For example, α̂�

γ = h��γ (recall (2.23c)), and from (4.24) we have

�h��γ(w)� ≤ C
h��,�L for w ∈ RL. The second derivative α̂��

γ can be similarly bounded, but we omit

this more tedious computation.

So we define

Cf ��,L := sup
w∈Conv(RL)

γ∈(0,γ0)

�f ��γ (w)� (4.32)

for some γ0 ∈ (0,∞) and conclude

�fγ(uγ |u)� ≤ Cf ��,L�uγ − u�2 (4.33)

for (uγ ,u) ∈ RL ×RM .

We now turn to Jγ . The deciding factor in Jγ is (f �(u)−f �γ(u)); to estimate it we use fγ = f ◦û◦α̂γ ,

the Lipschitz continuity of f � on RM (guaranteed by (4.32)), and the accuracy inequality

�û(α̂γ(u))− u� ≤ Mγ (4.34)
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Figure 4.1. The sets used in the proof of Lemma 4.4. For this figure, we consider the
M1 case in slab geometry: V = [−1, 1], m(v) = (1, v). In this case, the realizable set is
given by R = {(u0, u1) : |u1| < u0}, and we used M = 1, L = 1.3, and K = 8.

Thus it is clear that we only consider g and its derivatives within a bounded set. Furthermore,
when bounded away from the boundary of R, α̂γ(u) is a smooth function of u, and this
smoothness is uniform for γ ∈ (0, γ0). For example, α̂′

γ = h′′
γ (recall (2.23c)), and from (4.24)

we have ∥h′′
γ(w)∥ ≤ C

h′′,L̃
for w ∈ RL. The second derivative α̂′′

γ can be similarly bounded,
but we omit this more tedious computation. So we define

Cf ′′,L := sup
w∈Conv(RL)

γ∈(0,γ0)

∥f ′′
γ (w)∥ (4.32)

for some γ0 ∈ (0,∞) and conclude
∥fγ(uγ |u)∥ ≤ Cf ′′,L∥uγ − u∥2 (4.33)

for (uγ ,u) ∈ RL × RM . We now turn to Jγ . The deciding factor in Jγ is (f ′(u) − f ′
γ(u)); to

estimate it we use fγ = f ◦ û◦ α̂γ , the Lipschitz continuity of f ′ on RM (guaranteed by (4.32)),
and the accuracy inequality

∥û(α̂γ(u))− u∥ ≤Mγ (4.34)
from [1, Thm. 2] as follows:

∥f ′(u)− f ′
γ(u)∥ = ∥f ′(u)− f ′(û(α̂γ(u)))(û ◦ α̂γ)′(u)∥ (4.35a)

= ∥f ′(u)− f ′(u)(û ◦ α̂γ)′(u)
+ f ′(u)(û ◦ α̂γ)′(u)− f ′(û(α̂γ(u)))(û ◦ α̂γ)′(u)∥ (4.35b)

≤ ∥f ′(u)(I − (û ◦ α̂γ)′(u))∥
+ ∥(f ′(u)− f ′(û(α̂γ(u))))(û ◦ α̂γ)′(u)∥ (4.35c)
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≤ C1γ∥h′′
γ(u)∥+ Cf ′′,MMγ∥(û ◦ α̂γ)′(u)∥ (4.35d)

≤ (C1Ch′′,M + Cf ′′,MMC2)γ (4.35e)
=: C4γ, (4.35f)

where we define C4 := C1Ch′′,M + Cf ′′,MMC2. In (4.35d) we have used
I − (û ◦ α̂γ)′(u) = γh′′

γ(u), (4.36)
which is a straightforward computation using û′ = h′′

∗ and α̂′
γ(u) = (h′′

∗(α̂γ(u)) + γI)−1

(see (2.23c)). In this step we are also able to use Cf ′′,M because ∥α̂γ(u)∥ is a decreasing
function of γ (recall (4.12)).

With (4.35) and the bound on h′′
γ from (4.24) we can bound Jγ by

∥Jγ(uγ ,u)∥ ≤ ∥uγ − u∥∥h′′
γ(u)∥∥f ′(u)− f ′

γ(u)∥ (4.37a)
≤ ∥uγ − u∥Ch′′,MC4γ (4.37b)

≤
Ch′′,MC4

2
(
γ2 + ∥uγ − u∥2

)
, (4.37c)

where for the last step we have applied Young’s inequality. Finally, we must bound hγ(uγ |u)
similarly from below. This follows immediately from (4.24):

hγ(uγ |u) = (uγ − u) · h′′
γ(w)(uγ − u) ≥ λmin,h′′,L̃

∥uγ − u∥2 (4.38)

for all (uγ ,u) ∈ RL ×RM and w is the appropriate vector in Conv(RL) from the mean-value
theorem. Altogether we have

∥fγ(uγ |u)∥ ≤
Cf ′′,L

λmin,h′′,L̃

hγ(uγ |u) (4.39)

∥Jγ(uγ ,u)∥ ≤ Ch′′,MC4
2λmin,h′′,L̃

hγ(uγ |u) + Ch′′,MC4
2 γ2 (4.40)

for (uγ ,u) ∈ RL ×RM .

(ii) We now consider uγ ∈ BK \ RL for the ball BK := {w ∈ RN+1 : ∥w∥ ≤ K}. Since BK is a
compact set, we know that the constants

Cf ,K := sup
uγ∈BK\RL

u∈RM

γ∈(0,γ0)

∥fγ(uγ |u)∥ (4.41)

CJ,K := sup
uγ∈BK\RL

u∈RM

γ∈(0,γ0)

∥Jγ(uγ ,u)∥ (4.42)

are finite for any γ0 ∈ (0,∞). Indeed with (4.4), (4.11), (4.20), and (4.24) we immediately have
the crude upper bounds

Cf ,K ≤ C1((C2 + 1)(K + uM ) + 2C3) and CJ,K ≤ 2(K + uM )Ch′′,MC1. (4.43)
To bound hγ(uγ |u) from below we use Ch,M,L from Lemma 4.6. (Note that here L > M is
crucial: this lower bound is not strictly positive for L ≤M .) Altogether we have

∥fγ(uγ |u)∥ ≤
Cf ,K

Ch,M,L
hγ(uγ |u) and ∥Jγ(uγ ,u)∥ ≤ CJ,K

Ch,M,L
hγ(uγ |u). (4.44)

Up to now, K is arbitrary; in the next and final case we give a lower bound that K must
satisfy.
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(iii) Finally, for uγ ∈ RN+1 \ BK , how we proceed depends on which term in hγ dominates: when
û0(α̂γ(uγ)) is large, we use the entropy term, otherwise we use the quadratic term. To dis-
tinguish these two subcases, let δ ∈ (0, 1). The following arguments work for any value of
δ ∈ (0, 1); the particular choice of δ merely affects the value of the constants Cf and CJ .

(a) ∥û(α̂γ(uγ))∥ ≤ δ∥uγ∥
Here, we use the quadratic term of the relative entropy to dominate the linear term of
the relative flux. We bound the relative flux by

∥fγ(uγ ,u)∥ ≤ C1∥û(α̂γ(uγ))∥+ C1∥uγ∥+ C1(C2uM + C3) + C1uM

≤ C1(1 + δ)∥uγ∥+ C1((C2 + 1)uM + C3), (4.45)
Jγ by

∥Jγ(uγ ,u)∥ ≤ 2C1Ch′′,M (∥uγ∥+ uM ), (4.46)
and the relative entropy by

hγ(uγ |u) ≥ h(û(α̂γ(uγ))) + 1
2γ (∥uγ∥ − ∥û(α̂γ(uγ))∥)2 − hM −M(∥uγ∥+ uM )

≥ |V |ηmin + (1− δ)2

2γ0
∥uγ∥2 − hM −M(∥uγ∥+ uM ) (4.47)

where we use ηmin := minz≥0 η(z), and in the first inequality we have used that ∥α̂γ(u)∥
is a decreasing function of γ (recall (4.12)). Then the application of Lemma 4.5 with
z = ∥uγ∥ and f(z) = (1− δ)2z2/(2γ0)−Mz gives the following conditions on K, Cf , and
CJ :

(1− δ)2

γ0
K2 −MK > hM +MuM − 2ηmin,

(1− δ)2

γ0
K > M, (4.48)

Cf ≥ max

 C1(1 + δ)K + C1((C2 + 1)uM + C3)
(1−δ)2

γ0
K2 −MK + |V |ηmin − hM −MuM

,
C1(1 + δ)

(1−δ)2

γ0
K −M

 , and

CJ ≥ max

 2C1Ch′′,M (K + uM )
(1−δ)2

γ0
K2 −MK + |V |ηmin − hM −MuM

,
2C1Ch′′,M

(1−δ)2

γ0
K −M


(4.49)

(b) ∥û(α̂γ(uγ))∥ > δ∥uγ∥
In this case, we know that û(α̂γ(uγ)) is not arbitrarily small and therefore formulate our
bounds in terms of û0(α̂γ(uγ)). First, for the upper bounds we have, using (4.2),

∥fγ(uγ ,u)∥ ≤
(
C1C0 + C1

C0
δ

)
û0(α̂γ(uγ)) + C1(C2uM + C3) + C1uM , and (4.50)

∥Jγ(uγ ,u)∥ ≤ 2C1Ch′′,M

(
C0
δ
û0(α̂γ(uγ)) + uM

)
. (4.51)

For the lower bound on the entropy, notice that by Jensen’s inequality

⟨η(g)⟩ ≥ |V |η
( 1
|V |
⟨g⟩
)
, (4.52)

from which it follows that
h(u) ≥ |V |η

( 1
|V |

u0

)
, (4.53)

for any realizable u. Thus for the relative entropy we have

hγ(uγ |u) ≥ |V |η
( 1
|V |

û0(α̂γ(uγ))
)
− hM −M

(
C0
δ
û0(α̂γ(uγ)) + uM

)
. (4.54)
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Now, with the lower bound on û0(α̂γ(uγ)), namely,

û0(α̂γ(uγ)) ≥ 1
C0
∥û(α̂γ(uγ))∥ ≥ δ

C0
∥uγ∥ ≥

δK

C0
(4.55)

we can apply Lemma 4.5 with z = û0(α̂γ(uγ)) and f(z) = |V |η(z/|V |)−MC0z/δ. Here
the conditions on K, Cf , and CJ become

|V |η
(

δK

|V |C0

)
−MK > hM +MuM , η′

(
δK

|V |C0

)
>
MC0
δ

, (4.56)

Cf ≥ max

 C1((δ + 1)K + (C2 + 1)uM + C3)
|V |η

(
δK

|V |C0

)
−MK − hM −MuM

,
C1C0

(
1 + 1

δ

)
η′
(

δK
|V |C0

)
− MC0

δ

 , and

CJ ≥ max

 2C1Ch′′,M (K + uM )
|V |η

(
δK

|V |C0

)
−MK − hM −MuM

,
2C0C1Ch′′,M

δ
(
η′
(

δK
|V |C0

)
− MC0

δ

)


(4.57)

Altogether we get (4.25) for

Cf = max

 Cf ′′,L

λmin,h′′,L̃

,
Cf ,K

Ch,M,L
,

C1(1 + δ)K + C1((C2 + 1)uM + C3)
(1−δ)2

γ0
K2 −MK + |V |ηmin − hM −MuM

,

C1(1 + δ)
(1−δ)2

γ0
K −M

,
C1((δ + 1)K + (C2 + 1)uM + C3)
|V |η

(
δK

|V |C0

)
−MK − hM −MuM

,
C1C0

(
1 + 1

δ

)
η′
(

δK
|V |C0

)
− MC0

δ

 , (4.58)

CJ = max

 Ch′′,MC4
2λmin,h′′,L̃

,
CJ,K

Ch,M,L
,

2C1Ch′′,M (K + uM )
(1−δ)2

γ0
K2 −MK + |V |ηmin − hM −MuM

,

2C1Ch′′,M

(1−δ)2

γ0
K −M

,
2C1Ch′′,M (K + uM )

|V |η
(

δK
|V |C0

)
−MK − hM −MuM

,
2C0C1Ch′′,M

δ
(
η′
(

δK
|V |C0

)
− MC0

δ

)
 , and (4.59)

DJ = Ch′′,MC4
2 , (4.60)

where K satisfies (4.48) and (4.56).

The source term

Lemma 4.7. Let η be a superlinear kinetic entropy function, M ∈ (0,∞), and γ0 ∈ (0,∞). Then
there exist positive constants Cq and Dq such that

qγ(uγ ,u) ≤ Cqhγ(uγ |u) +Dqγ
2 ∀uγ ∈ RN+1,u ∈ RM , γ ∈ (0, γ0). (4.61)

Proof. We use the same lower bounds just derived for the relative entropy hγ(uγ |u) in Lemma 4.4.
Thus we only need to give upper bounds of qγ on the same decomposition of RN+1 ×RM used in the
proof of Lemma 4.4.

(i) Let (uγ ,u) ∈ RL ×RM . To write down an upper bound of qγ , we define the constants
Ch′′′ = sup

v∈Conv(RL)
γ∈(0,γ0)

∥h′′′
γ (v)∥ and rM = sup

v∈RM

∥r(v)∥, (4.62)

all finite by smoothness of hγ and r and compactness of Conv(RL) and RM , and we use
∥û(α̂γ(uγ))− u∥ ≤ ∥uγ − u∥+Mγ, (4.63)

16



Convergence of the entropy-based moment equations

which follows from u ∈ RM [1, Thm. 2]. Then we rearrange qγ and straightforwardly get the
estimate
qγ(uγ ,u) = (h′

γ(uγ)− h′
γ(u)) · (rγ(uγ)− r(u))

+ (h′
γ(uγ)− h′

γ(u)− h′′
γ(u)(uγ − u)) · r(u) (4.64a)

≤ (C
h′′,L̃

Cr + rMCh′′′)∥uγ − u∥2 + C
h′′,L̃

CrMγ∥uγ − u∥ (4.64b)

≤ (C
h′′,L̃

Cr + rMCh′′′)∥uγ − u∥2 +
C

h′′,L̃
CrM

2
(
γ2 + ∥uγ − u∥2

)
, (4.64c)

which appropriately mirrors (4.33) and (4.37).

(ii) Now for the case uγ ∈ BK \ RL (where again BK := {w ∈ Rn : ∥w∥ ≤ K}), we first use
h′

γ(uγ) · rγ(uγ) ≤ 0 to get
qγ(uγ ,u) ≤ −h′

γ(u) · rγ(uγ)− r(u) · (h′′
γ(u)(uγ − u)) (4.65)

As with the flux, none of these terms blow up for (uγ ,u) ∈ BK ×RM for any finite K:
Cq,K,γ0 := sup

uγ∈BK\Conv(RL)
u∈RM

γ∈(0,γ0)

−h′
γ(u) · rγ(uγ)− r(u) · (h′′

γ(u)(uγ − u)) (4.66a)

≤MCr(C2K + C3) + rMCh′′,M (K + uM ). (4.66b)

(iii) For large uγ we show, as with the flux, that qγ grows linearly with ∥uγ∥ when û(α̂γ(uγ)) is small
and linearly with û0(α̂γ(uγ)) otherwise. Indeed, if for δ ∈ (0, 1) we have ∥û(α̂γ(uγ))∥ ≤ δ∥uγ∥,
then

qγ(uγ ,u) ≤MCrδ∥uγ∥+ rMCh′′,M (∥uγ∥+ uM ), (4.67)
i.e., linear growth in ∥uγ∥ as in (4.45) and (4.46). On the other hand, when ∥û(α̂γ(uγ))∥ >
δ∥uγ∥, then

qγ(uγ ,u) ≤MCrC0û0(α̂γ(uγ)) + rMCh′′,M

(
C0
δ
û0(α̂γ(uγ)) + uM

)
, (4.68)

which is linear growth in û0(α̂γ(uγ)) as in (4.50) and (4.51).

Now we simply need to change the numerators from the flux case above to get (4.61) for

Cq ≥ max


(C

h′′,L̃
Cr + rMCh′′′) +

C
h′′,L̃

CrM

2

λmin,h′′,L̃

,
Cq,K,γ0

Ch,M,L
,

MCrδK + rMCh′′,M (K + uM )
(1−δ)2

γ0
K2 −MK + |V |ηmin − hM − C0v0,M

,
MCrδ + rMCh′′,M

(1−δ)2

γ0
K −M

,

MCrδK + rMCh′′,M (K + uM )
|V |η

(
δK

|V |C0

)
−MK − hM −MuM

,
MCrC0 + rMCh′′,M

C0
δ

η′
(

δK
|V |C0

)
− MC0

δ

 (4.69)

for some K and δ satisfying the same conditions as for the flux term, and

Dq :=
C

h′′,L̃
CrM

2 . (4.70)

Lemmas 4.4 and 4.7 yield a more precise version of Theorem 3.4:
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Corollary 1. Let η be a superlinear kinetic entropy function and u a Lipschitz solution of the entropy-
based moment equations (3.1), with Cu as in Theorem 3.4, for which there exists M ∈ (0,∞) such
that u(t, x) ∈ RM for all (t, x) ∈ [0, T ]×X. Let {uγ}γ∈(0,γ0) be a family of entropy solutions of (3.2).

Then ∥∇xα̂γ(u)∥L∞([0,T ]×X) ≤ Ch′′,MCu, and∫
X
hγ(uγ(T, x)|u(T, x)) dx ≤ exp(CT )DTγ2 (4.71)

for C := Ch′′,MCuCf + CuCJ + Cq and D := CuDJ + Dq, where the constants Cf , CJ , Cq, DJ , and
Dq are given by Lemmas 4.4 and 4.7.

Corollary 2. Let η, u, and uγ satisfy the conditions of Corollary 1 and L ∈ (M,∞), and consider

XL := {x ∈ X : uγ(T, x) ∈ RL}.

Then, there exists a constant CL1 > 0 such the following estimate holds:

λmin,h′′,L̃
∥uγ(T, · )− u(T, · )∥2L2(XL) + CL1∥uγ(T, · )− u(T, · )∥L1(X\XL) ≤ exp(CT )DTγ2 (4.72)

Proof. For uγ ∈ RL we have (cf. (4.38))
hγ(uγ |u) ≥ λmin,h′′,L̃

∥uγ − u∥2 (4.73)

For uγ ∈ RN+1\RL, we can use the lower bounds on the relative entropy from the proof of Lemma 4.4
to show that the relative entropy grows at least linearly with uγ , i.e., that there exists a CL1 ∈ (0,∞)
such that

hγ(uγ |u) ≥ CL1∥uγ − u∥. (4.74)
First, for uγ ∈ BK \ RL (where K must be big enough that RM ⊂ BK), since ∥uγ − u∥ ≤ 2K, we
simply have

hγ(uγ |u) ≥ Ch,M,L ≥
Ch,M,L

2K ∥uγ − u∥. (4.75)
This gives the first upper bound on CL1 .
For uγ ∈ RN+1\BK , we can quickly see that the lower bounds (4.47) and (4.54) both grow superlinearly
in ∥uγ∥. For the first subcase, we have

hγ(uγ |u) ≥ |V |ηmin + (1− δ)2

2γ0
∥uγ∥2 − hM −M(∥uγ∥+ uM ) (4.76)

Here we can apply Lemma 4.5 with C = 1, b = 0 and a playing the role of CL1 to see that K and CL1

must satisfy

CL1K ≤ |V |ηmin + (1− δ)2

2γ0
K2 − hM −M(K + uM ) and CL1 ≤

(1− δ)2

γ0
K −M. (4.77)

We note that clearly for any CL1 one can always find a large enough K such that these conditions are
satisfied.
For the second subcase, instead of using (4.54) directly we estimate the last term as in (4.47) to get

hγ(uγ |u) ≥ |V |η
( 1
|V |

û0(α̂γ(uγ))
)
− hM −M(∥uγ∥+ uM ), (4.78)

and then we require that so that η is monotone increasing and we apply (4.55) to get

hγ(uγ |u) ≥ |V |η
(

δ

|V |C0
∥uγ∥

)
− hM −M(∥uγ∥+ uM ). (4.79)

This inequality only holds if we are in the range of values where η is monotonically increasing, so K
must be large enough that (δK)/(|V |C0) ≥ argmin η. Again we can apply Lemma 4.5 as above, with
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C = 1, b = 0 and a playing the role of CL1 to get the conditions

CL1K ≤ |V |η
(

δK

|V |C0

)
− hM −M(K + uM ) and CL1 ≤

δ

C0
η′
(

δK

|V |C0

)
−M (4.80)

As above, since η grows superlinearly, for any CL1 one can always find a large enough K such that
these conditions are satisfied.
Thus we conclude that there exists a CL1 such that

hγ(uγ |u) ≥ CL1∥uγ − u∥ for all (uγ ,u) ∈ RN+1 \ RL ×RM . (4.81)

4.4. The sublinear case

In contrast to the Maxwell–Boltzmann-like entropies, the entropies η we consider in this class are not
bounded from below but limz→∞ η′(z) = 0. Consequently Dom(η∗) ⊆ (−∞, 0), and the multipliers
must satisfy α ·m < 0 for all v ∈ V . For such entropies we replace the assumption in (4.19) with

u ∈ RM,m := {û(α) : ∥α∥ ≤M and α ·m(v) ≤ −m for all v ∈ V } , (4.82)

for some M ∈ (0,∞) and m ∈ (0,∞). Note that as M → ∞ and m → 0, the set RM,m approaches
the full realizable set R. Related to the parameter m is

p0 := − sup
w∈RM,m

γ∈(0,γ0)
v∈V

α̂γ(w) ·m(v) > 0; (4.83)

for some γ0 ∈ (0,∞).
The additional condition parameterized by m in RM,m ensures that the ansatz Gα in the sublinear

case is bounded away from zero. In the superlinear case, the ansätze Gα for α ∈ RM are already
bounded away from zero, but this is not so for the sublinear case, where α must also fulfill α ·m(v) < 0
for all v ∈ V .

Note that uM,m and hM,m can be defined as in (4.20):
uM,m := sup

w∈RM,m

∥w∥ and hM,m := sup
w∈RM,m

h(w); (4.84)

both are finite. We can also derive similar bounds on h′′
γ . Let c be the unit-length eigenvector associated

with the largest eigenvalue of (hγ)′′
∗(α̂γ(u)) for some u ∈ RM,m

λmax((hγ)′′
∗(α̂γ(u))) = c ·

(〈
mmT η′′

∗(α̂γ(u) ·m)
〉

+ γI
)

c (4.85a)

=
〈
(c ·m)2η′′

∗(α̂γ(u) ·m)
〉

+ γ (4.85b)

≤ |V |
(

sup
y∈[−M,−p0]

η′′
∗(y)

)
+ γ0 (4.85c)

for γ ≤ γ0. Similarly, if we now let c be the unit-length eigenvector associated with the smallest
eigenvalue of (hγ)′′

∗(α̂γ(u)) for u ∈ RM,m we have

λmin((hγ)′′
∗(α̂γ(u))) =

〈
(c ·m)2η′′

∗(α̂γ(u) ·m)
〉

+ γ ≥ |V | inf
y∈[−M,−p0]

η′′
∗(y). (4.86)

Thus for the sublinear case there exist positive constants λmin,h′′,M,m and Ch′′,M,m such that

v · h′′
γ(u)v ≥ λmin,h′′,M,m∥v∥2

∥h′′
γ(u)∥ ≤ Ch′′,M,m

for all v ∈ RN+1, u ∈ RM , and γ ∈ (0, γ0); (4.87)
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(cf. the superlinear case (4.24)).

Lemma 4.8. Let η be a sublinear kinetic entropy function, M ∈ (0,∞), m ∈ (0,∞), and γ0 ∈ (0,∞).
Then there exist positive constants Cf , CJ , DJ , Cq and Dq such that

∥fγ(uγ |u)∥ ≤ Cfhγ(uγ |u)
∥Jγ(uγ ,u)∥ ≤ CJhγ(uγ |u) +DJγ

2

qγ(uγ ,u) ≤ Cqhγ(uγ |u) +Dqγ
2
∀uγ ∈ RN+1,u ∈ RM,m, γ ∈ (0, γ0). (4.88)

Proof. Because it is so similar to the superlinear case, we only sketch the proof for the sublinear
case.
For sublinear η, the estimates of fγ(uγ |u), Jγ(uγ ,u), qγ(uγ ,u) and hγ(uγ |u) on BK ×RM,m can be
derived just as in the superlinear case for BK ×RM , as well as the estimates of fγ(uγ |u), Jγ(uγ ,u),
and qγ(uγ ,u) for large uγ in (4.45), (4.46), (4.67), (4.50), (4.51), and (4.68). The lower bound of
hγ(uγ |u), however, in (4.47) is no longer possible when η is not bounded from below, and Lemma 4.5
can no longer be applied to (4.54) because the right-hand side does not grow as û0(α̂γ(uγ))→∞.
In the subcase ∥û(α̂γ(uγ))∥ ≤ δ∥uγ∥, we first apply a combination of the bounds on individual terms
from above to get

hγ(uγ |u) ≥ |V |η
( 1
|V |

û0(α̂γ(uγ))
)

+ (1− δ)2

2γ0
∥uγ∥2 − hM,m −M∥uγ∥ −MuM,m. (4.89a)

Now we recognize that û0(α̂γ(uγ)) ≤ ∥û(α̂γ(uγ))∥ and then use that η is a monotonically decreasing
function to conclude

hγ(uγ |u) ≥ |V |η
(
δ

|V |
∥uγ∥

)
+ (1− δ)2

2γ0
∥uγ∥2 − hM,m −M∥uγ∥ −MuM,m. (4.89b)

Now thanks to the convexity of η, we can apply Lemma 4.5 with

f(z) = |V |η
(
δz

|V |

)
+ (1− δ)2z2

2γ0
−Mz. (4.90)

In the other subcase, where ∥û(α̂γ(uγ))∥ > δ∥uγ∥, we use the assumption (4.82) and the first-order
necessary condition (2.20) to get

hγ(uγ |u) = h(û(α̂γ(uγ))) + γ

2∥α̂γ(uγ)∥2 − h(û(α̂γ(u)))− γ

2∥α̂γ(u)∥2

− α̂γ(u) ·
(
û(α̂γ(uγ)) + γα̂γ(uγ)− û(α̂γ(u))− γα̂γ(u)

)
(4.91a)

= h(û(α̂γ(uγ)))− h(û(α̂γ(u)))− α̂γ(u) · (û(α̂γ(uγ))− û(α̂γ(u)))

+ γ

2 ∥α̂γ(uγ)− α̂γ(u)∥2 (4.91b)

≥ |V |η
( 1
|V |

û0(α̂γ(uγ))
)
− hM,m − α̂γ(u) · û(α̂γ(uγ))−MuM,m (4.91c)

= |V |η
( 1
|V |

û0(α̂γ(uγ))
)
− hM,m −

〈
α̂γ(u) ·mη′

∗(α̂γ(uγ) ·m)
〉
−MuM,m (4.91d)

≥ |V |η
( 1
|V |

û0(α̂γ(uγ))
)
− hM,m + p0û0(α̂γ(uγ))−MuM,m. (4.91e)

In the last step we have used η′
∗≥0. We are again ready to apply Lemma 4.5 with f(z)= |V |η(z/|V |)+

p0z to derive conditions on K, Cf , and CJ to achieve the desired estimate (4.88).

This immediately gives the following corollary.

Corollary 3. Let η be a sublinear kinetic entropy function and u a Lipschitz continuous solution of the
entropy-based moment equations (3.1), with Cu as in Theorem 3.4, for which there exist M ∈ (0,∞)
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and m ∈ (0,∞) so that u(t, x) ∈ RM,m for all (t, x) ∈ [0, T ] × X. Let {uγ}γ∈(0,γ0) be a family of
entropy solutions of (3.2) for γ ∈ (0, γ0).

Then ∥∇xα̂γ(u)∥L∞([0,T ]×X) ≤ Ch′′,M,mCu =: Cα̂, and∫
X
hγ(uγ(T, x)|u(T, x)) dx ≤ exp(CT )DTγ2 (4.92)

for C := Cα̂Cf + CuCJ + Cq and D := CuDJ +Dq, where the constants Cf , CJ , Cq, DJ , and Dq are
given by Lemma 4.8.

Under the assumptions of Corollary 3 a result analogous to that of Corollary 2 is easy to prove.

5. Numerical Results

We consider the toy problem from [1, 13]. There the authors considered the moment equations for the
linear kinetic equations in slab geometry (see e.g., [19]):

∂tf + v∂xf = σs

(1
2 ⟨f⟩ − f

)
. (5.1)

where V = [−1, 1] and σs ∈ [0,∞). For the spatial domain we take X = [0, 1].

Remark 5.1. More generally, the kinetic equation includes terms for absorption of particles by a
background medium as well as a source term, as in [1, 13]. In some test cases, absorption effects
can push the moment solution towards the boundary of R and create challenges for the entropy-
based moment method. However, for clarity of exposition we have left absorption terms out of our
analysis because (a) we can push our test problems towards the boundary of R simply using the
initial conditions and (b) the terms resulting from the absorption effects can be straightforwardly
incorporated into our theoretical analysis and do not affect our main results.

The corresponding entropy-based moment equations are
∂tu + ∂xf(u) = σsRu, (5.2)

where R = diag{0,−1, . . . ,−1}. For the basis functions we used the Legendre polynomials. We used
the Maxwell–Boltzmann entropy (4.16). The collision term r(u) = σsRu clearly satisfies Assumption 4.

For numerical computations we used the fourth-order Runge–Kutta discontinuous Galerkin (RKDG)
method as in [1] with 160 spatial cells and no slope limiter. With this spatial resolution the numerical
solutions were accurate enough to observe the convergence in γ.

The initial conditions we used are constructed as follows. Let ω(x) := 1
2M0(1 + cos(2πx)) be a

periodic function which we use to define the multiplier vector

β(x) =


log

(
ω(x)

2 sinh(ω(x))

)
ω(x)

0
...
0

 (5.3)

Then the initial conditions are given by
u0(x) = ⟨m exp(β(x) ·m)⟩ . (5.4)

Note that β0 is chosen such that the zeroth order moment of the initial condition is one, i.e., u0
0(x) ≡ 1.

The solution u(t, x) of the original entropy-based moment equations with these initial conditions
satisfies the assumption u(t, x) ∈ RM of Corollary 1 for M ≈ M0. Indeed the maximum value of
∥α̂(u(t, x))∥ in space tends to decrease as time advances depending on the value of σs: the larger σs
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is, the faster the norms of the multipliers decrease in time. For σs = 0, the value of maxx ∥α̂(u(t, x))∥
is nearly constant in time.

We ran the solutions until the final time T = 0.1. We used various values of N up to 15 and found
that the results did not depend qualitatively on the value of N . We tried several values of σs from zero
to one and here did observe that the results depended on the value of σs: for very small values of σs
the solutions appear not to enter the regime of second-order convergence until γ is very small, on the
order of 10−11. Such values of γ are so small, that for these solutions the error due to the numerical
optimizer started to dominate errors due to the regularization.

We remind the reader that in order to evaluate the flux function fγ we compute the multiplier vector
α̂γ by numerically solving the dual problem (2.19). We used the numerical optimizer described in [1]
but found that for problems with σs = 0 the value of tolerance τ on the norm of the dual gradient
used in the stopping criterion, namely τ = 10−7, was not small enough to observe convergence in γ
for the very small values of γ where the equations enter the regime of second-order convergence. The
difficulty here is that, in our experience, one cannot reliably bring the norm of the dual gradient below
10−7 when the norm of the multipliers at the solution is about ten or bigger.

But for smaller values of M0, we found that using a combination of the smaller tolerance τ = 10−8

as well as modifying the optimizer to make efforts to further reduce the norm of the dual gradient
when possible allowed us to decrease the numerical errors from the optimizer enough so that we could
observe near second-order convergence. This modification is described in pseudocode in Algorithm 1
and works as follows: The optimizer runs as usual until the norm of the dual gradient is smaller than
τ . Then, the optimizer continues to take up to ℓmax additional iterations to bring the norm of the dual
gradient under the smaller tolerance τd ∈ (0, τ), which we call the desired tolerance. If the optimizer is
unable to bring the norm of the dual gradient under τd in ℓmax additional iterations, the optimizer still
exits successfully (as long as the current multiplier vector still satisfies the original stopping criterion).
In all of the results reported here, we used τd = 10−11 and ℓmax = 10.

Algorithm 1 The optimizer with modified stopping criterion
k ← 0
ℓ← 0
acceptable_tolerance_achieved← false
while k < kmax do

if (∥û(αk) + γαk − u∥ < τd) or (∥û(αk) + γαk − u∥ < τ and ℓ > ℓmax) then
return αk

end if
if acceptable_tolerance_achieved = false and ∥û(αk) + γαk − u∥ < τ then

acceptable_tolerance_achieved← true
end if
Compute search direction dk

Perform backtracking line search to determine backtracking parameter ξk

αk+1 ← αk + ξkdk

k ← k + 1
if acceptable_tolerance_achieved = true then
ℓ← ℓ+ 1

end if
end while

The results are given in Tables 5.1 to 5.3, which include the errors between the solution of the
original equations and the solutions of the regularized equations measured in the relative entropy as
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well as in the L2 and L∞ norms. The error measured in the relative entropy is

Hγ(uγ |u) :=
∫

X
hγ(uγ(T, x)|u(T, x)) dx, (5.5)

where we compute hγ(uγ |u) numerically using the formula

hγ(uγ |u) =
〈
η(Gα̂γ(uγ)|Gα̂γ(u))

〉
+ γ

2∥α̂γ(uγ)− α̂γ(u)∥2, (5.6)

where

η(Gα|Gβ) := η(Gα)− η(Gβ)− η′(Gβ)(Gα −Gβ) (5.7a)
= η(Gα)− η(Gβ)− (β ·m)(Gα −Gβ). (5.7b)

(For the second line we have used Gβ = η′
∗(β ·m) and η′ ◦ η′

∗ = id.) Formula (5.6) for hγ(uγ |u) can
be deduced by inserting (2.21) into (3.3) and simplifying, and it ensures the positivity of hγ(uγ |u)
despite errors due to the approximate computation of α̂γ(u). The spatial integrals are computed
using an eight-point Gauss quadrature on each of four subintervals in each spatial cell. The observed
convergence order ν between solutions computed with γ1 and γ2 is given by

Hγ1(uγ1 |u)
Hγ2(uγ2 |u) =

(
γ1
γ2

)ν

(5.8)

The L2 norm is computed using the same spatial quadrature, and the L∞ norm is approximated by
taking the maximum over these spatial quadrature points.

In Tables 5.1 and 5.2, second-order convergence is clear in the relative entropy until the value of the
relative entropy reaches about 10−17, which is below machine precision. These tables include varying
values of M0 and N . For σs ≥ 10−5, we observed second-order convergence for all values of N up to
15 that we tried and for M0 up to 200. For values of M0 larger than 200, it is too difficult to satisfy
the smaller optimization tolerance τ = 10−8. In all cases, we observe first-order convergence in the L2

norm as well as the L∞ norm.
For σs = 0, we were only able to solve the equations for smaller values of M0 and observed second-

order convergence for a smaller range of values of γ. These results can be found in Table 5.3, where
we have included results from additional values of γ between 10−9 and 10−11 to highlight the regime
of second-order convergence. In Table 5.3, we see that the observed convergence orders increase mono-
tonically to 1.99 and stay there until the value of the relative entropy goes below machine precision
and the L∞ norm is smaller than the optimization tolerance τ = 10−8. Indeed, at the final time, the
optimizer was not able to solve many of the problems to the desired tolerance τd = 10−11, and in
many of these problems, the tolerance τ is only barely fulfilled. Therefore errors on the order of 10−8

in the L2 and L∞ norms are not surprising, and this error of course also affects the computation of
the relative entropy.

6. Conclusions

The regularized entropy-based moment method for kinetic equations keeps many of the desirable
properties of the original entropy-based moment method but removes the requirement that the moment
vector of the solution remains realizable. This facilitates the design and implementation of high-
order numerical methods for the regularized moment equations. However, the regularized equations
require the selection of a regularization parameter, and the error caused by regularization needs to
be accounted for and balanced with other error sources. Our contribution is to rigorously prove the
convergence as the regularization parameter goes to zero expected by formal arguments and to provide
convergence rates. Numerical experiments show that these rates are indeed optimal.
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γ Hγ ν L2 ν L∞ ν

10−3 3.977e-05 – 2.010e-03 – 3.939e-03 –
10−4 5.319e-07 1.87 2.115e-04 0.98 3.970e-04 1.00
10−5 5.439e-09 1.99 2.123e-05 1.00 3.948e-05 1.00
10−6 5.454e-11 2.00 2.131e-06 1.00 3.971e-06 1.00
10−7 5.504e-13 2.00 2.136e-07 1.00 3.667e-07 1.03
10−8 5.557e-15 2.00 2.147e-08 1.00 4.422e-08 0.92
10−9 5.886e-17 1.98 2.336e-09 0.96 5.671e-09 0.89
10−10 2.082e-18 1.45 3.110e-10 0.88 1.002e-09 0.75

Table 5.1. Convergence test: N = 9, σs = 1, M0 = 100. Parameters of the numerical
optimizer: τ = 10−8, τd = 10−11, ℓmax = 10.

γ Hγ ν L2 ν L∞ ν

10−3 1.196e-03 – 7.040e-03 – 2.040e-02 –
10−4 2.769e-04 0.64 2.490e-03 0.45 1.587e-02 0.11
10−5 3.442e-05 0.91 7.394e-04 0.53 6.236e-03 0.41
10−6 1.691e-06 1.31 1.336e-04 0.74 2.020e-03 0.49
10−7 2.033e-08 1.92 1.475e-05 0.96 2.168e-04 0.97
10−8 2.043e-10 2.00 1.481e-06 1.00 2.164e-05 1.00
10−9 2.130e-12 1.98 1.504e-07 0.99 2.199e-06 0.99
10−10 2.362e-14 1.96 1.569e-08 0.98 2.287e-07 0.98
10−11 2.380e-16 2.00 1.639e-09 0.98 2.415e-08 0.98

Table 5.2. Convergence test: N = 5, σs = 0.01, M0 = 150. Parameters of the numer-
ical optimizer: τ = 10−8, τd = 10−11, ℓmax = 10.

γ Hγ ν L2 ν L∞ ν

10−3 9.833e-06 – 1.112e-03 – 1.738e-03 –
10−4 8.398e-07 1.07 1.400e-04 0.90 2.146e-04 0.91
10−5 6.116e-08 1.14 1.634e-05 0.93 2.483e-05 0.94
10−6 3.136e-09 1.29 1.797e-06 0.96 2.636e-06 0.97
10−7 1.092e-10 1.46 1.885e-07 0.98 2.674e-07 0.99
10−8 2.255e-12 1.69 1.911e-08 0.99 2.679e-08 1.00
10−9 2.639e-14 1.93 1.916e-09 1.00 2.679e-09 1.00
10−9.25 8.420e-15 1.98 1.077e-09 1.00 1.509e-09 1.00
10−9.5 2.676e-15 1.99 6.060e-10 1.00 8.477e-10 1.00
10−9.75 8.499e-16 1.99 3.409e-10 1.00 4.776e-10 1.00
10−10 2.704e-16 1.99 1.919e-10 1.00 3.017e-10 0.80
10−10.25 8.711e-17 1.97 1.087e-10 0.99 1.886e-10 0.82
10−10.5 2.950e-17 1.88 6.189e-11 0.98 1.391e-10 0.53
10−10.75 9.893e-18 1.90 3.652e-11 0.92 1.182e-10 0.28
10−11 4.185e-18 1.49 2.256e-11 0.84 9.941e-11 0.30
10−12 1.801e-18 0.37 1.376e-11 0.21 6.393e-11 0.19

Table 5.3. Convergence test: N = 15, σs = 0, M0 = 8. Parameters of the numerical
optimizer: τ = 10−8, τd = 10−11, ℓmax = 10.
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Our results hold for wide classes of entropy functions including the Maxwell–Boltzmann entropy and
the Bose–Einstein entropy. Our analysis relies on some key assumptions: The solution to the original
moment equations needs to be Lipschitz and bounded away from the boundary of the set of realizable
states.

Relaxing our assumptions would of course strengthen our results. One would like to be able to work
with kinetic equations with unbounded velocity domains, but here the original moment equations have
fundamental problems [14, 15, 16] which remain in the regularized equations. Nevertheless, the Euler
equations, which are a case of the entropy-based moment method, do not have these problems and
would be an interesting starting point for extending our analysis. One would also like to allow the
solution to have values arbitrarily close to or even on the boundary of the realizable set, but not enough
work has been done to consider the behavior of the moment equations near or on the boundary of the
realizable set, such as in [8]. It is not even known whether the realizable set is invariant under the time
evolution of the original entropy-based moment equations. Finally, requiring a Lipschitz continuous
solution to the limiting system is typical for relative entropy estimates, see [9], and in multiple space
dimensions this is connected with non-uniqueness of entropy solutions for certain moment systems
such as the Euler equations.

Appendix A. Constants

Here we list some the constants which play the most significant roles throughout the paper. Each
constant is a strictly positive real number.

C0: Used to control the norm of a realizable moment vector using its zeroth entry: ∥u∥ ≤ C0u0
for all u ∈ R, where u0 is the zeroth component of u. Introduced in (4.2).

C1: Global Lipschitz constant of f . See (4.3).

C2: Global Lipschitz constant of û ◦ α̂γ ; see (4.7).

C3: supγ∈(0,γ0) ∥û(α̂γ(0)∥, see (4.8). This is used to get the affine bound in (4.9).

C4: Used when bounding Jγ for (uγ ,u) ∈ RL × RM . Equal to C1Ch′′,max,M + Cf ′′,MMC2;
see (4.35).

uM : Upper bound on ∥u∥ in RM ; see (4.21).

hM : Upper bound on h(u) in RM ; see (4.21).

λmin,h′′,M : Lower bound on the smallest eigenvalue of h′′
γ over RM and γ ∈ (0, γ0); see (4.24) and

for the corresponding constant in the sublinear case (4.87).

Ch′′,M : Upper bound on ∥h′′
γ∥ over RM and γ ∈ (0, γ0); see (4.24) and for the corresponding

constant in the sublinear case (4.87).

Cf ′′,L: Bound on the f ′′
γ over Conv(RL) and γ ∈ (0, γ0); see (4.32).

Ch,M,L: Lower bound on hγ(v|u) for (v,u) ∈ (RN+1\RL)×RM see Lemma 4.6 and Appendix D.

Cr: Lipschitz constant for r; see Assumption 4.
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Appendix B. Entropy relationships

In this appendix we quickly review the computations from [18] showing the relationships between h,
h∗, û, and α̂, in particular the key result that h′ = α̂. Start with the definition of the entropy h,

h(u) := min
g∈F(V )

{⟨η(g)⟩ : ⟨mg⟩ = u} , (B.1)

i.e., the minimal value of the primal problem (2.9) as a function of the moment vector. The corre-
sponding Lagrangian is given by

L(g,α) := ⟨η(g)⟩+ α · (u− ⟨mg⟩) , (B.2)

and thus the dual problem is

max
α∈RN+1

min
g∈F(V )

L(g,α) = max
α∈RN+1

α · u− ⟨η∗(α ·m)⟩ , (B.3)

cf. (2.12), where to get this equality one takes the minimization inside the integral and applies the
definition of the Legendre dual of η. Because the duality gap is zero [14, Thm. 16] we have

h(u) = max
α∈RN+1

{α · u− ⟨η∗(α ·m)⟩} , (B.4)

so h is the Legendre transformation of

h∗(α) := ⟨η∗(α ·m)⟩ . (B.5)

Its derivative is readily computed:

h′
∗(α) =

〈
mη′

∗(α ·m)
〉

=: û(α). (B.6)

Now, recall that α̂(u) in (2.12) is defined to be the multiplier vector that solves the dual prob-
lem (B.3). Then the first-order necessary conditions for the dual problem imply

û(α̂(u)) = u. (B.7)

The reverse, i.e., α̂(û(α)) = α, is a consequence of the uniqueness of the solution to the dual problem
(thanks to convexity). Thus α̂ is the inverse function of û. Finally, since the derivative of Legendre
duals are inverses of each other, we have

h′ = (h′
∗)−1 = û−1 = α̂. (B.8)

Appendix C. The regularized solution for zero vector as γ → 0

In this section we quickly consider

lim
γ→0

û(α̂γ(0)), (C.1)

where 0 ∈ RN+1. This comes up in Section 4.1 when deriving global estimates on the function û ◦ α̂γ

using Lipschitz continuity.
For convenience we assume that the basis functions are orthogonal to each other, which since

m0 ≡ 1 (recall Assumption 3) in particular implies that ⟨mi⟩ = ⟨m0mi⟩ = 0 for all i ∈ {1, . . . , N}.
As a consequence, most of the components of α̂γ(0) are easy to determine. Consider the first-order
necessary conditions:

0 =
〈
miη

′
∗(α̂γ(0) ·m)

〉
+ γα̂γ,i(0), i ∈ {0, 1, . . . , N}. (C.2)
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If we set α̂γ,i(0) = 0 for i ∈ {1, . . . , N}, then the entropy ansatz is constant in v, and by orthogonality
of {mi}, we see that the first-order necessary conditions are satisfied for i ∈ {1, . . . , N}. It remains to
determine the zeroth component α̂γ,0(0), for which we need to solve

0 = |V |η′
∗(α̂γ,0(0)) + γα̂γ,0(0). (C.3)

From this equation, it is clear that α̂γ,0(0) < 0 and thus that α̂γ,0(0) → −∞ monotonically (re-
call (4.12)) as γ → 0. The limiting value must be unbounded because 0 ̸∈ R. Now we recall that for
the η considered in this work we have Range(η′

∗) = Dom(η′) = (0,∞), and furthermore that η′
∗ is a

monotonically increasing function because η∗ is convex. Therefore η′
∗(α̂γ,0(0))→ 0 as γ → 0. It follows

that also û(α̂γ(0))→ 0.

Appendix D. Proof of Lemma 4.6

Let L ∈ (M,∞). We want to show

Ch,M,L := inf
v∈RN+1\RL

u∈RM

γ∈(0,γ0)

hγ(v|u) > 0. (D.1)

The basic idea is that, by strict convexity of hγ(v|u) in its first argument, it only achieves its
minimum value, zero, when v = u. But this is ruled out on (v,u) ∈ (RN+1 \ RL)×RM because
RN+1 \ RL ∩RM = ∅.

We can get a more explicit bound as follows. Let Q ∈ (M,L). We claim that for every v ∈ RN+1\RL

and u ∈ RM there exists a λQ ∈ (0, 1) such that

wQ := (1− λQ)u + λQv ∈ RL \ RQ. (D.2)

For v ∈ R \ RL this straightforward, because the function

f(λ) = ∥α̂((1− λ)u + λv)∥ (D.3)

is a continuous function with f(0) ≤ M and f(1) ≥ L. For v ∈ RN+1 \ R, by convexity of R there
exists a unique λR ∈ (0, 1) such that (1− λR)u + λRv ∈ ∂R. But then, since RL ⊂⊂ R, there must
also be a λL ∈ (0, λR) such that (1− λL)u + λLv ∈ R \RL, and so the first argument can be applied
again.

Now, for any (w,u) ∈ (RL \ RQ)×RM we have

hγ(w|u)
(4.38)
≥ λmin,h′′,L̃

∥w− u∥2 ≥ λmin,h′′,L̃
inf

w∈RL\RQ

u∈RM

∥w− u∥2 =: CL > 0 (D.4)

where the strict positivity follows from RM ∩RL \ RQ = ∅.
Finally, let (v,u) ∈ (RN+1 \RL)×RM and wQ be as in (D.2). By convexity of the relative entropy

in its first argument, we have

(1− λQ)hγ(u|u) + λQhγ(v|u) ≥ hγ(wQ|u) ≥ CL. (D.5)

But with hγ(u|u) = 0 and λQ ∈ (0, 1), we immediately have hγ(v|u) ≥ CL, and by taking the infimum
as in (D.1) we conclude Ch,M,L ≥ CL.
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