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Abstract. The Yang–Mills equations generalize Maxwell’s equations to nonabelian gauge groups, and a quantity
analogous to charge is locally conserved by the nonlinear time evolution. Christiansen and Winther [8] observed
that, in the nonabelian case, the Galerkin method with Lie algebra-valued finite element differential forms appears
to conserve charge globally but not locally, not even in a weak sense. We introduce a new hybridization of this
method, give an alternative expression for the numerical charge in terms of the hybrid variables, and show that a
local, per-element charge conservation law automatically holds.
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1. Introduction

In 1954, Yang and Mills [18] introduced a nonabelian gauge theory, generalizing and extending the
abelian gauge theory of quantum electrodynamics. As a quantum field theory, Yang–Mills theory came
to form the foundation of the Standard Model of particle physics. One may also consider classical
(as opposed to quantum) solutions to the Yang–Mills equations, which can be seen as a nonlinear,
nonabelian generalization of Maxwell’s equations. Beyond physics, the study of classical Yang–Mills
solutions has played an important role in geometry and topology [9].

A seminal 1974 paper of Wilson [17] introduced lattice gauge theory, in which quantum Yang–Mills
theory is discretized using a finite-difference-like approach. However, interest in discretization and
numerical simulation of the classical Yang–Mills equations seems to be more recent, motivated by a
desire to extend insights from computational electromagnetics to develop structure-preserving methods
for a more general class of nonlinear field theories. In a 2006 paper, Christiansen and Winther [8] write,
“The Yang–Mills equations appear relatively ripe for numerical analysis and could therefore serve as
a stepping stone toward the successful simulation of more complicated equations,” such as Einstein’s
equations of general relativity.

Solutions to the Yang–Mills equations must satisfy a charge conservation law. In the special case
of Maxwell’s equations, this conservation law says that, in the absence of current, the charge density
ρ = divD is constant in time. The equation ρ = divD is often viewed as a constraint, but since it
is automatically preserved by the evolution of D, the constraint need not be “enforced” in any way.
(A similar issue arises in Einstein’s equations, whose nonlinear evolution also preserves physically
important constraints.) One would also like the charge conservation law to continue to hold in numer-
ical simulations of the Yang–Mills equations, but this is not necessarily the case, even for Maxwell’s
equations.

Christiansen and Winther [8] observe that a standard Galerkin semidiscretization of the Yang–Mills
equations only yields conservation of the total charge on the whole domain. Locally, charge is not
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conserved, as they illustrate in Figure 3 of their paper. Christiansen and Winther solve this problem
with a constrained scheme that artificially imposes the charge conservation constraint. A different
low-order charge-conserving method, based on lattice gauge theory, was given by Christiansen and
Halvorsen [7]; this method preserves the constraint automatically but requires commiting a “variational
crime” by modifying the Yang–Mills variational principle.

In contrast, we present an alternate approach, which automatically preserves a local charge conser-
vation law without modifying the Yang–Mills variational principle. As in our work on Maxwell’s equa-
tions in [4], we consider the domain-decomposed problem, where we use discontinuous finite element
spaces for our vector and scalar potentials, and then impose inter-element continuity and boundary
conditions with Lagrange multipliers Ĥ and D̂. Using the hybrid variable D̂, we obtain an expression
for the charge. While we are not able to get strong charge conservation when we semidiscretize, as
we did for Maxwell’s equations, we are able to get a local conservation law: the total charge on each
element is conserved.

The reader may naturally ask why we would be motivated to take this approach. Why not simply
project the solution onto the constraint manifold, as Christiansen and Winther [8] did, so that D itself
satisfies the constraint rather than D̂? The reason is that Lagrangian and Hamiltonian dynamical
systems often have several conservation laws, and enforcing a single one via projection can result in
worse numerical solutions. A vivid illustration is given in Hairer, Lubich and Wanner [10, Section IV.4],
who present numerical simulations of the Kepler problem by the symplectic Euler method, with or
without enforcing conservation of energy via projection. Perhaps surprisingly, projection makes the
numerical solution much worse, destroying conservation of other quantities such as angular momentum.
In fact, the symplectic Euler method automatically conserves a modified energy [10, Chapter IX].
This illustrates that automatic preservation of a modified conservation law (in the case of this paper,
conservation of charge using D̂ rather than D) may be preferable to enforcing the original conservation
law by projection, which risks destroying other structures that one might also wish to preserve.

The paper is structured as follows. In Section 2, we introduce our notation and discuss the Yang–
Mills equations, leading up to the conservation of total charge in the Galerkin semidiscretization
observed by Christiansen and Winther. In Section 3, we describe our domain-decomposed numerical
scheme for the Yang–Mills equations and prove that it satisfies a local charge conservation property. In
Section 4, we discuss our numerical implementation and illustrate with examples. Finally, in Section 5,
we remark on how these results generalize to the Yang–Mills equations with nonzero current.

2. Preliminaries

2.1. Lie algebra-valued differential forms

In this section, we introduce Lie algebra-valued differential forms, largely following [9].
Let G be a compact Lie group with Lie algebra g. Let [ · , · ] : g × g → g denote the Lie bracket on

g. Such a Lie algebra always has an Ad-invariant inner product 〈 · , · 〉 : g × g → R with the property
that 〈[ξ, η], ω〉+ 〈η, [ξ, ω]〉 = 0 for all ξ, η, ω ∈ g.

Any compact Lie group can be represented as a group of unitary matrices, whose algebra consists
of skew-Hermitian matrices with the commutator bracket [ξ, η] = ξη − ηξ. For simplicity of notation,
we will thus view both G and g as sets of matrices, in which case we can choose the inner product to
simply be 〈ξ, η〉 = tr(ξ∗η). where ξ∗ denotes the conjugate transpose of ξ.

Definition 2.1. Let Ω ⊂ Rn be a bounded Lipschitz domain. A g-valued k-form on Ω is a section of
the bundle (

∧k T ∗Ω) ⊗ g. We will denote the space of g-valued k-forms by Λk(Ω, g). We will denote
the Lp Lebesgue spaces of sections of (

∧k T ∗Ω)⊗ g by LpΛk(Ω, g).
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Example 2.2. In the setting of electromagnetism, G = U(1), the unit complex numbers. Then g = iR,
the purely imaginary numbers. Thus, in this setting, a g-valued k-form is simply an ordinary k-form
times the imaginary unit i. The Lie bracket [ · , · ] is identically zero, and the inner product is simply
〈ia, ib〉 = ab.

The space Λk(Ω, g) is spanned by forms α⊗ ξ, where α is a real-valued k-form and ξ is an element
of g. With this decomposition, we can define several operations on g-valued k-forms.
Definition 2.3. Given u = α⊗ ξ ∈ Λk(Ω, g) and v = β ⊗ η ∈ Λl(Ω, g), define

du = dα⊗ ξ ∈ Λk+1(Ω, g),
∗u = ∗α⊗ ξ ∈ Λn−k(Ω, g),

[u ∧ v] = (α ∧ β)⊗ [ξ, η] ∈ Λk+l(Ω, g),
〈u ∧ v〉 = (α ∧ β) 〈ξ, η〉 ∈ Λk+l(Ω,R),

and extend these operations to arbitrary g-valued forms by linearity.
In the case where either u or v is a 0-form, i.e., just a Lie algebra-valued function, we will often

write [ · , · ] and 〈 · , · 〉 instead of [ · ∧ · ] and 〈 · ∧ · 〉.
We have the following identities for g-valued forms.

Proposition 2.4. For u ∈ Λk(Ω, g), v ∈ Λl(Ω, g), we have the Leibniz rules
d[u ∧ v] = [du ∧ v] + (−1)k[u ∧ dv], (2.1)
d〈u ∧ v〉 = 〈du ∧ v〉+ (−1)k〈u ∧ dv〉, (2.2)

and the commutativity relations
[u ∧ v] + (−1)kl[v ∧ u] = 0, (2.3)
〈u ∧ v〉 − (−1)kl〈v ∧ u〉 = 0. (2.4)

Additionally, given w ∈ Λp(Ω, g),[
[u ∧ v] ∧ w

]
+ (−1)kl

[
v ∧ [u ∧ w]

]
=
[
u ∧ [v ∧ w]

]
, (2.5)〈

[u ∧ v] ∧ w
〉

+ (−1)kl
〈
v ∧ [u ∧ w]

〉
= 0. (2.6)

Proof. It suffices to prove these identities for forms of the type u = α ⊗ ξ, v = β ⊗ η, w = γ ⊗ ω,
since they extend to arbitrary forms by linearity.
The Leibniz rules (2.1) and (2.2) follow immediately from the Leibniz rule d(α∧β) = dα∧β+(−1)kα∧
dβ for ordinary real-valued forms.
The commutativity relations (2.3) and (2.4) follow from α ∧ β = (−1)klβ ∧ α, together with the
antisymmetry of [ · , · ] and symmetry of 〈 · , · 〉, respectively.
Finally, (2.5) and (2.6) follow from α ∧ β ∧ γ = (−1)klβ ∧ α ∧ γ, together with the Jacobi identity for
[ · , · ] and the invariance property 〈[ξ, η], ω〉+ 〈η, [ξ, ω]〉 = 0 of 〈 · , · 〉, respectively.

In the classical formulation of electromagnetics, the electric field E and electric flux density D = εE
are vector fields, where ε is the electric permittivity tensor. Likewise, the magnetic flux density B
and magnetic field H = µ−1B are vector fields, where µ is the magnetic permeability tensor. When
expressed in terms of differential forms, E and H are 1-forms, D and B are 2-forms, and ε and µ−1

correspond to the Hodge star operator mapping 1-forms and 2-forms to (3 − 1)-forms and (3 − 2)-
forms, respectively. In vacuum, with appropriately chosen units, each of these is simply the ordinary
Hodge star operator ∗. For more on the differential forms point of view for finite element methods in
computational electromagnetics, see Hiptmair [11] and references therein.

99



Y. Berchenko-Kogan & A. Stern

This motivates the following generalized notion of electric permittivity and magnetic permeability,
in arbitrary dimension n, for both ordinary and g-valued differential forms.

Definition 2.5. The electric permittivity tensor ε and magnetic permeability tensor µ are pointwise
symmetric isomorphisms

εx :
∧1 T ∗xΩ→

∧n−1 T ∗xΩ, µ−1
x :

∧2 T ∗xΩ→
∧n−2 T ∗xΩ.

for each x ∈ Ω. The symmetry of ε and µ−1 is in the sense that
α ∧ εβ = β ∧ εα for any α, β ∈ Λ1(Ω,R),

α ∧ µ−1β = β ∧ µ−1α for any α, β ∈ Λ2(Ω,R).
We can extend these isomorphisms to maps

εx :
∧1 T ∗xΩ⊗ g→

∧n−1 T ∗xΩ⊗ g, µ−1
x :

∧2 T ∗xΩ⊗ g→
∧n−2 T ∗xΩ⊗ g

by ignoring the Lie algebra coefficient; that is εx(αx ⊗ ξx) := εxαx ⊗ ξx.

As before, these operators have (anti)symmetry properties.

Proposition 2.6.
[u ∧ εv] = −[v ∧ εu], 〈u ∧ εv〉 = 〈v ∧ εu〉, u, v ∈ Λ1(Ω, g)

[u ∧ µ−1v] = −[v ∧ µ−1u], 〈u ∧ µ−1v〉 = 〈v ∧ µ−1u〉, u, v ∈ Λ2(Ω, g).

In particular, [u ∧ εu] = 0 for u ∈ Λ1(Ω, g) and [u ∧ µ−1u] = 0 for u ∈ Λ2(Ω, g).

Proof. As before, we can prove these claims for basic tensors u = α ⊗ ξ and v = β ⊗ η using the
symmetry of ε, µ−1, and 〈 · , · 〉 and the antisymmetry of [ · , · ]. We then extend to general u and v by
linearity.

2.2. Connections, curvature, and the exterior covariant derivative

We now discuss connections, again following [9]. As in [8], we restrict our attention to the trivial
bundle case. In this setting, a connection A is just a g-valued one-form.

Definition 2.7. Let A ∈ Λ1(Ω, g). The curvature of A, denoted FA ∈ Λ2(Ω, g), is defined by
FA = dA+ 1

2 [A ∧A].

The exterior covariant derivative with respect to A, denoted dA : Λk(Ω, g)→ Λk+1(Ω, g), is defined by
dAu = du+ [A ∧ u].

Example 2.8. In the setting of electromagnetism with G = U(1), the Lie algebra has trivial commu-
tator [ξ, η] = 0. Thus, FA = dA and dA = d.

Unlike in electromagnetism, d2
A 6= 0. Instead, d2

A = FA, in the following sense:

Proposition 2.9. Let u ∈ Λk(Ω, g). Then
dA(dAu) = [FA ∧ u] ∈ Λk+2(Ω, g).

Additionally, we will make use of the Bianchi identity.

Proposition 2.10 (Bianchi identity).
dAFA = 0.

We have a product rule for the exterior covariant derivative.
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Proposition 2.11. If A ∈ Λ1(Ω, g), u ∈ Λk(Ω, g) and v ∈ Λl(Ω, g), then

dA[u ∧ v] = [dAu ∧ v] + (−1)k[u ∧ dAv].

Proof. The Leibniz rule (2.1) gives d[u∧v]=[du∧v]+(−1)k[u∧dv], while (2.5) implies [A∧ [u∧v]]=
[[A ∧ u] ∧ v] + (−1)k[u ∧ [A ∧ v]]. Adding these together gives the claimed identity.

Finally, we can integrate by parts using the exterior covariant derivative.

Proposition 2.12. Let u ∈ Λk(Ω, g) and v ∈ Λn−k−1(Ω, g). Then∫
∂Ω
〈u ∧ v〉 =

∫
Ω
〈du ∧ v〉+ (−1)k

∫
Ω
〈u ∧ dv〉

=
∫

Ω
〈dAu ∧ v〉+ (−1)k

∫
Ω
〈u ∧ dAv〉.

Proof. The first line follows from Stokes’ theorem and the Leibniz rule (2.2). The second line follows
from the fact that 〈[A ∧ u] ∧ v〉+ (−1)k〈u ∧ [A ∧ v]〉 = 0, which is a special case of (2.6).

2.3. Electric and magnetic fields

In order to define the Yang–Mills analogues of the scalar and vector potentials and the electric and
magnetic fields, we will need some regularity assumptions. We define the following spaces:

Definition 2.13. Let
V 0 =

{
φ ∈ L∞Λ0(Ω, g) : dφ ∈ L4Λ1(Ω, g)

}
,

V 1 =
{
A ∈ L4Λ1(Ω, g) : dA ∈ L2Λ2(Ω, g)

}
.

We let V̊ 0 and V̊ 1 denote the subspaces of V 0 and V 1 containing those forms φ and A, respectively,
whose tangential traces vanish on the boundary of Ω in the sense of [16]. In the smooth setting, V̊ 0

contains those scalar fields that vanish on the boundary, and, in terms of vector proxies, V̊ 1 contains
those vector fields that are normal to the boundary.

The regularity assumptions on A ensure that FA ∈ L2Λ2(Ω, g). The regularity assumptions on φ
ensure that dAφ ∈ V 1 for A ∈ V 1, which will be necessary later to show charge conservation. See
Equation (2.13) and Proposition 3.5.

We can now define the Yang–Mills analogues of the scalar and vector potentials, the electric field,
and the magnetic flux density. Note that we still refer to these as “scalar” and “vector” potentials, even
though they are actually g-valued forms in this generalized setting. Here and henceforth, we employ
the commonly-used “dot” notation for partial differentiation with respect to time, e.g., Ȧ means ∂tA.

Definition 2.14. Let the scalar potential φ be a C0 curve in V 0 and let the vector potential A be a
C1 curve in V 1. Then define the electric field E and magnetic flux density B by

E := −(Ȧ+ dAφ), B := FA.

From this, we immediately see that E ∈ L4Λ1(Ω, g) and B ∈ L2Λ2(Ω, g).

Example 2.15. Recall that in the setting of electromagnetism with G = U(1), a g-valued one-form is
a real-valued one-form times the imaginary unit i. By omitting the imaginary unit and converting the
one-form to a vector field, we obtain a correspondence between the vector potential A expressed as a
g-valued one-form and the vector potential A expressed clasically as a vector field. Similarly, the scalar
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potential φ in this notation is a function with purely imaginary values. By omitting the imaginary
unit, we obtain the usual real-valued scalar potential.

Recall that when G = U(1), we have FA = dA and dA = d, so the equations for E and B simplify
to E = −(Ȧ + dφ) and B = dA. Converting these differential forms to vector fields, we obtain the
usual equations E = −(Ȧ+ gradφ) and B = curlA.

Using the identities dAdAφ = [FA, φ] and dAFA = 0, we obtain that
Ḃ − [φ,B] = dAȦ+ dAdAφ = −dAE

dAB = 0.

In the setting of electromagnetism, these equations correspond to the Maxwell equations Ḃ = − curlE
and divB = 0.

To define the electric flux density D and the magnetic field H, we utilize the electric permittivity
tensor ε and magnetic permeability tensor µ of Definition 2.5. We assume that both ε and µ−1 are
L∞ maps.
Definition 2.16. Let

D := εE ∈ L4Λn−1(Ω, g)
H := µ−1B ∈ L2Λn−2(Ω, g).

From these definitions, D and H need only be C0 curves in L∗Λ∗(Ω, g). We make the stronger
assumption that D is in fact a C1 curve in L4Λn−1(Ω, g).

2.4. The Yang–Mills Lagrangian

For this discussion, we will set the current J to be zero, and we will view the charge density ρ as a C1

curve in L1Λn(Ω, g). (The generalization to nonzero current is discussed in Section 5.)
Definition 2.17. The Yang–Mills Lagrangian is

L(A, φ, Ȧ, φ̇) :=
∫

Ω

(1
2〈E ∧D〉 −

1
2〈B ∧H〉 − 〈φ, ρ〉

)
, (2.7)

where, as before, E := −(Ȧ+ dAφ), B := FA, D := εE, and H := µ−1B.
Note that each term in the Lagrangian is a real-valued n-form in at least the L1 Lebesgue space,

so we can indeed integrate this expression over Ω.
The Euler–Lagrange equations are∫

Ω

(〈
A′ ∧ (Ḋ − [φ,D])

〉
−
〈
dAA

′ ∧H
〉)

= 0, ∀A′ ∈ V̊ 1, (2.8a)∫
Ω

(〈
dAφ

′ ∧D
〉

+
〈
φ′, ρ

〉)
= 0, ∀φ′ ∈ V̊ 0. (2.8b)

These are weak expressions of the Yang–Mills equations
Ḋ − [φ,D] = dAH, (2.9a)

dAD = ρ. (2.9b)
Example 2.18. In the setting of electromagnetism with G = U(1), recall that [ · , · ] = 0 and that
dA = d. Thus, the Yang–Mills equations in this context are

Ḋ = dH, dD = ρ,

which are differential form expressions of Maxwell’s equations,
Ḋ = curlH, divD = ρ.
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The Yang–Mills equations imply a charge conservation law.

Proposition 2.19. Equations (2.9) imply that ρ satisfies

ρ̇ = [φ, ρ].

In particular |ρ| is conserved.

Proof. We compute

ρ̇ = d

dt
(dAD)

= dAḊ + [Ȧ ∧D]
= dAdAH + dA[φ,D] + [Ȧ ∧D]
= [FA ∧H] + [dAφ ∧D] + [φ, dAD]− [E ∧D]− [dAφ ∧D]
= [B ∧ µ−1B] + [φ, ρ]− [E ∧ εE]
= [φ, ρ].

Then,
d

dt
|ρ|2 dvol = d

dt
〈ρ ∧ ∗ρ〉 = 2〈ρ̇ ∧ ∗ρ〉 = 2〈[φ ∧ ρ] ∧ ∗ρ〉 = 2〈φ ∧ [ρ ∧ ∗ρ]〉 = 0.

2.5. Gauge symmetry

Definition 2.20. A gauge transformation is a time-dependent G-valued field on Ω. That is, a gauge
transformation is a function g : Ω × R → G. A gauge transformation acts on the vector and scalar
potentials by the transformation

g : (A, φ) 7−→
(
gAg−1 − (dg)g−1, gφg−1 + ġg−1

)
.

To explain the notation, recall that we view G and g as subsets of matrices, so g(α⊗ ξ)g−1 means
α⊗ gξg−1, where the expression gξg−1 is matrix multiplication. Meanwhile, fixing a point in time and
viewing g as a map Ω → G, we take the derivative to obtain a map dg : TxΩ → TgG. Thus we can
view dg as a TgG-valued one-form, and so (dg)g−1 is a one-form with values in TeG = g. Similarly,
fixing a point in space, we can view g as map R→ G. The velocity of this path ġ is a tangent vector
TgG, and, again, ġg−1 is in g.

Example 2.21. In the setting of electromagnetism with G = U(1), recall that a g-valued k-form is
simply a real-valued k-form times the imaginary unit i. Let ξ be a scalar field on Ω. Then, setting
g = e−iξ, we see that g is a gauge transformation, and

g : (iA, iφ) 7−→
(
i(A+ dξ), i(φ− ξ̇)

)
,

matching the formula for gauge transformations in electromagnetism. Seeing A as a vector field and
φ as a scalar field, this is (A, φ) 7→ (A+ grad ξ, φ− ξ̇), leaving E and B invariant.

One can compute the resulting action of g on E and B. Unlike in the electromagnetic situation, if
G is a nonabelian group, then E and B are not invariant under gauge transformations. Instead, g acts
on E and B by conjugating the Lie algebra values.

g : E 7−→ gEg−1, g : B 7−→ gBg−1.
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However, because 〈gξg−1, gηg−1〉 = 〈ξ, η〉 for ξ, η ∈ g, the expressions 〈E ∧ D〉 and 〈B ∧ H〉 in the
Lagrangian are invariant under the action of gauge transformations. Thus, provided we transform
ρ 7→ gρg−1, we obtain another solution to the Yang–Mills equations.

2.6. Temporal gauge

By applying a gauge transformation, we can set the scalar potential φ to zero. More precisely, we solve
the linear differential equation

ġ = −gφ
for g. This gauge transformation sends (A, φ) to (gAg−1 − (dg)g−1, 0).

Restricting to the case φ = 0, called temporal gauge, we now have
E = −Ȧ, B = FA. (2.10)

The Lagrangian becomes
L(A, Ȧ) :=

∫
Ω

(1
2〈E ∧D〉 −

1
2〈B ∧H〉

)
.

The corresponding Euler–Lagrange equations are∫
Ω

(〈
A′ ∧ Ḋ

〉
−
〈
dAA

′ ∧H
〉)

= 0, ∀A′ ∈ V̊ 1. (2.11)

This is a weak form of the equation
Ḋ = dAH. (2.12)

Setting ρ = dAD, we see that ρ is constant by Proposition 2.19 with φ = 0. However, when we
discretize, we will find the following variational-principle-based proof of this fact more helpful. For all
φ′ ∈ V̊ 0, we have that A′ = dAφ

′ ∈ V̊ 1, so plugging this value of A′ into (2.11), we find

0 =
∫

Ω

(〈
dAφ

′ ∧ Ḋ
〉
−
〈
dAdAφ

′ ∧H
〉)

=
∫

Ω

(
−
〈
φ′, dAḊ

〉
−
〈
[B,φ′] ∧H

〉)
=
∫

Ω

(
−
〈
φ′,

d

dt
(dAD)

〉
+
〈
φ′, [Ȧ ∧D]

〉
+
〈
φ′, [B ∧H]

〉)
=
∫

Ω

〈
φ′,− d

dt
(dAD)− [E ∧ εE] + [B ∧ µ−1B]

〉
,

=
∫

Ω

〈
φ′,− d

dt
(dAD)

〉
.

(2.13)

Thus, d
dt(dAD) = 0.

In vacuum using Gaussian units, both ε and µ are the Hodge star ∗, and by taking the Hodge star
of (2.12) and substituting D = ∗E = −∗Ȧ and H = ∗B = ∗FA, we obtain the standard formulation
of the time-dependent Yang–Mills equation

Ä = −∗dA∗FA = −d∗AFA.

Remark 2.22. One may ask about other choices of gauge, such as Coulomb gauge or Lorentz gauge.
The issue is that, unlike in the linear setting of electromagnetism, once we have a nonlinear problem, it
may not be possible to gauge transform a given connection into Coulomb gauge; that is, given A, there
may not be a solution g to the nonlinear equation d∗

(
gAg−1−(dg)g−1) = 0. Indeed, a seminal paper of

Uhlenbeck [15] shows with some difficulty that such a gauge transformation exists, provided that the
energy ‖FA‖2L2(Ω) is sufficiently small, which allows a reduction to the linear problem via the implicit
function theorem. To make use of this fact, one would need to adaptively refine the mesh so to ensure
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that ‖FA‖2L2(K) is sufficiently small on each element K, giving a local gauge transformation g|K that
transforms the connection into Coulomb gauge on K. We believe that this adaptive mesh refinement
and gauge fixing would be a fruitful direction for further investigation that would be especially useful
when simulating the Yang–Mills equations for high-energy connections, but it is beyond the scope of
the current paper.

2.7. Galerkin semidiscretization

To find numerical solutions to the Yang–Mills equations, we apply Galerkin semidiscretization by
restricting the trial functions A and test functions A′ in (2.11) to a finite dimensional subspace V 1

h ⊂
V̊ 1. That is, we seek a curve Ah : t 7→ Ah(t) ∈ V̊ 1

h such that∫
Ω

(〈
A′h ∧ Ḋh

〉
−
〈
dAh

A′h ∧Hh

〉)
= 0, ∀A′h ∈ V̊ 1

h . (2.14)

Here, as in (2.10), we define Eh := −Ȧh, Bh := FAh
, and we define Dh := εEh and Hh = µ−1Bh.

Unlike the corresponding situation for Maxwell’s equations, (2.14) is a nonlinear finite-dimensional
system of ODEs, since FAh

contains the quadratic term [Ah ∧Ah] and since Ah appears in dAh
A′h.

We would like to show that ρh := dAh
Dh is conserved, at least in some weak sense. We still have

that [Ȧh ∧Dh] = −[Eh ∧ εEh] = 0. Thus, ρ̇h = dAh
Ḋh + [Ȧh ∧Dh] = dAh

Ḋh. However, showing that
dAh

Ḋh vanishes even in a weak sense cannot be done the same way as with Maxwell’s equations.
As in (2.13), we would like to plug A′h = dAh

φ′h into (2.14), but the requirement that A′h be in V̊ 1
h

is difficult to satisfy because of the [Ah, φ′h] term in dAh
φ′h. In general, if V̊ 1

h is a space of piecewise
polynomials of degree r, then Ah will have degree r, so [Ah, φ′h] will generally have degree higher than
r, and thus be an invalid choice of A′h.

As noted by Christiansen and Winther [8], there is a valid choice of φ′h, namely, constant g-valued
functions on Ω, giving us the conservation law∫

Ω

〈
φ′h, dAh

Ḋh

〉
= 0 for any constant φ′h ∈ g.

In other words, the total charge
∫

Ω ρh on the whole domain Ω is conserved. However, we’d like to have
local charge conservation, a much stronger condition.

3. The domain-decomposed Yang–Mills equations

3.1. Domain decomposition

Roughly speaking, the challenge we faced above is that φ′h had to be constant, but to get local charge
conservation, we needed φ′h to be supported on a small region. With domain decomposition, we can
resolve this issue by allowing discontinuous test functions. With a discontinuous locally constant φ′h,
we can get local charge conservation.

We decompose our domain Ω ⊂ Rn using a triangulation Th and define discontinuous function
spaces with respect to this triangulation.

Definition 3.1. Let
DV 0 =

{
φ ∈ L∞Λ0(Ω, g) : d(φ|K) ∈ L4Λ1(K, g) for all K ∈ Th

}
,

DV 1 =
{
A ∈ L4Λ1(Ω, g) : d(A|K) ∈ L2Λ2(K, g) for all K ∈ Th

}
.

That is, DV 0 and DV 1 are discontinuous versions of the spaces V 0 and V 1; the exterior derivatives
are only defined after we restrict to a particular element K of the triangulation.
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Via Lagrange multipliers, we can characterize when a discontinuous form in DV 0 or DV 1 is actually
“continuous” in the sense of being in V 0 or V 1 respectively, analogously to how it is done in [6,
Section III.1.2] for scalar fields. We define our spaces of Lagrange multipliers.

Definition 3.2. Let
V̂ n−1 =

{
D̂ ∈ L4/3Λn−1(Ω, g) : dD̂ ∈ L1Λn(Ω, g)

}
,

V̂ n−2 =
{
Ĥ ∈ L2Λn−2(Ω, g) : dĤ ∈ L4/3Λn−1(Ω, g)

}
.

The level of regularity in these definitions is chosen so that
∫
∂K〈φ, D̂〉 and

∫
∂K〈A ∧ Ĥ〉 are well-

defined for K ∈ Th, φ ∈ DV 0, A ∈ DV 1, D̂ ∈ V̂ n−1 and Ĥ ∈ V̂ n−2 via the formula∫
∂K
〈u ∧ λ〉 =

∫
K

(
〈du ∧ λ〉+ (−1)k〈u ∧ dλ〉

)
.

Each term is in L1 via Hölder’s inequality. See also [13, 16].

Proposition 3.3. Let φ ∈ DV 0. Then φ ∈ V̊ 0 if and only if∑
K∈Th

∫
∂K
〈φ, D̂〉 = 0

for all D̂ ∈ V̂ n−1.
Likewise, let A ∈ DV 1. Then A ∈ V̊ 1 if and only if∑

K∈Th

∫
∂K
〈A ∧ Ĥ〉 = 0

for all Ĥ ∈ V̂ n−2.

Proof. For k = 1, 2, let u ∈ V k. Then for λ ∈ V̂ n−k−1, we have∑
K∈Th

∫
∂K
〈u ∧ λ〉 =

∑
K∈Th

∫
K

(
〈du ∧ λ〉+ (−1)k〈u ∧ dλ〉

)
=
∫

Ω

(
〈du ∧ λ〉+ (−1)k〈u ∧ dλ〉

)
=
∫
∂Ω
〈u ∧ λ〉.

(3.1)

In particular, if u ∈ V̊ k, then this expression is zero as claimed.
Conversely, assume that φ ∈ DV 0 and that

∑
K∈Th

∫
∂K〈φ, D̂〉 = 0 for all D̂ ∈ V̂ n−1. We can define dφ

as a distribution on Ω. To show that dφ ∈ L4Λk+1(Ω, g), let D̂ ∈ V̂ n−1 have vanishing trace on ∂Ω.
By the definition of the distributional derivative, we have∫

Ω
〈dφ ∧ D̂〉 = −

∫
Ω
〈φ, dD̂〉.

Computing further, using the fact that φ ∈ L∞Λ0(Ω, g), dD̂ ∈ L1Λn−1(Ω, g), and d(φ|K) ∈ L4Λk(K, g),
we have that

−
∫

Ω
〈φ, dD̂〉 = −

∑
K∈Th

∫
K
〈φ, dD̂〉

=
∑
K∈Th

∫
K
〈dφ ∧ D̂〉 −

∑
K∈Th

∫
∂K
〈φ, D̂〉

=
∑
K∈Th

∫
K
〈dφ ∧ D̂〉.
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Using Hölder’s inequality, we can bound this expression by∣∣∣∣∣∣
∑
K∈Th

∫
K
〈dφ ∧ D̂〉

∣∣∣∣∣∣ ≤
∑
K∈Th

∣∣∣∣∫
K
〈dφ ∧ D̂〉

∣∣∣∣
≤
∑
K∈Th

‖dφ‖L4Λ1(K,g) ‖D̂‖L4/3Λn−1(K,g)

≤

 ∑
K∈Th

‖dφ‖4L4Λ1(K,g)

1/4 ∑
K∈Th

‖D̂‖4/3
L4/3Λn−1(K,g)

3/4

=

 ∑
K∈Th

‖dφ‖4L4Λ1(K,g)

1/4

‖D̂‖L4/3Λn−1(Ω,g).

We conclude that the functional D̂ 7→
∫

Ω〈dφ ∧ D̂〉 is bounded on L4/3Λn−1(Ω, g), so dφ ∈ L4Λ1(Ω, g),
as desired. We conclude that φ ∈ V 0.
Likewise, assume that A ∈ DV 1 and that

∑
K∈Th

∫
∂K〈A ∧ Ĥ〉 = 0 for all Ĥ ∈ V̂ n−2. We define dA

as a distribution on Ω, and in the same way that we computed for φ, we can compute that for all
Ĥ ∈ V̂ n−2 with vanishing trace, we have∫

Ω
〈dA ∧ Ĥ〉 =

∑
K∈Th

∫
K
〈dA ∧ Ĥ〉.

Like we did for φ, we can bound this expression using the Cauchy–Schwarz inequality.∣∣∣∣∣∣
∑
K∈Th

∫
K
〈dA ∧ Ĥ〉

∣∣∣∣∣∣ ≤
 ∑
K∈Th

‖dA‖2L2Λ2(K,g)

1/2

‖Ĥ‖L2Λn−2(Ω,g).

We conclude that the functional Ĥ 7→
∫
Ω〈dA ∧ Ĥ〉 is bounded on L2Λn−2(Ω, g), so dA ∈ L2Λ2(Ω, g),

as desired. We conclude that A ∈ V 1.
We’ve shown that φ ∈ V 0 and A ∈ V 1. It remains to show that their traces are zero. For k = 0, 1,
considering λ ∈ V̂ n−k−1, not necessarily traceless, we have by Equation (3.1) and the assumption that∑
K∈Th

∫
∂K〈u ∧ λ〉 = 0 that

∫
∂Ω〈u ∧ λ〉 = 0 for all λ, so u is traceless.

3.2. The domain-decomposed Yang–Mills equations

We now modify the Lagrangian from (2.7) to allow A and φ to come from the discontinuous function
spaces, and we enforce continuity through Lagrange multipliers Ĥ ∈ V̂ n−2 and D̂ ∈ V̂ n−1. That is,
let A be a C1 curve in DV 1, and let φ be a C0 curve in DV 0. As before, we let E = −(Ȧ+ dAφ) and
B = FA, but in this definition we take the derivative element-wise on each K; in general, A and φ are
not weakly differentiable on Ω due to jumps across element boundaries.

As before, the regularity assumptions on φ and A imply that E ∈ L4Λ1(Ω, g) and B ∈ L2Λ2(Ω, g),
and so this implies that D = εE ∈ L4Λn−1(Ω, g) and H = µ−1B ∈ L2Λn−2(Ω, g). Again, we impose
the additional assumption that Ḋ ∈ L4Λn−1(Ω, g). Our Lagrangian is now:

L(A, φ, Ĥ, D̂, Ȧ, φ̇, ˙̂
H,

˙̂
D) =

∑
K∈Th

(∫
K

(1
2〈E ∧D〉 −

1
2〈B ∧H〉 − 〈φ, ρ〉

)

+
∫
∂K

(
〈A ∧ Ĥ〉+ 〈φ, D̂〉

))
.
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The Euler–Lagrange equations are then∫
K

(〈
A′ ∧ (Ḋ − [φ,D])

〉
−
〈
dAA

′ ∧H
〉)

+
∫
∂K
〈A′ ∧ Ĥ〉 = 0, ∀A′ ∈ DV 1, (3.2a)∫

K

(〈
dAφ

′ ∧D
〉

+
〈
φ′, ρ

〉)
−
∫
∂K
〈φ′, D̂〉 = 0, ∀φ′ ∈ DV 0, (3.2b)∑

K∈Th

∫
∂K
〈A ∧ Ĥ ′〉 = 0, ∀Ĥ ′ ∈ V̂ n−2, (3.2c)

∑
K∈Th

∫
∂K
〈φ, D̂′〉 = 0, ∀D̂′ ∈ V̂ n−1, (3.2d)

where (3.2a) and (3.2b) hold for all K ∈ Th. We now relate these equations to the non-domain-
decomposed Euler–Lagrange equations (2.8).

Proposition 3.4. (A, φ, Ĥ, D̂) is a solution to (3.2) if and only if (A, φ) is a solution to (2.8),
Ĥ|∂K = H|∂K , and D̂|∂K = D|∂K for all K, where |∂K denotes the tangential trace of differential
forms.

Proof. Suppose (A, φ, Ĥ, D̂) is a solution to (3.2). By Proposition 3.3, Equations (3.2c) and (3.2d)
imply that A ∈ V̊ 1 and φ ∈ V̊ 0. Also by Proposition 3.3, if we take A′ ∈ V̊ 1, then

∑
K∈Th

∫
∂K〈A′ ∧

Ĥ〉 = 0, so if we sum Equation (3.2a) over K, we obtain Equation (2.8a). Similarly, by summing
Equation (3.2b) over K, we obtain Equation (2.8b).
It remains to show that Ĥ|∂K = H|∂K and D̂|∂K = D|∂K . Equations (2.8) imply that Ḋ − [φ,D] =
dAH and dAD = ρ in the sense of distributions. By assumption, Ḋ ∈ L4Λn−1(Ω, g). Since φ ∈
L∞Λ0(Ω, g), we conclude then that Ḋ− [φ,D] ∈ L4Λn−1(Ω, g), so dAH ∈ L4Λn−1(Ω, g). Consequently,
the expression

∫
∂K〈A′ ∧H〉 is well-defined by the formula∫

∂K
〈A′ ∧H〉 =

∫
K

(
〈dAA′ ∧H〉 − 〈A′ ∧ dAH〉

)
. (3.3)

Indeed, the first term is the product of two L2 functions, so it is in L1(K), and the second term is the
product two L4 functions, so it is in L2 ⊂ L1.
With this equation, and substituting dAH for Ḋ − [φ,D] in (3.2a), we find that

−
∫
∂K
〈A′ ∧H〉+

∫
∂K
〈A′ ∧ Ĥ〉 = 0, ∀A′ ∈ DV 1,

so Ĥ|∂K = H|∂K . Likewise, substituting dAD for ρ in (3.2b) and using∫
∂K
〈φ′, D〉 =

∫
K

(
〈dAφ′ ∧D〉+ 〈φ, dAD〉

)
(3.4)

gives ∫
∂K
〈φ′, D〉 −

∫
∂K
〈φ′, D̂〉 = 0, ∀φ′ ∈ DV 0,

so D̂|∂K = D|∂K , as desired.
Conversely, suppose (A, φ) is a solution to (2.8). Then Ḋ − [φ,D] = dAH and dAD = ρ in the sense
of distributions. By assumption, Ḋ ∈ L4Λn−1(Ω, g). Along with φ ∈ L∞Λ0(Ω, g), A ∈ L4Λ1(Ω, g), and
D ∈ L4Λn−1(Ω, g), we see that

dH = Ḋ − [φ,D]− [A ∧H] ∈ L4/3Λn−1(Ω, g).
Indeed, the first two terms are in L4 ⊂ L4/3, and the last term is in L4 · L2 = L4/3. Thus, H ∈ V̂ n−2,
and so we can set Ĥ = H. Similarly, because ρ ∈ L1Λn(Ω, g), we can use dD = ρ− [A∧D] to conclude
that D ∈ V̂ n−1, and so we can set D̂ = D.
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Because A ∈ V̊ 1 and φ ∈ V̊ 0, equations (3.2c) and (3.2d) hold by Proposition 3.3. By substituting
dAH for Ḋ− [φ,D] and H for Ĥ and using (3.3), we see that (3.2a) holds. Similarly, substituting dAD
for ρ and D for D̂ and using (3.4), we see that (3.2b) holds.

3.3. Domain decomposition in temporal gauge

If (A, φ, Ĥ, D̂) is a solution to (3.2), then we can apply a gauge transformation g to get a solution(
gAg−1 − (dg)g−1, gφg−1 + ġg−1, gĤg−1, gD̂g−1

)
of (3.2) with ρ replaced by gρg−1.

To ensure that this solution is in DV 1 × DV 0 × V̂ n−2 × V̂ n−1, it suffices to assume that dg ∈
L4Λ1(Ω, g) and ġ ∈ L∞Λ0(Ω, g), as we already have that g ∈ L∞Λ0(Ω, g) because the group G is
compact.

As discussed above, we can apply a gauge transformation so that φ = 0 by solving ġ = −gφ. Note,
however, that the situation is slightly more delicate because we need g ∈ V 0 whereas, a priori, φ is
only in DV 0; we must use that φ ∈ V̊ 0 by (3.2d).

Setting φ to zero gives us a simpler Lagrangian,

L(A, Ĥ, Ȧ, ˙̂
H) =

∑
K∈Th

(∫
Ω

(1
2〈E ∧D〉 −

1
2〈B ∧H〉

)
+
∫
∂K

(
〈A ∧ Ĥ〉

))
.

The Euler–Lagrange equations then simplify to∫
K

(〈
A′ ∧ Ḋ

〉
−
〈
dAA

′ ∧H
〉)

+
∫
∂K
〈A′ ∧ Ĥ〉 = 0, ∀A′ ∈ DV 1, (3.5a)∑

K∈Th

∫
∂K
〈A ∧ Ĥ ′〉 = 0, ∀Ĥ ′ ∈ V̂ n−2, (3.5b)

with D = −εȦ and H = µ−1FA.
We now show that equations (3.5) imply equations (3.2) for an appropriate choice of D̂.

Proposition 3.5. Let (A, Ĥ) be a solution to (3.5). Given an initial value for D̂, evolve D̂ by the
equation ˙̂

D = dAĤ. Then, assuming (3.2b) holds at the initial time, it holds for all time, so (A, 0, Ĥ, D̂)
is a solution to (3.2).

Proof. We first note that dAĤ ∈ V̂ n−1, so it makes sense to set ˙̂
D equal to this form. Indeed, dĤ

is in L4/3Λn−1(Ω, g) by assumption, and [A ∧ Ĥ] ∈ L4/3Λn−1(Ω, g) because it is the product of an L4

form with an L2 form. Next, ddĤ = 0 and d[A ∧ Ĥ] = [dA ∧ Ĥ]− [A ∧ dĤ], and one can check that
our regularity assumptions on A and Ĥ imply that both of these terms are in L1Λn(Ω, g).
Note that if φ′ ∈ DV 0|K and A ∈ DV 1|K , then dAφ′ ∈ DV 1|K . Thus, dAφ′ is a valid choice of test
function A′ in (3.5a), from which we obtain that∫

K

(
〈dAφ′ ∧ Ḋ〉 − 〈dAdAφ′ ∧H〉

)
+
∫
∂K
〈dAφ′ ∧ Ĥ〉 = 0,∫

K

(
〈dAφ′ ∧ Ḋ〉 − 〈[B,φ′] ∧H〉

)
+
∫
∂K
〈dAφ′ ∧ Ĥ〉 = 0,∫

K

(
〈dAφ′ ∧ Ḋ〉+ 〈φ′, [B ∧ µ−1B]〉

)
+
∫
∂K
〈dAφ′ ∧ Ĥ〉 = 0,∫

K
〈dAφ′ ∧ Ḋ〉+

∫
∂K
〈dAφ′ ∧ Ĥ〉 = 0.
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for all φ′ ∈ DV 0 and K ∈ Th.
Recall that, in temporal gauge, ρ̇ = 0. Thus, taking the time derivative of the left-hand side of (3.2b),
we obtain ∫

K

(〈
[Ȧ, φ′] ∧D

〉
+
〈
dAφ

′ ∧ Ḋ
〉)
−
∫
∂K

〈
φ′,

˙̂
D
〉

=
∫
K

(〈
φ′, [E ∧ εE]

〉
+
〈
dAφ

′ ∧ Ḋ
〉)
−
∫
∂K

〈
φ′, dAĤ

〉
=
∫
K

〈
dAφ

′ ∧ Ḋ
〉

+
∫
∂K

〈
dAφ

′ ∧ Ĥ
〉

= 0.
Thus, if (3.2b) holds at the initial time, it holds for all time. Meanwhile, (3.2a) is just (3.5a) with
φ = 0, (3.2c) is the same as (3.5b), and (3.2d) is trivial when φ = 0.

3.4. Hybrid semidiscretization

We now discretize the Yang–Mills domain-decomposed variational problem in temporal gauge. Let
DV 0

h , DV 1
h , and V̂ n−2

h be finite-dimensional subspaces of DV 0, DV 1, and V̂ n−2, respectively, such
that for all K ∈ Th, Ah ∈ DV 1

h

∣∣
K , and φh ∈ DV 0

h

∣∣
K we have

dAh
φh ∈ DV 1

h

∣∣∣
K
.

Recall that dAh
φh = dφh + [Ah, φh]. Using standard finite element spaces of differential forms, we can

achieve dφh ∈ DV 1
h

∣∣
K without difficulty. However, unless G is abelian and the Lie bracket is zero,

we generally expect that if the coefficients of Ah have polynomial degree r and the coefficients of φh
have polynomial degree s, then the coefficients of [Ah, φh] have polynomial degree r + s. Thus, in the
nonabelian setting, we cannot expect dAh

φh to be in the same space as Ah unless s = 0.
Consequently, we set DV 0

h

∣∣
K to be the space of constant g-valued 0-forms on K. In other words,

DV 0
h is the space of piecewise constant functions Ω→ g.
We then solve equations corresponding to (3.5) for Ah ∈ DV 1

h and Ĥh ∈ V̂ n−2
h .∫

K

(〈
A′h ∧ Ḋh

〉
−
〈
dAh

A′h ∧Hh

〉)
+
∫
∂K
〈A′h ∧ Ĥh〉 = 0, ∀A′h ∈ DV 1

h , (3.6a)∑
K∈Th

∫
∂K
〈Ah ∧ Ĥ ′h〉 = 0, ∀Ĥ ′h ∈ V̂ n−2

h , (3.6b)

where Dh = −εȦh, Hh = µ−1FAh
, and (3.6a) holds for all K ∈ Th.

Given an initial value for D̂h, we define D̂h for all time via the equation
˙̂
Dh = dAh

Ĥh.

Note that if DV 1
h and V̂ n−2

h are spaces of polynomials, then D̂h will in general have higher polynomial
degree than Ĥh because of the [Ah ∧ Ĥh] term.

We now prove the analogue of Proposition 3.5.

Proposition 3.6. Let (Ah, Ĥh) be a solution to (3.6). Given an initial value for D̂h, evolve D̂ by
˙̂
Dh = dAh

Ĥh. Then, assuming∫
K

(〈
dAh

φ′h ∧Dh

〉
+ 〈φ′h, ρ〉

)
−
∫
∂K

〈
φ′h, D̂h

〉
= 0, ∀φ′h ∈ DV 0

h . (3.7)

holds at the initial time, it holds for all time.
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Proof. Let φ′h ∈ DV 0
h . By assumption, dAh

φ′h ∈ DV 1
h . Thus, we can plug in A′h = dAh

φ′h into
equation (3.6a). We obtain, for all φ′h ∈ DV 0

h ,∫
K

(〈
dAh

φ′h ∧ Ḋh

〉
−
〈
dAh

dAh
φ′h ∧Hh

〉)
+
∫
∂K

〈
dAh

φ′h ∧ Ĥh

〉
= 0. (3.8)

The first term of (3.8) is equal to d
dt〈dAh

φ′h ∧Dh〉. Indeed,
d

dt

〈
dAh

φ′h ∧Dh

〉
=
〈
dAh

φ′h ∧ Ḋh

〉
+
〈
[Ȧh, φh] ∧Dh

〉
,

and 〈
[Ȧh, φ′h] ∧Dh

〉
= −

〈
φ′h, [Ȧh ∧Dh]

〉
=
〈
φ′h, [Ȧh ∧ εȦh]

〉
= 0,

by the symmetry of ε and the antisymmetry of the Lie bracket.
The second term of (3.8) is zero. Indeed,〈

dAh
dAh

φ′h ∧Hh

〉
=
〈
[FAh

, φ′h] ∧ µ−1FAh

〉
= −

〈
φ′h, [FAh

∧ µ−1FAh
]
〉

= 0.
Meanwhile, by integration by parts and using ∂∂K = 0, the third term of (3.8) is∫

∂K

〈
dAh

φ′h ∧ Ĥh

〉
= −

∫
∂K

〈
φ′h, dAh

Ĥh

〉
= −

∫
∂K

〈
φ′h,

˙̂
Dh

〉
.

Combining this information with the fact that ρ̇ = 0, we have that
d

dt

(∫
K

(〈
dAh

φ′h ∧Dh

〉
+ 〈φ′h, ρ〉

)
−
∫
∂K

〈
φ′h, D̂h

〉)
= 0, (3.9)

for all K and for all φ′h ∈ DV 0
h , as desired.

3.5. Local charge conservation

We can interpret Proposition 3.6 as giving us an approximate charge ρ̂h that satisfies a local conserva-
tion law. Namely, for any φ′ ∈ DV 0

h , we have that φ′ is constant on K, so dφ′ = 0 on K, and so (3.7)
simplifies to ∫

K

(〈
[Ah, φ′h] ∧Dh

〉
+ 〈φ′h, ρ〉 − 〈dφ′h ∧ D̂h〉 − 〈φ′h, dD̂h〉

)
= 0,∫

K

(
−〈φ′h, [Ah ∧Dh]〉+ 〈φ′h, ρ〉 − 〈φ′h, dD̂h〉

)
= 0,∫

K

〈
φ′h, dD̂h + [Ah ∧Dh]

〉
=
∫
K
〈φ′h, ρ〉.

We know that ρ̇ = 0. Thus, if we set

ρ̂h := dD̂h + [Ah ∧Dh],

we have that ρ̂h is an approximation to the charge ρ = dAD = dD + [A ∧D] and that

d

dt

∫
K
〈φ′h, ρ̂h〉 = 0, ∀φ′h ∈ DV 0

h .

for all K ∈ Th. Note that ρ̂h depends on both D̂h and Dh.
Since DV 0

h is the space of piecewise constant g-valued functions, we can state the above equation
more simply as

d

dt

∫
K
ρ̂h = 0, ∀K ∈ Th.

This equation is our local conservation law: The total charge in each element is conserved.
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4. Numerical implementation

We implemented our domain decomposed hybrid method for the Yang–Mills equations in FEniCS [12,
1] and verified that ρ̂h is conserved in the sense above. As illustrated in Figure 4.1, when we simulated
the Yang–Mills equations, the total charge in each element as measured by ρ̂h := dD̂h + [Ah ∧ Dh]
remained zero. In contrast, the total charge in each element as measured by ρh := dAh

Dh = dDh +
[Ah ∧Dh] drifted away from zero, showing the advantage of this hybrid scheme. We implemented our
method on a square, a flat torus (a square with periodic boundary conditions), and the surface of
a sphere. We simulated the Yang–Mills equations in vacuum, that is, with ε and µ−1 being just the
Hodge star operator on the domain.

We obtained solutions of the domain-decomposed problem (3.6) in the simpler setting where our
space of Lagrange multipliers V̂ n−2

h has degree large enough so that (3.6b) forces Ah to be in the
conforming space V̊ 1

h . In this setting, we can use the evolution equation (2.14) from the conforming
setting to evolve Ah ∈ V̊ 1

h , and then use (3.6a) to solve for Ĥh as a post-processing step. We note,
however, that equations (3.6) could also be used in a more general setting where the space of Lagrange
multipliers V̂ n−2

h is smaller, in which case we would obtain solutionsAh ∈ DV 1
h that are not conforming.

We approximated 1-forms using the PrΛ1 family of finite element differential forms [2, 3], whose
two-dimensional vector field proxies correspond to curl-conforming Brezzi–Douglas–Marini edge el-
ements [5]. Tuples of these 1-forms gives us our space V̊ 1

h of g-valued 1-forms. Meanwhile, in this
two-dimensional setting, Ĥ is a g-valued zero-form, so we can represent it with a tuple of continuous
Galerkin elements, giving us our space V̂ n−2

h .
Using these curl-conforming elements, we evolved Ah and Dh using a leapfrog scheme, while com-

puting the hybrid variables Ĥh and D̂h in a post-processing step. The full numerical scheme is as
follows.

(1) Let An+ 1
2

= An − 1
2∆tε−1Dn.

(2) Let Ḋn+ 1
2
∈ V̊ 1

h be the solution to (2.14), that is,∫
Ω

(〈
A′h ∧ Ḋn+ 1

2

〉
−
〈
dA

n+ 1
2
A′h ∧Hn+ 1

2

〉)
= 0, ∀A′h ∈ V̊ 1

h ,

where Hn+ 1
2

:= µ−1FA
n+ 1

2
.

(3) Let Ĥn+ 1
2
∈ V̂ n−2

h be the solution to (3.6a), that is,∫
K

(〈
A′h ∧ Ḋn+ 1

2

〉
−
〈
dA

n+ 1
2
A′h ∧Hn+ 1

2

〉)
+
∫
∂K

〈
A′h ∧ Ĥn+ 1

2

〉
= 0, ∀A′h ∈ DV 1

h , ∀K ∈ Th,

that minimizes
∥∥∥Ĥn+ 1

2
−Hn+ 1

2

∥∥∥2

L2(Ω)
+
∥∥∥ ˙̂
Dn+ 1

2
− Ḋn+ 1

2

∥∥∥2

L2(Ω)
, where ˙̂

Dn+ 1
2

:= dA
n+ 1

2
Ĥn+ 1

2
.

(4) Let Dn+1 = Dn + ∆tḊn+1/2.

(5) Let D̂n+1 = D̂n + ∆t ˙̂
Dn+1/2.

(6) Let An+1 = An+ 1
2
− 1

2∆tε−1Dn+1.

(7) Let ρn+1 = dAn+1Dn+1.

(8) Let ρ̂n+1 = dD̂n+1 + [An+1 ∧Dn+1].

112



Charge-conserving hybrid methods for Yang–Mills

0 2π 4π 6π 8π

time

0

50

100

150

200

L
2

n
o
rm

o
f

p
ie

ce
w

is
e

co
n

st
a
n
t

p
ro

je
ct

io
n

Charge conservation on the square

ρh
ρ̂h

0 2π 4π 6π 8π

time

0

10

20

30

40

L
2

n
o
rm

o
f

p
ie

ce
w

is
e

co
n

st
a
n
t

p
ro

je
ct

io
n

Charge conservation on the flat torus

ρh
ρ̂h

0 2π 4π 6π 8π

time

0

20

40

60

L
2

n
o
rm

o
f

p
ie

ce
w

is
e

co
n

st
a
n
t

p
ro

je
ct

io
n

Charge conservation on the sphere

ρh
ρ̂h

Figure 4.1. Numerical evolution of charge for the Yang–Mills equations on various
domains, comparing the standard expression ρh = dAh

Dh = dDh + [Ah ∧Dh] with our
new expression ρ̂h = dD̂h + [Ah∧Dh] incorporating the hybrid variable D̂h. Projecting
to piecewise constant g-valued functions shows that the total charge in each element
remains zero using ρ̂h, whereas it drifts away from zero using ρh.
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The minimization in step (3) is needed because (3.6a) does not determine Ĥh uniquely. In particular,
(3.6a) only involves the values of Ĥh on the element boundaries, so it gives no information about its
interior degrees of freedom. Meanwhile, (3.6b) is automatically satisfied because Ah is curl-conforming.

In these examples, we worked with the three-dimensional Lie algebra g = su(2), which is isomorphic
to R3 with the cross product structure, so our connection A can be represented by a triple of ordinary
1-forms, one for each component of g. Let ξ0, ξ1, and ξ2 denote a basis of su(2) such that [ξ0, ξ1] = ξ2,
[ξ1, ξ2] = ξ0, and [ξ2, ξ0] = ξ1. For the simulations illustrated in Figure 4.1, the initial conditions we
chose for A are

(y(π − y) dx+ x(π − x) dy)⊗ ξ0 +
(
y2(π − y) dx+ x2(π − x) dy

)
⊗ ξ1 + 0⊗ ξ2

for the square,
(sin(4x+ 2y) dx+ dy)⊗ ξ0 + (dx+ sin(2x+ 6y) dy ⊗ ξ1 + 0⊗ ξ2

for the flat torus (square with periodic boundary conditions), and the restriction of

(y(π − y) dx+ x(π − x) dy + z dz)⊗ ξ0 +
(
y2(π − y) dx+ x2(π − x) dy

)
⊗ ξ1 + 0⊗ ξ2

to the sphere for the sphere. We set D = 0 at the initial time for all three. We chose these initial
functions arbitrarily, except to ensure that they satisfy the appropriate boundary conditions and give
generic-seeming solutions. In particular, the ξ2 component that initially starts at zero does not remain
zero, as expected since ξ2 = [ξ0, ξ1].

Table 4.1 shows the empirical errors and rates of convergence at t = π for the square and torus.
By contrast with Nédélec’s method for Maxwell’s equations, we do not observe faster convergence of
Ah in the L2 norm than in the energy norm. In particular, Ah appears to converge with rate r rather
than r+ 1 for degree-r elements; compare the L2 error estimates for Maxwell’s equations in Section 4
of Monk [14]. At t = 0, standard approximation theory implies that the degree-r interpolant of the
initial conditions has error O(hr+1), but this is seen to worsen to O(hr) for longer times t. We suspect
that the reduced rate of L2 convergence is due to the quadratic nonlinear term coupling the error in
A with the (one degree lower) error in its derivatives. Further analysis is needed but is beyond the
scope of the present paper.

Recall that the evolution of ρ̂h conserves the total charge in each element K. To illustrate this
conservation law, we projected both ρh and ρ̂h to the space of piecewise constant g-valued functions,
giving us the average charge on each element. The L2 norms of these projections are plotted in
Figure 4.1, showing that ρ̂h conserved the total charge in each element, but ρh did not. We also
illustrate this behavior in Figure 4.2, where one can see that Dh and D̂h look identical, but there
is a stark difference when we look at the corresponding charges projected to the piecewise constant
functions.

5. Remarks on the case of nonzero current

So far, we have discussed the Yang–Mills equations with zero current, in contrast with our paper on
Maxwell’s equations [4], where we do not impose this condition. For Maxwell’s equations, the charge
and current satisfy the continuity equation ρ̇ = −div J . We can think of ρ and J as given data
satisfying this constraint, or, equivalently, we can think of the given data as being the initial charge
distribution ρ at time zero, along with the current J for all time, and then we can use the equation
ρ̇ = −div J to determine the charge distribution at all future times, independently from our evolution
of the potentials φ and A and the corresponding fields E, B, D, and H.

In stark contrast, the corresponding relationship between ρ and J in the Yang–Mills setting is
ρ̇− [φ, ρ] = −dAJ = −dJ − [A ∧ J ].
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Figure 4.2. Comparison of the three components of Dh and D̂h, along with the
corresponding charge densities ρh and ρ̂h projected onto piecewise constants, for the
16×16 square mesh at t = π. While Dh and D̂h are nearly indistinguishable, ρh appears
to show spurious nonzero charges, while ρ̂h remains zero due to the conservativity of
the hybrid scheme.
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r N A dA H

1 4 10.074 — 16.241 — 17.637 —
8 6.443 0.6 13.357 0.3 13.119 0.4
16 3.480 0.9 9.951 0.4 9.682 0.4
32 1.728 1.0 5.129 1.0 4.926 1.0
64 0.832 1.1 2.193 1.2 2.041 1.3

128 0.369 1.2 0.849 1.4 0.835 1.3
256 — — — — — —

2 4 5.970 — 13.762 — 12.077 —
8 2.004 1.6 7.245 0.9 6.656 0.9
16 0.554 1.9 2.331 1.6 2.203 1.6
32 0.144 1.9 0.603 2.0 0.568 2.0
64 0.036 2.0 0.223 1.4 0.216 1.4

128 0.009 2.0 0.081 1.5 0.078 1.5
256 — — — — — —

(a) N ×N square mesh

r N A dA H

1 4 5.199 — 6.887 — 6.050 —
8 2.547 1.0 6.963 -0.0 7.073 -0.2

16 1.316 1.0 4.530 0.6 4.705 0.6
32 0.612 1.1 2.326 1.0 2.267 1.1
64 0.282 1.1 0.748 1.6 0.721 1.7
128 0.123 1.2 0.249 1.6 0.219 1.7
256 — — — — — —

2 4 2.769 — 6.572 — 6.577 —
8 1.051 1.4 3.113 1.1 3.131 1.1

16 0.298 1.8 0.815 1.9 0.802 2.0
32 0.074 2.0 0.118 2.8 0.114 2.8
64 0.019 2.0 0.025 2.2 0.023 2.3
128 0.005 2.0 0.008 1.7 0.007 1.7
256 — — — — — —

(b) N ×N torus mesh

Table 4.1. L2 errors and rates for the numerical solution at time π, when compared
to the solution on a 256 × 256 mesh. The results suggest linear convergence in A for
degree r = 1 elements and quadratic convergence for r = 2.

As such, the evolution of the charge ρ depends not only on the current J but also on the potentials
φ and A. Unlike in Maxwell’s equations, we cannot determine ρ a priori; different initial conditions
for φ and A will lead to different future charge distributions. Of course, we have an exception to this
if the current J is zero, in which case, in temporal gauge, this equation reduces to ρ̇ = 0, which does
not depend on A.
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We now discuss what happens in the general setting of nonzero current. Let J be a time-varying
g-valued (n− 1)-form, specifically a C0 curve in V̂ n−1. The Yang–Mills Lagrangian is

L(A, φ, Ȧ, φ̇) :=
∫

Ω

(1
2〈E ∧D〉 −

1
2〈B ∧H〉 − 〈φ, ρ〉+ 〈A ∧ J〉

)
.

The Euler–Lagrange equations are∫
Ω

(〈
A′ ∧ (Ḋ − [φ,D])

〉
−
〈
dAA

′ ∧H
〉

+ 〈A′ ∧ J〉
)

= 0, ∀A′ ∈ V̊ 1,∫
Ω

(〈
dAφ

′ ∧D
〉

+
〈
φ′, ρ

〉)
= 0, ∀φ′ ∈ V̊ 0,

which are weak expressions of

Ḋ − [φ,D] = dAH − J,
dAD = ρ.

As before, we work in temporal gauge φ = 0. With the standard semidiscretization, we obtain∫
Ω

(〈
A′h ∧ Ḋh

〉
−
〈
dAh

A′h ∧Hh

〉
+ 〈A′h ∧ J〉

)
= 0, ∀A′h ∈ V̊ 1

h .

Meanwhile, with the domain-decomposed hybrid semidiscretization, we obtain∫
K

(〈
A′h ∧ Ḋh

〉
−
〈
dAh

A′h ∧Hh

〉
+ 〈A′h ∧ J〉

)
+
∫
∂K
〈A′h ∧ Ĥh〉 = 0, ∀A′h ∈ DV 1

h , (5.1a)∑
K∈Th

∫
∂K
〈Ah ∧ Ĥ ′h〉 = 0, ∀Ĥ ′h ∈ V̂ n−2

h , (5.1b)

and we evolve D̂h by the equation
˙̂
Dh := dAh

Ĥh − J. (5.2)
So far, apart from the extra term, not much has changed from our earlier work. However, to prove

the analogue of Proposition 3.6, we must do something new. Previously, we had ρ̇ = 0. Now, we have
ρ̇ = −dAJ , but, as discussed earlier, given J , we cannot determine the evolution of ρ without knowing
how the current interacts with A via the [A∧ J ] term of dAJ . We only have Ah, not A, so we instead
define a new quantity ρ̃h to match ρ at the initial time and evolve via

˙̃ρh := −dAh
J. (5.3)

Our results will then show that, averaged over each element, ρ̂h := dD̂h + [Ah ∧Dh] agrees with ρ̃h.
If we have reason to believe that [A∧ J ] = [Ah ∧ J ], then ρ̃h = ρ, and we recover our earlier results of
ρ̂h agreeing with ρ, but, unfortunately, we do not expect this to generally be the case. There are two
special cases where [A ∧ J ] = [Ah ∧ J ] holds. The first is when J is zero, which we have addressed in
the bulk of this paper. The second is when g is Abelian, in which case A is simply a tuple of vector
potentials independently evolving by Maxwell’s equations, so we can use our stronger results in [4].

Nonetheless, we proceed to prove the analogue of Proposition 3.6.

Proposition 5.1. Let (Ah, Ĥh) be a solution to (5.1). Let ρ̃h be defined by (5.3), and, given an initial
value for D̂h, evolve D̂ by (5.2). Then, assuming∫

K

(〈
dAh

φ′h ∧Dh

〉
+ 〈φ′h, ρ̃h〉

)
−
∫
∂K

〈
φ′h, D̂h

〉
= 0, ∀φ′h ∈ DV 0

h . (5.4)

holds at the initial time, it holds for all time.
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Proof. As in the proof of Proposition 3.6, we plug in dAh
φ′h for A′h into (5.1a). We obtain, for all

φ′h ∈ DV 0
h ,∫

K

(〈
dAh

φ′h ∧ Ḋh

〉
−
〈
dAh

dAh
φ′h ∧Hh

〉
+
〈
dAh

φ′h ∧ J
〉)

+
∫
∂K

〈
dAh

φ′h ∧ Ĥh

〉
= 0. (5.5)

Using the computations in the proof of Proposition 3.6, we can reduce this equation to∫
K

(
d

dt

〈
dAh

φ′h ∧Dh

〉
− 0 +

〈
dAh

φ′h ∧ J
〉)
−
∫
∂K

〈
φ′h, dAh

Ĥh

〉
= 0.

Dealing with the new current term, we integrate by parts to obtain∫
K

〈
dAh

φ′h ∧ J
〉

= −
∫
K

〈
φ′h, dAh

J
〉

+
∫
∂K

〈
φ′h, J

〉
.

We thus obtain ∫
K

(
d

dt

〈
dAh

φ′h ∧Dh

〉
−
〈
φ′h, dAh

J
〉)
−
∫
∂K

〈
φ′h, dAh

Ĥh − J
〉

= 0.

Substituting using equations (5.3) and (5.2), we obtain∫
K

(
d

dt

〈
dAh

φ′h ∧Dh

〉
+
〈
φ′h,

˙̃ρh
〉)
−
∫
∂K

〈
φ′h,

˙̂
Dh

〉
= 0,

which is the time derivative of (5.4).

Then, as in Subsection 3.5, we can plug in piecewise constant φ′h into (5.4) to obtain∫
K

〈
φ′h, dD̂h + [Ah ∧Dh]

〉
=
∫
K
〈φ′h, ρ̃h〉.

That is, ∫
K

〈
φ′h, ρ̂h

〉
=
∫
K
〈φ′h, ρ̃h〉,

or, more simply, ∫
K
ρ̂h =

∫
K
ρ̃h.

In other words, with this semidiscretization, when averaged over each element, the charge as estimated
by dD̂h+[Ah∧Dh] automatically matches the charge as estimated by integrating −dAh

J with respect
to time.
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