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Abstract. The Deferred Correction (DeC) methods combined with the residual distribution (RD) approach allow
the construction of high order continuous Galerkin (cG) schemes avoiding the inversion of the mass matrix. With the
application of entropy correction functions we can even obtain entropy conservative/dissipative spatial discretizations
in this context. To handle entropy production in time, a relaxation approach has been suggested by Ketcheson.
The main idea is to slightly modify the time-step size such that the approximated solution fulfills the underlying
entropy conservation/dissipation constraint. In this paper, we first study the relaxation technique applied to the
DeC approach as an ODE solver, then we extend this combination to the residual distribution method, requiring
more technical steps. The outcome is a class of cG methods that is fully entropy conservative/dissipative and where
we can still avoid the inversion of a mass matrix.

2020 Mathematics Subject Classification. 65M60, 65L05.
Keywords. relaxation, entropy conservative / dissipation, deferred correction, residual distribution.

1. Introduction

Many problems in nature are described either by ordinary differential equations (ODEs) or partial
differential equations (PDEs) and the numerical methods that approximate their solutions should pre-
serve the physical properties of the underlying problem. To keep the positivity, for example, Patankar
approaches [25, 30, 36] or adaptive/limiting strategies [28, 33] can be found in the literature, while,
recently, Ketcheson proposed relaxation Runge–Kutta (RRK) methods to guarantee conservation or
dissipation of any inner-product norm, e.g. energy, entropy and Ljapunov functionals. In a series of
papers, he and collaborators have further extended the relaxation approach to multistep schemes and
applied it to different kind of problems, cf. [26, 38, 39, 41]. Special attention has been given on entropy
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conservation/dissipation for hyperbolic PDEs in [41] where the relaxation approach is combined with
a semidiscrete entropy conservative/dissipative scheme via a simple method of lines (MOL).

In this work, we also build an entropy conservative/dissipative scheme using the relaxation approach,
but we apply it on the deferred correction (DeC) method. The DeC is based on the Picard–Lindelöf
theorem and gives a simple algorithm to construct arbitrarily high order schemes. As time integration
schemes DeC methods can be rewritten as RK schemes, and, therefore, the relaxation approach can
be straightforwardly applied also to them. Nevertheless, in the context of time-dependent PDEs, DeC
has been recently combined with the residual distribution (RD) method [2, 4, 10, 11] resulting in a
high order explicit finite element method which avoids the inversion of a mass matrix. Moreover, in [3]
a correction term has been introduced that allows to preserve the total entropy in the spatial RD
discretization.

Here, we combine the two ideas, entropy residual correction and relaxation of the time integration,
to obtain a scheme which is fully discrete entropy conservative/dissipative. Moreover, we are able to
preserve the character of the DeC RD scheme avoiding the inversion of a mass matrix.

Therefore, the paper is organized as follows: in Section 2, we review the numerical methods on
which the novel method is based. We start with the relaxation Runge–Kutta method introduced by
Ketcheson [26], the DeC as time integration method [19] in the formulation presented by Abgrall [2]
and its combination with RD for the solution of hyperbolic problems. We also recall the construction
of entropy conservative/dissipative RD schemes for steady state problems. In Section 3, we focus on
DeC for ODEs and on how the application of the relaxation technique acts on it. Since the DeC can be
interpreted as an RK scheme for ODE problems (or on PDE problems with the MOL approach), the
relaxation approach can be directly transferred to the DeC method. Nevertheless, we need to prove
analogous results also for the DeC framework of [2] as this should lead to a better understanding of the
relaxation approach and to extend the algorithm to the RD-DeC method. Since the RD-DeC method
is not a MOL, we need to prove the high order accuracy of the method in this different framework. In
Section 4, we demonstrate how to combine the relaxation DeC (RDeC) with the semidiscrete entropy
conservative/dissipative RD method of [3] resulting in fully discrete entropy conservative/dissipative
RD schemes where we still avoid the inversion of the mass matrix. In Section 5, we validate all
our theoretical results through various numerical simulations both on ODEs and PDEs. Finally, in
Section 6 we summarize the work done and we give an outlook on possible future applications. In
Appendix A we provide another interpretation of RDeC-RD for completeness.

2. Numerical Methods and Theoretical Considerations

In this work we consider numerical approximations of both ODEs of the type{dy(t)
dt = f(t, y(t)), t ∈ [0, T ], y : [0, T ]→ RI , f : [0, T ]× RI → RI ,
y(0) = y0,

(2.1)

and of hyperbolic conservation laws, i.e.,{
∂U
∂t + divF (U) = 0, x ∈ Ω ⊂ Rd, t ∈ [0, T ], U : Ω× [0, T ]→ RI , F : RI → RI×d,
U(x, 0) = U0(x), x ∈ Ω

(2.2)

where Ω is the spatial domain and appropriated boundary conditions are applied. In many numerical
methods the temporal discretization of both ODEs and PDEs can be obtained in similar manners.
When a numerical method for PDEs splits the spatial and the temporal discretization through the
method of lines, we can use ODE solvers on the partially discretized PDE to obtain a global solver. This
is not always the case. In particular, the DeC method, firstly introduced to solve ODEs [19, 32, 36],
has been used to construct arbitrarily high order methods for hyperbolic equations in [2] combining
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spatial (residual distribution) and temporal discretization not resulting in a MOL but obtaining a
continuous finite element formulation which avoids the inversion of a mass matrix. The goal of this
work is to obtain an entropy preserving/dissipative arbitrarily high order method for ODEs and
hyperbolic PDEs. Hence, we will combine the relaxation approach [26] with the DeC and, for PDEs,
with an entropy stable spatial discretization [3]. In this section, we review all the used methods and
we highlight their key features: Relaxation Runge–Kutta, DeC, RD and DeC-RD.

2.1. Relaxation Runge–Kutta Methods

There are various approaches to solve numerically the ODE (2.1). A first ansatz is given by finite
differences, where the derivative in time is replaced by differences of states in different timesteps.
Backward (implicit) and forward (explicit) Euler are examples of this kind of strategy. Another ap-
proach would be to reformulate the ODE by integrating it in time. With different quadrature formulas
and approximation techniques, one can obtain various RK methods (explicit and implicit ones). These
are standard tools for solving ODEs.

Let us divide the time interval [0, T ] into N segments Tn = [tn, tn+1] and the time steps are given
by ∆tn = tn+1 − tn. A Runge–Kutta (RK) method applied to (2.1) approximates the variable in the
time steps, i.e., yn ≈ y(tn), in the form

ui := yn + ∆t
s∑
j=1

aijf(tn + cj∆t, uj), i = 1, . . . , s,

y(tn + ∆t) ≈ yn+1 := yn + ∆t
s∑
j=1

bjf(tn + cj∆t, uj).
(2.3)

We assume that cj =
∑
i aij holds and we use for brevity fi = f(tn + ci∆t, ui) for the i-th stage

derivative. The coefficients of the RK method can also be written into a Butcher tableau of the form
c A

b
(2.4)

with A ∈ Rs×s and b, c ∈ Rs.
To explain the relaxation approach, we first follow the spirit of Ketcheson [26] and explain the basic

framework. For simplicity, we concentrate again only on the initial value problem (2.1). We focus on
problems which are dissipative (conservative) with respect to some inner-product norm, i.e.,

d
dt ‖y(t)‖2 = 2 〈y, f(t, y)〉

(=)
≤ 0, (2.5)

where the equality sign is used for conservative problems. Here, 〈 · , · 〉 denotes an inner product and
‖ · ‖ the corresponding norm. For dissipative (conservative) problems, it is desirable that the numerical
solution verifies (2.5) discretely, i.e., ∥∥∥yn+1

∥∥∥ (=)
≤ ‖yn‖ . (2.6)

A method is called monotonicity preserving if it guarantees (2.6) for all problems satisfying (2.5).

Remark 2.1. The term ‖y‖2 will be called energy in the following as in [26] the author introduced
the relaxation approach to control the increase of the energy in classical RK methods. For scalar
hyperbolic conservation laws, the energy is nothing else than a special entropy function. In [41], the
relaxation approach is extended to general convex quantities, i.e., general entropies. We start the
discussion focusing on the energy but we will extend it to general entropies afterwards.
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As it is shown in [21, 26, 35] the change of the energy between two steps is given by∥∥∥yn+1
∥∥∥2
− ‖yn‖2 = 2∆t

s∑
j=1

bj 〈uj , fj〉+ 2∆t
s∑
j=1

bj 〈yn − uj , fj〉+ ∆t2
s∑

i,j=1
bibj 〈fi, fj〉

(2.3)= 2∆t
s∑
j=1

bj 〈uj , fj〉 − 2∆t2
s∑

j,i=1
ajibj 〈fj , fi〉+ ∆t2

s∑
i,j=1

bibj 〈fi, fj〉

and we have to control the increase of the energy. For conservative problems, the first sum is zero and
for dissipative ones it is non positive if bj ≥ 0 because of (2.5). However, the remaining terms can
destroy these conditions. The main idea of the relaxation approach is to change the update formula of
RK methods by changing the local time step so that the remaining terms are canceling out. To obtain
this, a relaxation coefficient γn is introduced as a factor of the time step only in the final update
formula of yn+1, so that the RK update reads

yn+1
γn = yn + γn∆t

s∑
j=1

bjf(tn + cj∆t, uj), (2.7)

and the energy difference becomes

‖yn+1
γn ‖

2 − ‖y‖2 = 2γn∆t
s∑
j=1

bj 〈uj , fj〉 − 2γn∆t2
s∑

j,i=1
ajibj 〈fj , fi〉+ ∆t2γ2

n

s∑
i,j=1

bibj 〈fi, fj〉 .

The last two terms can be deleted by a proper choice of γn. We determine the nontrivial root of this
equation with respect to γn and get

γn =
2
∑s
j,i=1 ajibj 〈fj , fi〉∑s
i,j=1 bibj 〈fi, fj〉

, (2.8)

while the second root is γn = 0 and is not further considered. If the denominator of (2.8) vanishes, we
already have that yn+1 = yn and we achieve our goal (i.e., conservation) by taking γn = 1. Thus, we
define

γn :=


2
∑s

j,i=1 ajibj〈fj , fi〉∑s

i,j=1 bibj〈fi, fj〉
, if ‖

∑s
i=1 bifi‖

2 6= 0,

1, else.
(2.9)

Since we update the solution time with γn∆t, it is important that γn is bigger than zero. In the
Runge–Kutta setting Ketcheson formulates the following lemma [26, Lemma 1]:

Lemma 2.2. Let
∑
i,j biaij > 0, let f be sufficiently smooth, and let γn be defined by (2.9). Then

γn > 0 for sufficiently small ∆t > 0.

This is naturally fulfilled for every RK method of order two or higher since from the order conditions
of the RK, it is known that

∑
i,j biaij = 1

2 .
In case of a general entropy we can proceed analogously. Let us denote with ε : RI → R an entropy

for (2.1) and w : RI → RI being w(y) = ∂yε(y) such that

〈w(y), f(t, y)〉
(=)
≤ 0. (2.10)

Hence, for the analytical model, we know that ∂tε(y(t))
(=)
≤ 0. Hence, we can impose for the last step

of a RK method, the (nonlinear) relaxation equation for γn, i.e.,

r(γn) := ε(yn+1
γn )− ε(yn)− γn∆t

s∑
i=1

bi 〈w(ui), fi〉︸ ︷︷ ︸
(=)
≤ 0

!= 0. (2.11)
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It can be solved with some iterative methods as bisection, Newton or similar. In practice the com-
putations of most of the ingredients of r can be done only once and then the scalar equation can be
quickly assembled. Let {

∆yn := yn+1 − yn = ∆t
∑s
i=1 bifi,

∆εn := ∆t
∑s
i=1 bi 〈w(ui), fi〉 ,

(2.12)

then the relaxation scalar equation becomes

r(γn) := ε(yn + γn∆yn)− ε(yn)− γn∆εn != 0. (2.13)

Here we use the symbol != to mean that we impose the equation to be equal to 0 and that we aim to
solve it for γn.

Remark 2.3. Further results about relaxation RK methods can be found in [26, 39, 41] including also
extension to multistep methods. However, for our purpose this introduction is enough. In the above
mentioned literature, one can find also a discussion about consistency and accuracy related to the fact
that

∑
j γnbj 6= 1. However, to shorten this part, we stress out that γn = 1 +O(∆tp−1) holds with p

denoting the order of the RK method (proofs can be found in the above literature).

Remark 2.4. The relaxation methods are very useful in conservative tests, as they allow to pre-
serve the exact entropy/energy level. In the dissipative case, they are reliably providing physically
coherent and accurate simulations, though not reaching the exact entropy/energy level. Hence, we will
focus more on entropy/energy conservative tests than dissipative ones, giving, nevertheless, a general
description of the methods.

2.2. Deferred Correction Methods

The idea of DeC schemes as introduced in [19] is based on the Picard–Lindelöf Theorem in the
continuous setting and the classical proof makes use of Picard iterations to minimize the error and to
prove convergence. The foundation of DeC relies on mimicking these Picard iterations at the discrete
level, decreasing the approximation error in several iterative steps. To describe the DeC, we follow the
approach presented in [2]. For the description, two operators are introduced: L1 and L2. Here, the L1

operator represents a low-order easy-to-solve numerical scheme, e.g. the explicit Euler method, and
L2 is a high-order operator that can present difficulties in its practical solution, e.g. an implicit RK
scheme. The DeC method can be written as a combination of these two operators.

tn = tn,0

yn,0

tn,1

yn,1

tn,m

yn,m

tn,M = tn+1

yn,M

Figure 2.1. Time interval divided into subintervals

Given a time interval [tn, tn+1], we subdivide it into M subintervals {[tn,m−1, tn,m]}Mm=1, where
tn,0 = tn and tn,M = tn+1. There, we mimic for every subinterval [tn,0, tn,m] the Picard–Lindelöf
Theorem for both operators L1 and L2. We also denote with yn,m the approximation at the time point
tn,m as denoted in Figure 2.1. Without loss of generality, we will consider autonomous systems from
here on, not including the dependence on t for the evolution operator f , i.e., f(t, y) = f(y).
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Then, the L2 operator is given by

L2(yn,0, . . . , yn,M ) :=


yn,M − yn,0 −

∫ tn,M
tn,0 IM (f(yn,0), . . . , f(yn,M ))dt

...
yn,1 − yn,0 −

∫ tn,1
tn,0 IM (f(yn,0), . . . , f(yn,M ))dt.

(2.14)

Here, the term IM denotes an interpolation polynomial of order M evaluated at the points {tn,r}Mr=0.
In particular, we use Lagrange polynomials {ϕr}Mr=0, which fulfills ϕr(tn,m) = δr,m and satisfy the
property

∑M
r=0 ϕr(s) = 1 for any s ∈ [tn,0, tn,M ]. In practice the interpolant is defined as

IM ((yn,0), . . . , f(yn,M )) :=
M∑
r=0

ϕr(s)f(yn,r).

Using these properties, we can actually compute the integral of the interpolants thanks to a high order
quadrature rule, obtaining weights

θmr := 1
∆t

∫ tn,m

tn,0
ϕr(s)ds,

resulting in

L2(yn,0, . . . , yn,M ) =


yn,M − yn,0 −∆t

∑M
r=0 θ

M
r f(yn,r)

...
yn,1 − yn,0 −∆t

∑M
r=0 θ

1
rf(yn,r).

(2.15)

The L2 operator represents an (M + 1)th order numerical scheme if set equal to zero, i.e.,
L2(yn,0, . . . , yn,M ) = 0. Unfortunately, the resulting scheme is implicit and, further, the terms f may
be nonlinear. It can thought as an implicit Runge–Kutta scheme, which requires some techniques to
be solved. For this purpose, we introduce a simplification of the L2 operator. Instead of using a high
order accurate quadrature formula at the points {tn,m}Mm=0 we evaluate the integral in equation (2.14)
applying the left Riemann sum approximation. The resulting operator L1 is given by the forward Euler
discretization for each state yn,m in the time interval, i.e.,

L1(yn,0, . . . , yn,M ) :=


yn,M − yn,0 − βM∆tf(yn,0)
...
yn,1 − yn,0 − β1∆tf(yn,0)

(2.16)

with coefficients βm := tn,m−tn,0
tn,M−tn,0 .

To simplify the notation and to describe DeC, we introduce the matrix of states for the variable y
at all subtimesteps.

y := (yn,0, . . . , yn,M ) ∈ RI×(M+1), such that (2.17)
L1(y) := L1(yn,0, . . . , yn,M ) and L2(y) := L2(yn,0, . . . , yn,M ). (2.18)

The DeC algorithm consists of an iterative procedure that combines of the L1 and L2 operators.
The aim is to recursively approximate y∗, the numerical solution of the L2 = 0 scheme, similarly to
the Picard iterations in the continuous setting. The successive states of the iteration process will be
denoted by the superscript (k), where k is the iteration index, e.g. y(k) ∈ RI×(M+1). The total number
of iterations (also called correction steps in the following) is denoted by K. To describe the procedure,
we have to refer to both the m-th subtimestep and the k-th iteration of the DeC algorithm. We will
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indicate the variable by yn,m,(k) ∈ RI . Finally, the DeC method can be written for every time step
[tn, tn+1] as

DeC Algorithm

yn,0,(k) := yn, k = 0, . . . ,K,

yn,m,(0) := yn, m = 1, . . . ,M

L1(y(k)) = L1(y(k−1))− L2(y(k−1)) with k = 1, . . . ,K,

yn+1 = yn,M,(K),

(2.19)

where K is the number of iterations that we want to compute. Using the procedure (2.19), it has been
proven [2, 10, 36] that with as many iterations as the order of accuracy d of the L2 operator the DeC
results in a d-th order accurate scheme, i.e., we set K = d. Recall that the number of subtimesteps M
and their distribution define the order of the L2 operator, e.g. for equispaced subtimesteps d = M +1,
for Gauss–Lobatto d = 2M .

We quickly go through the theorem and proof of the order of accuracy of the DeC algorithm as it
will be preparatory for the following sections.

Theorem 2.5 (DeC). Let L1,L2 : RI×(M+1) → RI×(M+1) be operators depending on ∆t such that L1

is coercive with constant C1 > 0 independent of ∆t, i.e.,

‖L1(y)− L1(w)‖ ≥ C1‖y−w‖ (2.20)

and L1 − L2 is Lipschitz continuous with constant C2∆t > 0, i.e.,

‖L1(y)− L2(y)− L1(w) + L2(w)‖ ≤ C2∆t‖y−w‖ (2.21)

and let y∗ be the unique solution of the system L2(y∗) = 0. Then for algorithm (2.19) we have

‖y(K) − y∗‖ ≤
(
C2
C1

∆t
)K
‖y(0) − y∗‖. (2.22)

Proof. The proof is fairly simple. It consists in a series of inequalities where we exploit in this order:
coercivity, definition of DeC algorithm, y∗ being the solution of L2 = 0 and Lipschitz continuity. It
works by induction as

‖y(k) − y∗‖ ≤ 1
C1
‖L1(y(k))− L1(y∗)‖

= 1
C1
‖L1(y(k−1))− L2(y(k−1))− L1(y∗) + L2(y∗)‖ ≤ C2

C1
∆t‖y(k−1) − y∗‖. (2.23)

The hypotheses of the theorem (coercivity, Lipschitz continuity and existence of the high order
accurate solution of the L2 operator) are satisfied by the operators defined in (2.16) and (2.15). A
proof of this can be found in [2, 10] and it uses the smoothness of the solution y and the Lipschitz
continuity of f .

Example 2.6 (Second and third order DeC).

• For the second order case, we have only the two sub time points tn,0 = tn and tn,1 = tn + ∆t.
We calculate the first approximation at tn,1 = 1 using the explicit Euler method. Afterwards,
the iteration step (2.19) is used and it reads

yn,1,(1) = yn,0 + ∆tf(tn,0, yn,0), yn,1,(2) = yn,0 + 1
2∆t

(
f(tn,0, yn,0) + f(tn,1, yn,1,(1))

)
,
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which is equivalent to the SSPRK(2,2) given by the following Butcher tableau:
0
1 1

1
2

1
2

.

• Next, we consider the third order DeC scheme. We use equispaced nodes which coincide with
Gauss–Lobatto nodes in this case. The values are tn,0 = tn, tn,1 = tn + ∆t

2 and tn,2 = tn + ∆t.
The scheme leads to the following algorithm.

yn,1,(1) = yn,0 + 1
2∆tf(tn,0, yn,0),

yn,2,(1) = yn,0 + ∆tf(tn,0, yn,0),
First Correction :

yn,1,(2) = yn,0 + ∆t
( 5

24f(tn,0, yn,0) + 1
3f(tn,1, yn,1,(1))− 1

24f(tn,2, yn,2,(1))
)
,

yn,2,(2) = yn,0 + ∆t
(1

6f(tn,0, yn,0) + 2
3f(tn,1, yn,1,(1)) + 1

6f(tn,2, yn,2,(1))
)
,

Second Correction :

yn+1 = yn,2,(3) = yn,0 + ∆t
(1

6f(tn,0, yn,0) + 2
3f(tn,1, yn,1,(2)) + 1

6f(tn,2, yn,2,(2))
)
.

Here, we have ignored the update for yn,1,(3) since it does not effect yn+1. This is different
for the classical DeC as described in [19] and investigated in [29]. However, as before, we can
interpret DeC(3) as a RK method. The Butcher tableau reads

0 0
1
2

1
2 0

1 1 0 0
1
2

5
24

1
3 − 1

24 0 0
1 1

6
4
6

1
6 0 0

1 1
6 0 0 4

6
1
6

2.3. Semidiscrete Entropy Conservative Residual Distribution Methods

In this section we provide a spatial discretization for hyperbolic equations. Historically the RD has
been developed in the FE context for steady state equations and only later they have been extended
to time evolution problems. RD can be seen as an (arbitrarily high order) finite element discretization
which does not require solution of linear systems. Exactly for this reason, the generalization to time
dependent problems cannot be performed with the classical method of lines that would require the
inversion of the mass matrix or a decrease in the order [1]. Firstly some correction terms [42], then
DeC [2] have been used to overcome those issues.

To better catch the principles of RD, we start explaining it for a steady state problem

divF (U) = 0. (2.24)

We define the space of globally continuous, piecewise polynomial functions of degree p:

Vh :=
{
U ∈ (C0(Ωh))I , U|κ ∈ (Pp)I , ∀ κ ∈ Ωh

}
, (2.25)

where Ωh is a discretization of Ω into elements, e.g. triangles. Pp denotes the space of polynomials
with degree p. With this definition an approximation of a solution of (2.24) can be written as a linear
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combination of a suitable choice of basis functions of Vh, which are denoted by ϕσ:

U(x, tn) ≈ Uh,n =
∑
σ∈Ωh

Unσϕσ(x), x ∈ Ω. (2.26)

In general, the choice of basis functions is arbitrary as long as span{ϕσ|κ} = Pp for all κ ∈ Ωh.
However, it has been shown in [4] that there are additional constraints on the basis functions when
RD is combined with DeC. Here, the condition

∫
κ ϕσdx > 0 must be also fulfilled [4]. Therefore,

Bernstein polynomials [4] or cubature elements [17] (Lagrangian polynomials defined on quadrature
points) will be used in our case for the space discretization. Once the setup is done, the approach
works in three steps:

(1) Define Φκ(U) :=
∫
κ∇F(U)dx which is called the total residual of an element κ;

(2) Define Φκ
σ as the contribution of a DOF σ to the total residual of the element κ and it will be

denoted by local residual. The whole RD strategy is determined by the way the total residual
of an element is distributed among its DOFs σ. Important is that for any element κ and any
Uh ∈ Vh the conservation relation holds:∑

σ∈κ
ΦK
σ (Uh) = Φκ(Uh) =

∫
K
∇F(Uh)dx; (2.27)

(3) Finally, all local residuals belonging to one DOF σ are collected and summed up. This gives
the equation for that DOF Uσ, i.e.,∑

κ|σ∈κ
Φκ
σ = 0, ∀ σ ∈ Ωh. (2.28)

When needed, we can also include the boundary elements Γ in (2.28) and then the update scheme
reads ∑

κ|σ∈κ
Φκ
σ +

∑
Γ|σ∈Γ

ΦΓ
σ = 0, ∀ σ ∈ Ωh. (2.29)

This can be done for different purposes, e.g. to add diffusion on the boundaries [4, 31] or in a discon-
tinuous Galerkin setting to introduce the numerical fluxes [3, 9]. As highlighted before, the choice of
Φκ
σ fully determines the scheme. The order of accuracy of the scheme is given, hence, by the chosen FE

space and by the type of discretization of the nodal residual (2.27). Here, we present a definition of
nodal residuals which introduces small dissipation levels guaranteeing the L2 stability of the scheme,
and not changing the order of accuracy of the scheme.

Example 2.7. A pure Galerkin discretization can be written in residual form as Φκ
σ(Uh) =

∫
κ ϕσ∇ ·

F(Uh)dx. In our simulations, we add additional stabilization on the jump of the derivatives of the
solution. This stabilization term is known as continuous interior penalty (CIP) method and it was
proposed in a series of articles [12, 13, 18]. The resulting local residual definition is the following:

Φκ
σ(Uh) =

∫
κ
ϕσ∇ · F(Uh)dx+

∑
e∈κ

λh2
e

∮
e

[
∇Uh

]
· [∇ϕσ] dγ (2.30)

with the jump defined as
[
∇Uh

]
:= ∇Uh|κ−∇U

h
|κ+

, with κ+ the neighbouring element sharing the edge e
and λ being a stabilization coefficient [31]. This formulation leads to an arbitrarily high order accurate
spatial discretization with the corresponding choice of the polynomial degree, i.e., for polynomials of
degree p we obtain accuracy order d = p + 1. More RD formulations for different schemes including
discontinuous Galerkin, flux reconstruction, etc. can be found in [5, 6, 8].
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Entropy Correction Term

Since we want to construct fully entropy conservative/dissipative RD schemes, we follow the approach
presented in [3, 9] and we add an entropy correction term to our steady-state space residual. Let
η : RI → R be an entropy, g : RI → Rd the corresponding entropy flux and ∂uη(u) = v ∈ RI is the
entropy variable [24] such that 〈η′(u), F ′(u)〉 = g′(u). Let V h ∈ Vh be the discretization of the entropy
variable v. The entropy equality in the conservative case using the RD framework reads∑

σ∈κ

〈
Vσ, Φ̃K

σ

〉
=
∫
∂κ
g
(
V h
)
· ndγ, (2.31)

where Φ̃K

σ is a modification of the previously presented residuals. Since (2.31) is not fulfilled for general
ΦK
σ , the entropy correction terms rκσ is added to the residuals ΦK

σ to guarantee (2.31). In addition,
we have to select these correction terms such that they do not violate the conservation relation. We
introduce the following definition of the entropy-corrected residuals

Φ̃K

σ = ΦK
σ + rκσ (2.32)

with the goal of fulfilling the discrete entropy condition (2.31). In [3], the following correction terms
are presented

rκσ := α(Vσ − V ), with V = 1
#κ

∑
σ∈κ

Vσ, (2.33)

α = E∑
σ∈κ

(
Vσ − V

)2 , E :=
∫
∂κ
g
(
V h
)
· ndγ −

∑
σ∈κ

〈
Vσ, ΦK

σ

〉
, (2.34)

where #κ denotes the number of DOFs belonging to κ. In addition, extensions and re-interpretations
of the terms can be found in [9] where the following theorem is also proven:
Theorem 2.8. The correction term (2.33) with (2.34) satisfies∑

σ∈κ
rκσ = 0,

∑
σ∈κ
〈Vσ, rκσ〉 = E . (2.35)

By adding (2.33) to the residual ΦK
σ , the resulting scheme using Φ̃K

σ is locally conservative in u and
entropy conservative.

However, entropy conservation is most of the time not enough in the context of nonlinear hyperbolic
conservation laws. Especially, in the presence of discontinuities (i.a. shocks), the scheme should not
just fulfill the equality (2.31) but rather an inequality∑

σ∈κ

〈
Vσ, Φ̂K

σ

〉
≥
∫
∂κ
g
(
V h
)
· ndγ. (2.36)

To obtain a semidiscrete entropy dissipative scheme, we apply the previous construction and write the
new residual as

Φ̂K
σ = ΦK

σ + rκσ + Ψκ
σ, (2.37)

where rkσ are defined by (2.33). The Ψκ
σ satisfy∑

σ∈κ
Ψκ
σ = 0 and

∑
σ∈κ
〈Vσ,Ψκ

σ〉 ≥ 0. (2.38)

Two expressions for Ψκ
σ that can be used to enforce the inequality, not violating the conservation

requirement, are streamline or jump diffusion. In this work, we apply only the jump diffusion, defined
similarly to (2.30), by

Ψκ
σ := λh2

κ

∫
∂κ

[∇ϕσ] · [∇V h]dγ, (2.39)
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which ensures that
∑
σ∈κ 〈Vσ,Ψκ

σ〉 = λh2
κ

∫
∂κ ·[∇V h]2dγ ≥ 0 for any λ > 0. We apply this correction

term in the nonlinear case to guarantee the inequality in presence of shocks.

Remark 2.9. The presented entropy corrections for residual distribution schemes must be chosen
entropy conservative, as in (2.35), or entropy dissipative, as in (2.38). This choice must be done a
priori knowing the behavior of the problem.

2.4. Residual Distribution for Hyperbolic Problems

After describing the general construction of RD and DeC schemes, they can be coupled to form an
explicit space–time FE scheme for the initial value problem (2.2) as described in [2]. We like to point
out that this approach has several similarities and connections to the modern ADER approach [23].

The combination of RD and DeC needs a further modification of the L1 operator of the DeC
algorithm (2.16), in order to avoid the inversion of a mass matrix in the combined scheme. This
does not decrease the order of accuracy of the scheme [2]. Following [2, 4], for given local residuals,
e.g. (2.30) or (2.37), we define the DeC L1 and L2 operators as

L1
σ(U (k)) =


|Cσ|(Un,M,(k)

σ − Un,0σ ) + ∆tβM
∑
κ|σ∈κ Φκ

σ(Un,0)
...

|Cσ|(Un,1,(k)
σ − Un,0σ ) + ∆tβ1

∑
κ|σ∈κ Φκ

σ(Un,0)

 ,

L2
σ(U (k)) =


∑
κ|σ∈κ

(∫
κ ϕσ

(
Un,M,(k) − Un,0

)
dx+ ∆t

∑M
r=0 θ

M
r Φκ

σ(Un,r,(k))
)

...∑
κ|σ∈κ

(∫
κ ϕσ

(
Un,1,(k) − Un,0

)
dx+ ∆t

∑M
r=0 θ

1
rΦκ

σ(Un,r,(k))
)
 ,

where βi, θir are the quadrature weights for the time integration in (2.15) and (2.16) and |Cσ| :=
∫
κ ϕσ.

The term |Cσ| can be seen as some introduced mass lumping effect and should be positive. The m-th
line of the DeC iterative procedure (2.19) simply becomes

Un,m,(k)
σ = Un,m,(k−1)

σ − |Cσ|−1 ∑
κ|σ∈κ

(∫
κ
ϕσ(Un,m,(k−1) − Un,0) + ∆t

M∑
r=0

θmr Φκ
σ(Un,r,(k−1))

)
, (2.40)

that we will also use in its vector formulation. Denoting with Mij =
∫

Ω ϕiϕjdx the mass matrix, with
Dii = |Ci| =

∫
Ω ϕσdx the lumped diagonal matrix, with I the identity matrix and with Φ(U) the

vector of the residuals Φσ(U) :=
∑
κ|σ∈κ Φκ

σ(U), we can write it as

Un,m,(k) = Un,m,(k−1) −D−1
(

M(Un,m,(k−1) − Un,0) + ∆t
M∑
r=0

θmr Φ(Un,r,(k−1))
)

(2.41)

= Un,0 + (I−D−1M)(Un,m,(k−1) − Un,0)−∆t
M∑
r=0

θmr D−1Φ(Un,r,(k−1)). (2.42)

Remark 2.10. First of all, we remark that the obtained scheme is arbitrarily high order and avoids the
inversion of the mass matrix [2]. However, we have to deal with further terms in the semidiscretization,
which makes the scheme not a MOL. This has to be taken into account when the energy/entropy
production is discussed. Indeed, we have now two ways of applying the entropy correction terms (2.35)
or (2.38) in (2.42). Either, we apply it on the space residual Φ(Un,r,(k−1)) resulting in a semidiscrete
entropy conservative or dissipative RD scheme. Or, we apply it to the whole space-time residual

(I−D−1M)(Un,l,(k−1) − Un,0)−∆t
M∑
r=0

θlrD−1Φ(Un,r,(k−1))
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to obtain a fully discrete conservative scheme. In [9], experiments on the second approach were already
done. The authors noticed only small differences but a rather complex implementation strategy. There-
fore, in this work, we aim at combining the entropy correction approach (2.37) with the relaxation
framework of Section 2.1, in order to simplify the implementation. Hence, we apply the correction
term (2.38) only in the semidiscrete setting together with the proposed relaxation approach. In the
future, a numerical comparison between the two different approaches will be considered extending also
the application to different FE based schemes. However, this is not the purpose of this work.

3. Deferred Correction Methods – Connection to RK and Relaxation Technique

In this section, we highlight the connection between DeC and RK schemes and how to construct DeC
Butcher tableaux. Therefore, we focus again only on the simple ODE case (2.1). Furthermore, we
apply the relaxation technique to DeC. Using the RK interpretation we demonstrate the results valid
for RRK. We will also follow the step of the proof of the order of RRK for relaxation DeC (RDeC)
with the formalism of [2]. This will be preparatory to the proof in the fully discretized case. In the
following sections we will numerically compare the RDeC to the classical relaxed RK methods both
for ODEs and PDEs using the MOL.

In the hyperbolic community the DeC is mostly known for its application with RD, hence, not
as a simple RK method applied to a semidiscretization. Similarly also the ADER method has been
presented as space time discretization [23]. Here, we want to highlight that such methods can be
applied to ODEs and the resulting discretization is a classical RK method as noticed, inter alia,
in [22, Section 5] and [27]. As we have seen already in Example 2.6, the first two DeC approaches can
be directly interpreted as RK schemes where the quadrature weights θ and β define the coefficients of
the Butcher tableau. However, this is not new at all. Already in [15, 22, 27] this embedding has been
pointed out for the classical DeC approach resulting in a block structure matrix for A with repeated
coefficients. Here, we adapt this to the simplified version of DeC of [2]. As it has been presented
in [34, 44], DeC has the advantage that one does not need to specify the coefficients for every order
of accuracy as usually necessary in classical RK methods, but arbitrarily high order schemes can be
automatically written starting form classical quadrature formulae. On the other side, rewriting a DeC
method as a RK scheme requires a number of stages equal to K ×M = d× (d− 1) for equispaced sub
time points and K ×M = d× dd/2e for Gauss Lobatto sub time points, which is larger than classical
RK stages. Nevertheless, in our case we can even delete additional stages since all the intermediate
values of the last correction step are not needed anymore due to the simplification introduced in [2]
with respect to the original DeC [19, 29], see Example 2.6. Therefore, we get a number of stages equal
to (K − 1) ×M + 1) = (d − 1) × (d − 1) + 1 in the equispaced case and (d − 1) × dd/2e + 1 in the
Gauss–Lobatto case. The number of flux evaluations coincide with the number of stages.

Moreover, one can notice that every subtimestep is independent of each other, so one can compute
sequentially the corrections and in parallel the subtimesteps and the flux evaluations, obtaining a
computational cost of just K = d corrections and K = d flux evaluations. This procedure makes
sense in particular when complex problems are taken into consideration and the flux evaluation is the
dominant cost of the time discretization procedure. Furthermore, the resulting Runge–Kutta scheme is
a low storage one, as it requires only the storage ofM +1 stages (both variables and flux evaluations).
This has been noticed also in [27] for DeC scheme with θ = 0 in the DeC formulation of [29] where
Ketcheson et al. already point out that this formulation allows huge parallelization and that some
stages can be skipped. If not parallelized, the DeC is disadvantaged with respect to RK methods in
terms of computational costs. For example a DeC with Gauss–Lobatto points with order 4 consists
in 10 stages as we will explain below, while there exist RK schemes with 4 stages. Nevertheless, it is
straightforward to obtain arbitrarily high order DeC schemes, while to write a very high order RK
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method with optimized number of stages is not a trivial procedure. Let us consider our version of DeC
and rewrite it in a Butcher tableau

c A
b
.

To this purpose, let us define some block matrices that we use to build up A, b and c. Let β ∈ RM

be a column vector with entries βm = βm. Then, let us split θ := (θmr ) ∈ R(M+1)×M , where r
spans the columns and m the rows, into θ = (θ0|θ̃ ), with θ0 ∈ RM and θ̃ ∈ RM×M . Now, A ∈
R((K−1)×M+1)×((K−1)×M+1) is block diagonal after the first column. The first column of A includes all
the coefficients referring to yn,0, which are the βi coefficients for the first iteration and θ0 for all the
other corrections. For all the corrections for k = 2, . . . ,K − 1, we insert the matrix θ̃ in the (k) row
block and (k − 1) column block, since to compute the (k) iteration, we need information only from
the (k− 1) one. For the last correction, we can neglect all the intermediate values, and write the final
update in the row of b. We obtain b1 = θM0 , then there are K − 2 blocks of zeros, followed by θMr with
r ∈ 1, . . . ,M, denoting the vector θM,T

r = (θM1 , . . . , θMM ). Hence, the Butcher tableau for an arbitrary
DeC approach can be written as

0 0
β β

β θ0 θ̃
... θ0 0 θ̃
... θ0 0 0 θ̃
...

...
...

... . . . . . .
β θ0 0 . . . . . . 0 θ̃

θM0 0T . . . . . . 0T θM,T
r

(3.1)

A comparison to the presented example 2.6 demonstrated that the interpretations coincide. Please
note that this description is from [34] where the different y0 values have been set directly equal to the
starting point. In [44], these values have been considered inside the RK methods yielding to a slight
different Butcher tableau which is equivalent to the presented one (3.1).

3.1. Relaxation DeC

Due to the RK interpretation, all the theoretical findings of [26, 39, 41] will transfer directly to the
DeC approach if one uses DeC as an ODE solver. Therefore, for such problems, we do not demonstrate
new results in this part, rather we present a different technique to prove the accuracy of RDeC using
the DeC framework. This should lead to a better understanding for the relaxation approach also for
the DeC-RD context in Section 4. There, we need the following results to guarantee that the RDeC-RD
methods remain high order accurate. Again, in that context, a classical splitting technique through
the method of lines has to be avoided for RD methods not to violate the high order property nor the
mass–matrix free character.

3.1.1. Relaxation DeC

To adapt the DeC to the relaxation technique, we slightly modify the final update step that in the
DeC reads

L1,M (y(K)) = L1,M (y(K−1))− L2,M (y(K−1)). (3.2)
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with L1,m(y) = yn,m−yn−∆tβmf(yn) and L2,m(y) = yn,m−yn−∆t
∑M
r=0 θ

m
r f(yn,r) for all 1 ≤ m ≤

M . In particular, we modify the operators L1 and L2 to obtain two new operators that will be used
just in this final step. We define

L1,M
γn (y) := 1

γn

(
yn,Mγn − yn − γn∆tβMf(yn)

)
≈ 1
γn

(y(tn + γn∆t)− y(tn)− γn∆tf(y(tn)))

≈ ∆t(∂ty(tn)− f(y(tn))) +O(∆t2),
(3.3)

L2,M
γn (y) := 1

γn

(
yn,Mγn − yn − γn∆t

M∑
r=0

θMr f(yn,r)
)
≈ ∆t(∂ty(tn)− f(y(tn))) +O(∆td+2), (3.4)

and then the scheme for the relaxed final step reads

L1,M
γn (y(K)

γn ) = L1,M (y(K−1))− L2,M (y(K−1)). (3.5)

This sums up to the following formulations for the final update step:
1
γn

(
yn+1
γn − yn − γn∆tβMf(yn)

)
=
(
yn,M,(K−1) − yn −∆tβMf(yn)

)
−
(
yn,M,(K−1) − yn −∆tθMr f(yn,r,(K−1))

) (3.6)

yn+1
γn − yn = γn∆tθMr f(yn,r,(K−1)). (3.7)

As before, γn can be found solving (2.13) with∆yn := yn+1 − yn = ∆t
∑M
r=0 θ

M
r f(yn,r,(K−1)),

∆εn := ∆t
∑M
r=0 θ

M
r

〈
w(yn,r,(K−1)), f(yn,r,(K−1))

〉
.

(3.8)

In the quadratic energy case, i.e., w(u) = u, it leads to

γn =
2
∑M
r=1 θ

M
r

〈
yn − yn,r,(K−1), f(yn,r,(K−1))

〉
∆t
∑M
i,j=0 θ

M
i θ

M
j

〈
f(yn,i,(K−1)), f(yn,j,(K−1))

〉 . (3.9)

This formulation is equivalent to the relaxation Runge–Kutta (2.7) for ODEs or PDEs solved with
the method of lines, but in case of DeC-RD it already defines a different method. In the following
we prove the accuracy of the RDeC in a way that the proof can be used identically for the DeC-RD
algorithm.

3.1.2. Accuracy of RDeC

We point out that yn+1
γ approximates y(tn+γn∆t) and not y(tn+∆t) and this guarantees the accuracy

of the solution. As it is formulated in [26], the approach that approximates y(tn+1) corresponds to
the incremental direction technique (IDT) and it was proven that the scheme yields to a d − 1 order
method if the corresponding RK method is of order d. This is also the case using the DeC approach.
In this paper, we focus on the other interpretation, i.e., yn+1

γ ≈ y(tn + γn∆t), which gives a d order
method.

Lemma 3.1 (Accuracy of RDeC). Let f be sufficiently smooth and consider the DeC algorithm (2.19)
of order d > 1 followed by a last step given by (3.5). The so defined RDeC method has order of accuracy
d if γn = 1 +O(∆td−1).

Proof. Following the proof of the DeC algorithm, we can prove the following inequalities. We remark
that K is chosen at least equal to d. Let y∗γn be the solution of L2

γn(y∗γn) = 0. Then, we have to prove
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the following inequalities∥∥∥yn,M,(K)
γn − y∗,Mγn

∥∥∥ ≤ 1
C1

∥∥∥L1,M
γn (y(K)

γn )− L1,M
γn (y∗γn)

∥∥∥ (3.10)

= 1
C1

∥∥∥L1,M (y(K−1))− L2,M (y(K−1))− L1,M
γn (y∗γn) + L2,M

γn (y∗γn)
∥∥∥ (3.11)

≤ ∆tC2
C1

∥∥∥y(K−1) − y∗
∥∥∥+O(∆td). (3.12)

Equation (3.10) is easily proven as in the normal DeC case, using the definition of RDeC (3.3) and of
y∗. Equation (3.11) is given by the RDeC step (3.5), while (3.12) requires more developments. Using
the triangular inequality we can split it into three terms∥∥∥L1,M (y(K−1))− L2,M (y(K−1))− L1,M

γn (y∗γn) + L2,M
γn (y∗γn)

∥∥∥ ≤ A+B + C, (3.13)
with 

A :=
∥∥∥L1,M (y(K−1))− L2,M (y(K−1))− L1,M (y∗) + L2,M (y∗)

∥∥∥ ,
B :=

∥∥∥L1,M (y∗)− L2,M (y∗)− L1,M
γn (y∗) + L2,M

γn (y∗)
∥∥∥ ,

C :=
∥∥∥L1,M

γn (y∗)− L2,M
γn (y∗)− L1,M

γn (y∗γn) + L2,M
γn (y∗γn)

∥∥∥ ,
(3.14)

where A ≤ C2∆t
∥∥∥y(K−1) − y∗

∥∥∥ as in the classical DeC,

B =
∣∣∣∣∣
∣∣∣∣∣ (y∗,M − yn − βMf(yn)

)
−
(
y∗,M − yn −

∑
r

θMr f(y∗,r)
)

−
(
y∗,M − yn

γn
− βMf(yn)

)
+
(
y∗,M − yn

γn
−
∑
r

θMr f(y∗,r)
) ∣∣∣∣∣
∣∣∣∣∣ = 0 (3.15)

and

C =
∥∥∥∥∥∆t
γn

M∑
r=0

θMr f(y∗,rγn )− f(y∗,r)
∥∥∥∥∥ ≤ ∆tC2

γn

∥∥∥y∗ − y∗γn
∥∥∥ ≤ ∆tdC̃2

γn
= O(∆td), (3.16)

where, as for the Lipschitz continuity of the operator L1−L2, we exploit the Lipschitz continuity of f
and we know that y∗ and y∗γn approximate with order of accuracy d the solution y at times y(tn+ ∆t)
and y(tn + γn∆t), where γn = 1 +O(∆td−1). So, using the regularity of the solution, one obtains the
aimed result.
Finally, by combining our results from above, the original DeC accuracy proof and the fact that
L2
γn(y∗γn) = 0 gives a d order accurate approximation of yex(tn + γn∆t), we can state∥∥∥yn,M,(K)

γn − yex(tn + γn∆t)
∥∥∥ ≤ ∥∥∥yn,M,(K)

γn − y∗,Mγn
∥∥∥+

∥∥∥y∗,Mγn − yex(tn + γn∆t)
∥∥∥ ≤ C∆td. (3.17)

Finally, we have to say that in Lemma 3.1, we have assumed that γn = 1 + O(∆td−1) is fulfilled.
However, this is proven for the ODE case in [26, Lemma 3]:

Lemma 3.2. Let aij , bj denote the coefficients of a RK method of order d, let f be a sufficiently
smooth function, and let γn be defined by (2.9). Then γn = 1 +O(∆td−1).

Remark 3.3. An alternative proof of this result is shown in [41]. Since we can interpret DeC as a
RK scheme, we know that this condition is always fulfilled.

Remark 3.4. These proof are based on the fact the original methods are high order methods and
that the solution of the original method substituted in the residual entropy equation of the relaxed
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method gives an O(∆td+1) [41]. Using then the convexity of the entropy and the Lipschitz continuity
of all operators one can show that there must be a root of the relaxed method for γn which is close
to one with an error which is as well of an O(∆td−1) [41]. Same principles apply for the RDeC also in
the PDE case.

Remark 3.5 (Extension to General Entropies). We have presented the RDeC formula for γn only
for the quadratic energy in the ODE case. Those systems naturally develop from hyperbolic conser-
vation/balance laws using energy (entropy) conservative/dissipative space discretizations, cf. [7, 14,
20, 40] and references therein. One is not only interested in the energy behavior but on the behavior
of general entropies, especially in the nonlinear case, e.g. shallow water equations, Euler equations in
gas dynamics. As presented in [41], the relaxation approach can be easily adapted to general entropy
functions. We remark that the procedure for ODEs (or semidiscretized PDEs) a nonlinear equation
must be solved to find γn. As for RRK, let us denote with ε : RI → R an entropy for (2.1) and
w : RI → RI being w(y) = εy(y) such that

〈w(y), f(y)〉
(=)
≤ 0. (3.18)

We then find γn at time step, solving (2.13) with (3.8). In the following section a complete entropy
stable RDeC-RD approach will be developed.

4. A Fully Entropy Conservative/Dissipative DeC-RD Approach

In the following section, we will describe how we can combine the RDeC approach together with the
RD framework and how the relaxation parameter γ is calculated in this case.

We had for DeC in the RD framework the following update formula for the final step (2.42), so we
can write the last step as

Un+1 = Un + ∆t
{

(I−D−1M)U
n,M,(K−1) − U0

∆t −
M∑
r=0

θMr D−1Φ(Un,r,(K−1))
}
. (4.1)

We assume further that due to the usage of the entropy correction term (2.29) (plus the addition of
diffusion terms) our space residual is already entropy/energy conservative/dissipative, i.e.,

∑
κ|σ∈κ

〈
Vσ(Un,r,(K−1)),Φσ(Un,r,(K−1))

〉 (=)
≥
∫
∂κ
g(Un,r,(K−1)) · n dΓ, (4.2)

where Vσ are the entropy variables, g is the entropy flux and Φ denotes the nodal space residual. We
remark that we consider continuous RD distribution approximation. One can substitute in the previous
equation the entropy flux g with a numerical flux gnum( · , · ) in case of discontinuous approximations.
The equality can be obtained by the entropy fix (2.31) and the inequality (2.36) by adding extra
diffusion (2.39). In particular, we know that physically the equality holds for smooth flows, while, in
presence of discontinuities the inequality appears.

Now, we want to apply the relaxation approach to obtain a fully discrete entropy conservative/
dissipative scheme. Here, we have to make slight modifications.

Actually, the main idea of the relaxation approach is to decrease the update time-step with respect
to the entropy production of the fully discrete scheme.

In the RD framework, we cannot simply apply this term since by focusing on (4.1), we realize that
we have additional terms given by the lumping of the mass matrix in L1. The sign of the entropy
contribution of this term is unknown.
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Let us recall that using the entropy correction term we obtain the relation (2.31) and (2.36). Defining
the total entropy as

ε(U) :=
∫

Ω
η(U)dx ≈

∑
κ

∑
σ∈κ

ησ(U)
∫
κ
ϕσ(x)dx (4.3)

and noting that we want to have

ε(Un+1)− ε(Un) (≤)= −
∫ tn+1

tn

∫
∂Ω
g(U(t, x)) · n dΓdt ≈ −∆t

M∑
r=0

θMr

∫
∂Ω
g(Un,r,(K−1)(x)) · n dΓ. (4.4)

Also here, the equality makes sense physically only in case of smooth flows, while in presence of
discontinuities, we have the inequality above.

Let us develop the equation for entropy that we would like to preserve for the relaxed value
Un+1
γn := Un + γn∆U, (4.5)

defining

∆U := ∆t
{

(I−D−1M)U
n,M,(K−1) − Un

∆t −
M∑
r=0

θMr D−1Φ(Un,r,(K−1))
}
. (4.6)

Using the summation by parts notation, we denote with 1T an horizontal vector of ones. Then, the
entropy reads and can be expanded as

ε(Un+1
γn ) =

∫
Ω
η(Un+1

γn )dx =
∑
κ∈Ω

∑
σ∈κ

∫
κ
ϕσησ(Un+1

γn )dx = 1TDη(Un+1
γ ) (4.7)

= 1TDη(Un)

+γn∆t
∑
κ∈Ω

∑
σ∈κ

〈
η′σ(Un), (D−M)︸ ︷︷ ︸

O(∆x2)

Un,M,(K−1)−Un

∆t︸ ︷︷ ︸
O(1)

−
M∑
r=0

θMr Φκ
σ(Un,r,(K−1))

〉
+O(∆t2) (4.8)

= 1TDη(Un)− γn∆t
∑
κ∈Ω

∑
σ∈κ

〈
Vσ(Un),

M∑
r=0

θMr Φκ
σ(Un,r,(K−1))

〉
+O(∆t2) (4.9)

= 1TDη(Un)− γn∆t
M∑
r=0

θMr
∑
κ∈Ω

∑
σ∈κ

〈
Vσ(Un,r,(K−1)),Φκ

σ(Un,r,(K−1))
〉

︸ ︷︷ ︸
(=)
≥
∫
∂Ω g(U

n,r,(K−1))·n dΓ

+O(∆t2). (4.10)

We recall that for DeC with order less than 9 all the {θMr }r are positive, while for higher orders
one has to stick to Gauss–Lobatto subtimestep distribution to have positive coefficients. Motivated by
this expansion, we impose that

ε(Un+1
γn )− ε(Un) + γn∆t

M∑
r=0

θMr
∑
κ∈Ω

∑
σ∈κ

〈
Vσ(Un,r,(K−1)),Φκ

σ(Un,r,(K−1))
〉 != 0, (4.11)

by solving this scalar equation for γn. Again, the symbol != means that we force the equality to be
true, by solving the equation for γn. Then, we have that

ε(Un+1
γn ) = ε(Un)− γn∆t

M∑
r=0

θMr
∑
κ∈Ω

∑
σ∈κ

〈
Vσ(Un,r,(K−1)),Φκ

σ(Un,r,(K−1))
〉

(=)
≤ ε(Un)− γn∆t

M∑
r=0

θMr

∫
∂Ω
g(Un,r,(K−1)) · n dΓ.

(4.12)
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A priori, the scalar equation (4.11) that we want to solve is a nonlinear equation that we can solve,
for instance, with a Newton method. In case of quadratic entropy for scalar problems, i.e., η(U) = U2,
ε(U) := 1

2U
TDU and V (U) = U , (4.11) becomes

Un,T DUn

2 + γnU
n,T D ∆U + γ2

n

∆UT D ∆U
2 − Un,T DUn

2

+ γn∆t
M∑
r=0

θMr U
n,r,(K−1),TΦ(Un,r,(K−1)) = 0, (4.13)

hence, we can solve explicitly the equation for γn with

γn = −2∆t
∑M
r=0 U

n,r,(K−1),TΦ(Un,r,(K−1)) + Un,T D ∆U
∆UT D ∆U . (4.14)

Remark 4.1. We recall that the entropy corrections presented above can either be dissipative, i.e.,∑
κ∈Ω

∑
σ∈κ

〈
Vσ(Un,r,(K−1)),Φκ

σ(Un,r,(K−1))
〉
≥
∫
∂Ω
g(Un,r,(K−1)) · n dΓ,

or conservative, i.e.,∑
κ∈Ω

∑
σ∈κ

〈
Vσ(Un,r,(K−1)),Φκ

σ(Un,r,(K−1))
〉

=
∫
∂Ω
g(Un,r,(K−1)) · n dΓ.

This does not detect when the problem switches between an entropy conservative regime to an
entropy dissipative regime, as often happens in hyperbolic problems. Nevertheless, we know that the
advantages of the relaxation schemes are remarkable when we conserve the entropy, hence in the
simulations for hyperbolic problems, we will focus on the entropy conservative case, where we will
impose η(Un + γn∆U) = η(Un), solving directly, in the energy case,

γn = −2Un,T D ∆U
∆UT D ∆U . (4.15)

Remark 4.2. In Appendix A we perform similar computation weighting not the whole ∆U term, but
only the ∆t which comes from the L2 formulation. This leads to a more complicated formulation, but
anyway viable with the previously presented techniques.

4.1. Accuracy of RDeC-RD

The accuracy of the RDeC-RD method follows directly from Lemma 3.1. Indeed, the RDeC-RD
method (4.5) with γn found in (4.11) can be written in the L1 and L2 setting of Lemma 3.1 with

L1,m(U) :=
(
Un,m − Un + ∆tβmD−1Φ(Un)

)
,

L2,m(U) := 1
γn

D−1
(
M(Un,m − Un) + ∆t

∑M
r=0 θ

m
r Φ(Un,r)

)
,

L1,m
γn (U) := 1

γn

(
Un,mγn − U

n + γn∆tβmD−1Φ(Un)
)
,

L2,m
γn (U) := 1

γn
D−1

(
M(Un,mγn − U

n) + γn∆t
∑M
r=0 θ

m
r Φ(Un,r)

)
.

(4.16)

There are minor modifications to the proof for ODEs which consist of the difference between the mass
matrices of the two operators. In particular the term B of (3.14) is now

B =

∥∥∥∥∥∥∥∥∥∥
( 1
γn
− 1

)
︸ ︷︷ ︸
O(∆td−1)

(I−D−1M)︸ ︷︷ ︸
O(∆x)

(U∗,M − Un)︸ ︷︷ ︸
O(∆t)

∥∥∥∥∥∥∥∥∥∥
≤ O(∆td+1) (4.17)
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and in term C of (3.14) another term appears, which reads

CRD =

∥∥∥∥∥∥∥∥
1
γn

(I−D−1M)︸ ︷︷ ︸
O(∆x)

(U∗,M − U∗,Mγn )︸ ︷︷ ︸
O(∆td)

∥∥∥∥∥∥∥∥ ≤ O(∆td+1). (4.18)

Hence, the proof of Lemma 3.1 can be applied very similarly also to RDeC-RD case. Arguments similar
to the ODE case hold for estimating the order of γn − 1, see [41] for an analogous proof.

5. Numerical Simulations

In this part, we validate our RDeC methods and compare it also with the RRK method given and
investigated in [26, 41]. We focus on similar examples, first we apply the pure time integration RDeC1

implementation, and we also extend the provided RRK code [26, 37] with RDeC schemes (arbitrarily
high order using Gauss–Lobatto and equidistant nodes) for the ODE case and simple PDEs. Finally, we
apply the RDeC approach together with the semidiscrete entropy conservative / dissipative RD method
resulting in a fully discrete, explicit, entropy conservative / dissipative finite element based scheme.
In the comparison part with RRK methods, we restrict ourself to the SSPRK(2,2), the SSPRK(3,3)
and finally the classical fourth order RK method with four stages RK(4,4). As seen in Example 2.6
the second order DeC approach is equivalent to SSPRK(2,2) and the results coincide. Therefore, we
renounce to plot both methods and apply the SSPRK(2,2) to describe both SSPRK(2,2) and DeC2.
Additionally to the investigation in [26, 41], we analyze also how the number of time steps changes
among the different methods.

5.1. Numerical test in the ODE case

In this section we support our theoretical findings and explore the simulations of RDeC for systems
of ODEs

∂ty = f(y), t ∈ [0, T ], (5.1)

where f(t) ∈ RI and F : RI → RI is a Lipschitz continuous function.

5.1.1. Nonlinear Oscillator

The first problem is the nonlinear oscillator described in [26] through the system
∂t

(
u1

u2

)
=

−u2
|u|
u1
|u|

 , with |u| :=
√
u2

1 + u2
2,

u1(0) = u0
1,

u2(0) = u0
2.

(5.2)

The system verifies the exact solution(
u1(t)
u2(t)

)
=
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
u0

1
u0

2

)
, θ(t) := t

|u(0)| . (5.3)

1git.math.uzh.ch/abgrall_group/relaxation-dec-code.git
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We consider the energy (L2-entropy) ε(u) = |u|2
2 . In our tests, we took ∆t = 0.9 and T = 1000. In

Figure 5.1, we plot the progression of the energy. All the schemes gain energy over time when not using
the relaxation approach but the DeC schemes of order three and four (with equidistant points (DeCEq)
and with Gauss–Lobatto points (DeCLo)) behave better compared to the classical RK methods of the
same order.
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(a) Entropy progression without modification
with ∆t = 0.9
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(b) Entropy progression with relaxation modifi-
cation with ∆t = 0.9
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(c) Convergence with respect to timestep (left) and computational time (right) for some RK and DeC methods, classical
methods with continuous lines, relaxation methods with dashed lines

Figure 5.1. Nonlinear oscillator (5.2): error and entropy error

By using the relaxation approach, all schemes are energy conservative up to machine precision.
Additionally, in Figure 5.1(c) we compared the convergence at t = 10 between the unmodified and
the relaxed schemes. In general, the relaxation improved the accuracy for every scheme or at least
kept it at the same level as with the unmodified version. However, it should be pointed out that the
time step is changed now in every step and we need more steps to reach t = 10. We can observe
it in computational times which increases a bit passing from classical methods to relaxation ones.
Moreover, we can observe that also the computational time difference between RK and DeC methods
of the same order of accuracy is not so large (factor 2 for order 4), with the possibility of easily obtain
arbitrarily high order as shown in Figure 5.3(a).
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(a) Simulation for order 6 and N = 35: time evolution (left), phase space (right)
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(b) Simulation for order 2 and N = 47: time evolution (left), phase space (right)

Figure 5.2. Nonlinear oscillator (5.2) tests for DeC and RDeC: simulations for orders 2 and
6

Thanks to the RDeC formulation we can test the properties of our schemes in the very high order
regime. In Figures 5.2(a) and 5.2(b) the simulations for the nonlinear oscillator problem are depicted
for DeC and RDeC of order 2 and 6 for different number of timesteps. In the high order solutions
in Figure 5.2(a) we can not observe qualitatively a difference between DeC and RDeC, but for the
second order method in Figure 5.2(b) it is evident that the DeC increases the energy of the system
violating the physical bounds.

Computing the norm of the energy in Figure 5.3(b) and its evolution in time, we observe that
the classic DeC increases the energy up to an O(10) for DeC2 and up to O(10−6) for DeC6, while
preserving it at machine precision for relaxed DeC. The values of γn are around 1−0.1 for RDeC2 and
1 − 10−8 for RDeC6. This means that the relaxation is reducing the extra energy that the classical
schemes are introducing, even if the effect for very high order is almost negligible.

Finally, we observe in Figure 5.3(a) that there are several phenomena of super convergence in this
test. In particular in the case of equispaced points we fall back in the superconvergence of the odds
orders as already shown in [37], while for Gauss Lobatto nodes we have even further phenomena of
super convergence. Only order 2 is not affected by this. For very high order methods we observe that
even for not so small ∆t the truncation error becomes dominant and it is useless to further decrease
the step size. This is clearly visible in the plateaux in the bottom of Figure 5.3(a).
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(a) Convergence error of DeC and RDeC methods for nonlinear oscillator: equispaced subtimesteps at left, Gauss Lobatto
at right
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(b) Energy (left) and γ (right) comparison for RDeC orders 2 and 6 with N = 50

Figure 5.3. Nonlinear oscillator (5.2) tests for DeC and RDeC: convergence for order up to
8 and entropy error

5.1.2. Damped Nonlinear Oscillator

The second ODE we consider is a damped version of the previous nonlinear oscillator. It is defined by
the initial value problem

∂t

(
u1

u2

)
=

−u2
|u| − αu1
u1
|u| − αu2

 , with |u| :=
√
u2

1 + u2
2,

u1(0) = u0
1,

u2(0) = u0
2.

(5.4)

The final time is set to T = 100. The system is solved by the exact solution(
u1(t)
u2(t)

)
= |u(t)|

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
u0

1
u0

2

)
, |u(t)| = |u(0)|e−αt, θ(t) := 1

α|u(0)|
(
eαt − 1

)
. (5.5)
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(a) Simulation for order 6 and N = 250: time evolution (left), phase space (right)
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(b) Simulation for order 2 and N = 250: time evolution (left), phase space (right)
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(c) Energy (left) and γ (right) comparison for RDeC orders 2 and 6 with N = 50

Figure 5.4. Simulation of the damped nonlinear oscillator (5.4) for DeC and RDeC of orders
2 and 6

We take α = 0.01. Here, we consider only the RDeC formulation and we do not compare it with RRK
methods. However, similar results can be seen. This problem is much harder to be solved numerically
as the oscillations have frequencies that increase with time and tends to infinity. So, we need to use
many more timesteps. In Figures 5.4(a) and 5.4(b) we show the simulations and the phase values till
time 100 for the RDeC and DeC of order 6 and 2 respectively. As before, qualitatively the high order
methods are both precise, while the second order methods show large differences, DeC2 does not catch
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(a) Equispaced subtimesteps
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(b) Gauss Lobatto subtimesteps

Figure 5.5. Convergence error of DeC and RDeC methods for damped nonlinear oscilla-
tor (5.4)

at all the decrease in time of the energy and hence the increase of frequency, while RDeC2 is much
more accurate.

In Figure 5.4(c) we can observe the different errors of the energy from the exact one and clearly the
high order methods are much more precise. Moreover, we can state that the relaxed DeCs are around
one order of magnitude more precise in catching the energy level.

In Figure 5.5 we observe similar superconvergence results as in the previous test.

5.1.3. Nonlinear Pendulum

As another example from [41], we focus on the nonlinear pendulum. The trajectories of the pendulum
are given by the system [ u1

u2 ]′ =
[
− sin (u2)

u1

]
with the initial condition

[
u1(0)
u2(0)

]
= [ 1.5

0 ]. Here, we investi-
gate the entropy η(u) = 1

2u
2
1−cos(u2). Again the entropy progress over time is shown in Figure 5.6 for

∆t = 0.9 and T = 1000. The entropy behaves as expected, namely it is not constant for non-relaxed
schemes but constant up to machine precision for the relaxed schemes.

Notice that without relaxation the entropy for SSPRK(3,3) is increasing whereas the entropy for
DeC3 is decreasing and behaves similarly to the fourth order schemes. This explains also the different
behaviors of the trajectories visible in Figure 5.6: the pendulum breaks out for SSPRK(3,3), goes to
the center for DeC3 and stays within its path when the relaxation term is applied.

Now, we look also at how the number of time steps are changing when applying the relaxation.
If we define N as the amount of time steps needed to reach Tend we have N = Tend

∆t when no
relaxation is applied. However, when introducing the relaxation term, the time step size varies and
so does N . This relation is shown in Figure 5.6(d). Without relaxation N = 1000

0.9 ≈ 1111 and with
relaxation we can see that this amount is increased if the average entropy residual term is smaller than
1 and is decreased if it is greater than 1 (DeC3). In Figure 5.6(c), we use a boxplot to demonstrate
the variation of the relaxation factors. We recognize the biggest amplitude for SSPRK(2,2)=DeC2.
For higher order schemes, we notice that RK schemes has with respect to DeC schemes, in average, a
larger variance in the γn. Moreover, DeC3 is the one which requires less time steps because of its γn
often larger than 1, see Figures 5.6(c) and 5.6(d).
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Figure 5.6. Several information for the nonlinear pendulum with ∆t = 0.9, T = 1000.

5.2. Numerical test in the PDE case in one dimension

In this part, we validate the relaxed time integrators for hyperbolic conservation laws

∂tU + divF (U) = 0, t ∈ [0, T ], (5.6)

where U ∈ RI are conservative variables and F (U) : RI → RI×d is the flux function.
We proceed testing different approaches. First, we test the RDeC on an entropy conservative FV

discretization for Burgers’ equation, then we test the RDeC with the RD discretization. We check the
accuracy of the RDeC-RD approach on a linear transport equation for the conservative case and in
the next section we test on 2D advection, Burgers-type and shallow water equations.

5.2.1. Burgers’ Equation with method of line

In a first test case, we apply the RDeC just as a time integrator using a FV spatial discretization
for Burgers’ equation. This is an extension of the code by Ketcheson et al. [26, 37] with the RDeC
approach. Here, we know that the spatial discretization is entropy conservative and, hence, we stop
the simulation before shock formation.
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Figure 5.7. Entropy for Burgers (5.7) with ∆t = 0.2

The inviscid Burgers’ equation reads

Ut + 1
2(U2)x = 0 (5.7)

on the interval −1 ≤ x ≤ 1 with periodic boundary condition and the initial data U(0, x) =
exp(−30x2). For the space discretization, we use the flux differencing technique and obtain the semidis-
cretisation

U ′i(t) = − 1
∆x(Fi+1/2 − Fi−1/2) (5.8)

with the two-point numerical flux Fi+1/2 = U2
i +UiUi+1+U2

i+1
6 . One can easily check that the spatial

discretization is energy conservative, i.e.,∑
i

Ui(Fi+1/2(U)− Fi−1/2(U)) = 0,

using periodic boundary conditions. The spatial domain is discretized with 100 equally-spaced points
and the CFL number is set to 0.3. Again, for this test case the method of lines have been used and
we are splitting between time and space discretization. In Figure 5.7, we plot the entropy evolution
up to t = 0.2, before the shock formation, for different time integration methods with and without
relaxation. We notice that for SSPRK(2,2)=DeC2 entropy is produced in time whereas the rest of the
schemes are entropy dissipative. By applying the relaxation technique, the change of entropy for every
scheme is of the order of machine precision. Finally, we would like to point out that DeC methods
have still better performance than classical RK methods in our simulations. This is due to the fact
that DeC uses more stages than the considered RK methods. By increasing the number of stages in
RK methods, we will obtain similar results.

Here, we only proved that the relaxation approach can be used in DeC methods together with
classical space discretization methods like DG or FV approaches using the method of lines. In the
next section, we apply the RDeC with RD where no method of lines is applicable.
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5.2.2. Linear Advection

Now, we test the RDeC with the RD spatial discretization. The first test we take into consideration
is the linear transport equation

∂tU + ∂xU = 0, (5.9)
on the domain [0, 2] with periodic boundary condition and initial condition U(t = 0, x) = 0.1 sin(πx).
Here, we aim at getting an entropy conservative scheme, as the problem is energy conservative. The
spatial discretization is defined by Galerkin residual with CIP stabilization (2.30). For order 2,3 and
4 we have chosen CFL 0.8, 0.2 and 0.12 and CIP stabilization parameter λ equals to 0.12, 0.1 and
0.007, respectively. For details on the choice of CFL and stabilization parameters we refer to [31].
Then, we simply impose (4.15) to find γn at each time step. The spatial discretization is obtained with
cubature elements [16, 31] (Lagrangian polynomials on Gauss–Lobatto points) that we denote with
Cp with p the polynomial degree and the residuals are obtained with Galerkin discretization plus the
CIP stabilization term (2.39). In particular, we use DeC(p + 1) in combination with Cp polynomials
to obtain a (p + 1)th order accurate scheme. In Figure 5.8(a) we observe that the error of the DeC
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Figure 5.8. Errors convergence for linear transport problem (5.9) with DeC/RDeC-RD ap-
proach

does not decrease adding the relaxation procedure, while in Figure 5.8(b) the energy of the relaxation
methods is of the order of machine precision, much lower with respect to classical methods where the
entropy error is of the order of the spatial discretization.

In order to understand the size of the correction of the time step γ, in Figure 5.8(c) we plot γ−1 as
a function of time for the different methods. For third and fourth order schemes we increase the time
step, while for second order we decrease it. Anyway, the order of γ− 1 is proportional to the accuracy
of the scheme itself. Overall, we proved that the RDeC-RD method obtains the desired result.

5.3. Numerical test in the PDE case in two dimensions

5.3.1. Scalar rotation

After the one-dimensional set up, we extend our investigation to a two-dimensional rotation problem
as it is also investigated in [7, 9]. We have the following problem:

∂tU(t, x, y) + ∂x(2πy U(t, x, y)) + ∂y(2πxU(t, x, y)) = 0, (x, y) ∈ D, t ∈ (0, 1),
U(0, x, y) = U0(x, y) = exp

(
−40(x2 + (y − 0.5)2)

)
, (x, y) ∈ D,

(5.10)
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where D is the unit disk in R2. For the boundary, outflow conditions are considered. For time inte-
gration, the second order DeC methods is used in the RD framework with CFL number 0.8. From
the previous simulations, we deduce that the highest effect of the relaxation approach will be seen
for low order methods. Therefore, we limit ourselves at DeC2 in the following. A continuous Galerkin
scheme with entropy correction and CIP stabilization with λ = 0.05 of second order with Bernstein
polynomials are applied as basis functions, see [3]. We want to remark that even if the residual is
defined to be diffusive and entropy dissipative, thanks to its high order character, we were able to use
the relaxation approach (4.15) gaining the exact entropy behavior2.

In this test, a small bump centered in (0, 0.5) with radius 0.25 is moving around the center of the
circle D, i.e., (0,0). The rotation is completed at t = 1. The mesh contains 3576 triangular elements.
In Table 5.1, the change in the energy is given after approximately half rotation and after one full
rotation.

Table 5.1. Total energy change
∫

Ω η(t)−
∫

Ω η(t = 0) of numerical solutions using a continuous
Galerkin scheme for the linear test problem (5.10).

Rotation without relaxation with relaxation
1/2 −5.5864522681 · 10−4 1.7347234760 · 10−17

1 −1.0268559191 · 10−3 1.7961196366 · 10−17

We apply the relaxation approach at every time step and adapt ∆t with respect to the entropy
production/destruction. In the relaxation case, we need less steps to obtain the full rotation: 505 with
respect to 544 in the classical method.

Finally, we would like to remark that similar results have been observed using higher order approx-
imations but, as mentioned before, the biggest effect on the entropy can be observed on low order
approximations.

5.3.2. Burgers-type equation

After this smooth test cases, we apply the relaxation approach on a nonlinear problem where actually
a shock appears. We test a two dimensional Burgers-type equation

∂tU(t, x, y) + ∂x(0.5U2(t, x, y)) + ∂y(U(t, x, y)) = 0, (x, y) ∈ D, t ∈ (0, 1),
U(0, x, y) = U0(x, y) = exp

(
−40(x2 + y2)

)
, (x, y) ∈ D,

(5.11)

where D is the unit disk in R2 and outflow boundary conditions are considered. This test is the scalar
version of the two-dimensional Burgers’ equation, where the term v∂yU has been simplified considering
a constant v = 1.

The DeC2 method is used with CFL number 0.35. We apply again a second order continuous
Galerkin scheme with entropy correction and CIP stabilization with λ = 0.1 with first degree Bernstein
polynomials on the same grid as in the previous test. We run our simulation until time t = 0.5: after the
shock formation. As explained before, we can either decide to be entropy dissipative in the definition
of the residuals or entropy conservative, with the entropy correction. This problem has a dissipative
nature. The entropy correction with the CIP stabilization already has a dissipative nature. We test
the relaxation algorithm starting both from the entropy correction (2.35) and the dissipative entropy
correction (2.38). For the square entropy η = u2/2, the differences

∫
Ω η(t = 0.5) −

∫
Ω η(t = 0) of the

entropies with and without relaxation are given in Table 5.2.
2We apply the same test also without CIP stabilization. The results were quite similar to the ones presented. The

only difference was in the change of energy which was closer to zero due to the semidiscrete entropy conservation of the
scheme (between ≈ 10−8 − 10−12).
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Table 5.2. Entropy variation before and after the shock of Burgers’-type equation (5.11)

Final time Entropy Correction + CIP + Relaxation + Relaxation + CIP
0.22 −1.97 · 10−4 −1.51 · 10−3 −2.43 · 10−17 −3.46 · 10−18

0.5 −1.51 · 10−3 −3.64 · 10−3 1.39 · 10−17 −3.12 · 10−17

Table 5.3. Maximum of u before and after the shock of Burgers’-type equation (5.11)

Final time Entropy Correction + CIP + Relaxation + Relaxation + CIP
0.22 ≈ 1.1 ≈ 0.93 ≈ 1.2 ≈ 1.0
0.5 ≈ 1.3 ≈ 0.83 ≈ 1.4 ≈ 1.1

The results of the simulation can be seen in Figure 5.9. The left pictures demonstrated the result
without relaxation while in the right picture relaxation has been used. We would like to point out
that, for this test case, we need not even half of the number of steps to get to endpoint when the
relaxation approach has been used but this comes with some disadvantage. Before the shock formation
the relaxation schemes are much more accurate, as they keep the total energy conserved as the en-
tropy solution should, while the dissipative approach of the entropy correction with CIP stabilization
already decreases widely this quantity, see Table 5.2. Also the maximum value, which should stay
constant before the shock formation, is decreased in the dissipative simulations thanks to the diffusive
terms (CIP). On the other side, the maximum increases a bit in the entropy conservative simulation.
Observing the solution, we claim that some dissipation is transformed into dispersion through the
relaxation.

After the shock, the scheme with relaxation is more smeared and the shock profile is not sharp, as it
does not converge to the entropy solution, forcing it to stay at the initial level. On the other side, the
dissipative scheme is quite clear and correctly catches the shock structure. This is not surprising at
all. Due the presence of a shock, a strict inequality is needed in the energy(entropy) equation, while,
in the energy conservative approximation, the equality is enforced, violating the physics behind this
test.

Figure 5.9. Simulation of Burgers-type equation (5.11) at t = 0.5 with DeC2, Bernstein poly-
nomials, 3576 elements, CFL=0.35, left entropy correction + CIP, right relaxation + entropy
correction + CIP

Overall, we can conclude that the relaxation DeC approach is working fine combined with the RD
approach but special care has to be taken when shock appears.
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Figure 5.10. Convergence of the error for relaxation and classic DeC RD method on moving
vortex (5.13)

5.3.3. Shallow water moving vortex

In this section, we simulate a moving vortex for the shallow water equations, which is a good benchmark
problem to test the preservation of the entropy, as the solution is smooth. The shallow water equations
in two dimensions read 

∂th+ ∂x(hu) + ∂y(hv) = 0,
∂t(hu) + ∂x(gh

2

2 + hu2) + ∂y(huv) = 0,
∂t(hv) + ∂x(huv) + ∂y(gh

2

2 + hv2) = 0,
(5.12)

where h, u, v : [0, T ]× Ω ⊂ R+ × R2 → R are the unknowns. We consider one of the moving vortexes
introduced in [43] for which we know the analytical solutions, so that we can compute the error. We
take as domain Ω = [0, 3]2 and final time T = 0.7. We consider a vortex with compact support, radius 1
and traveling from south-west towards north-east. Following [43], let us define the following auxiliary
constants and functions h0 = 1, u∞ = 1, v∞ = 1, r0 = 1, (x0, y0) = (1, 1), ∆h = 0.1, g = 9.81,
Γ = 12π

√
g∆h

r0
√

315π2−2048 , (xc(t), yc(t)) = (x0 + u∞t, y0 + v∞t), r(x, y, t) :=
√

(x− xc(t))2 + (y − yc(t))2, the
vortex that we consider is defined as

h(x, y, t) = h0 − 1
g

(
Γr0
π

)2 (
H2(π)−H2

(
π r(x,y,t)

r0

))
,

u(x, y, t) = u∞ − Γ
(
1 + cos

(
π r(x,y,t)

r0

))2
(−(y − yc(x, y, t))),

v(x, y, t) = v∞ − Γ
(
1 + cos

(
π r(x,y,t)

r0

))2
(x− xc(x, y, t)),

(5.13)

when r < r0, while it is (h, u, v) = (h0, u∞, v∞) else. The function H2 is defined as

H2(r) = 20
3 cos(r) + 27

16 cos(r)2 + 4
9 cos(r)3 + cos(r)4

16 + 20
3 r sin(r) + 35

16r
2

+ 27
8 r cos(r) sin(r) + 4

3r cos(r)2 sin(r) + r

4 cos(r)3 sin(r).

For the spatial discretization we use the residual distribution defined by Bernstein polynomials Bp, a
Galerkin projection and the continuous interior penalty (2.30) with λ = 0.1. The entropy considered
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Figure 5.11. Entropy error for relaxation and classic DeC RDmethod on moving vortex (5.13)

here to apply the relaxation procedure is

η(h, hu, hv) := gh2

2 + hu2 + hv2

2 .

Being the entropy nonlinear, we solve the nonlinear equation (4.11) through the bisection method with
a tolerance close to machine precision (10−12).

In Figure 5.10 we observe that the relaxation does not, again, spoil the order of accuracy. There is
a superconvergent phenomenon for the second order method (DeC2 with P1 polynomials) and, beside
that, we can observe that the relaxation error for P1 is even decaying faster than the classical one.
In these simulations we noticed that the relaxation parameter γn is larger than expected for the very
coarse meshes used we have γn ≈ 2 and it varies a lot with the chosen CFL. In particular, with small
CFLs γn is larger than when choosing larger CFLs.

As for the previous simulations the total entropy is conserved numerically for the relaxation methods
up to the imposed tolerance in the bisection method, while, for the classical method, it is conserved
up to the error of the scheme, as one can see in Figure 5.11, where the error of the entropy and γn are
plotted for different meshes and polynomial degrees. In this case we can compare the minimum value
of the vortex at the end of the simulation, which, analytically, is 0.9. We observe that, for the second
order method with a mesh with characteristic length of 0.015, the classic method has a minimum of
0.90018, while the relaxed scheme has a minimum of 0.90002, slightly better and less diffusive.

6. Conclusion

In this work, we extended the relaxation technique [26] to the arbitrarily high order DeC time integra-
tion method, in particular in its applications to RD where the MOL is not applicable. In this context,
a spatial entropy preserving discretization is available [3] and its combination with the relaxation
algorithm allows to obtain a global entropy conservative or dissipative scheme. The whole procedure
requires some choices, for example in the construction of the equation that we want to set equal to 0
to find the relaxation parameter γn. Putting together all these ingredients one can obtain an entropy
conservative or entropy dissipative arbitrarily high order method to solve general hyperbolic PDEs
avoiding the inversion of the mass matrix.
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This topic can be expanded in different directions, first of all more general tests with nonlinear
entropies could be studied, for example in Euler’s equations, or a transition between the conservative
and dissipative regime could be thought and implemented in order to be used on more general cases
where a priori it is unknown the nature of the problem. Finally, a deeper analysis between the presented
approach and the one from [9] is also desirable.
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Appendix A. Another possible relaxation formulation

The relaxation DeC RD presented before is not unique. There, different possibilities related to the
weighting of ∆t of L2 or both L1 and L2. This does not affect the ODE case, but in the PDE case
there are some differences. Here, we modify only L2. Let us restart from the formulation for the final
update step, i.e.,

Un,l,(K)
σ = Un,l,(K−1)

σ −|Cσ|−1 ∑
κ|σ∈κ

(∫
κ
ϕσ(Un,l,(K−1) − Un,0)dx+ ∆t

M∑
r=0

θlrΦκ
σ,x(Un,r,(K−1))

)
. (2.40)

Focusing on the energy for simplicity, the relaxation term has been given by (2.9) and was calculated
by determining the energy production in RK schemes. In the RD framework, we cannot simple apply
this term since by focusing on (2.40), we realize that we have additional terms in the update which
are not even multiplied by the time step ∆t. Therefore, we compare first the change of the energy
between two time steps using (2.40).

It is given by the following calculation on one degree of freedom3:

∥∥∥UM,(K)
σ

∥∥∥2
−
∥∥∥U0

σ

∥∥∥2

=

UM,(K−1)
σ − |Cσ|−1 ∑

κ|σ∈κ

(∫
κ
ϕσ(UM,(K−1))

σ − U0)dx+ ∆t
M∑
r=0

θMr Φκ
σ,x(U r,(K−1)

σ )
)2

− (U0
σ)2.

We can reorder the equation and get

=
((
|Cσ|−1 ∑

κ|σ∈κ

∫
κ
ϕσU

0dx

)
+

UM,(K−1)
σ − |Cσ|−1 ∑

κ|σ∈κ

∫
κ
ϕσU

M,(K−1)dx


+ |Cσ|−1∆t

∑
κ|σ∈κ

M∑
r=0

θMr Φκ
σ,x(U r,(K−1))

)2

− (U0
σ)2.

3For simplicity, we avoid the usage of n in the following.
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Here, the first term describes an approximation of U0, the second term is some approximation of
U
M,(K−1)
σ and the rest is the update scheme. We apply in the following the abbreviations

A =

|Cσ|−1 ∑
κ|σ∈κ

∫
κ
ϕσU

0dx

 (A.1)

B :=

UM,(K−1)
σ − |Cσ|−1 ∑

κ|σ∈κ

∫
κ
ϕσU

M,(K−1)dx

 (A.2)

C = |Cσ|−1∆t
∑
κ|σ∈κ

M∑
r=0

θMr Φκ
σ,x(U r,(K−1)) (A.3)

We can now focus again on above equation and get
= (A+B + C)2 − (U0

σ)2 = (A2 + 2AB + 2AC +B2 + 2BC + C2)− (U0
σ)2

= A2 − (U0
σ)2 + 2AB +B2︸ ︷︷ ︸

D

+2BC + 2AC + C2. (A.4)

The term D does not depend on ∆t but depends on the used quadrature formula in space. AC and
BC depends on ∆t through C and C2 behaves with ∆t2. We focus now on the AC +BC and get

|Cσ|−1

∑
κ|σ∈κ

M∑
r=0

θMr Φκσ,x(Ur,(K−1))

UM,(K−1)
σ − |Cσ|−1

∑
κ|σ∈κ

∫
κ

ϕσ
(
UM,(K−1) − U0dx

)
= |Cσ|−1

M∑
r=0

θMr
∑
κ|σ1∈κ

〈
Φκσ1 (Ur,K−1),

UM,(K−1)
σ − |Cσ|−1

∑
κ|σ∈κ

∫
κ

ϕσ
(
UM,(K−1) − U0)+

(
Ur,(K−1)
σ1 − Ur,(K−1)

σ1

)〉

= |Cσ|−1
M∑
r=0

θMr

 ∑
κ|σ1∈κ

〈
Φκσ1 (Ur,(K−1)), Ur,(K−1)

σ1

〉
+ |Cσ|−1

M∑
r=0

θMr

 ∑
κ|σ1∈κ

〈
Φκσ1 (Ur,(K−1)),

Ur,(K−1)
σ − |Cσ|−1

∑
κ|σ∈κ

∫
κ

ϕσ
(
Ur,(K−1) − U0)− Ur,(K−1)

σ1

〉
︸ ︷︷ ︸

0.5E

.

The first term will cancel out if our space residual is energy conservative4 where the second term
yields some rest to the equation. Here, the braces depend highly on the used quadrature rule. We can
obtain a recurrence relation inserting the corrections for the terms. Nevertheless, the remaining term
is at least O(∆t). Therefore, we have now in total for the energy production D +E + C2. Using now
the relaxation approach, we can multiply with a γn our θ. Here, γn will be the solution of the following
equation

D + γnE + γ2
nC

2 = 0.
Actually, γn will be always positive and close to one if our quadrature rule is sufficiently accurate.
With this approach we obtain that our DeC-RD approach is energy conservative (dissipative) in space
and time.
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