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Abstract. Eigenvalue analysis based methods are well suited for the reconstruction of finitely supported measures
from their moments up to a certain degree. We give a precise description when Prony’s method succeeds in terms of
an interpolation condition. In particular, this allows for the unique reconstruction of a measure from its trigonometric
moments whenever its support is separated and also for the reconstruction of a measure on the unit sphere from its
moments with respect to spherical harmonics. Both results hold in arbitrary dimensions and also yield a certificate
for popular semidefinite relaxations of these reconstruction problems in the nonnegative case.
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1. Introduction

Prony’s method [36], see also e.g. [35, 33], reconstructs the coefficients and distinct parameters f̂j , xj ∈
C, j = 1, . . . ,M , of the Dirac ensemble µ =

∑M
j=1 f̂jδxj from the 2M + 1 moments

f(k) =
∫
C
xkdµ(x) =

M∑
j=1

f̂jx
k
j , k = 0, . . . , 2M.

The computation of the parameters xj is done by setting up a certain Hankel or Toeplitz matrix of
these moments and computing the roots of the polynomial with the monomial coefficients given by
any non-zero kernel vector of this matrix. Afterwards, the coefficients f̂j can be computed by solving
a Vandermonde linear system of equations.

This prototypical algorithm has been generalized to the multivariate case by realizing the parameters
as common roots of d-variate polynomials belonging to the kernel of a certain multilevel Hankel or
Toeplitz matrix [23, 37, 30]. In the present paper, we give a precise description when the parameters
can be identified in terms of a simple interpolation condition, which in turn is equivalent to the
surjectivity of a certain evaluation homomorphism and also to the full rank of a certain Vandermonde
matrix. Since identifiability also implies full rank of a slightly larger Vandermonde matrix, we end up
with a variant of the so-called flat extension property [10, 26]. Beyond this, our characterization with
respect to the Vandermonde matrix allows to derive simple geometric conditions on the parameters:
given the order of the moments is bounded from below by some explicit constant divided by the
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separation distance of the parameters, unique reconstruction is guaranteed. In particular, we get
rid of the commonly stated technical condition that the order has to be larger than the number of
parameters [41, 39, 11, 12, 23] and weaken the ‘coordinate wise’ separation condition as used in [27]
to a truly multivariate separation condition. This can be understood as an sampling theorem for
multivariate signals of finite rate of innovation. Moreover, studying the Vandermonde-like factorization
of the Hankel-like matrix of moments allows for a transparent generalization to Dirac ensembles on
the sphere where only moments with respect to the spherical harmonics are used for reconstruction.

Recently, the considered problem has also been studied as a constrained total variation minimization
problem on the space of measures and attracted quite some attention, see e.g. [13, 7, 6, 8, 14, 5, 4, 16]
and references therein. As a corollary to our results, we give a painless construction of a so-called
dual certificate for the nonnegative total variation minimization problem on the d-dimensional torus
and on the d-dimensional sphere. In this nonnegative case, explicit constructions have been known
for orders larger than the number of parameters, see e.g. [5, Eq. (5.8)], and this is again weakened by
our result. Recently, also the real signed case has been tackled by a Prony-type construction in [18,
Lemma 3.3] but uses a polynomial degree which is an order of magnitude larger. We finally close by
two small numerical examples, postpone a detailed study of stability and computational times to a
future exposition, and give a short summary.

2. Preliminaries

Throughout the paper, K denotes a field and d ∈ N denotes a natural number. For x ∈ Kd, k ∈ Nd0,
we use the multi-index notation xk := xk1

1 · · ·x
kd
d . We start by defining the object of our interest, that

is, multivariate exponential sums, as a natural generalization of univariate exponential sums.

Definition 2.1. A function f : Nd0 → K is a d-variate exponential sum if there areM ∈ N, f̂1, . . . , f̂M ∈
K, and pairwise distinct x1, . . . , xM ∈ Kd such that we have

f(k) =
M∑
j=1

f̂jx
k
j

for all k ∈ Nd0. In that case M , f̂j , and xj , j = 1, . . . ,M , are uniquely determined, and f is called M -
sparse, the f̂j are called coefficients of f , and xj are called parameters of f . The set of parameters of
f is denoted by Ω = Ωf := {xj : j = 1, . . . ,M}.

Let f : Nd0 → K be an M -sparse d-variate exponential sum with coefficients f̂j ∈ K and parameters
xj ∈ Kd, j = 1, . . . ,M . Our objective is to reconstruct the coefficients and parameters of f given a
finite set of samples of f at a subset of Nd0, see also [32].

The following notations will be used throughout the paper. For k, n ∈ Nd0 let |k| =
∑d
j=1 kj and

N :=
(n+d
d

)
. The matrix

Hn := Hn(f) := (f(k + `))k,`∈Nd
0,|k|,|`|≤n

∈ KN×N

will play a crucial role in the multivariate Prony method. Note that its entries are sampling values
of f at a grid of

(2n+d
d

)
integer points and that it is a sub-matrix of the multilevel Hankel matrix

(f(k + `))k,`∈{0,...,n}d .
Next we establish the crucial link between the matrix Hn and the roots of multivariate polynomials.

To this end, let Π := K[X1, . . . , Xd] denote the K-algebra of d-variate polynomials over K and for
p =

∑
k pkX

k1
1 · · ·X

kd
d ∈ Π \ {0} let deg(p) := max{|k| : pk 6= 0}. The N -dimensional sub-vector space

of d-variate polynomials of degree at most n is
Πn := {p ∈ Π \ {0} : deg(p) ≤ n} ∪ {0}.
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For arbitrary V ⊂ Kd, the evaluation homomorphism at V will be denoted by

AV : Π→ KV , p 7→ (p(x))x∈V ,

and its restriction to the sub-vector space Πn ⊂ Π will be denoted by AVn . Note that the representation
matrix of An = AΩ

n with Ω = {x1, . . . , xM} w.r.t. the canonical basis of KM and the monomial basis
of Πn is given by the multivariate Vandermonde matrix

An =
(
xkj
)
j=1,...,M
k∈Nd

0,|k|≤n
∈ KM×N .

The connection between the matrix Hn and polynomials that vanish on Ω lies in the observation that,
using Definition 2.1, the matrix Hn admits the factorization

Hn = (f(k + `))k,`∈Nd
0,|k|,|`|≤n

= A>nDAn, (2.1)

with D = diag(f̂1, . . . , f̂M ). Therefore the kernel of An, corresponding to the polynomials in Πn that
vanish on Ω, is a subset of the kernel of Hn.

In order to deal with the multivariate polynomials encountered in this way we need some additional
notation. The zero locus of a set P ⊂ Π of polynomials is denoted by

V(P ) := {x ∈ Kd : p(x) = 0 for all p ∈ P},

that is, V(P ) consists of the common roots of all the polynomials in P . For a set V ⊂ Kd, the kernel of
AV (which is an ideal of Π) will be denoted I(V ) and is called the vanishing ideal of V ; it consists of
all polynomials that vanish on V . Further, let In(V ) := kerAVn = I(V )∩Πn denote the K-sub-vector
space of polynomials of degree at most n that vanish on V . Subsequently, we identify Πn and KN

and switch back and forth between matrix-vector and polynomial notation. In particular, we do not
necessarily distinguish between AΩ

n and its representation matrix An, so that e.g. “V(kerAn)” makes
sense.

3. Main results

We proceed with a general discussion that the identifiability of the parameters and an interpolation
at these parameters are almost equivalent. While this is closely related to the so-called flat extension
principle [10, 26], we also give a refinement which is of great use when discussing the moment problem
on the sphere. The second and third subsection study the trigonometric moment problem and the
moment problem on the unit sphere, respectively. In both cases, appropriate separation conditions
guarantee the above mentioned interpolation condition and thus identifiability of the parameters. As
a corollary, we give a simple construction of a dual certificate for the nonnegative total variation
minimization problem on the d-dimensional torus [7, 8] and on the d-dimensional sphere [5, 4].

3.1. Interpolation and vanishing ideals

We recall some notions from the theory of Gröbner bases which are needed in this section, see e.g. [3,
20, 9]. A d-variate term is a polynomial of the form Xk = Xk1

1 · · ·X
kd
d for some k = (k1, . . . , kd) ∈ Nd0.

The monoid of all d-variate terms will be denotedM :=
{
Xk : k ∈ Nd0

}
. A term order onM is a linear

order ≤ onM such that 1 ≤ t for all t ∈M and t1 ≤ t2 implies t1t3 ≤ t2t3 for all t1, t2, t3 ∈M. For a
polynomial p =

∑
k pkX

k ∈ Π\{0} let lt≤(p) := max≤
{
Xk : pk 6= 0

}
and for an ideal I 6= {0} of Π let

lt≤(I) := {lt≤(p) : p ∈ I \ {0}}. The set N≤(I) :=M\ lt≤(I) is called normal set of I. A term order
≤ is degree compatible if t1 ≤ t2 implies deg(t1) ≤ deg(t2), or equivalently, if deg(p) = deg(lt≤(p)) for
all p ∈ Π \ {0}.
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Lemma 3.1 (see e.g. [15, Prop. 2]). Let ≤ be a term order onM. If I is an ideal of Π and t ∈ N≤(I),
then t is the least element of Mt := {lt(p) : p ∈ Π \ {0}, p = t in Π/I}.
Proof. Since lt(t) = t, we have t ∈Mt. Let p ∈ Π \ {0} with p = t in Π/I. We have to show t ≤ lt(p).
Without loss of generality we can assume p 6= t. Thus let t − p =

∑
k ckX

k 6= 0 with ck ∈ K and
Xm = lt(t− p).
Case 1: For every k, t 6= ckX

k. Then, since p = t−
∑
k ckX

k, we have t ≤ lt(p).
Case 2: There is a k such that t = ckX

k. Then ck = 1 and we have t = Xk ≤ Xm and since
t ∈ N (I) = M \ lt(I) and Xm = lt(t − p) ∈ lt(I), we have t < Xm. Therefore we have t < Xm =
lt(t−

∑
k ckX

k) = lt(p).

Lemma 3.2. Let ≤ be a degree compatible term order on M. Let Ω ⊂ Kd be finite and n ∈ N0 such
that the evaluation homomorphism AΩ

n : Πn → KΩ is surjective. Then N≤(I(Ω)) ⊂ Πn.
Proof. Since Ω is finite, I(Ω) 6= {0}. Let t ∈ N (I(Ω)) and consider t in Π/ I(Ω). Since I(Ω) =⋂
a∈Ω I(a) and I(a), a ∈ Ω, are pairwise co-prime, by the Chinese remainder theorem ϕ : Π/ I(Ω) →

KΩ, p 7→ (p(a))a∈Ω, is a bijection. Since AΩ
n : Πn → KΩ is surjective, there is a p ∈ Πn with ϕ(t) =

AΩ
n (p) = (p(a))a∈Ω = ϕ(p), hence p = t. Since t /∈ I(Ω), in particular p 6= 0. Thus Lemma 3.1 together

with the degree compatibility of ≤ implies
deg(t) = deg(min {lt q : q 6= 0, q = t in Π/ I(Ω)}) = min {deg(lt q) : q = t} ≤ deg(p) ≤ n,

i.e. t ∈ Πn.

Theorem 3.3. Let ∅ 6= Ω ⊂ Kd be finite and n ∈ N0 such that AΩ
n : Πn → KΩ is surjective. Then

〈In+1(Ω)〉 = I(Ω) and thus Ω = V(In+1(Ω)).
Proof. Let ≤ be a degree compatible term order onM and let

P := {t ∈ lt(I(Ω)) : t |-minimal in lt(I(Ω))} .
We show that P ⊂ Πn+1. Let t ∈ P . Since Ω 6= ∅, t 6= 1. Thus t = Xjt

′ for some j ∈ {1, . . . , d} and
t′ ∈ M. By |-minimality of t in lt(I(Ω)), we have t′ /∈ lt(I(Ω)). Thus t′ ∈ N (I(Ω)) which implies
deg(t′) ≤ n by Lemma 3.2 and hence deg(t) = deg(Xjt

′) = deg(Xj) + deg(t′) ≤ n+ 1, i.e. t ∈ Πn+1.
By Dickson’s lemma (cf. [3, Thm. 5.2 and Cor. 4.43]), P is finite. Thus let P = {t1, . . . , tr} with
pairwise different tj and g1, . . . , gr ∈ I(Ω) with lt gj = tj . Then G = {g1, . . . , gr} is a (Gröbner) basis
for I(Ω) (see e.g. Becker-Weispfenning [3, Prop. 5.38 (iv)]) and deg(gj) = deg(lt gj) = deg(tj) ≤ n+1,
i.e. G ⊂ In+1(Ω). In particular Ω ⊂ V(In+1(Ω)) ⊂ V(G) = V(〈G〉) = V(I(Ω)) = Ω, since Ω is finite
(as usual, 〈G〉 denotes the ideal generated by G).

Remark 3.4. In summary, for every subset Ω ⊂ Kd with |Ω| = M ∈ N we have the chain of
implications

rankAΩ
n = M ⇒ Ω = V(In+1(Ω)) ⇒ rankAΩ

n+1 = M,

where the second implication follows as in the proof of [23, Thm. 3.1]. Moreover note that the factor-
ization (2.1) and Frobenius’ rank inequality [17, 0.4.5 (e)] implies

2 rankAΩ
n ≤ rankHn +M ≤ rankAΩ

n +M, n ∈ N,
and thus the equivalence

rankHn = rankHn+1 = M ⇔ rankAΩ
n = M,

where the left hand side is exactly the flat extension principle [10, 26]. We would like to note that
considering An allows for signed measures and yields simple a-priori conditions on the order of the
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moments, see Lemmata 3.9 and 3.13, while the flat extension principle rankHn = rankHn+1 can be
used a-posteriori as a necessary condition when attempting to guess the (possibly unknown) number
M of parameters.

In order to give a slight refinement of Theorem 3.3 in Corollary 3.6 we need the following notation.
For a set V ⊂ Kd let ΠV := Π/ I(V ) and ΠV,n := Πn/ In(V ). The map ΠV →

{
p|V : p ∈ Π

}
,

p+ I(V ) 7→ p|V , (where we use the same notation for a polynomial p ∈ Π and its induced polynomial
function p : Kd → K) is a ring isomorphism. Thus we may identify the residue class p = p + I(V ) of
p ∈ Π with the function p|V : V → K. Since the K-vector space homomorphism Πn → ΠV , p 7→ p, has
In(V ) as its kernel, ΠV,n is embedded in ΠV . The K-vector space ΠV,n is isomorphic to

{
p|V : p ∈ Πn

}
by mapping p + In(V ) with p ∈ Πn to p|V . For Ω ⊂ V let AΩ

V : ΠV → KΩ, p 7→ AΩ(p), which is
well-defined by the above, and let AΩ

V,n denote the restriction of AΩ
V to the K-sub-vector space ΠV,n of

ΠV . Further let IV,n(Ω) := kerAΩ
V,n. For a set Q ⊂ ΠV let VV (Q) := {a ∈ V : q(a) = 0 for all q ∈ Q}.

Lemma 3.5. Let V ⊂ Kd, Ω ⊂ V and n ∈ N0. Then we have

Ω ⊂ VV (IV,n(Ω)) ⊂ V(In(Ω)).

Proof. The first inclusion is clear. To prove the second inclusion, let a ∈ VV (IV,n(Ω)) and p ∈ In(Ω) =
kerAΩ

n . We have to show that p(a) = 0. Let p := p+ In(V ). Since p ∈ Πn, p ∈ Πn/ In(V ) = ΠV,n and
we have AΩ

V,n(p) = AΩ
V (p) = AΩ(p) = 0, i.e. p ∈ kerAΩ

V,n = IV,n(Ω). Since a ∈ VV (IV,n(Ω)), that is,
a ∈ V and q(a) = 0 for all q ∈ IV,n(Ω), it follows that p(a) = p(a) = 0.

Combining this with Theorem 3.3 yields the following.

Corollary 3.6. Let V ⊂ Kd, Ω be a non-empty finite subset of V and n ∈ N0 such that AΩ
V,n is

surjective. Then
Ω = VV (IV,n+1(Ω)).

Proof. Since AΩ
V,n : ΠV,n → KΩ is surjective, AΩ

n : Πn → KΩ is clearly also surjective. Hence we can
apply Theorem 3.3 which together with Lemma 3.5 yields Ω ⊂ VV (IV,n+1(Ω)) ⊂ V(In+1(Ω)) = Ω.

3.2. Trigonometric polynomials and parameters on the torus

Now let K = C and restrict to parameters on the d-dimensional torus Td := {z ∈ C : |z| = 1}d with
parameterization Td 3 z = e2πit for a unique t ∈ [0, 1)d. Now, let M ∈ N, coefficients f̂j ∈ C \ {0}, and
pairwise distinct tj ∈ [0, 1)d, j = 1, . . . ,M , be given. Then the trigonometric moment sequence of the
complex Dirac ensemble τ : P([0, 1)d)→ C, τ =

∑M
j=1 f̂jδtj , is the d-variate exponential sum

f : Zd → C, k 7→
∫

[0,1)d
e2πiktdτ(t) =

M∑
j=1

f̂je2πiktj ,

with parameters e2πitj = (e2πitj,1 , . . . , e2πitj,d) ∈ Td.
A convenient choice for the truncation of this sequence is |k|∞ = max{|k1|, . . . , |kd|} ≤ n. We define

the multivariate Vandermonde matrix a.k.a. nonequispaced Fourier matrix

Fn :=
(
e2πiktj

)
j=1,...,M

k∈Nd
0,|k|∞≤n

∈ CM×(n+1)d
.
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Lemma 3.7. Let Ω := {e2πitj : tj ∈ [0, 1)d, j = 1, . . . ,M} ⊂ Td and n ∈ N0 such that Fn has full
rank M , then Ω = V(kerFdn+1).

Proof. First note that {k ∈ Nd0 : |k|∞ ≤ n} ⊂ {k ∈ Nd0 : |k| ≤ dn} and thus AΩ
dn is surjective and

Theorem 3.3 yields Ω = V(kerAΩ
dn+1). Finally note that {k ∈ Nd0 : |k| ≤ dn + 1} ⊂ {k ∈ Nd0 : |k|∞ ≤

dn+ 1} and thus the result follows from V(kerAΩ
dn+1) ⊃ V(kerFdn+1).

Remark 3.8. It is tempting to try to prove Lemma 3.7 with n + 1 instead of dn + 1 analogously
to Theorem 3.3 by using “maxdeg-compatible” term orders instead of degree compatible term orders.
However, for d ≥ 2 there are no such term orders. To see this, let ≤ be a term order on M and
w.l.o.g. let X2 ≤ X1. Then X2

2 ≤ X1X2 and maxdeg(X2
2 ) = 2 > 1 = maxdeg(X1X2).

Moreover note that Lemma 3.7 can be strengthened to I(Ω) = 〈Idn+1(Ω)〉 and while the direct
argument [22, Thm. 2.8] gives Ω = V(In+1(Ω)), it is not clear to the authors if 〈In+1(Ω)〉 is radical
and thus I(Ω) = 〈In+1(Ω)〉, see also [25, Rem. 1.8 und Ex. 3.7(b)].

Lemma 3.9 ([34, Lem. 3.1]). For Ω := {e2πitj : tj ∈ [0, 1)d, j = 1, . . . ,M} ⊂ Td let
sep(Ω) := min

r∈Zd, j 6=`
‖tj − t` + r‖∞

denote the separation distance and call the set of parameters q-separated if sep(Ω) > q. Now if n ∈ N0
fulfills n >

√
d/q, then the matrix Fn ∈ CM×(n+1)d has full rank M .

Remark 3.10. The semi-discrete Ingham inequality [19, Ch. 8] has been made fully discrete in [34,
Lem. 3.1]. Equivalent results are given in [2, 24] as condition number estimates for Vandermonde
matrices. More recently, a sharp condition number estimate for the univariate case d = 1 has been
proven in [29], a multivariate generalization under ‘coordinate wise separation’ has been given in [27],
and an improvement for d ≥ 6 of Lemma 3.9 is available in [22].

Theorem 3.11. Let f : Zd → C be an M -sparse d-variate exponential sum with parameters xj ∈ Td,
j = 1, . . . ,M . If the parameters are q-separated and n > d3/2/q + d+ 1, then

Ω = V(kerTn),
where the entries of the matrix are given by trigonometric moments of order up to n, i.e.,

Tn = (f(k − `))k,`∈{0,...,n}d ∈ C(n+1)d×(n+1)d
.

Proof. Setting n0 := b(n − 1)/dc yields n0 >
√
d/q and Lemma 3.9 implies full rank of Fn0 . Thus

Ω = V(kerFn) is guaranteed by Lemma 3.7 and the factorization
Tn = F ∗nDFn, D = diag(f̂1, . . . , f̂M ),

being a variant of (2.1), together with the Frobenius’ rank inequality [17, 0.4.5 (e)]
M = rankF ∗nD + rankDFn − rankD ≤ rank Tn ≤ rankFn = M,

implies kerFn = kerTn from which the assertion follows.

This improves over [23, Thm. 3.1, 3.7] by getting rid of the technical condition n ≥ M and thus
the number of used moments can be bounded from above by (n + 1)d ≤ CdM if the parameters are
quasi-uniformly distributed. Finally, note that the sum of squares representation [23, Thm. 3.5] implies
that n > d3/2/q + d+ 1 suffices that the semidefinite program in [8] indeed solves the total variation
minimization problem for nonnegative measures in all dimensions d. In particular, this gives a sharp
constant in [8, Thm. 1.2] and bypasses the relaxation from a nonnegative trigonometric polynomial to
the sum of squares representation, known to possibly increase degrees for d = 2 and to possibly fail
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for d > 2, cf. [13, Remark 4.17, Theorem 4.24, and Remark 4.26]. Recently, also the real signed case
been tackled in [18, Lemma 3.3] but requires n > CM2.

3.3. Spherical harmonics and parameters on the sphere

Now let K = R, restrict to parameters on the unit sphere Sd−1 = {x ∈ Rd : x>x = 1} = V(1−
∑d
j=1X

2
j )

in the d-dimensional Euclidean space, and we refer to [31, 40, 1] for an introduction to approximation
on the sphere and spherical harmonics. The polynomials in d variables of degree up to n restricted to
the sphere can be decomposed into mutually orthogonal spaces

Πn/ In(Sd−1) =
n⊕
k=0

Hd
k

of real spherical harmonics of degree k ∈ N0 and we let {Y `
k : Sd−1 → C : ` = 1, . . . ,dim(Hd

k )}
denote an orthonormal basis for each Hd

k . The dimension of these spaces obeys Nk := dim(Hd
k ) =

(2k + d− 2) Γ (k + d− 2)/(Γ (k + 1) Γ (d− 1)) for k ≥ 1 and we let N :=
∑n
k=0Nk = O(nd−1) denote

the dimension of Πn/ In(Sd−1).
Now let M ∈ N, coefficients f̂j ∈ R \ {0}, and pairwise distinct xj ∈ Sd−1, j = 1, . . . ,M , be given.

Then the moment sequence of the signed Dirac ensemble µ : P(Sd−1) → R, µ =
∑M
j=1 f̂jδxj , is the

spherical harmonic sum

f : {(k, `) : k ∈ N0, ` = 1, . . . , Nk} → R, (k, `) 7→
∫
Sd−1

Y `
k (x)dµ(x) =

M∑
j=1

f̂jY
`
k (xj),

with parameters xj ∈ Sd−1. Finally, we define the multivariate Vandermonde matrix a.k.a. nonequis-
paced spherical Fourier matrix

Yn :=
(
Y `
k (xj)

)
j=1,...,M

k∈N0,k≤n,`=1,...,Nk

∈ RM×N .

Regarding the reconstruction of the measure from its first moments, we have the following results.

Lemma 3.12. Let Ω := {xj : j = 1, . . . ,M} ⊂ Sd−1 and n ∈ N0 such that Yn has full rank M , then
Ω = VSd−1(kerYn+1).

Proof. Note that Yn ∈ RM×N is the matrix of the R-linear map AΩ
Sd−1,n : ΠSd−1,n → RΩ ∼= RM

w.r.t. the basis
⋃n
k=0

{
Y `
k : ` = 1, . . . ,dim(Hd

k )
}

of ΠSd−1,n and the canonical basis of RM . Since
rank Yn = M by assumption, AΩ

Sd−1,n is surjective and the assertion is an immediate consequence
of Corollary 3.6.

Lemma 3.13 ([21, Thm. 2.4], [28, Thm. 1.5]). For Ω := {xj : j = 1, . . . ,M} ⊂ Sd−1 let

sep(Ω) := min
j 6=`

arccos
(
x>j x`

)
denote the separation distance and call the set of parameters q-separated if sep(Ω) > q. Now if n ∈ N0
fulfills n > 2.5πd/q, then the matrix Yn ∈ CM×N has full rank M .

Theorem 3.14. Let f : {(k, `) : k ∈ N0, ` = 1, . . . , Nk} → R be an M -sparse spherical harmonic sum
with parameters xj ∈ Sd−1, j = 1, . . . ,M . If the parameters are q-separated and n > 2.5πd/q+ 1, then

Ω = VSd−1(ker H̃n)
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where the entries of the matrix
H̃n := Y >n DYn ∈ RN×N , D = diag(f̂1, . . . , f̂M ),

mimicking (2.1), can be computed solely from the moments f(k, `), k ≤ 2n, ` = 1, . . . , Nk.
Proof. We just combine Lemmata 3.12, 3.13, and proceed as in Theorem 3.11 to show ker H̃n = kerYn.
Finally note that Y `

k · Y s
r =

∑k+s
t=0

∑Nt
u=1 c

`,s,u
k,r,tY

u
t with some Clebsch-Gordan coefficients and thus

(H̃n)(k,`),(r,s) =
M∑
j=1

f̂jY
`
k (xj)Y s

r (xj) =
k+s∑
t=0

Nt∑
u=1

c`,s,uk,r,tf(t, u).

This improves over [11, 12] by getting rid of the technical condition n ≥ CM and by asking only
for n ≥ Cd

d
√
M if the parameters are quasi-uniformly distributed. Finally note that the semidefinite

program in [5, 4, 38] indeed solves the total variation minimization problem for nonnegative measures
on spheres in all dimensions d provided the order of the moments is large enough as shown by the
following construction of a dual certificate and sum of squares representation.
Corollary 3.15. Let d, n,M ∈ N, Ω = {xj ∈ Sd−1 : j = 1, . . . ,M} be q-separated, and n > 2.5πd/q+1.
Moreover, let p̂r ∈ RN , r = 1, . . . , N , be an orthonormal basis with p̂r ∈ ker(Yn)⊥, r = 1, . . . ,M , and
pr : Sd−1 → R, pr =

∑n
k=0

∑Nk
`=1 p̂

`
r,kY

`
k , then p : Sd−1 → R,

p(x) = 2πd/2

Γ(d/2)N

M∑
r=1
|pr(x)|2,

is a polynomial on the sphere of degree at most 2n and fulfills 0 ≤ p (x) ≤ 1 for all x ∈ Sd and
p(x) = 1 if and only if x ∈ Ω.
Proof. First note that every orthonormal basis p̂` ∈ RN , ` = 1, . . . , N , leads to

N∑
r=1
|pr(x)|2 =

n∑
k,u=0

Nk∑
`,v=1

Y `
k (x)Y v

u (x)
N∑
r=1

p̂`r,kp̂
v
r,u =

n∑
k=0

Nk∑
`=1

Y `
k (x)Y `

k (x) = Γ(d/2)N
2πd/2

for x ∈ Sd−1, where the last equality is due to the addition theorem for spherical harmonics and as
in the proof of Theorem 3.14, the product Y `

k · Y `
k always is a polynomial on the sphere of degree at

most 2k. Finally, Theorem 3.14 assures
∑N
r=M+1 |pr(x)|2 = 0 if and only if x ∈ Ω.

Regarding the signed case, a detailed analysis for S2 is given in [38] and requires n > 20π/q. For
general d ≥ 3, the construction [18, Lemma 3.3] might be used but requires n ≥ CM2.
Example 3.16. We conduct the following two small scale numerical examples. For M = 3 points
on the unit sphere and a polynomial degree n = 2, we compute the N −M = 6 dimensional kernel
of the nonequispaced spherical Fourier matrix Yn, set up the corresponding kernel polynomials pr,
r = 4, . . . , 9, as defined in Corollary 3.15 and plot the surface q(x) = 1 + 1

2 minr=M+1,...,N |pr(x)|1/4,
x ∈ S2, in Figure 3.1(a). The absolute value of each kernel polynomial forms a valley around its zero
set which gets narrowed by the 4-th root and the minimum over all these valleys visualizes the common
zeros as junction points in this surface.

In a second experiment, we consider M = 50 random points xj on the unit sphere, an associated
Dirac ensemble with random coefficients f̂j , and its moments up to order 60, i.e., n = 30. The M -
dimensional orthogonal complement of the kernel of the matrix H̃n defines the so-called signal space.
Figure 3.1(b) clearly shows that the dual certificate p, defined as in Corollary 3.15, peaks exactly at
the points xj .
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(a) Visualization of the polynomials in the kernel of Yn,
M = 3 points, n = 2, plot of the surface q(x) = 1 +
1
2 minr=M+1,...,N |pr(x)|1/4, x ∈ S2.

(b) M = 50 random points on S2 are identified from the
moments of order ≤ 60. The dual certificate p is plotted
as surface 1 + 1

2 p(x), x ∈ S2.

Figure 3.1. Visualization of kernel polynomials and dual certificate on the sphere S2.

4. Summary

We considered a recently developed multivariate generalization of Prony’s method, characterized its
succeeding in terms of an interpolation condition, and gave a generalization to the sphere. The in-
terpolation condition is shown to hold for separated points in the trigonometric and the spherical
case in arbitrary dimensions and also yield a certificate for popular semidefinite relaxations of the
reconstruction problems. Beyond the scope of this paper, future research needs to address the actual
computation of the points and the stability under noise.
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