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Abstract. Splines form an elegant bridge between the continuous real world and the discrete computational world.
Their tensor-product form lifts many univariate properties effortlessly to the surfaces, volumes and beyond. Ir-
regularities, where the tensor-structure breaks down, therefore deserve attention – and provide a rich source of
mathematical challenges and insights.

This paper reviews and categorizes techniques for splines on meshes with irregularities. Of particular interest
are quad-dominant meshes that can have n 6= 4 valent interior points and T-junctions where quad-strips end.
“Generalized” splines can use quad-dominant meshes as control nets both for modeling geometry and to support
engineering analysis without additional meshing.

2010 Mathematics Subject Classification. 65N35, 15A15.
Keywords. splines, irregular, classification.

1. Introduction

The spline control net forms an intuitive geometrical bridge connecting the essentially discrete world
of meshes to the continuum of geometric modeling and analysis: the vertices of the control net are
the coefficients of B-splines in the linear combination that forms the spline; and since the basis of
B-splines form a non-negative partition of 1, the control net outlines the spline’s shape.

This paper focuses on surfaces generated by generalized splines, short G-splines, whose control nets
form quad(-rilateral) meshes with irregularities. Irregularities encompass extraordinary mesh nodes
where less or more than four quads meet and T-junctions where a quad-strip ends and two finer quads
meet a coarser one at a node (a T-node). These generalized quad-meshes are still structured in the
sense that irregularities are expected to be few and not concentrated near each other.

(a) faceted model (b) BB-nets (c) G-spline surface

Figure 1.1. Irregularities in a surface model. (A) T-junctions under the chin, an ex-
traordinary point inside the red curve. (B) A generalized spline surface using the mesh
in (A) as control net to generate smoothly joining regular bi-3, multi-sided extraordi-
nary and T-junction patches in Bernstein–Bézier (BB) form. (C) smooth rendering of
the generalized spline.

supported by Darpa TRADES.

161

mailto:jorg.peters@gmail.com


J. Peters

Overview and Disclaimer. The material is based on a presentation at the 9th International Con-
ference on Curves and Surfaces in Arcachon, France. While the paper aims to clarify recent concepts
and constructions, it makes no claim to provide an exhaustive survey of spline-based curves and sur-
faces. Rather the paper emphasizes concepts and results that the author considers valuable and is very
familiar with. Hence the reference list is biased towards the author’s own work.

Section 2 motivates and illustrates the use of splines on meshes with irregularities and Section 3 is a
brief review of basic notions and concepts for splines on meshes with irregularities. The centerpiece of
the paper is a classification of splines on meshes with irregularities in a Venn diagram (Figure 4.1). This
classification is followed by highlights of the state-of-the-art. Section 4.1 discusses some pros and cons
of the dominant trimmed NURBS representation, Section 4.2 surveys some recent progress in smooth
surface constructions via the concept of geometric continuity. This is followed by several key facts
and a brief review of literature of the three singularly-parameterized classes of polynomial G-splines:
Section 4.3 the subdivision surfaces (face collapse), Section 4.4 the polar surfaces (edge collapse) and
Section 4.5 the singular jet surfaces (collapse of the low-order Taylor expansion at a vertex). Section 5
concludes with a look at solving higher-order differential equations on G-spline manifolds.

Figure 1.2. Irregularities in a faceted automobile design sketch (courtesy S. Eberwein;
The control net has been mapped onto a Catmull–Clark subdivision surface).

2. Why splines for meshes with irregularities are needed

While Euler’s formula for quad meshes implies the existence of a minimal number of irregularities
that varies according to the topological genus, the majority of irregularities in faceted (polygonal,
polyhedral) modeling serve to align the mesh with feature and curvature lines. For example, in the
faceted model of a girl’s head in Figure 1.1(A), several T-junctions provide varying feature density
(near the ear and under the chin) and extraordinary nodes allow a transition between different preferred
parameter lines (circular around the mouth to the rectangular partition aligned with the cheek bones).
Used as a G-spline control net, the mesh in Figure 1.1(A) defines the G-spline surface of Figure 1.1(C).
Figure 1.1(B) shows the partition of this G-spline surface into polynomial pieces. The finer meshes
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Splines for meshes with irregularities

are the BB-nets [14] that connect the coefficients of a patch in tensor-product Bernstein–Bézier form
(BB-form) [18]. In the design study shown in Figure 1.2, the irregularities are strategically placed
and labelled by the designer: the irregularities enable changes in parameter direction (extraordinary
points) and density (T-junctions). Just as for a standard tensor-product spline, the G-spline surfaces
follow the mesh, interpreted as a control net.

(a) valence n = 3 (b) near n = 3 (c) near n = 5 (d) near n = 5 and
n = 3

(e) boundary G-
spline

Figure 2.1. Some piecewise polynomial G-spline basis functions: the quad-meshes act
as G-spline control nets, i.e. the figures show the result of lifting exactly one quad-mesh
node (not shown) out of the plane of the disk.

Figure 2.1 shows several G-spline basis functions with abscissae placed on a planar disk. The spread-
out tail in Figure 2.1(D) serves to include information from all five neighbor quads of the n = 5-valent
mesh node. Only where the mesh admits a directional decomposition of the smoothness constraints,
namely for tensor-product configurations, is the familiar smaller footprint of tensor-product NURBS
possible.

A first advantage of using G-splines is their ability to capture smoothly curved shape. This abil-
ity is not just important for aesthetic purposes; it also diminishes the error inherent in any faceted
approximation: the splines’ ability to non-linearly expand towards the true shape deliver higher ap-
proximation order. Conversely, spline surfaces can use far fewer elements to represent curved geometry
or to guarantee accurate numerical solutions than their linear straight-edge counterparts.

(a) (b) (c)

Figure 2.2. Splines allow infinite resolution under zoom. The scene uses models and
is an adaptation of Blender’s opensource movie “Elephant’s Dream”.

A second desirable effect of associating G-splines rather than a fixed triangulation with a mesh is
infinite resolution towards the curved shape. Figure 2.2 is a frame from an adaptation of Blender’s first
opensource movie “Elephant’s Dream” [19]. Based on tight slefe estimates of spline curvature [67, 85,
86], the tessellation factor is set automatically to ensure pixel-accurate rendering [110] at interactive
speeds. That is the silhouettes are always smooth at pixel-resolution and the adaptive triangulation
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(a) G-spline control net (b) spline surface (c) heat propagation on surface

Figure 2.3. G-splines allow direct engineering analysis as finite elements in Galerkin’s
setting. An additional coordinate at each point of the control net provides degrees of
freedom (here to compute the heat propagation on a bicycle helmet under the Florida
sun).

provided by the OpenGL or similar graphics pipeline’s tessellation engine enables accurate per-pixel
lighting. This performs well also in industrial codes [21].

A third desirable feature of G-splines is that (the coordinates of) their control net nodes can be
used both for modeling geometry and as coefficients of functions on the surface, e.g. as degrees of
freedom for engineering analysis [26]. Especially when the net is refinable and the spline spaces are
nested, computing with the control net avoids imprecise and costly re-approximation or conversion, say
to a triangulation. G-spline can therefore support an efficient and high-precision design-and-analysis
cycle. In particular, for differential equations requiring higher-order continuity, e.g. Kirchhoff–Love
shell problems, G-splines offer a smooth and graded parameterization for stability and convergence of
solvers. Figure 2.3 shows the progression from a G-spline control net, to modeling the smooth surface,
to computing heat propagation on the helmet’s surface by employing the one family of splines both
for the shape and the temperature function.

3. Basic Notions and Concepts

Both mathematical and aesthetic concepts enter into surface modeling. Stylists, the professionals who
translate high-end design into computer-based models, focus on the shape of surfaces via visualization.

Aesthetic assessment. Highlight lines [6] are a commonly-used tool of surface interrogation; high-
light lines approximate the effect of parallel arrangement of tube lights in an automobile show room,
see Figure 3.1(A). They differ from reflection lines in that the observation point is fixed. Unless ex-
plicitly intended as a surface feature, abrupt changes in the highlight line distribution are undesirable,
because distorted reflections make the product appear less carefully engineered. Uniform, parallel
highlight lines can qualify a surface as “class A”. Plotting the (normal) curvature along planar cuts,
so-called curvature profiles, yield an alternative tool to detect oscillations.

“Class A surface” is a term in the automotive design industry [105], describing spline surfaces with
aesthetic, non-oscillating highlight lines. “Class A” surfaces satisfy, depending on the application area
and contractual agreement, certain hard geometric constraints [1]. In particular, they allow, due to
manufacturing tolerances, a mismatch of normals along a curve between two surface pieces of one
tenth of a degree. Of the four constructions displayed in Figure 3.2 only (F) qualifies as “class A”.
This is remarkable since (F) is the only construction that is not mathematically smooth. Surface (F)
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(a) Reflection lines (b) G-spline surface (c) highlight lines (d) quality assessment

Figure 3.1. Judging surfaces by (A) reflections of parallel lights (reflection lines) [13]
and (D) highlight lines. (B) Pairwise joined primary surface pieces (patches) capped an
irregular 5-piece neighborhood. Although the central cap consists of five patches the
highlight line distribution (C) is uniform, hence deemed good. (D) Annotation of de-
sirable highlight line distribution (1a,1b,2) and deficient regions (1c,1d,3,4,5,7,8,9,10).

(a) 2-beam join (b) cap (c) Catmull–
Clark [10]

(d) C1/G1 [25] (e) rational [66] (f) C1−ε [45]

Figure 3.2. “Class A” surfaces avoid oscillating highlight lines but allow a mismatch
of normals up to 1/10th of a degree. The input mesh (A) models two crossing beams
whose join is to be smoothed by a bi-3 a multi-sided spline cap (red in (B)). The
cap is enlarged in (C)–(F) for four alternative constructions. Remarkably only the
mathematically non-smooth spline surface (F) qualifies as “class A”.

Figure 3.3. Interactive surface styling [106]: manipulating the highlight line distribu-
tion by moving BB-coefficients requires experience.

has a mismatch of normal where patches join of up to 1/10th of a degree, but also a good highlight
line distribution. Evidently “Class A” differs from the mathematical notion of smoothness.

Irregularities. Irregularities in quad meshes arise by design as in Figure 1.2. They also arise when
reconstructing scanned data with quad-meshing algorithms [8, 102]. We distinguish two types of ir-
regularities: extraordinary points and T-junctions. Each mesh extraordinary node where n 6= 4 quads
meet corresponds to an extraordinary point where n four-sided surface patches meet. The extraordi-
nary points can be “star-like” or “polar”, see Figure 3.4. If we think of neighborhoods modeled by
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conformal maps, star-like neighborhoods are generated by z4/n, polar by ez; lens-shaped, valence n = 2
configurations, add maps z2 and cos z into the mix [43].

(a) star-like (b) polar

Figure 3.4. The two main structures of bivariate extraordinary configurations.

(a) T-net + quad
frame

(b) convex T-net (c) T-splines fail for this mesh

Figure 3.5. (A) and (B) control nets with a single isolated T-junction. (C) A con-
sistent global knot spacing implies zero horizontal knot intervals for the grey quads and
so, formally, the parameterization is not smooth.

T-junctions occur where strips of surface patches terminate: two finer surface pieces meet one coarser
piece. The simplest such configuration, a T-net, is shown in Figure 3.5(A): a nominally pentagonal face
with exactly one vertex of valence 3 is surrounded by quadrilateral facets (here with a second frame
of quads for surface context). T-junctions allow introducing geometry of higher detail, or to merge
two separately-developed spline surfaces. T-junctions prominently arise when replacing the global
constraints of strict quad-meshing by more flexible quad-dominant meshing [31, 76, 89]. T-junctions
also appear to hierarchical splines [16, 20, 33, 60, 96] (and hence subdivision surfaces). However, T-
junctions in hierarchical splines require discovering a globally consistent choice of knot intervals. For
a given quad-mesh with irregularities, such a choice of knot intervals may fail to exist. For example, if
we require that the sum of knot intervals on opposing edges of any face must be equal (Rule 1 of [96])
then the horizontal knot intervals of the grey helical strip must be zero in Figure 3.5(C) so that no
smooth spline parameterization exists. Unsurprisingly, current industrial implementations of T-splines
(Rhino, Autodesk) do not try to recognize T-junctions in input meshes but treat them as 3-valent
nodes. Generally, hierarchical splines are intended to create T-junctions as part of a refinement process
where knot interval consistency is guaranteed. By contrast, the G-splines covering the T-junctions for
“class A” modeling [55], as in Figure 1.1(B) are not concerned with or restricted by knot spacing.

Trimming. Restricting the domain of a spline by curves in u, v space, is called trimming. In high-end
design, primary surfaces are juxtaposed and their sharp transitions blended by fillets. The switch from
primary to fillet surface or between primary surfaces is then traced back to trim curves in the domain.
This reflects the traditional work flow of design using clay [107] and is a basic element of leading
high-end design software. In state-of-the-art styling software polynomial pieces in Bernstein–Bézier
form (BB form) are laid down to capture primary shape and then cut back (aka trimmed) to insert
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fillets between the primary surfaces. This technique preserves simple, elegant shape in the large and
is initially very efficient – however later in the modelling process stylists devote more and more time
on ever smaller blends between the primary surfaces.

Figure 3.6. Part of an obstacle course of challenging quad-net inputs.

A G-spline obstacle course. Since “class A” criteria are subjective, the quad-net obstacle
course [38] provides input meshes in .obj format that can be used to test G-spline algorithms on
common and less common hard inputs Figure 3.6.

4. Classification

There are many criteria to classify free-form surface representations: CAD compatibility, polynomial
degree, approximation order, etc.. The Venn diagram Figure 4.1 groups by smoothness, polynomiality
and singularity of the surface parameterization. The topmost entry, trimmed NURBS surfaces, is the
de facto industry standard. Section 4.1 discusses advantages and shortcomings of trimmed NURBS
surfaces that have motivated research into alternatives over the last 30 years. The two best-known
alternatives are geometrically smooth Gk constructions, discussed in Section 4.2, and the hierarchical
refinement by subdivision surfaces, discussed in Section 4.3. But to date neither has replaced trimmed
surfaces in high-end manufacturing design.

Conforming C0 surfaces, including curved triangulations, are ubiquitous in low-end engineering
analysis and computer graphics. In computer graphics, a particular type of trompe l’oeil is often used
to generate the appearance of smoothness when the computational overhead must be minimized: taking
advantage of the separate channels for position and normal in the graphics pipeline, the constructions
of [103, 80, 63, 28] pair each surface patch with a related but independent normal distribution “patch”
to be used for lighting computations. Except for some silhouettes, the visual appearance then is
smoother than that of the true geometric shape. Importantly the trompe l’oeil can be computed
on the fly in the graphics processing unit (GPU) pipeline with negligible overhead compared to the
original faceted representation.
C1−ε constructions acknowledge the preference of “class A” surfacing for good highlight line dis-

tribution over strict mathematical smoothness. Typically, large portions of surfaces are of degree bi-3
but the polynomial degree needs to increase near irregular points. By accepting a slight error in one
or more algebraic mathematical smoothness constraints, constructions like [45] achieve good highlight
line distributions. And the mismatch of normals is bounded below one tenth of a degree over the
obstacle course, Figure 3.6. The “class A” surface tolerances can so be met by polynomials of degree
of bi-3 everywhere, see e.g. Figure 3.2(E).
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Generalized barycentric patches, e.g. [64, 99], and non-4-sided transfinite constructions, e.g. [11, 91,
92, 100, 101], yield internally infinitely smooth multi-sided patches (see [27] for efficient hardware
rendering). Exactly computing their higher-order derivatives is, however, costly due to an underlying
very high rational degree; finite difference approximations of the derivatives are therefore often used
instead. Gregory’s classic construction [22] induces a second-order rational singularity at each corner
and so allows independent definition of mixed derivatives across two edges meeting at the vertex.
Barycentric, transfinite, Gregory and orbifold constructions are, undeservedly, not further discussed
below.

The three singular polynomial constructions are: collapse of patch size (subdivision surfaces, Sec-
tion 4.3), collapse of edges to a pole (polar surfaces, Section 4.4), and collapse of the Taylor expansion
at a vertex (singular jet surfaces, Section 4.5). The third notably generalizes to m > 2 variables, e.g. to
splines on hexahedral complexes with irregular vertices and irregular edges [82].

Note that the Venn diagram regions for smooth constructions overlap since constructions can borrow
features from each other: for example, [29] shows that “barycentric” and the “Gregory” approach are
not mutually exclusive, and Section 4.3 will suggest that it makes sense to combine a few steps of
(accelerated, guided) subdivision with a G-spline construction.

The classification omits smooth piecewise polynomial functions on triangulations. These can also
be used for engineering analysis [32] and are summarized in the seminal book [95] by Schumaker and
Lai.

SMOOTH

singular :
polar
subdivision
singular jet

singular

rational
rational:
transfinite
Gregory
barycentric
orbifold

Gk

Gk:
geom smooth

trimmed C−1

conforming C0

C1−ε

Figure 4.1. Major categories, arranged by smoothness, of surface representations for
meshes with irregularities. Polar, subdivision and singular jet constructions leverage
controlled singularities and can be piecewise polynomial; Gk geometrically smooth
constructions, too, can be polynomial and rely on change of parameterization between
pieces; orbifold and generalized barycentric constructions use multi-sided domains, and,
as do transfinite and Gregory patches, rational blending functions for n 6= 4-sided sur-
face pieces.
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4.1. Trimmed Surfaces

Design is typically hierarchical, starting with a base shape and refining the design by replacing pieces.
Trimming accommodates the integration with other design components. The trimmed surface par-
adigm is powerful in that it allows the designer to freely determine primary shape, then restrict it
based on functionality and detail, e.g. to subtract out a cylinder. The resulting boundary represen-
tation (B-rep) is mathematically uniform and is efficiently supported by the industry standard of
trimmed NURBS (non-uniform rational B-spline).

(a) Surface patch layout (b) heterogeneous parameterization and size

Figure 4.2. High-end design emphasizes shape over parameterization. (A) Model of
a car hood created by automobile stylists using professional software. (B) The control
nets of adjacent pieces, indicated as grid lines, are entirely unrelated. Repeated zoom
reveals orders of magnitude size differences between the headlight rim (white) and the
trimmed-off fender (blue).

Working with synthesized trimmed surfaces, obtained by composition of NURBS, is straightforward
since they have a NURBS representation and various approximations can be applied to lower the
degree. By contrast, working with surfaces whose trim arises from intersection, as is the focus in this
section, is challenging. Such a collection of trimmed splines is typically not even continuous since
(the pre-images of) 3D intersection curves are algebraic but generically non-rational and are therefore
only approximated by NURBS. The collection of trimmed splines is also typically heterogeneous in
size, parameter line orientation and polynomial degree (see Figure 4.2). The corresponding gaps and
the anarchic parameterization creates numerous problems for downstream design and analysis. Since
smooth and graded parameterizations of the computational domain are indispensable for the stability
and convergence of solvers for higher-order partial differential equations at the heart of the engineering
process, even minute gaps in trimmed surfaces can result in non-physical solutions. And non-smooth
parameterizations can cause spurious solutions when the solution is known to be smooth since the
chosen solution space is too large.

Heterogeneity in size, parameter line orientation and polynomial degree forces re-approximation
prior to analysis and possibly extensive post-processing. Whole research communities and software
suites are devoted to the tricky tasks of “healing” and meshing surfaces to compute with them without
reducing the accuracy too much. [68] lists many approaches to dealing with trimmed surfaces (its
characterization of the earlier-mentioned approach of [110] as using a “trim texture” is however not
accurate).

Often distinct representations are used at each stage of design and simulation, replacing the carefully-
designed initial surface by triangles or even axis-aligned voxels for analysis and simulation. This mix
of representations is well-known to trigger corrections and adjustments downstream, e.g. prior to
manufacturing, and so causes a bottleneck in the design-analysis cycle. This deficiency motivates the
following alternative surface representations.
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(a) (b) (c)

Figure 4.3. Geometrically smooth Gk-surfaces: modeling and interrogation. (B) and
(C) Gauss curvature shading from minimal (blue) to maximal (red) gauss curvature.

smooth regular irregular valence split reference

C0 bi-3 bi-3 any 2x2 [45]
G1 bi-2 bi-3 3,5 [47]

bi-4 6,7,. . . [47]
2,4 T0, T1, T2 [57]

bi-3 bi-4 3,5,6 [36]
bi-5 7,8,. . . [36]
bi-4 any 2x2 [36]
3,5 T0, T1, T2 [55]

bi-3 bi-5 any [46]
G2 bi-3 bi-6 any [49]

bi-3 bi-5 2x2 [44]
3,96 T0, T1, T2 [55]

MSV bi-4 2x2 [48]
bi-5 [48]

Table 4.1. Recent Gk geometrically smooth constructions with good highlight line
distribution verified on the geometric obstacle course [38]. MSV = minimal single va-
lence control mesh; 96: the degree 3,6 construction has visually identical curvature
images to the degree 3,9 surface.

4.2. Geometrically smooth, Gk surfaces

Two surface pieces f̃ and f sharing a curve segment E along their respective edges join Gk if there is a
suitably-oriented and non-singular reparameterization ρ : R2 → R2 so that the jets ∂kf̃ and ∂k(f ◦ ρ),
agree along the curve segment E [23, 81]. In short, derivatives of Gk-joined patches match after a
change of variables.

To be compatible with industry standards, geometrically smooth G-splines typically consist of (a
finite number of) tensor-product polynomial (or rational) pieces. But they can also be built or combined
with total degree (triangular) pieces [78, 79].

Early G2 constructions used patches of degree bi-18 [24], bi-9 [59, 109], bi-7 [62, 65]. The construc-
tions in [88, 90] achieve bi-6, provided the shape at the extraordinary point is restricted to quadratics.
Modern curvature continuous constructions for filling n-sided holes in a bi-3 spline complex have a
polynomial degree as low as bi-5 [44] (using a 2× 2 arrangement of patches per quad) or bi-6 [44, 49]
(using a single patch per quad). Both constructions deliver formally C2 surfaces and a good highlight
line distribution over the geometric obstacle course of challenging inputs of Figure 3.6 [38].

Recent efforts for formally not curvature continuous constructions have focused on optimizing shape
rather than only satisfying the algebraic patch transition constraints for smoothness. There are many
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different options for geometric G-splines in the literature, as many as there are spline families in the
regular case. As listed in Table 4.1, one can classify constructions by the degree of the surface on the
regular grid, near irregularities and the recommended maximal valence of the irregular point or type
of T-junction. Lower degree can be achieved by m × m macro-patches per quad sector. Where C1

continuity of the surface suffices, a good trade-off between polynomial degree and the highlight line
distribution over the obstacle course (Figure 3.6) is achieved by G1-splines such as [47] and [46] (see
Figure 4.3). Extensive experiments when deriving geometrically smooth splines indicate that using
functionals, such as

Fκf :=
∫ 1

0

∫ 1

0

∑
i+j=κ,i,j≥0

κ!
i!j! (∂

i
s∂
j
t f(s, t))2dsdt,

F∗
κf :=

∫ 1

0

∫ 1

0
(∂κs f(s, t))2 + (∂κt f(s, t))2dsdt

are useful when applied to maps R2 → R2, e.g. when optimizing sampling in the domain. However
these functionals only rarely, and then unpredictably, yield good highlight line distributions for surfaces
embedded in R3 [44].

While geometrically smooth G-splines excel in shape, they lack simple refinability. De Casteljau
splitting of the pieces in BB-form [14, 18] does not provide refined smooth spaces with additional
degrees of freedom. To understand the problem observe that when refining a G1 construction, the
influence of the irregularities shrinks so that more remote parts of the initial reparameterization
edges look regular to a local spline construction and are, by default, joined with parametric C1

smoothness rather than the original G1 smoothness. Since spaces with different smoothness are not
equal, representation of geometry (or analysis functions on the G-spline surface) are not nested: the
finer representation cannot reproduce the coarser unless it keeps track of all G1 transitions (see [51]
for the resulting complex distribution of unrestricted control points in a reproducing refined G-spline
representation).

(a) T0-gon (b) T1-gon (c) T2-gon

(d) τ0-net (e) τ1-net (f) τ2-net (g) input mesh (h) patch layout (i) smoothness

Figure 4.4. T-gons and τ -configurations. (A–F) The subscript counts the number of
T-junctions. (G,H,I) Using τ -configurations as parts of control nets. (G) Mesh with
T-gons and irregular nodes of valences 3 and 5. (H) Patch layout: regular bi-3 patches;
τ -spline surface (also orange and yellow where they are close together) and multi-sided
caps (grey or blue). (I) Smooth highlight lines across the patch complex.

Only recently have n-gons with T-junctions (T-gons) in unstructured quad-dominant meshes been
recognized as a distinct challenge for G-splines. A single T-junction represents a change of quad-strip
density in one direction (and no change in the other). While G-splines for multi-sided holes can, in
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principle, smoothly cover τ -nets, they are direction-agnostic. By not preserving the two preferred
directions (of change and no change) they can cause visible shape artifacts. Constructions for τ -nets
naturally reparameterize (along) the direction of change. Subtly different constructions are best for
different polynomial degree of the regular spline complex (e.g. bi-2 [57] or bi-3 [37, 55, 56]), for ease
of refinement, quality of the resulting surface ([55] vs [37]) and the locality of the constructions ([56]
vs [37]).

Admissible control nets for current (tensor-product) G-splines have a succinct characterization as
locally quad-dominant: all non-4-sided facets must be surrounded by quadrilaterals.

We close by noting that the cost of construction and evaluation of Gk splines is comparable to
converting a tensor-product NURBS patch to BB-form (a matrix multiplication) and then evaluating
the pieces in BB-form. The G-spline control net therefore provides simple, efficient degrees of freedom
for analysis and optimization (see Section 5).

(a) nested sequence of rings (b) control points

Figure 4.5. Subdivision as a sequence of nested surface rings.

(a) convex input (b) highlight flaw (c) limit shape (d) Gauss curvature
needles

(e) flat region from T-junction mesh (f) pinched highlight lines

Figure 4.6. Flaws of Catmull–Clark subdivision. top row, (A-D): For n > 4, the two
subsubdominant eigenfunctions of Catmull–Clark subdivision are both saddle-shaped.
Therefore even convex inputs yield saddle in the limit. (E) T-junctions break into a
3-valent and a 5-valent neighborhood and induce flatness. (F) Higher valence easily
leads to pinched highlight lines.

We next look at three families of singular constructions whose Ck transitions between patches offer
simple
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(a) Catmull–Clark (b) Guided Subdivision

Figure 4.7. Catmull–Clark vs. Guided Subdivision

(a) guide surface (b) regular ring (c) mismatch (d) resolution (e) highlight lines

Figure 4.8. Guided Subdivision. At each step, the control points yield a ring whose
free inner coefficients are set by the guide shape.

(a) 6 rings + cap (b) shared high-
light lines

(c) 3 rings, double
speed

(d) 3 rings, yet
faster

Figure 4.9. Accelerated Guided Subdivision: all three surfaces have visually the same
highlight line distribution shown in (B).

4.3. Subdivision Surfaces

Subdivision surfaces consist of a sequence of contracting nested surface rings (see Figure 4.5(A)) that
provide an ever finer approximation of their limit. Catmull–Clark subdivision [10] is widely used in
the entertainment industry [15] and is convenient for conceptual design (Figure 1.2). Besides natural
refinement, a major appeal of subdivision are its simple rules, called stencils, that describe how a
new finer mesh is derived from a coarse outline. Due to the singular limit, a complete mathematical
analysis of such surfaces is non-trivial [17, 84].

However subdivision schemes governed by simple stencils do not meet the “class A” requirements.
Detailed analysis as well as test cases in [58, 50] have exposed major shape deficiencies. Figure 4.6
shows three types of flaws: (A) saddles arising in the limit from convex input nets for valence above
n = 4, (B) unwanted flatness due to neighboring extraordinary points and (C) pinched highlight line
distributions for higher-order saddles. These shape defects preclude the use of classical small-stencil
subdivision for “class A” surface constructions. Moreover, the infinite recursion complicates their
inclusion into existing industrial design infrastructure. In particular, special techniques are needed to
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correctly compute integrals near their irregularities as is needed for populating the governing equations,
say of elasticity [73, 4, 5].

Guided Subdivision [40] is an effective tool to overcome the defects of standard subdivision algo-
rithms (Figure 4.7). Moreover, unlike standard subdivision, guided subdivision can generate curvature
continuous subdivision surfaces. Figure 4.8 illustrates the underlying principle: the control mesh yields
both (A) a guide surface and (B) a (sequence of) surface ring(s). Since the guide surface and the sur-
rounding surface frame do not fit together (C), the subdivision step retains the outer part of the ring
(that fits its predecessor ring) and determines its new inner part by sampling the guide (D). Remark-
ably the overall process is linear and stationary and can so be interpreted as subdivision with large
stencil, i.e. with a denser subdivision matrix than Catmull–Clark subdivision. While the rules become
more complex, the mathematical analysis of the limit becomes much simpler – and the shape is far
better [54].

While guided subdivision improves shape, it does not address the problem of infinite recursion.
Stopping the recursion after a few steps and filling the remaining hole with multi-sided facet leads to
noticeable flaws in the highlight line rendering. A better solution is to fit an n-sided G1-cap. Since the
resulting surface consists of a fixed number of surface pieces, it is industry compatible. To combine the
best features of subdivision and geometrically continuous surface constructions one can observe that in
practice, design and analysis work with a maximal anticipated level of refinement. When the maximal
anticipated refinement level at the irregularity is realized by the cap, it need not be refined and
refinement in the surrounding finite coarser surface requires only standard spline knot insertion [52].

Moreover, since guided subdivision stabilizes the shape, an additional technique can be leveraged:
accelerated guided subdivision [83, §5], [53] widens the surface rings and so achieves a more rapid
contraction of the remaining gap (Figure 4.9). When the surface rings and final cap follow a guiding
shape, good highlight line distributions are obtained for the shape obstacle course, already when the
accelerated sequence of Ck-joined surface rings is G1 completed after 2 or 3 rings, see Figure 4.9(B).

(a) In some settings, a polar
structure seems natural

(b) Polar meshes

(c) Polar Surfaces

Figure 4.10. Polar meshes and surfaces.
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4.4. Polar constructions

Polar constructions collapse an edge to the extraordinary point called pole, both for subdivision
surfaces [34, 39, 71] and for finite constructions [41, 42, 69, 70, 72, 97]. Some typical polar meshes are
shown in Figure 4.10(A) and (B). Polar constructions work well where a high number of surface pieces
join; in fact their shape improves with valence whereas that of star-shaped constructions deteriorates
with higher valence [83]. Notably, Catmull–Clark subdivision surfaces visibly oscillate for a cylinder
mesh whose top cycle is collapsed to a high-valent pole. By contrast, polar subdivision [71] achieves
not only good shape at the pole, but yields a C2 subdivision such that the rings are all degree bi-3.
C2 subdivision with pieces all of degree bi-3 is noteworthy since in the star-shape setting, obtaining a
C2 subdivision with rings of degree bi-3 is a long-unsolved problem (see [83, Sect 5] for an unorthodox
earlier solution).

(a) helmet mesh
(b) central BB patches with collapsed first-order jet

Figure 4.11. A singular jet surface. (A) The construction is robust: even the central
vertex of valence n > 20 on top of the helmet mesh is admissible and does not prevent
engineering analysis [75]. (B) BB-net for five sectors.

4.5. C1 singular jet surfaces

Representations with forced singularities by coalescing control points (collapsing the control net) [77,
87] have recently shown promise for engineering analysis [75]. The construction collapses the first-
order jet and then projects the lowest-order non-zero expansion terms at the irregular point into a
fixed plane. [75] associates with each irregular quad not just one but four polynomial pieces. This
localizes the construction, allows irregular points in close proximity and yields, for every regular
or irregular input quad, exactly 2 × 2 degrees of freedom with corresponding linearly independent
functions. Figure 4.11(B) illustrates the construction: The central point is the superposition of all BB-
coefficients in a 1-neighborhood of the central point. The BB-coefficients marked as • lie in one plane.
Regular C1 constraints determine the BB-coefficients marked ◦ and ◦. Remarkably, the construction
generalizes to higher dimensions, e.g. to unstructured hex-meshes [82]. For surfaces, the shape of
singular corner surfaces near the irregular point is typically poor, but can be improved using a guide
surface and refinement (Figure 4.12, [50]).

5. Higher-order engineering analysis on G-spline surfaces across irregularities

When both geometry and functions on the geometry are piecewise linear then iso-parametric analysis
is a standard tool for solving differential equations. But if the correct solution space contains only
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(a) Valence 3,4,5,6 (b) Gauss curvature

Figure 4.12. Improved shape of singular corner surfaces via the guided approach [50].

smooth functions, C0 finite elements even of higher order represent too large a space that can result in
extraneous solutions that do not correspond to physical solutions. For example, fluid flows computed
with the Discontinuous Galerkin approach can have jumps in the flow lines. Higher-order differential
equations such as the biharmonic equation, Kirchhoff–Love shell simulations (Figure 5.1), or sim-
plified Navier–Stokes–Korteweg equations require C1 finite elements even when using the Galerkin
formulation.

The practice of using bi-variate splines, both for modeling the geometry of the domain and for
computing functions on this domain without irregularities goes back at least to the 1980s [9] and has
been regularly advocated and advanced in the literature [2, 3, 94, 98] and embodied in industrial code
(see Boeing’s “geoduck” analysis software). Similarly, subdivision surfaces have been leveraged both
for modeling geometry and engineering analysis [12]. The goal of this approach is to use the exact
geometry models of CAD systems directly for numerical simulations without conversion to secondary
meshes. That is one aims at discretizing and solving partial differential equations on the geometry
by splines of the same type (and their refinement by knot insertion). To emphasize the use of B-
splines for both geometry and analysis, the term iso-geometric analysis (IGA) was coined in [30],
superseding the names “higher-order”, “isoparametric” or “finite elements using NURBS” used in the
1980s and 1990s. While IGA with irregularities has now largely been addressed (see e.g. [12, 35, 73]),
the promise of iso-geometric analysis, to use CAD models directly for the numerical simulation, is still
not met due to several challenges: 1. Instead of parametrizing the volume, only boundary surfaces
of the objects are available; 2. Patches may be trimmed; 3. Gaps, jumps and overlaps may occur
(Figure 4.2); 4. Parametrizations vary in density, size and preferred directions.

Untrimmed G-splines automatically yield smooth analysis elements. That is, if the model can be
represented by G-splines then a fundamental theorem [26] guarantees that one can directly compute
shell and other higher-order partial differential equations on the design geometry without additional
meshing or triangulation. Specifically, the necessary and sufficient requirement is that the atlas x of
the physical domain and the analysis function u on the standard domain are from the same G-spline
space. For example, if x1 and x2 are related by kth order geometric continuity across an interface
E (cf. Section 4.2), and the corresponding edges of the domains �1 and �2 related by the change
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(a) Scordelis–Lo roof

(b) Octant of a sphere (c) heat propagation

Figure 5.1. Shell displacement and heat propagation computed as G-splines on G-
spline surfaces. The quad-meshes act as G-spline control nets. (A) Comparing three
different quad-mesh layouts of which two are intentionally irregular to challenge geomet-
rically smooth spline-elements for a benchmark problem of the shell obstacle course [7]
(B) Stress on a sphere octant. (C) Propagation of heat from its dark red source forms
a geodesic parameterization.

Figure 5.2. Relation of maps in the fundamental theorem for iso-geometric G-spline
elements: uα ◦ x−1

α , α = 1, 2.

of variable ρ, and if u1 and u2 are equally related by ρ, i.e. they are matched G-constructions, then
u1 ◦ x−1

1 and u2 ◦ x−1
2 are Ck-joined isoparametric elements [26]. An analogous theorem holds for

singular constructions. Therefore G-splines not only serve to design the shape controlled by meshes
with irregularities but also to directly yield finite IGA elements. These finite elements have been tested
on the classical finite element obstacle course [7] (see Figure 5.1); [36, 73, 74, 75] for generalized quad
meshes, and [32, 61, 104, 108] for other meshes. Recent studies of convergence, [93], focus on the
important special case of geometric continuity of graphs of functions.
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6. Conclusion

This paper explained and illustrated the need for irregularities in quad-meshes and the correspond-
ing need for generalized splines (G-splines) controlled by meshes with irregularities. A simple Venn-
diagram gave a classification of piecewise polynomial (and rational) G-splines. Some of the more
recent advances in defining G-splines were illustrated and demonstrated to be usable for modelling
and directly, without re-approximation, for engineering analysis.
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