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Abstract. Second order macroscopic traffic flow models are able to reproduce the so-called capacity drop effect,
i.e., the phenomenon that the outflow of a congested region is substantially lower than the maximum achievable
flow. Within this work, we propose a first order model for a junction with ramp buffer that is solely modified at the
intersection so that the capacity drop is captured. Theoretical investigations motivate the new choice of coupling
conditions and illustrate the difference to purely first and second order models. The numerical example considering
the optimal control of the onramp merging into a main road highlights that the combined model generates similar
results as the second order model.
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1. Introduction

Starting with the pioneering works on the Lighthill–Whitham–Richards (LWR) model [36, 41], traffic
flow models based on scalar conservation laws, i.e., macroscopic traffic models, have received con-
siderable attention in the academic literature over the past decades. Macroscopic models are mainly
distinguished in first order models, which consist of a scalar conservation law for the traffic density,
and second order models, using a system of two conservation or balance laws with an additional equa-
tion for the mean traffic speed. The first order LWR model describes the time evolution of the traffic
density ρ. The main drawback of the LWR model is the direct link of the velocity and flux to the traffic
density, which does not allow for a correct description of traffic instabilities. Second order models have
been developed aiming to improve traffic descriptions. Aw, Rascle and Zhang [4, 45] introduced the
second order ARZ model which is capable to capture traffic instabilities and additionally overcame
the drawbacks of earlier developed second order models, see [12]. They introduced a pressure func-
tion p(ρ) in the dynamics. The pressure function represents an anticipation factor, which takes into
account the reaction of drivers to the traffic in front of them [18]. It defines the relation between the
density ρ and the speed v in the fundamental diagram via a Lagrangian marker w. In comparison to
the LWR model, the second order model enables to portray more important traffic phenomena [44].
Greenberg [21] extended the ARZ model with a relaxation term towards a preferred velocity. This
extension in turn was further generalized by [42]. Since then, the extension to traffic flow on road
networks has been investigated intensively, see for example [7, 10, 17, 19, 20, 23, 27, 28, 31]. The
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crucial point at intersections is the definition of suitable coupling conditions, i.e., conservation of mass
and possibly momentum in the case of second order models.

Many interesting effects within traffic dynamics related to congestion and traffic jams have been
investigated for microscopic, mesoscopic and macroscopic traffic models, see [25]. Among these effects,
the so-called capacity drop phenomenon is of interest [20, 23, 24, 34, 38]. The capacity drop is the
phenomenon that the outflow of a congested region is significantly lower than the maximum achievable
flow in this region. A capacity drop is observed when the traffic volume upstream of a bottleneck
increases, but the discharge flow leaving the bottleneck decreases in comparison to the flow measured
prior to the increase in traffic volume [9]. Studies conducted on freeways showed that the discharge flow
diminishes with the onset of upstream queues [5, 8, 22]. This results in a flow lower than the maximum
one. The traffic jams arising from the capacity drop at bottlenecks can even become permanent [24].

Specifically, in case of an onramp at a freeway, the capacity drop is explained by the fact that drivers
mutually impede each other, when too many vehicles try to access the main road [38]. Additionally,
drivers at the incoming road upstream from the onramp entry are impacted and might break and slow
down. While vehicles can decelerate fast, the acceleration process takes substantially longer [35].

The capacity drop has major influence on the traffic flow and is especially important in the consid-
eration of traffic control. In general, the observational findings indicate that approaches to control the
traffic density are promising for increasing bottleneck discharge flows [9].

Here, we completely stick to the LWR model to describe the dynamics on the roads. To mirror the
capacity drop effect, we put special emphasis on the intersections, where the velocities and Lagrangian
markers are incorporated to describe the dynamics. The capacity drop is achieved by a flow reduction
derived from second order dynamics rather than by an adaption of the fundamental diagram. We
therefore consider a first order macroscopic model on the roads and we merely apply adapted coupling
conditions of a second order macroscopic model at the junctions. This combination then allows to
model the capacity drop effect.

A similar approach has been considered in [26], where the LWR model was coupled to a kinetic
model at the junctions. Comparable to [26], the combined model is also able to cover the capacity
drop phenomenon. As in [13], our model is a first order model with a point constraint at the junction.
In both models, the supply function of the outgoing road incorporates information of the upstream
traffic conditions. The junction constraint in this work is motivated by the second order ARZ model
and combines the first order approach with some second order information. Using the combined model,
we apply a discrete optimization approach for the control of the onramp, see e.g. [19, 20, 40]. The
combined model serves as a suitable substitute model for a second order model when investigating
optimal control strategies for ramp metering.

The paper is organized as follows: In Section 2, we briefly recall the LWR and ARZ model. Sec-
tion 3.1 discusses the capacity drop. We construct our combined model in Section 3.2 with specific
emphasis on the respective demand and supply functions, which determine the flux at the junction.
The supply function is analyzed intensively in Section 3.3. In Section 4, we present a numerical com-
parison for several Riemann problems in the LWR and the combined model based on the discretization
in Section 4.1 and Section 4.2. The ability to capture the capacity drop is illustrated in Table 4.1.
Section 4.3 presents a comparison of the combined model with second order models. The numerical
discretization for second order models is introduced in Section 4.3.1 and comparisons of the combined
model with second order models are drawn in Section 4.3.2. The paper concludes with numerical
results for an optimal control problem for ramp metering in Section 4.3.3.
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A combined first and second order model

2. Models and notations for traffic flow

We consider a directed graph G = (V, E) with a finite number of roads e ∈ E and junctions k ∈ V.
The roads e are modeled by intervals (ae, be) with (possibly infinite) lengths Le = be − ae. Vehicles
are treated as a continuum with density ρ and velocity v. We shortly introduce two well-known first
and second order macroscopic approaches for traffic flow on networks and explain how they model a
junction with ramp buffer.

2.1. The LWR model

Given an initial density ρe(x, 0) and denoting ρe = ρe(x, t), the dynamics of the LWR model are
given by

∂tρe + ∂x (ρeV (ρe)) = 0, (x, t) ∈ (ae, be) × R≥0, (2.1)

on each road e. Here, we choose for each road e the linear velocity function

V (ρe) = vmax
(

1 − ρe

ρmax

)
, (2.2)

with maximum velocity vmax and maximum density ρmax as for example described in [17]. We denote
the concave flux function f(ρe) = ρeV (ρe). It holds that f(0) = f(ρmax) = 0 and the density ρmax/2
maximizes the flux in the interval [0, ρmax]. Traffic flow f and velocity V are directly coupled to the
traffic density ρ.

in ramp out

l(t), (1− β)

e = 1, β e = 2

Figure 2.1. 1-to-1 junction with an onramp.

In this work, we are especially interested in the dynamics at a junction with ramp buffer. Figure 2.1
illustrates the 1-to-1 junction with an onramp at the node ramp, which is examined in the following.
For simplicity, we assume as prescribed in (2.1) that the roads e = 1, 2 have the same parameters ρmax,
vmax. At the onramp traffic is allowed to enter the outgoing road e = 2 and the parameter β describes
the mixture of incoming traffic from road e = 1 and from the onramp. The quantity l(t) describes the
length of the queue at the ramp buffer and is modeled by the following ordinary differential equation
(ODE):

dl(t)
dt

= f in
or(t) − qor(t), t ∈ R≥0, (2.3)

where f in
or denotes a (possibly) time–dependent flux that enters the onramp from outside of the network

and qor is the flux that exits from the onramp to the outgoing road e = 2.
To define an initial value problem for this particular network structure, we consider Riemann data

on the incoming and outgoing road, i.e., ρe(x, 0) = ρ0
e, e = 1, 2 and a fixed inflow f in

or > 0 from the
onramp. The end of the incoming road is set to b1 = 0 and the beginning of the outgoing road to
a2 = 0, such that the junction is located at x = 0. Then, the (half-) Riemann problem for the roads
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and the evolution of the queue length at the junction reads

∂tρe + ∂x (ρeV (ρe)) = 0, (x, t) ∈ (ae, be) × R≥0, e = 1, 2,

ρe(x, 0) =
{

ρ+
e for x > 0

ρ−
e for x ≤ 0,

x ∈ (ae, be), e = 1, 2,

dl(t)
dt = f in

or − qor(t), t ∈ R≥0,

l(0) = l0.

(2.4)

Here, l0 ≥ 0 indicates the initial buffer load. Depending on whether the road is incoming or outgoing,
only one of the Riemann data ρ−

e , ρ+
e is defined for t = 0. In particular, for road e = 1 entering the

junction ρ−
1 = ρ0

1, and for the road e = 2 exiting the junction ρ+
2 = ρ0

2. The other datum as well as the
flux qor(t) exiting the onramp is defined by the solution through some suitable coupling conditions at
the junction. This will be the focus of this work. We fix a priority parameter β and define the mixture
rule:

(M1). In case that not all cars can enter the outgoing road, let q be the flux that can enter the
outgoing road. Then βq comes from the incoming road e = 1 and (1 − β)q comes from the onramp. In
case that the amounts βq (resp. (1 − β)q) cannot be served from the incoming road (resp. onramp),
we allow that the missing amount is filled up by the onramp (resp. incoming road).

We define solutions to (2.4) in the following, compare also [14].

Definition 2.1. A triple (ρ1, ρ2, l) is called an admissible weak solution to (2.4) if the following holds:

• The densities ρe : (ae, be) × [0, ∞) → [0, ρmax], e = 1, 2 are weak solutions such that∫ ∞

0

∫ be

ae

(ρe∂tϕe + f(ρe)∂xϕe) dxdt = 0, e = 1, 2,

for every test function ϕe : (ae, be) × R≥0 → R with compact support.

• The densities ρe, e = 1, 2 satisfy the Kruzhkov entropy condition [32]. I.e., for z ∈ R and
ϕe : (ae, be) × R≥0 → R smooth, positive with compact support, we have that∫ ∞

0

∫ be

ae

(
|ρe − z|∂tϕe + sign(ρe − z) (f(ρe) − f(z)) ∂xϕe

)
dxdt +

∫ be

ae

|ρ0
e − z|ϕe(x, 0)dx ≥ 0,

e = 1, 2. (2.5)

• The conservation of mass at the junction is fulfilled
f (ρ1(0, t))︸ ︷︷ ︸

:=q1

+qor(t) = f (ρ2(0, t))︸ ︷︷ ︸
:=q2

.

• The flux entering the outgoing road is maximal subject to the mixture rule (M1).

• The queue length l is a solution of (2.3) for almost every t ∈ R≥0.

Let q1, qor denote the initially unknown mass flux coming from the incoming road and the onramp.
The total flux has to exit into the outgoing road such that q2 = q1 + qor. In agreement with the
literature [10, 34], we employ the widely used demand and supply formulation for admissible flux
values. The fluxes at the junction are bounded by demand and supply

0 ≤ q1 ≤ DLWR(ρ1), 0 ≤ qor ≤ Dor(l), 0 ≤ q2 ≤ SLWR(ρ2).
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These are used to determine the flux at the junction and allow for an appropriate description of the
coupling and boundary conditions [34]. The demand DLWR(ρ1) of the incoming road and the supply
SLWR(ρ2) of the outgoing road are defined as follows:

DLWR(ρ1) =
{

ρ1V (ρ1) if ρ1 ≤ ρmax

2 ,

fmax if ρ1 > ρmax

2 ,
SLWR(ρ2) =

{
fmax if ρ2 ≤ ρmax

2 ,

ρ2V (ρ2) if ρ2 > ρmax

2 ,
(2.6)

where fmax = f(ρmax/2). Moreover, the demand of the onramp is modeled by

Dor(l) =
{

fmax
or if l > 0,

min{f in
or(t), fmax

or } otherwise,
(2.7)

where fmax
or denotes the maximum flux which is allowed to enter from the onramp into the outgoing

road, i.e., a physical restriction on the number of cars per time unit that can exit from the onramp.
Collecting together equations (2.6)–(2.7) and the mixture rule (M1), we can formulate the mass fluxes
at the 1-to-1 junction with onramp according to the reference [19] in the compact form

q1 = min{DLWR(ρ1), max{βSLWR(ρ2), SLWR(ρ2) − Dor(l)}},

qor = min{Dor(l), max{(1 − β)SLWR(ρ2), SLWR(ρ2) − DLWR(ρ1)}},

q2 = q1 + qor,

The above expression clarifies that the fluxes at the junction are obtained from the densities on
incoming and outgoing road as well as the queue length at the onramp. It is a first order approach
where velocity and flux at the junction are directly linked to the traffic densities ρ1, ρ2. The demand is
obtained purely from the density on the incoming road ρ1 and the supply purely from the density on
the outgoing road ρ2. All in all, it is a simple and robust model to describe traffic flow [34]. Although
the LWR model can predict some traffic situations rather well, the model exhibits various deficits [12].
In general, the model cannot portray traffic instabilities, which include growing traffic waves and
so-called capacity drops [44].

2.2. The ARZ and the Greenberg model

In the second order ARZ model, the traffic density ρe = ρe(x, t) and velocity ve = ve(x, t) are not
directly coupled, but evolve according to a system of conservation laws

∂t

(
ρe

ρewe

)
+ ∂x

(
ρeve

ρevewe

)
= 0, (x, t) ∈ (ae, be) × R≥0. (2.8)

The first equation describes the conservation of mass and the second equation includes the evolution
of the vehicle speed. The Lagrangian marker we for each road in (2.8) is defined by the relation

we = ve + p(ρe), (2.9)
where we assume for simplicity that the pressure function p(ρe) is identical on all roads. The ARZ
model is hyperbolic with eigenvalues λ1 = ve − ρep′(ρe) ≤ λ2 = ve and Riemann invariants we and ve,
see [4]. In this case, the Lagrangian marker we travels with the velocity ve of the cars. It can be seen
as a driver attribute describing the empty road velocity of drivers.

The pressure function p(ρe) ∼ ργ
e with γ = 2 is the prototype function in traffic flow [4, 16] from

which the Lagrangian marker (2.9) is computed. Here, we consider the pressure function from [20, 23,
38] given by

p(ρe) = vmax

2

(
ρe

ρmax

)2
, (2.10)

which was derived from microscopic considerations [3]. The pressure function satisfies p′(ρe) > 0
and ρep′′(ρe) + 2p′(ρe) > 0 for all ρe. The former property ensures that the pressure function is
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strictly increasing and the latter ensures the existence of a point σ(we) that maximizes the flux
ρeve = ρe(we − p(ρe)) for a given value of we. The inverse function of the pressure function is given by

p−1(y) = ρmax
( 2y

vmax

) 1
2

, (2.11)

and σ(we) can also be computed explicitly

σ(we) = argmax
ρe∈[0,ρmax]

ρe(we − p(ρe)) = ρmax
( 2we

3vmax

) 1
2

. (2.12)

The (half-)Riemann problem for the ARZ model at the 1-to-1 junction with onramp located at
x = 0 reads:

∂t

(
ρe

ρewe

)
+ ∂x

(
ρeve

ρeweve

)
= 0, (x, t) ∈ (ae, be) × R≥0, e = 1, 2,

(ρe, we)(x, 0) =
{

(ρ+
e , w+

e ) for x > 0
(ρ−

e , w−
e ) for x ≤ 0,

x ∈ (ae, be), e = 1, 2,

dl(t)
dt = f in

or − qor(t), t ∈ R≥0,

l(0) = l0.

(2.13)

As for the first order model, we formulate the admissible fluxes at the junction through a demand and
supply framework. Following [20, 28], the demand and supply functions for the ARZ model are given
by

DARZ(ρ, w) =
{

ρ(w − p(ρ)) if ρ ≤ σ(w),
σ(w)(w − p(σ(w))) if ρ > σ(w),

(2.14)

SARZ(ρ, w) =
{

σ(w)(w − p(σ(w))) if ρ ≤ σ(w),
ρ(w − p(ρ)) if ρ > σ(w).

(2.15)

Without entering the discussion in detail, by knowledge on the Riemann solution of the hyperbolic
second order model, see e.g. [6, 33], we know that the Riemann problem for (2.8) on the whole line
x ∈ R with traffic state UL = (ρL, ρLwL) on the left (x ≤ 0) and UR = (ρR, ρRwR) on the right
(x > 0), is solved by a 1-wave connecting UL, Ũ and a 2-contact-discontinuity connecting Ũ , UR, see
also [4]. The intermediate state is given by Ũ = (ρ̃, ρ̃wL) and satisfies v(Ũ) = vR, i.e., the second order
velocity is given by the velocity of the density on the right.

This can be transferred to define solutions to the (half-) Riemann problem in (2.13). We follow
the approach of [20] to define the Riemann solver at the 1-to-1 junction with onramp: We choose to
rewrite the supply function (2.15) at the 1-to-1 junction with onramp depending on the traffic states
left and right from the junction

SARZ(ρ1, ρ2, w1, v2) =
{

σ(w1)(w1 − p(σ(w1))) if ρ̃ ≤ σ(w1),
ρ̃(w1 − p(ρ̃)) if ρ̃ > σ(w1).

(2.16)

The mass flux at the interface x = 0 is determined by the intermediate density value ρ̃ where ρ̃ =
ρ̃(ρ1, ρ2, w1, v2) is the density of the state Ũ such that w(Ũ) = v1+p(ρ1) and v(Ũ) = v2. By assumption
on the pressure function, there exists at most one state with ρ̃ ̸= 0 satisfying these conditions1. The

1We remark that the approach in [20] works with a fixed pressure function p. There are also Riemann solvers considering
a change in the pressure function after merge type junctions [27, 28].
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mass fluxes for the 1-to-1 junction with onramp according to [20] are then given by

q1 = min
{

DARZ(ρ1, w1), max
{

βSARZ, SARZ − Dor(l)
}}

,

qor = min
{

Dor(l), max
{

(1 − β)SARZ, SARZ − DARZ(ρ1, w1)
}}

,

q2 = q1 + qor,

(2.17)

where SARZ = SARZ(ρ1, ρ2, w1, v2). One weakness of the ARZ model as pointed out e.g. by Green-
berg [21] is that drivers travelling at speed ve in traffic with local density ρe never try to adjust their
speed to a maximum allowable speed V (ρe). The ARZ model might be extended with a relaxation
term on the right-hand side of the second equation to correct this weakness, see e.g. [3, 4, 21]. Given
initial densities and velocities, the traffic dynamics are governed by the equations

∂t

(
ρe

ρewe

)
+ ∂x

(
ρeve

ρeweve

)
=
(

0
−ρe

ve−V (ρe)
τ

)
, (x, t) ∈ (ae, be) × R≥0. (2.18)

The relaxation term on the right-hand side includes that drivers tend to adopt an equilibrium (or
preferential) speed V (ρe). The factor τ > 0 is interpreted as relaxation time towards an equilibrium
speed V (ρe). In the numerical examples, we use the model (2.18) with the LWR velocity given by (2.2)
as equilibrium velocity. The model therefore possibly contains a relaxation towards the LWR model.
For τ = ∞, we obtain the original ARZ model. For any value τ ∈ (0, ∞), we obtain the relaxed model
to which we will refer to as “Greenberg model” for simplicity in the following. The Greenberg model
was mathematically derived from car following models in [3]. A generalization with a more flexible
source term where the relaxation depends on the density and velocity is considered in [42, 43]. For an
analytical convergence analysis of the Greenberg model for τ → 0, we refer to [3, 39]. Moreover, some
numerical experiments comparing the Greenberg model with the LWR model are discussed in [20].

Remark 2.2. The source term in the Greenberg model (2.18) is relevant for the road dynamics but
is neglected when considering Riemann problems at intersections [43]. Coupling conditions for the
Greenberg model and the 1-to-1 junction with ramp buffer are therefore also given by (2.17).

3. Capacity drop and introduction of the combined model

First, we introduce the capacity drop. Then, we establish a new modeling approach, which combines
first and second order traffic models at junction points leading to new coupling conditions.

3.1. The capacity drop

Several traffic network models which equip the first order LWR model with coupling conditions at the
junction [10, 29, 30] do not reproduce the capacity drop, see also the discussion in [24]. Lebacque [34]
introduced an additional new state variable for the junction in the LWR model. Using this modifi-
cation, the model is able to represent the capacity drop. Haut et al. [24] triggered a capacity drop
by considering a g-capacity drop function g(Z) at the junction. If the sum of incoming demands Z
is above the maximum flux fmax of the outgoing road, the discharge flow at the junction is reduced.
The shape of the flow reduction is prescribed by the g-capacity drop function. Nonlocal point con-
straints limiting the discharging flow at the junction by averaging the density conditions upstream are
considered in [1]. The constraint function at the junction x = 0 depends on the solution itself in an
upstream neighborhood x < 0. They analyzed the capacity drop in the model and further extended
the nonlocal point constraint to the ARZ model [2].
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Within the second order traffic network models, the capacity drop is included more naturally. The
junction model by Haut and Bastin [23] is able to reproduce the capacity drop without the introduction
of any new parameters compared to those of the single road model (2.8). Parzani and Buisson [38] study
the model from [23] in a traffic scenario where the bottleneck is caused by an onramp. Furthermore,
the Riemann solver in [20] for the junction with onramp, which we recalled in Section 2, shows that
the Greenberg model is able to portray the capacity drop and can be applied within traffic control
strategies.

In general, traffic control strategies aim to reduce the total time drivers spend in a traffic network.
Drivers enter highways at onramps on several locations and controlling these entry points by ramp
metering approaches can decrease the total travel time in comparison to the uncontrolled case [5]. For
example, a control strategy for ramp metering that can manage to sustain high flows at the sources
of the network leads to a decrease of the total time spent in the network [37]. A model covering the
capacity drop is therefore an essential requirement for the development of traffic control strategies.

3.2. Construction of the combined model

We begin to develop a junction model for the 1-to-1 junction with ramp buffer covering the capacity
drop. The junction model (2.17) of the Greenberg model includes the capacity drop, see [31]. However
considering the second order dynamics, it comes at increased computational cost in comparison to the
LWR model. The sharp analysis of second order models by Daganzo [12] states that the traffic for low
densities is free and similar to the dynamics of the LWR model. We therefore represent the traffic on
the incoming and outgoing road by the LWR model, which gives a good description for low densities.
Our idea is now to customize the coupling conditions of the LWR model in case of increasing densities
upstream of the junction. We denote the new model as augmented LWR model, or shortly ALWR.

By including second order quantities, we seek to achieve a capacity drop similar to the second order
models. However, the velocity Ve = V (ρe) stays coupled to the density ρe and the derived w-value
for each road is always given by w(ρe) = p(ρe) + Ve and thus, also coupled to the density. At the
junction point, our coupling conditions do not only consider the actual density ρ2, but additionally
the velocity V2 and the upstream w-value w1 = w(ρ1). The upstream w-value induces a nonlocal point
constraint, similar to [13] at the junction point, manipulating the flow through the junction such that
a capacity drop is achieved. As explained above, our coupling conditions are motivated by the second
order coupling conditions for the ARZ model and we combine them with the standard LWR coupling
conditions by means of the augmented supply function

SALWR(ρ1, ρ2, l) =
{

SLWR(ρ2) if 0 ≤ DLWR(ρ1) + Dor(l) ≤ fmax,

min{SLWR(ρ2), SARZ (ρ1, ρ2, w1, V2)} otherwise.
(3.1)

To determine the demands, the LWR demand function (2.6) and the onramp demand (2.7) is applied.
The value Z = DLWR(ρ1) + Dor(l) indicates the cumulated desired inflow into the outgoing road. It
was observed in experiments that the threshold of traffic density at which a capacity drop is observed is
merely constant across the observation days [9]. When the demand is at the level of the road capacity,
breakdown and congestion occur [38]. Therefore, the exceedance of the road capacity fmax in (3.1) is
meant to trigger the formation of a jam upstream the junction.

Analogously to [24], the flux value Z works as a switch that activates a reduction of the flow through
the junction. Contrary to their approach, the reduction of the flow here does not only consider the level
of the accumulated demand Z, but also the interplay of (derived) traffic states up- and downstream
the junction in SARZ using (2.16). In comparison with [1], the nonlocality is restricted only to the
junction interface x = 0−.

In case that the cumulated desired inflow does not exceed the maximum flow fmax of the outgoing
road, the supply function of the LWR model is applied. In contrast, to evaluate the supply at a junction
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when the desired inflow exceeds the maximum flow, the minimum of the LWR and ARZ supply is
used. Meaning that the incoming flow drops below the inflow predicted by the LWR model, if the
application of the ARZ model to the situation with derived second order quantity w1 would lead to a
lower inflow. In case of a flow reduction in comparison to the LWR model, we determine the flow by
the ARZ supply (2.16) using the derived quantities w1 and V2 in the augmented supply function. For
the coupling conditions using the augmented supply function, we introduce a quite useful partition of
the phase plane, which we will explain in detail in the following.

3.3. Discussion of the augmented supply function

This section focuses on the investigation of the supply function in the combined model to show that the
ALWR model reduces the flux at the junction in case of congestion. We analyze the problem (2.4) and
examine the augmented supply function (3.1) in case that the desired inflow Z exceeds the capacity
of the outgoing road fmax.

Using the LWR velocity (2.2) and the pressure function (2.10), the derived w-value reads

w(ρe) = V (ρe) + p(ρe) = vmax
(

1 − ρe

ρmax

)
+ vmax

2

(
ρe

ρmax

)2
, (3.2)

and is plotted along with the velocity function in Figure 3.1a.
To shorten the notation, we define the derived ARZ supply by

SARZ(ρ1, ρ2) = SARZ(ρ1, ρ2, w1, V2) =
{

σ1(w1 − p(σ1)) if ρ̃ ≤ σ1,

ρ̃(w1 − p(ρ̃)) otherwise,
(3.3)

in the analysis below. Here, σ1= σ(w(ρ1)) is the sonic point given by (2.12). Note that we are able to
do this because we assume that the dynamics on the roads are described by the LWR model.

The value w1 scales the supply function and also determines the position of the sonic point σ1. If
we interpret the term (w1 − p(ρ1)) as the velocity function, then w1 is the empty road velocity. In
the ARZ model, w1 is a driver attribute describing the empty road velocity of different drivers and
travels with the speed of car. In the LWR model, the empty road velocity is vmax, which is prescribed
by the velocity function (2.2) and identical for all drivers. Using the derived marker w1 in (3.3) can
be seen as a correction to the empty road velocity depending on the density. For ρ = 0, we obtain
w(0) = vmax. For ρ = ρmax, we obtain w(ρmax) = vmax/2 with the specific choices (2.2) and (2.10),
see also Figure 3.1a. The higher the density, the lower the maximum speed, drivers can reach. Since
a reduction in w1 reduces the flux, we can understand the above correction in the w-value as a flux
reduction for high density values, see Figure 3.1b. The value ρ̃ in (3.3) determines the flux at the
junction in the second order model. This intermediate density, which is used to evaluate the supply, is
derived from the combination of ρ1 and ρ2. Greenberg [21] refers to this property as the anticipatory
nature of the ARZ model, i.e., that the density ρ and velocity v behind a contact are also determined
by ρ, v ahead of it. Traditionally, in the coupling at the junction of the LWR model, no connection is
made between the states of the incoming and outgoing road in the supply. We therefore introduced ρ̃
motivated from the second order model to combine information from both roads in the supply. Here,
the derived value of ρ̃ decides which branch of the supply function (3.3) is used to evaluate the flux
at the junction. It holds that ρ̃ is either the intersection of the curves {w(U) = w1} and {v(U) = V2}
or ρ̃ = 0, see [4]. We can express ρ̃ explicitly by

ρ̃ = p−1(max{w1 − V2, 0}), where w1 = V1 + p(ρ1). (3.4)

If we plug ρ̃ in the augmented supply function (3.1), then the augmented supply can either take the
value of the LWR supply or the derived ARZ supply. In situations where the LWR supply is lower
than the derived ARZ supply, the ALWR model is equal to the LWR model in its description of traffic
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dynamics. On the other hand, in situations where the derived ARZ supply is lower than the LWR
supply, traffic flow at the junction is reduced and the model differs from the LWR model. Note that
we aim to approximate the fluxes at the junction in the ARZ model, but not the traffic state or the
solution structure since we keep the LWR model on the roads and only approximate the flux at the
junction point.

0 ρa ρb ρc ρmax

w(ρc)
w(ρb)

w(ρa)

vmax

w(ρe)

V (ρe)

(a) Derived w-values.

0 σb σa ρmax

fmax

σc

SLWR(ρ) SARZ(ρa, ρ)

SARZ(ρb, ρ) SARZ(ρc, ρ)

(b) Derived ARZ and LWR supply.

0 σlim ρmax

fmax

SLWR(ρ)

SARZ(ρlim, ρ)

(c) Limiting case ρlim.

Figure 3.1. Supply functions

With ρlim, we denote the density for which we have

SARZ(ρlim, 0) = fmax, (3.5)

see Figure 3.1c. This is used, among other criteria, to distinguish whether the ARZ or LWR supply
is applied. The w-value is denoted wlim = w(ρlim). Moreover, we observe from the combination of
Figure 3.1a and Figure 3.1b that the supply functions are monotone decreasing with respect to the
first as well as to the second argument. Plugging the densities ρ1, ρ2 at the junction into the augmented
supply function, we can distinguish the following cases:

Case 1. The LWR supply SLWR(ρ2) exceeds the maximum of the ARZ supply, which is exemplarily
depicted in Figure 3.2a. The maximum of the ARZ supply (3.3) is

max
ρ2∈[0,ρmax]

SARZ(ρ1, ρ2) =SARZ(ρ1, 0),

for which ρ̃ = 0 since w1 ≤ vmax. The exceedance is only possible for ρ1 ≥ ρlim. In this case, the
considered supply is the supply value from the ARZ model. This result is independent of the value ρ̃:

SLWR(ρ2) > SARZ(ρ1, 0) ⇒ min{SLWR(ρ2), SARZ(ρ1, ρ2)} = SARZ(ρ1, ρ2).

Case 2. The LWR supply for ρ2 exceeds the ARZ supply for some values, but it is below the
maximum of the ARZ supply,

SLWR(ρ2) ≤ SARZ(ρ1, 0),
Then, one has to distinguish further depending on ρ̃:

(a). The ARZ supply evaluated at ρ̃ exceeds the LWR supply at ρ2, see Figure 3.2b. The ALWR
model uses the same supply function as the LWR model in this case. Therefore, we have

min{SLWR(ρ2), SARZ(ρ1, ρ2)} = SLWR(ρ2).
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ρ2 ρ1

SLWR(ρ2)

ρ̃

LWR supply

ARZ supply

(a) Case 1.

ρ1 ρ2

SLWR(ρ2)

fmax

ρ̃

LWR supply

ARZ supply

(b) Case 2(a).

ρ2 ρ1

SLWR(ρ2)

fmax

ρ̃

LWR supply

ARZ supply

(c) Case 2(b).

Figure 3.2. Supply functions SLWR(·), SARZ(ρ1, ·). The red line marks the value of
SARZ(ρ1, ρ2).

(b). The contrary is true and we have

min{SLWR(ρ2), SARZ(ρ1, ρ2)} = SARZ(ρ1, ρ2).

The ALWR model therefore uses the supply function of the ARZ model, see Figure 3.2c.

Table 3.1. Classification of the supply function.

Supply Area

Z > fmax
ρ1 > ρlim

ρ2 ≤ ρmax/2 ARZ I

ρ2 > ρmax

2

ρ2 < σ1

SARZ(ρ1, 0) ≥ SLWR(ρ2) LWR II
SARZ(ρ1, 0) < SLWR(ρ2) ARZ III

ρ2 ≥ σ1

ρ1 ≤ ρ2 LWR IV

ρ1 > ρ2

SARZ(ρ1, 0) ≥ SLWR(ρ2) ARZ V
SARZ(ρ1, 0) < SLWR(ρ2) ARZ VI

ρ1 ≤ ρlim LWR VII

Based on the previous discussion of the augmented supply function, we investigate whether the ARZ
supply or the LWR supply is lower for different combinations of initial states (ρ1, ρ2) ∈ [0, ρmax]2. The
summarized cases presented in Table 3.1 lead to a partitioning of the ρ1-ρ2-plane, which is shown in
Figure 3.3. Note that the figure is only valid for Z = Dor + DLWR(ρ1) > fmax. The ARZ supply is
applied in the areas I, III, V and VI while the LWR supply is applied in the areas II, IV and VII.

In the following, we prove this partitioning. Let us start with some notation to ease computations.
We denote the maximum of the flux curve associated with the density ρ1 by

σ1 = σ(w1) (2.12)= ρmax
√

2w1
3vmax . (3.6)

We have that

σ(w(ρmax)) =
√

1
3ρmax ≤ σ1 ≤ σ(w(0)) =

√
2
3ρmax.

Plugging the density dependence of w1 given by (3.2) in (3.6), we denote the curve of maxima

M(ρ1) (3.2)= ρmax

√
1
3

(
ρmax − ρ1

ρmax

)2
+ 1

3 . (3.7)
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Therefore, the curve M(ρ1) gives an expression for the curve of maxima which is decreasing in ρ1.
The maximum of the derived supply function SARZ(ρ1, ·) is

SARZ(ρ1, 0) = max
ρ2∈[0,ρmax]

SARZ(ρ1, ρ2) = σ1(w1 − p(σ1)) = ρmax
( 2w1

3vmax

) 1
2 2

3w1, (3.8)

since for ρ2 = 0, it follows that ρ̃ = 0. From (3.2), we directly compute the density corresponding to
a given w-value

ρ1
ρmax = 1 −

√
2 w1

vmax − 1. (3.9)

Then, setting

SARZ(ρlim, 0) = fmax = ρmaxvmax

4 ,

and using equation (3.8) on the left hand side, we can compute wlim and the associated density ρlim

wlim = 3
2vmax

(1
4

) 2
3

,
ρlim
ρmax = 1 −

√
3
(1

4

) 2
3

− 1. (3.10)

Exemplarily, we briefly discuss case III in Table 3.1 and the corresponding region in Figure 3.3. All
other cases are explained in the Appendix. Let ρ1 and ρ2 be given with

ρ1 > ρlim, ρ2 >
ρmax

2 , ρ2 < σ1, SARZ(ρ1, 0) < SLWR(ρ2).

With (3.7), the condition ρ2 < σ1 is equivalent to

ρ2 < M(ρ1). (3.11)

Next, we make use of ρ1 > ρlim, ρ2 > ρmax

2 and analyze the condition

SARZ(ρ1, 0) < SLWR(ρ2). (3.12)

Applying (3.8) on the left-hand side and inserting SLWR(ρ2) = f(ρ2) on the right-hand side yields a
bound on ρ2

ρ2 < ρmax

1
2 +

√√√√1
4 −

(
1
3

(
ρmax − ρ1

ρmax

)2
+ 1

3

) 3
2

 := W(ρ1). (3.13)

The area for admissible values of ρ1 and ρ2 is marked as III in Figure 3.3. Since we have SARZ(ρ1, 0) <
SLWR(ρ2), the ARZ model is applied.

4. Numerical schemes and computational results

Having presented a discussion of initial states, we introduce the numerical schemes to compute solu-
tions to the first and second order models.

4.1. Numerical scheme for the LWR and the combined model

We use the Godunov scheme to approximate the densities on the roads for the setting in Figure 2.1,
see [19]. We consider the time horizon [0, T ] and introduce a grid in time and space with step sizes ∆t,
∆x. In the numerical examples, we set ∆tvmax ≤ ∆x. We denote the number of time discretizations by
T = Nt∆t, Nt ∈ N and the number of spatial discretizations Nxe ∈ N on road e ∈ E with Le = Nxe∆x.
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0 ρlim ρmax

ρmax

2

ρmax

I

II
III

IV V

VI

VII

ρ1

ρ
2

Figure 3.3. Partitioning of the ρ1-ρ2-plane. Areas for the LWR supply are in white
and areas for the ARZ supply are in gray. The curves M (3.7) and W (3.13) for
ρ1 ≥ ρlim are displayed in blue (solid and dotted).

Each road is discretized with cells Ce,j = (xe,j−1/2, xe,j+1/2), j = 1, . . . , Nxe . The discretized density
values ρs

e,j , s = 0, . . . , Nt are the cell averages

ρs
e,j ≈ 1

∆x

∫
Ce,j

ρe(x, ts)dx.

The Godunov scheme reads

ρs+1
e,1 = ρs

e,1 − ∆t

∆x

(
G
(
ρs

e,1, ρs
e,2

)
− qs

e,in

)
,

ρs+1
e,j = ρs

e,j − ∆t

∆x

(
G
(
ρs

e,j , ρs
e,j+1

)
− G

(
ρs

e,j−1, ρs
e,j

))
, j = 2, . . . , Nxe − 1,

ρs+1
e,Nxe

= ρs
e,Nxe

− ∆t

∆x

(
qs

e,out − G
(
ρs

e,Nxe −1, ρs
e,Nxe

))
,

(4.1)

where the Godunov flux is given by the minimum of supply and demand

G
(
ρs

e,j , ρs
e,j+1

)
= min{DLWR(ρs

e,j), SLWR(ρs
e,j+1)}.

We note that the above Godunov scheme for the computation of the density values ρs
e,2, . . . , ρs

e,Nxe −1
is equivalent to the cell transmission method (CTM), see [11, 15]. The inflow qs

e,in ≥ 0 and outflow
qs

e,out ≥ 0 in (4.1) are mass fluxes at road interfaces and are determined with coupling and boundary
conditions described below.

1-to-1 junction with onramp

We consider a 1-to-1 junction with an additional onramp as shown in Figure 2.1. We denote the
incoming road with index 1 and the outgoing road with index 2. As in [19], we assume that the
demand of the onramp can be controlled and apply the demand function

Dor(ls, ts) = u(ts) min
{

f in
or(ts) + ls

∆t
, fmax

or

}
, (4.2)

for the onramp. Here, u(t) ∈ [0, 1] denotes a time-dependent metering rate which can be used to
control the flow from the onramp. Moreover, fmax

or is the maximum flux allowed to enter the outgoing
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road from the onramp. To define a unique solution, we assign priority parameters β and (1 − β) to
road e = 1 and the onramp, respectively as shown in Figure 2.1, and compute

qs
1,out = min

{
DLWR

1 (ρs
1,Nx1

), max
{

βSALWR, SALWR − Dor(ls, ts)
}}

, (4.3a)

qs
or = min

{
Dor(ls, ts), max

{
(1 − β)SALWR, SALWR − DLWR(ρs

1,Nx1
)
}}

, (4.3b)

qs
2,in = qs

1,out + qs
or, (4.3c)

where SALWR = SALWR(ρs
1,Nx1

, ρs
2,1, ls) using (2.16) and (3.4) to evaluate the ALWR supply (3.1).

Similarly to the computation of the mass flux in a 2CTM for the second order model, which will be
studied in Section 4.3.1, the computation of the mass fluxes qs

1,out, qs
or and qs

2,in considers the w-value
of the incoming road e = 1 in the supply function. This value of the mass flux is then used as input for
the boundary cells. Especially important is that the w-value of the incoming road is derived from the
density. Therefore, not the whole second order dynamics have to be tracked. We compute first order
with the CTM approach and derive the second order property w from the density.

Based on the computed fluxes, the evolution of the queue at the onramp reads

ls+1 = ls + ∆t
(
f in

or(ts) − qs
or

)
.

In general, we start with empty queues, i.e., l0 = 0.

Onramp at origin

Additionally, we have to provide boundary data for the inflow at the beginning of the incoming road
e = 1. We consider an onramp at a junction with only one outgoing road, where we denote the outgoing
road with the index 1. The demand function of the onramp is given by

Dor(ls, ts) =
{

fmax
or if l(ts) > 0,

min{f in
or(ts) + ls

∆t , fmax
or } otherwise,

(4.4)

where f in
or(ts) is the flow of cars arriving at the onramp at time ts and fmax

or the maximum flux allowed
to exit the onramp. The inflow into the system is given by

qs
1,in = min{DLWR(ρs

1,1), Dor(ls, ts)}.

Based on the computed inflow, the evolution of the queue at the onramp is given by

ls+1 = ls + ∆t
(
f in

or(ts) − qs
1,in

)
.

Junction with outflow

At a junction with only one incoming road (denoted by index 1) and without an outgoing road, we
consider absorbing boundary conditions

qs
1,out = min{DLWR(ρs

1,Nx1
), SLWR(ρs

1,Nx1
)}.

Remark 4.1. In comparison to the LWR onramp model in [19], only the supply function SALWR

on the outgoing road of the 1-to-1 junction with onramp has been adapted in the augmented model.
Therefore, replacing SALWR by SLWR(ρs

2,1) in (4.3) gives the numerical discretization of the LWR
model.
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4.2. Capacity drop in comparison to the LWR model

In this section, we consider the evolution of the left- and right-hand state ρ1 and ρ2 for the Riemann
problem (2.4) at the 1-to-1 junction with onramp, cf. Figure 2.1, within the ALWR model. To ensure
the activation condition for the minimum in the supply function (3.1), we set f in

or(t) = fmax
or = fmax.

For the particular setting, solutions of Riemann problems are discussed and phase space trajectories
are compared to the LWR model.

We obtain the numerical solution of the ALWR model with the scheme described in Section 4.1.
The only difference to the LWR network approach presented in [19] is the modelling of the supply
at the junction of the network, where we impose second-order-like conditions in the supply function,
cf. Section 3. The numerical solution of the LWR model is obtained as explained in Remark 4.1. In
comparison to the LWR model and as extension of the analysis in Section 3.3, the most exciting point
in the ALWR model here is that the evolution of the states at the junction may lead to a change in
the “active” model.

β1 β2 β3 β4

β2 β3 β4

ρ1

ρ
2

LWR model

ALWR model

(a) ρ0
1 ≤ ρlim and ρ0

2 ≥ ρmax
/2.

β2 β3 β4

β2β3 β4

β1

ρ1

ρ
2

LWR model

ALWR model

(b) ρ0
1 ≤ ρlim and ρ0

2 ≤ ρmax
/2.

β1 β2 β3 β4

β1 β2 β3

β4

ρ1

ρ
2

LWR model

ALWR model

(c) ρ0
1 ≥ ρlim and ρ2 ≤ ρmax

/2.

Figure 4.1. Comparison of the LWR and ALWR model with priority parameters
β1 = 0.9, β2 = 0.75, β3 = 0.5 and β4 = 0.1.

Due to the construction of the augmented supply function within the ALWR model as minimum
of the supply functions of the LWR and the ARZ model, the solution to the Riemann problem in the
ALWR model is restricted by the solution in the LWR model in the sense that the (final) supply of the
outgoing road is at most as large as for the same Riemann problem in the LWR model. This means
that for ρ0

2 ∈ [0, ρmax/2], the arising densities on the outgoing road can never exceed ρmax/2. Analogously,
for ρ0

2 ∈ [ρmax/2, ρmax], the density on the outgoing road can never exceed ρ0
2. We obtain weak entropy

solutions on the incoming and outgoing road, see (2.5). When the current densities at the left-hand
and right-hand side of the junction are in a region where the LWR supply is applied, the solution is
identical to the LWR model. But as soon as the combination of the density values is in the region
where the ARZ supply is applied, the supply drops below the LWR supply and the models differ.

Figure 4.1a shows the phase space trajectory for a Riemann problem with ρ0
1 ∈ [0, ρlim] and ρ0

2 ∈
[ρmax/2, ρmax] in the LWR and the ALWR model. Different priority parameters β are applied at the
onramp. For the choice of the priority parameter β = β1, there is no restriction on the incoming road
and the density at the outgoing road remains constant. Decreasing priority parameters of the first
road at some point lead to congestion at the end of the first road (as it is the case for β ∈ {β2, β3, β4}).
When the phase path enters the region where the ARZ supply is applied, the phase paths of the
two models diverge. In the LWR model, only the density at the incoming road increases further. In
contrast, in the ALWR model, there is a drop in the density at the outgoing road due to the congestion
at the end of the incoming road. The markers at the end of each trajectory indicate the final states
that are reached in the respective models for the respective priority parameters.

363



J. Weissen, O. Kolb, et al.

Figure 4.1b shows the phase space trajectory for a Riemann problem with ρ0
2 ∈ [0, ρmax/2]. The

density on the outgoing road increases up to ρmax/2 in the LWR model (since the accumulated demand
is above fmax). In the ALWR model we see a different behavior. The density at the outgoing road
increases at the beginning, but starts to drop down within the region where the ARZ supply is applied.
Figure 4.1c examplarily shows some trajectories with initial data in the region where the ARZ supply
is applied. The fluxes in the final situation for the examples considered before are given in Table 4.1.
A capacity drop in the solution for the ALWR model can be seen in all of the cases where the model
differs from the LWR model. Note that here, the final fluxes f2(0, T ) at the junction match for β2, β3, β4
since the examples share the same priority parameters as well as the desired inflow from the onramp.

Table 4.1. Outflow f2(0, T ) in the final state at the junction with onramp (flux values
in relation to fmax).

Figure 4.1a Figure 4.1b Figure 4.1c
Priority Parameter LWR ALWR LWR ALWR LWR ALWR

β1 = 0.90 0.97 0.97 1 1 1 0.84
β2 = 0.75 0.97 0.81 1 0.81 1 0.81
β3 = 0.50 0.97 0.78 1 0.78 1 0.78
β4 = 0.10 0.97 0.77 1 0.77 1 0.77

4.3. Comparison to second order models

4.3.1. Numerical scheme for the ARZ and the Greenberg model

Within the ARZ and the Greenberg model, the traffic state Ue = (ρe, ρewe), consisting of the density
ρe and the generalized momentum ρewe, is computed on each road. Let Qs

e,j denote the average value
of the function Ue(x, t) on the interval Ce,j at time ts = s∆t, i.e.,

Qs
e,j = 1

∆x

∫
Ce,j

Ue,j(x, ts)dx,

As in [20], we apply a Godunov scheme for the flux term and an implicit Euler scheme for the relaxation
term. I.e.,

Qs+1
e,1 = Qs

e,1 − ∆t

∆x

(
G
(
Qs

e,1, Qs
e,2

)
−
(

qs
e,in

rs
e,in

))
+ ∆tg(Qs+1

e,1 ),

Qs+1
e,j = Qs

e,j − ∆t

∆x

(
G
(
Qs

e,j , Qs
e,j+1

)
− G

(
Qs

e,j−1, Qs
e,j

))
+ ∆tg(Qs+1

e,j ), j = 2, . . . , Nxe − 1,

Qs+1
e,Nxe

= Qs
e,Nxe

− ∆t

∆x

((
qs

e,out

rs
e,out

)
− G

(
Qs

e,Nxe −1, Qs
e,Nxe

))
+ ∆tg(Qs+1

e,Nxe
),

(4.5)

where there is no relaxation term for the ARZ model and for the Greenberg model, we set
g(Qs

e,j) = (0, −ρs
e,j(vs

e,j−V (ρs
e,j))/τ)T equal to the right-hand side of the relaxed system (2.18). The

vectors (qs
e,in, rs

e,in)T and (qs
e,out, rs

e,out)T in (4.5) denote mass and momentum flux at the road in-
terfaces. The Godunov flux for the second order system formulated with the ARZ demand and supply
functions (2.14)–(2.15) is given by

G
(
Qs

e,j , Qs
e,j+1

)
=
( 1

ws
e,j

)
min{DARZ

(
ρs

e,j , ws
e,j

)
, SARZ

(
ρ̃s

e,j+1, ws
e,j

)
},
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where the intermediate state Q̃s
e,j+1 = (ρ̃s

e,j+1, ρ̃s
e,j+1ws

e,j)T used to evaluate the supply is such that

ρ̃s
e,j+1 = p−1

(
max{ws

e,j − vs
e,j+1, 0}

)
.

In the following, we explain how the flux terms for the inflow and the outflow are given by coupling
and boundary conditions.

Onramp at origin

We model a junction with an onramp at the beginning of the network similar as in the first order
model. For the onramp with queue length ls at time ts, we use the demand function (4.4) to determine
the mass flow qs

1,in. However, due to the second order system, we have to provide also boundary data
for the momentum flow. We follow the idea introduced by [20] to compute the w-value at the boundary.
We compute

ρs
− = ρmax

2 −

√(
ρmax

2

)2
− ρmaxDor(ls, ts)

vmax .

Let ws
− = w(ρs

−) = V (ρs
−) + p(ρs

−), then we can model the boundary fluxes by(
qs

1,in

rs
1,in

)
=
(

1
ws

−

)
min

{
Dor(ls, ts), SARZ(ρ̃s

1,0, ws
−)
}

,

with ρ̃s
1,0 = p−1

(
max{ws

− − vs
1,1, 0}

)
.

1-to-1 junction with onramp

At the 1-to-1 junction with onramp, we denote the incoming road e = 1 and outgoing road e = 2. We
assume that the onramp can be controlled by the time–dependent metering rate u(t) and compute the
controlled onramp demand with equation (4.2). The fluxes at the road interfaces are given by(

qs
1,out

rs
1,out

)
=
(

1
ws

1,Nx1

)
min

{
D1, max

{
βS2, S2 − Dor(ls, ts)

}}
,(

qs
or,out

rs
or,out

)
=
(

1
ws

1,Nx1

)
min

{
Dor(ls, ts), max

{(
1 − β)S2, S2 − D1}

}
,

(
q2,in

r2,in

)
=
(

1
ws

1,Nx1

)
(qs

1,out + qs
or,out),

where
D1 = DARZ(ρs

1,Nx1
, ws

1,Nx1
), S2 = SARZ(ρ̃s

2,1, ws
1,Nx1

), ρ̃s
2,1 = p−1

(
max{ws

1,Nx1
− vs

2,1, 0}
)

Junction with outflow

At a junction with only one incoming road (denoted by index 1), we consider absorbing boundary
conditions. We have(

qs
1,out

rs
1,out

)
=
(

1
ws

Nx1 −1

)
min

{
DARZ

(
ρs

Nx1 −1, ws
Nx1 −1

)
, SARZ

(
ρs

Nx1 −1, ws
Nx1 −1

)}
.

Analogously to Godunov scheme for the first order models, the Godunov approximation for the
second order models is mathematically equivalent to a cell transmission model (2CTM), see [15],
using the supply function of the ARZ model and the two quantities ρ, w.
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4.3.2. Capacity drop in comparison to second order models

We consider the network depicted in Figure 2.1 with the parameters given in Table 4.2, which are
inspired by the onramp scenario in [20, Section 4.3]. We set ∆x = 0.25 km, ∆t = 2 · 10−3 h and the
desired inflow from the onramp to f in

or = 4000 cars
h and the maximum flux allowed to exit the onramp

equal to the maximum flux of the outgoing road fmax
or = 4500 cars

h . The priority is β = 0.5 and the
incoming road therefore experiences congestion. We compute the time evolution of the (half-) Riemann
problem (2.4) with ρ0

1 = 140, ρ0
2 = 90 within the LWR and ALWR model. Within the ARZ and the

Greenberg model, we compute the time evolution of the (half-) Riemann problem (2.13) with initial
states (ρ0

1, w0
1), (ρ0

2, w0
2) where w0

e = V (ρ0
e) + p(ρ0

e), e = 1, 2.
The density at the end of the incoming road increases in all models, see Figure 4.2a. The density

in the Greenberg model increases similar to the ARZ model but is relaxed towards the ALWR flux
as time progresses. The discharge flow of the junction in the LWR model stays at the level of the
maximum flow even as further congestion on the incoming road sets on, compare Figure 4.2b. In
contrast, all of the other models predict a decrease in the discharge flow at the junction. At t = 0, the
flux (ρv)2(0, 0) is identical for the Greenberg and the ARZ model. However, the flux in the Greenberg
model is relaxed until a state on the LWR fundamental diagram is reached. The ALWR model mimics
the flux of the second order model at the junction. We see a capacity drop since the discharge flow
is lower than the maximum flux due to congestion on the incoming road. The behavior observed in
Figure 4.2 stays the same, also for varying parameters γ > 1 for which the fluxes through the junction
for the respective models are given in Table 4.3. The flux in the Greenberg model at t = 0 is identical
to the flux in the ARZ model and afterwards drops down to the level of the ALWR flux at T = 0.1

Table 4.2. Properties of the roads in Figure 2.1.

road length [km] ρmax [ cars
km ] vmax [km

h ] initial density ρ0 [ cars
km ]

road 1 4 180 100 140
road 2 2 180 100 90

LWR ALWR ARZ
Greenberg τ = 0.005 h Greenberg τ = 0.01 h Greenberg τ = 0.02 h

0 5 · 10−2 0.1
140

150

160

t

ρ
1
(0
,t
)

(a) Density at the end of the incoming road.

0 5 · 10−2 0.1

3,500

4,000

4,500

t

(ρ
v
) 2
(0
,t
)

(b) Mass flux into the outgoing road.

Figure 4.2. Densities and fluxes.
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Table 4.3. Fluxes of the Riemann problem for different values of γ with T = 0.1.

γ w1 w2
ARZ ALWR

(ρv)2(0, T ) (ρV )2(0, T )
1.0 100 100 4500.00 4500.00
1.5 67.95 73.57 4035.68 3948.09
2.0 52.47 62.50 3724.53 3527.28
2.5 43.56 57.07 3511.85 3194.02
3.0 37.91 54.17 3365.52 2922.56

4.3.3. The ramp metering control problem

We consider an onramp with ramp metering as introduced in Section 4.1 and 4.3.1 with a piecewise
constant control function u(t) on intervals of 15 minutes. Our aim is to compare the optimal control
of the ALWR model with optimal control results of the Greenberg model. We consider the relaxation
time τ = 0.005 h for the Greenberg model (2.18) and the parameters from Table 4.2 but set the
initial densities to ρ0

e = 50 cars
km , e = 1, 2 such that both roads have equal traffic volume at t = 0. The

priority parameter β at the onramp equals 0.5 and we set the maximum inflow from the onramp to
fmax

or = 2000 cars
h . Additionally, we consider an onramp at the origin in with fmax

or = 4500 cars
h . The time

horizon is T = 3 hours. The applied discretization parameters are ∆x = 0.25 km and ∆t = 2 · 10−3 h
and we apply the discretization schemes described in Section 4.1 and 4.3.1.

For the control scenario, we apply the inflow conditions shown in Figure 4.3a. At the beginning of
the time horizon, we consider a first rush-hour with moderate demand at the onramp. Later on, we
consider a second rush-hour, with increased onramp demand. For the given scenario, we are interested
in minimizing the total travel time

2∑
e=1

∫ T

0

∫ Le

0
ρe(x, t) dx dt +

2∑
e=1

∫ T

0
le(t) dt, (4.6)

where l1 denotes the queue at in and l2 the queue at ramp. To solve this optimization task, we apply
a first-discretize-then-optimize approach. Thus, for given control decisions (time-dependent piecewise
constant metering rates), the discretization schemes are always used to evaluate the objective func-
tion (4.6) and iteratively compute optimal solutions. The Matlab solver fmincon2 is used for the
optimization of the control decisions. Having the optimal control of the ALWR model at hand, we use
this control as a starting value for the optimization in the Greenberg model.

Table 4.4. Optimization results (total travel time [h]) for the network in Figure 2.1.

Greenberg ALWR LWR
no control 1236.5 1316.0 1019.3

optimal control ALWR 996.6 1019.6 1019.6
optimal control Greenberg 982.3 1322.9 1019.5

Table 4.4 shows the total travel times for the different models with and without optimization
(u(t) = 1 ∀t). The resulting queues are shown in Figure 4.4, where we show the Greenberg model to
demonstrate the benefit of the optimized control computed with the cheaper ALWR model.

Running a simulation with the Greenberg model using the optimal control of the ALWR model
leads to a total travel time of 996.6, which is about 1.5% away from the optimal solution found by

2https://de.mathworks.com/help/optim/ug/fmincon.html
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(a) Desired inflows at in and ramp.
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(b) Optimal control u(t) at ramp.

Figure 4.3. Inflow and controls.
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(b) Queue at ramp.

Figure 4.4. Queues in the Greenberg model with and without optimization.

optimizing the Greenberg model, see Table 4.4. Actually, the optimal metering rates for the two models
do not differ much, see Figure 4.3b. The key in improving the travel times is the reduction of the flow
from the onramp in the time frame of high onramp demand, compare Figure 4.3. Both controls do not
reduce the onramp demand during the first rush-hour, but reduce it during the second rush-hour to
ensure that the incoming road stays in free flow. Without control, the queue at the onramp stays empty
whereas more than 200 cars accumulate in the queue at the origin, see Figure 4.4. When the optimal
control of the Greenberg or the ALWR model is used, the queue at the origin is reduced to zero, while
the cars accumulate in the queue at the onramp during the rush-hour time. Ramp metering leads to
an increased outflow at the end of the outgoing road early within the time horizon, see Figure 4.5.
Note that an optimal control strategy cannot be recognized by an optimal control approach based on
the LWR model since full inflow, i.e., u(t) = 1 ∀t is optimal for the LWR model. However, this is
clearly not optimal for the Greenberg model, see Table 4.4.
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no control optimal control ALWR optimal control Greenberg
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(a) ALWR.
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(b) Greenberg.

Figure 4.5. Flow at the end of the outgoing road out with and without optimization.

5. Conclusion

We have established a new model for the 1-to-1 junction with onramp which couples the LWR model
to boundary conditions of the second order traffic model. The main difference to earlier presented
versions of the LWR model is the shape of the supply function at the junction, which allows for
formation of congestion when the incoming road is congested. A discussion of the new supply function
was presented and we have shown that the fluxes at the junctions are only dependent on the densities
of the adjacent roads. Numerical studies have shown that the ALWR model is able to capture the
capacity drop phenomenon. Even though the junction model is a modification of the most simple
traffic model for traffic flows, we achieved promising results and were able to capture at least some
aspects of second order traffic models. Optimization results showed that the ALWR model is a suitable
surrogate for the Greenberg model. In the considered scenario, the ALWR model optimum is close to
the optimum of the Greenberg model. Note that similar considerations can be done analogously for
exponents γ > 1 in the pressure function which is postponed to future work.

Appendix A.

We begin with some general observations which are useful to derive the partitioning of the ρ1-ρ2-plane
in Figure 3.3. For fixed ρ1, the value of ρ̃ given by (3.4) increases with ρ2

∂ρ2 ρ̃ ≥ 0. (A.1)

Moreover, due to (A.1), the partial derivative for the density on the outgoing road of the derived ARZ
supply (3.3) satisfies

∂ρ2SARZ(ρ1, ρ2) ≤ 0. (A.2)

Thus, the larger ρ2, the larger ρ̃ and the lower the ARZ supply. Furthermore, for ρ1 = ρ2, we have
ρ̃ = ρ1 = ρ2. Now, we have a closer look at ρ̃ for ρ2 ≥ ρ1. We show that

ρ̃ = p−1 (p(ρ1) + V1 − V2) ≥ ρ2. (A.3)
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This is equivalent to

p(ρ1) + V1 − V2 ≥ p(ρ2)

vmax
(

ρ2 − ρ1
ρmax + ρ2

1
2 (ρmax)2

)
≥ vmax

2

(
ρ2

ρmax

)2

ρ2 − ρ1
ρmax ≥ ρ2

2 − ρ2
1

2(ρmax)2

2ρmax ≥ ρ1 + ρ2,

which is satisfied for any combination (ρ1, ρ2) ∈ [0, ρmax]2. In the following, we prove the partitioning
of the ρ1-ρ2-plane.

I. The analysis for

ρ1 > ρlim, ρ2 ≤ ρmax

2 ,

is straightforward. The area of admissible combinations (ρ1, ρ2) is shown in area I of Figure 3.3. By
the definition of ρlim, cf. equation (3.5), it holds that

SLWR(ρ2) = fmax > SARZ(ρ1, 0).

Therefore, SLWR(ρ2) > SARZ(ρ1, ρ2) holds and the ARZ supply is applied.

VII. We analyze more closely the case ρ1 ≤ ρlim, which is the area VII in Figure 3.3. By the definition
of ρlim, cf. equation (3.5), we have that SARZ(ρ1, 0) ≥ fmax.

(a) Assume first that ρ1 ≥ ρ2. Then

ρ̃ = p−1 (max{0, V1 − V2 + p(ρ1)}) ≤ ρ1 < M(ρ1),

and this leads to

SARZ(ρ1, ρ2) = SARZ(ρ1, 0) ≥ fmax ≥ SLWR(ρ2).

(b) Assume now ρ2 > ρ1 and ρ2 ≥ ρmax/2.
(b1) Assume ρ̃ ≥ σ1. Then we have

SARZ(ρ1, ρ2) = ρ̃(w1 − (w1 − V2)) = ρ̃V2 ≥ ρ2V2 = SLWR(ρ2),

where we made use of the relation of ρ̃ and ρ2 in equation (A.3).
(b2) If instead we have ρ̃ < σ1, then

SARZ(ρ1, ρ2) = SARZ(ρ1, 0) ≥ SLWR(ρ2),

due to the assumption ρ1 ≤ ρlim.

(c) Assume ρ2 > ρ1 and ρ2 < ρmax/2. From a) and b), we deduce

SARZ
(

ρ1,
ρmax

2

)
≥ fmax, ∀ρ1 ∈ [0, ρlim].

Moreover since (A.2) holds true, we know that

SARZ(ρ1, ρ2) ≥ fmax = SLWR(ρ2), ∀ρ1 ∈ [0, ρlim], ρ2 ∈
(

ρ1,
ρmax

2

)
.
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II. Let (ρ1, ρ2) be given with

ρ1 > ρlim, ρ2 >
ρmax

2 , ρ2 < σ1, SARZ(ρ1, 0) ≥ SLWR(ρ2).

Because ρ2 < σ1, we get the inequality ρ2 < M(ρ1) from (3.11). Moreover due to SARZ(ρ1, 0) ≥
SLWR(ρ2), compare (3.12), we know from (3.13) that ρ2 ≥ W(ρ1). This gives the area II in the ρ1-ρ2-
plane in Figure 3.3. For given (ρ1, ρ2) in area II, we have to proof that the LWR model is applied. We
can proceed similarly as for region VII:

For ρ1 ≥ ρ2, it holds that ρ̃ ≤ ρ1 ≤ M(ρ1) and SARZ(ρ1, ρ2) = SARZ(ρ1, 0) ≥ SLWR(ρ2).
For ρ2 > ρ1 ≥ ρmax/2, we distinguish again. If ρ̃ ≥ σ1, then SARZ(ρ1, ρ2) = ρ̃V2 ≥ ρ2V2. If instead

ρ̃ < σ1, then SARZ(ρ1, ρ2) = SARZ(ρ1, 0) ≥ SLWR(ρ2).

IV. Let (ρ1, ρ2) satisfy the assumptions

ρ1 > ρlim, ρ2 >
ρmax

2 , ρ2 ≥ σ1, ρ1 ≤ ρ2.

The area for admissible values of ρ1 and ρ2 is marked in Figure 3.3 as area IV. We know from
equation (A.3) and the assumption here, that ρ̃ ≥ ρ2 ≥ σ1. Therefore,

SARZ(ρ1, ρ2) = ρ̃V2 ≥ SLWR(ρ2).

V. Let

ρ1 > ρlim, ρ2 >
ρmax

2 , ρ2 ≥ σ1, ρ1 > ρ2, SARZ(ρ1, 0) ≥ SLWR(ρ2).

For the region V, it holds that w1 ≥ w(ρmax) = vmax/2 and V2 < vmax/2. Thus,

w1 − V2 > 0.

Similarly to the proof of (A.3), one can show

ρ̃ = p−1(p(ρ1) + V1 − V2) ≤ ρ2. (A.4)

Moreover, we prove

ρ̃ > σ1

p−1(w1 − V2) > σ1

w1 − V2 > p(σ1) = w1
3

2
3w1 > V2

2
3

(
vmax ρmax − ρ1

ρmax + vmax

2

(
ρ1

ρmax

)2
)

> vmax ρmax − ρ2
ρmax

ρ2 > ρmax − 2
3(ρmax − ρ1) − 1

3
ρ2

1
ρmax =: Σ(ρ1). (A.5)

For (ρ1, ρ2) in region V, we have ρ2 > Σ(ρ1), see Figure A.1. Therefore ρ̃ > σ1 and, using also (A.4),
we get

SARZ(ρ1, ρ2) = ρ̃V2 ≤ ρ2V2 = SLWR(ρ2).
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ρlim
ρmax

2

II

III

V

VI

ρ1

ρ
2

Σ(ρ1)
ρ1

Figure A.1. Zoom into the regions II, III, V and VI. The curves (3.7) and (3.13) are
displayed in blue (solid and dotted).

VI. Let

ρ1 > ρlim, ρ2 >
ρmax

2 , ρ2 ≥ σ1, ρ1 > ρ2, SARZ(ρ1, 0) < SLWR(ρ2).

Since SARZ(ρ1, 0) < SLWR(ρ2) is claimed, the ARZ supply is applied. Now, since ρ2 ≥ σ1, we get
from (3.11)

ρ2 ≥ M(ρ1),
which is the area above the lower curve limiting region VI in Figure 3.3. Next, by the condition
SARZ(ρ1, 0) < SLWR(ρ2), we know from (3.13) that

ρ2 < W(ρ1),
which is below the upper limiting curve of region VI in Figure 3.3.
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