
SMAI-JCM
SMAI Journal of
Computational Mathematics

The augmented Lagrangian method
with full Jacobian decomposition

and logarithmic-quadratic proximal
regularization for multiple-block
separable convex programming

Min Li & Xiaoming Yuan
Volume 4 (2018), p. 81-120.

<http://smai-jcm.cedram.org/item?id=SMAI-JCM_2018__4__81_0>
© Société de Mathématiques Appliquées et Industrielles, 2018

Certains droits réservés.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://smai-jcm.cedram.org/item?id=SMAI-JCM_2018__4__81_0
http://www.cedram.org/
http://www.cedram.org/

SMAI Journal of Computational Mathematics
Vol. 4, 81-120 (2018)

The augmented Lagrangian method with full Jacobian
decomposition and logarithmic-quadratic proximal regularization

for multiple-block separable convex programming

Min Li 1

Xiaoming Yuan 2

1 School of Management and Engineering, Nanjing University, China
E-mail address: liminnju@yahoo.com
2 Department of Mathematics, The University of Hong Kong, Hong Kong, China
E-mail address: xmyuan@hku.hk.

Abstract. We consider a separable convex minimization model whose variables are coupled by linear
constraints and they are subject to the positive orthant constraints, and its objective function is in form of
m functions without coupled variables. It is well recognized that when the augmented Lagrangian method
(ALM) is applied to solve some concrete applications, the resulting subproblem at each iteration should be
decomposed to generate solvable subproblems. When the Gauss-Seidel decomposition is implemented, this
idea has inspired the alternating direction method of multiplier (form = 2) and its variants (form ≥ 3). When
the Jacobian decomposition is considered, it has been shown that the ALM with Jacobian decomposition
in its subproblem is not necessarily convergent even when m = 2 and it was suggested to regularize the
decomposed subproblems with quadratic proximal terms to ensure the convergence. In this paper, we focus
on the multiple-block case with m ≥ 3. We consider implementing the full Jacobian decomposition to
ALM’s subproblems and using the logarithmic-quadratic proximal (LQP) terms to regularize the decomposed
subproblems. The resulting subproblems are all unconstrained minimization problems because the positive
orthant constraints are all inactive; and they are fully eligible for parallel computation. Accordingly, the
ALM with full Jacobian decomposition and LQP regularization is proposed. We also consider its inexact
version which allows the subproblems to be solved inexactly. For both the exact and inexact versions, we
comprehensively discuss their convergence, including their global convergence, worst-case convergence rates
measured by the iteration-complexity in both the ergodic and nonergodic senses, and linear convergence rates
under additional assumptions. Some preliminary numerical results are reported to demonstrate the efficiency
of the ALM with full Jacobian decomposition and LQP regularization.

2010 Mathematics Subject Classification. 90C25, 90C33, 65K05.
Keywords. convex programming, splitting methods, augmented Lagrangian method, logarithmic-quadratic
proximal, parallel computation, convergence rate.

1. Introduction

We consider the following separable convex minimization problem whose variables are coupled by
linear constraints and they are subject to the positive orthant constraints, and its objective function
is the sum of more than one function without coupled variables:

min
{ m∑
i=1

θi(xi)
∣∣∣ m∑
i=1

Aixi = b, xi ∈ <ni+ , i = 1, . . . ,m
}
, (1.1)

where θi : <ni → < (i = 1, . . . ,m) are convex but not necessarily smooth functions; Ai ∈ <l×ni and
b ∈ <l. The solution set of (1.1) is assumed to be nonempty throughout our discussions.

The first author was supported by the National Natural Science Foundation of China under grant 11001053 and Program
for New Century Excellent Talents in University under grant NCET-12-0111.
The second author was supported by the General Research Fund from Hong Kong Research Grants Council: 12313516.

81

mailto:liminnju@yahoo.com
mailto:xmyuan@hku.hk

M. Li & X. M. Yuan

Let λ ∈ <l be the Lagrange multiplier associated with the linear equality constraints in (1.1) and
the Lagrangian function of (1.1) be

L(x1, . . . , xm, λ) :=
m∑
i=1

θi(xi)− λT
(m∑
i=1

Aixi − b
)
, (1.2)

defined on Ω := <n1
+ × · · · × <

nm
+ ×<l. Then, the augmented Lagrangian function of (1.1) is

Lβ(x1, . . . , xm, λ) :=
m∑
i=1

θi(xi)− λT
(m∑
i=1

Aixi − b
)

+ β

2

∥∥∥ m∑
i=1

Aixi − b
∥∥∥2
, (1.3)

where β > 0 is a penalty parameter. If we treat the model (1.1) as a whole and apply directly the
augmented Lagrangian method (ALM) in [21, 41], then the resulting scheme is

 (xk+1
1 , . . . , xk+1

m) := argmin
{
Lβ(x1, . . . , xm, λ

k)
∣∣ xi ∈ <ni+ , i = 1, . . . ,m

}
,

λk+1 := λk − β(
∑m
i=1Aix

k+1
i − b).

(1.4)

In general, the minimization subproblem in (1.4) is hard because it requires minimizing m functions
with variables coupled by the quadratic term in (1.3). This difficulty has inspired a series of splitting
methods whose common idea is decomposing the subproblem in (1.4) and thus generating easier
subproblems. For example, for the special case of (1.1) with m = 2, if the minimization subproblem
in (1.4) is decomposed in Gauss-Seidel order, the scheme is


xk+1

1 := argmin
{
Lβ(x1, x

k
2, λ

k)
∣∣ x1 ∈ <n1

+
}
,

xk+1
2 := argmin

{
Lβ(xk+1

1 , x2, λ
k)
∣∣ x2 ∈ <n2

+
}
,

λk+1 := λk − β(A1x
k+1
1 +A2x

k+1
2 − b).

(1.5)

This is the so-called alternating direction method of multiplier (ADMM) in [17] and it has found many
efficient applications in a broad spectrum of application domains such as image processing, statistical
learning, computer vision, network optimization, and so on. We refer to [5, 13, 16] for some review
papers on the ADMM. If we consider directly extending the scheme (1.5) to the generic case of (1.1)
with m ≥ 3, then the resulting direct extension of ADMM reads as



xk+1
1 := argmin

{
Lβ(x1, x

k
2, . . . , x

k
m, λ

k)
∣∣ x1 ∈ <n1

+
}
,

· · · · · ·
xk+1
i := argmin

{
Lβ(xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1, . . . , x

k
m, λ

k)
∣∣ xi ∈ <ni+

}
,

· · · · · ·
xk+1
m := argmin

{
Lβ(xk+1

1 , . . . , xk+1
m−1, xm, λ

k)
∣∣ xm ∈ <nm+

}
,

λk+1 := λk − β(
∑m
i=1Aix

k+1
i − b).

(1.6)

The direct extension of ADMM scheme (1.6) indeed works empirically for some applications, as shown
in, e.g., [40, 43]. However, it was shown in [6] that the scheme (1.6) is not necessarily convergent. The
convergence rate of ADMM and its extension are analysed in [9, 28, 30, 33, 32].

82

The ALM with full Jacobian decomposition and LQP regularization

On the other hand, if we consider implementing the Jacobian decomposition to the ALM subproblem
in (1.4), the resulting scheme reads as

xk+1
1 := argmin

{
Lβ(x1, x

k
2, . . . , x

k
m, λ

k)
∣∣ x1 ∈ <n1

+
}
,

· · · · · ·
xk+1
i := argmin

{
Lβ(xk1, . . . , xki−1, xi, x

k
i , . . . , x

k
m, λ

k)
∣∣ xi ∈ <ni+

}
,

· · · · · ·
xk+1
m := argmin

{
Lβ(xk1, . . . , xkm−1, xm, λ

k)
∣∣ xm ∈ <nm+

}
,

λk+1 := λk − β(
∑m
i=1Aix

k+1
i − b).

(1.7)

The xi-subproblems in (1.7), which usually dominate the computation time at each iteration, can
be solved in parallel; and they can be implemented in a distributed-computing system. This feature
is of particular interest for the big-data scenario and the circumstances where parallel computing
infrastructures are available. Note that the subproblems in (1.7) are of the same level of difficulty
as those in (1.6) — each of them requires minimizing one θi in the original objective of (1.1) plus a
quadratic term with the positive orthant constraint <ni+ . The scheme (1.7), however, is not necessarily
convergent even when m = 2, as shown in [22]. In the literature, it was suggested to correct the output
of (1.7) by some correction steps to ensure the convergence; some prediction-correction methods based
on the Jacobian decomposition of ALM (1.7) were thus presented in the literature, see, e.g., [20, 22].
Note that these prediction-correction methods usually converge fast for some applications arising in
image processing and other areas. But their correction steps need the solutions of the xi-subproblems
in (1.7) as the input and thus they are of less degrees of parallel computation. In [25, 10], it was proved
that the convergence is ensured if the subproblems in (1.7) are regularized by quadratic proximal terms
with sufficiently large proximal coefficients. For example, it was analyzed in [25] that the following
scheme

xk+1
1 := argmin

{
Lβ(x1, x

k
2, . . . , x

k
m, λ

k) + sβ
2 ‖A1(x1 − xk1)‖2

∣∣ x1 ∈ <n1
+
}
,

· · · · · ·
xk+1
i := argmin

{
Lβ(xk1, . . . , xki−1, xi, x

k
i , . . . , x

k
m, λ

k) + sβ
2 ‖Ai(xi − x

k
i)‖2

∣∣ xi ∈ <ni+
}
,

· · · · · ·
xk+1
m := argmin

{
Lβ(xk1, . . . , xkm−1, xm, λ

k) + sβ
2 ‖Am(xm − xkm)‖2

∣∣ xm ∈ <nm+
}
,

λk+1 := λk − β(
∑m
i=1Aix

k+1
i − b).

(1.8)

is convergent as long as the proximal coefficient s ≥ m − 1. A more general analysis can be found
in [10]. The scheme (1.8) requires no correction step because of the regularization of the quadratic
terms sβ

2 ‖Ai(xi − x
k
i)‖2 for i = 1, . . . ,m; and the eligibility for parallel computation is remained. The

iteration-complexity of a Jacobi-type non-Euclidean proximal ADMM for solving multi-block linearly
constrained nonconvex programs is established in [35].

Note that the xi-subproblems in (1.8) are constrained minimization problems subject to the posi-
tive orthants. To further simplify these subproblems, we can apply the logarithmic-quadratic proximal
terms, which firstly appeared in [3], to the subproblems in (1.7). The key point is that the LQP
regularization automatically excludes the points on the boundaries of the constraints in the feasible
regions; thus the positive orthant constraints in (1.7) all become inactive and the decomposed sub-
problems in (1.7) with the LQP regularization are all unconstrained. In the literature, the research
on the combination of the LQP regularization with ALM-based splitting methods focuses only on the
special case of (1.1) with m = 2 and mainly on the Gauss-Seidel decomposition. For instance, the
combination of the LQP regularization with the ADMM scheme (1.5) in [46, 1] is in the variational
inequality context. We also refer to [29] and [31] for the combination of the LQP with the generalized
ADMM proposed in [12] and the strictly contractive Peaceman-Rachford splitting method proposed

83

M. Li & X. M. Yuan

in [23], respectively. Some other interesting applications of LQP can be found in, e.g., [2]. Finally, it
is referred to [31, 44, 7] for the convergence rate analysis for the mentioned methods.

Our first purpose is proposing the scheme of ALM with Jacobian decomposition and LQP regu-
larization for the multiple-block convex minimization model (1.1) with m ≥ 3, see (3.2) for detail.
Both the exact and inexact versions will be proposed. The inexact version allows the decomposed
subproblems to be solved inexactly subject to certain inexactness criterion. To the best of our knowl-
edge, it is the first work of combining the LQP regularization with the Jacobian decomposition of the
ALM (1.7) for the generic case of (1.1) with m ≥ 3. Note that using the LQP regularization, instead
of the quadratic proximal terms, is particularly useful for the case where the functions θi’s are generic
and the subproblems in (1.7) are not simple enough to have closed-form solutions and thus the con-
strained subproblems in (1.7) need to be solved iteratively by a certain algorithm. In other words, the
new scheme mainly differs from (1.7) in that only unconstrained subproblems are required to solve.
The second purpose of this paper is comprehensively analyzing the convergence for both the exact
and inexact versions of the new scheme. More specifically, we discuss their convergence, including the
global convergence, the worst-case convergence rate measured by the iteration-complexity in both the
ergodic and nonergodic senses, and the linear convergence rates under additional assumptions.

The rest of this paper is organized as follows. In Section 2, we summarize some useful results and
introduce some notation for further analysis. Then, we present the exact version of the ALM with
full Jacobian decomposition and LQP regularization in Section 3, followed by some remarks. The
convergence of the exact version of this new scheme is proved in Section 4. Then, we establish its
convergence rate in Section 5. In Section 6, we present the inexact version of the new scheme, and
analyze its convergence in Section 7. In Section 8, we report some preliminary numerical results to
show the efficiency of the new scheme. Finally, we make some conclusions in Section 9.

2. Preliminaries

We first summarize some useful preliminaries known in the literature and introduce some notations
to be used in the analysis. Some simple conclusions are also proved in this section.

2.1. The Logarithmic-quadratic Proximal Regularization

We first review the LQP regularization. More details are provided in [3]. Let us define

ϕ(c) :=
{

1
2(c− 1)2 + µ(c− log c− 1) if c > 0,
+∞ otherwise,

(2.1)

for a given scalar µ ∈ (0, 1). Associated with ϕ, for any z ∈ <N++, we define

d(z′, z) :=


∑N
j=1

[1
2(z′j − zj)2 + µ(z2

j log zj
z′j

+ z′jzj − z2
j)
]

if z′ ∈ <N++,
+∞ otherwise,

(2.2)

and
Φ′(z, z′) := (z1ϕ

′(z′1/z1), · · · , zNϕ′(z′N/zN))T ∀z, z′ ∈ <N++, (2.3)
where

ϕ′(z′j/zj) = z′j/zj − 1 + µ(1− zj/z′j), j = 1, · · · , N. (2.4)
For any z′, z ∈ <N++, we have d(z′, z) ≥ ‖z′ − z‖2/2 and d(z′, z) = 0 if and only if z′ = z. Moreover,
the function d(·, ·) defined in (2.2) can be rewritten as

d(z′, z) =
N∑
j=1

z2
jϕ(z′j/zj) ∀z′, z ∈ <N++,

84

The ALM with full Jacobian decomposition and LQP regularization

and then we have
Φ′(z, z′) = ∇z′d(z′, z) = (z′ − z) + µ[z − Z2(z′)−1],

where Z := diag(z1, z2, . . . , zN) ∈ <N×N , (z′)−1 ∈ <N is a vector whose j-th element is 1/z′j .
The following lemma was proved in [46] and it was inspired by Proposition 1 in [3]. We need this

lemma to analyze the convergence for the new algorithms.

Lemma 2.1. Let P := diag(p1, . . . , pN) ∈ <N×N be a positive definite diagonal matrix, q(z) ∈ <N be
a monotone mapping of z with respect to <N+ , and ϑ : <N → <. Let µ ∈ (0, 1) be a constant. For given
z̄, z ∈ <N++, we define Z̄ := diag(z̄1, . . . , z̄N), z−1 := (1/z1, . . . , 1/zN)T and

Φ′(z̄, z) = (z − z̄) + µ(z̄ − Z̄2z−1).

Then, the variational inequality

ϑ(z′)− ϑ(z) + (z′ − z)T [q(z) + PΦ′(z̄, z)] ≥ 0 ∀z′ ∈ <N+ , (2.5)

has the unique positive solution z. In addition, for this positive solution z ∈ <N++ and any z′ ∈ <N+ ,
we have

ϑ(z)− ϑ(z′) + (z − z′)T [q(z) + (1 + µ)P (z − z̄)] ≤ µ‖z̄ − z‖2P , (2.6)
where ‖z‖2P := zTPz.

2.2. Variational Reformulation of (1.1)

In our analysis, we need a variational reformulation of the convex minimization model (1.1). More
specifically, let (x∗1, . . . , x∗m, λ∗) be a saddle point of the Lagrange function (1.2). Then, for any
(x1, . . . , xm, λ) ∈ <n1

+ × · · · × <
nm
+ ×<l, we have the inequalities

L(x∗1, . . . , x∗m, λ) ≤ L(x∗1, . . . , x∗m, λ∗) ≤ L(x1, . . . , xm, λ
∗). (2.7)

Setting (x1, . . . , xi−1, xi, xi+1, · · · , xm, λ∗) = (x∗1, . . . , x∗i−1, xi, x
∗
i+1, . . . , x

∗
m, λ

∗) in the second inequality
of (2.7) for i = 1, · · · ,m, we get

x∗i ∈ <
ni
+ θi(xi)− θi(x∗i) + (xi − x∗i)T (−ATi λ∗) ≥ 0 ∀xi ∈ <ni+ , i = 1, . . . ,m.

On the other hand, the first inequality in (2.7) means

λ∗ ∈ <l (λ− λ∗)T
(m∑
i=1

Aix
∗
i − b

)
≥ 0 ∀λ ∈ <l.

Recall that Ω = <n1
+ × · · · × <

nm
+ × <l. Thus, finding a saddle point of L(x1, . . . , xm, λ) is equivalent

to finding a vector w∗ = (x∗1, . . . , x∗m, λ∗) ∈ Ω such that

θ1(x1)− θ1(x∗1) + (x1 − x∗1)T (−AT1 λ∗) ≥ 0 ∀x1 ∈ <n1
+ ,

· · ·
θi(xi)− θi(x∗i) + (xi − x∗i)T (−ATi λ∗) ≥ 0 ∀xi ∈ <ni+ ,

· · ·
θm(xm)− θm(x∗m) + (xm − x∗m)T (−ATmλ∗) ≥ 0 ∀xm ∈ <nm+ ,

(λ− λ∗)T
(∑m

i=1Aix
∗
i − b

)
≥ 0 ∀λ ∈ <l.

(2.8)

We can rewrite (2.8) in a compact way: solving (1.1) is equivalent to finding w∗ = (x∗1, . . . , x∗m, λ∗) ∈
Ω := <n1

+ × · · · × <
nm
+ ×<l such that

VI(Ω, F, θ) : θ(x)− θ(x∗) + (w − w∗)TF (w∗) ≥ 0 ∀w ∈ Ω, (2.9a)

85

M. Li & X. M. Yuan

where

x =

 x1
...
xm

 , θ(x) =
m∑
i=1

θi(xi), (2.9b)

w =


x1
...
xm
λ

 and F (w) =


−AT1 λ

...
−ATmλ∑m

i=1Aixi − b

 . (2.9c)

Because the mapping F (w) defined in (2.9c) is affine with a skew-symmetric matrix, it is monotone.
We denote by Ω∗ the solution set of VI(Ω, F, θ), and it is not nonempty under the non-emptiness
assumption of the solution set of (1.1).

Then, we recall the characterization of the solution set Ω∗ whose proof can be found in [14, 26]:

Ω∗ :=
⋂
w∈Ω

{
w̃ ∈ Ω | θ(x)− θ(x̃) + (w − w̃)TF (w) ≥ 0

}
. (2.10)

With the characterization (2.10) and following Definition 1 in [38], we define an ε-approximation
solution of VI(Ω, F, θ) as follows.

Definition 2.2. The vector w̃ ∈ Ω is called an ε-approximation solution of VI(Ω, F, θ) if it satisfies
sup

w∈BΩ(w̃)

{
θ(x̃)− θ(x) + (w̃ − w)TF (w)

}
≤ ε, (2.11)

where
BΩ(w̃) :=

{
w ∈ Ω | ‖w − w̃‖ ≤ 1

}
.

Based on this definition, for an algorithm, if after t iterations, we can find w̃ ∈ Ω such that
θ(x̃)− θ(x) + (w̃ − w)TF (w) ≤ ε ∀w ∈ BΩ(w̃),

with ε = O(1/t), then we say this algorithm has a worst-case O(1/t) convergence rate measured by
the iteration complexity. See, e.g., [36, 37] for more details.

The following lemma is useful for establishing a worst-case o(1/t) convergence rate in Sections 5.3
and 7.4. It is similar as Lemma 1.2 in [10].

Lemma 2.3. If a sequence {at} ⊆ < obeys: (1) at ≥ 0; (2)
∑∞
t=0 at < +∞; (3) at ≤ at−1 + σt−1 for

any integer t ≥ 1, where the sequence {σt} satisfies
∑∞
t=1 tσt < +∞ with σt ≥ 0 for any integer t ≥ 0,

then we have at = o(1/t).

Proof. Since at ≤ at−1 + σt−1, we get

at ≤ ak +
t−1∑
j=k

σj ∀k ≤ t− 1.

By assumptions (1)-(3) in this lemma, we have

0 ≤ t

2 · at ≤
t∑

k=b t2 c+1

ak +
t−1∑

k=b t2 c+1

t−1∑
j=k

σj

≤
t∑

k=b t2 c+1

ak +
t−1∑

k=b t2 c+1

kσk → 0,

as t→∞. Therefore, we get at = o(1/t). The proof is complete.

86

The ALM with full Jacobian decomposition and LQP regularization

2.3. Some Notations

With the given positive scalars β and µ ∈ (0, 1), we define the scalars

ri >
(m− 1)β

1− µ λmax(ATi Ai) ∀ i = 1, . . . ,m,

where Ai is the coefficient matrix given in the model (1.1). We also define the matrices G, H, M , Nx

and N as following:

G :=


(1 + µ)r1In1 · · · −βAT1 Am 0

...
...

−βATmA1 · · · (1 + µ)rmInm 0
0 · · · 0 1

β Il

 , (2.12)

H :=


(1 + µ)r1In1 · · · −βAT1 Am 0

...
...

−βATmA1 · · · (1 + µ)rmInm 0
0 · · · 0 1

γβ Il

 , (2.13)

M := diag(In1 , . . . Inm , γIl), Nx := µ · diag(r1In1 , . . . , rmInm) (2.14)

and

N := diag(Nx, 0), (2.15)

where γ ∈ (0, 2).
Below we prove three assertions regarding the matrices just defined. These assertions make it pos-

sible to present our convergence analysis for the new algorithms compactly with alleviated notation.

Lemma 2.4. Let β > 0; µ ∈ (0, 1); γ ∈ (0, 2) and ri > (m − 1)βλmax(ATi Ai)/(1 − µ), i = 1, . . . ,m.
The matrices G, H, M and N defined respectively in (2.12)-(2.15) have the following relationships:

HM = G, H̃ := GT +G−MTHM − 2N � 0 and H � 0. (2.16)

Proof. Using the definitions of the matrices H, M and G, by a simple manipulation, we obtain

HM =


(1 + µ)r1In1 · · · −βAT1 Am 0

...
...

−βATmA1 · · · (1 + µ)rmInm 0
0 · · · 0 1

γβ Il



In1 · · · 0 0
...

...
0 · · · Inm 0
0 · · · 0 γIl



=


(1 + µ)r1In1 · · · −βAT1 Am 0

...
...

−βATmA1 · · · (1 + µ)rmInm 0
0 · · · 0 1

β Il

 = G.

The first assertion HM = G is proved.

87

M. Li & X. M. Yuan

Consequently, we get
MTHM = MTG

=


In1 · · · 0 0
...

...
0 · · · Inm 0
0 · · · 0 γIl




(1 + µ)r1In1 · · · −βAT1 Am 0
...

...
−βATmA1 · · · (1 + µ)rmInm 0

0 · · · 0 1
β Il



=


(1 + µ)r1In1 · · · −βAT1 Am 0

...
...

−βATmA1 · · · (1 + µ)rmInm 0
0 · · · 0 γ

β Il

 .
Using (2.12)-(2.15) and the above equation, we have

H̃ = GT +G−MTHM − 2N

=


(1− µ)r1In1 · · · −βAT1 Am 0

...
...

−βATmA1 · · · (1− µ)rmInm 0
0 · · · 0 2−γ

β Il



=


(m− 1)βAT1 A1 · · · −βAT1 Am 0

...
...

−βATmA1 · · · (m− 1)βATmAm 0
0 · · · 0 0



+


(1− µ)r1In1 − (m− 1)βAT1 A1 · · · 0 0

...
...

0 · · · (1− µ)rmInm − (m− 1)βATmAm 0
0 · · · 0 2−γ

β Il



= P T


(m− 1)Il · · · −Il 0

...
...

−Il · · · (m− 1)Il 0
0 · · · 0 0

P

+


(1− µ)r1In1 − (m− 1)βAT1 A1 · · · 0 0

...
...

0 · · · (1− µ)rmInm − (m− 1)βATmAm 0
0 · · · 0 2−γ

β Il

 ,(2.17)
with

P = diag(
√
βA1, . . . ,

√
βAm, Il).

Therefore, the matrix H̃ is positive definite if β > 0; µ ∈ (0, 1); γ ∈ (0, 2) and

ri >
(m− 1)β

1− µ λmax(ATi Ai) ∀ i = 1, . . . ,m.

The second assertion is proved.

88

The ALM with full Jacobian decomposition and LQP regularization

Similar as (2.17), the matrix H can be written as

H = P T


(m− 1)Il · · · −Il 0

...
...

−Il · · · (m− 1)Il 0
0 · · · 0 0

P

+


(1 + µ)r1In1 − (m− 1)βAT1 A1 · · · 0 0

...
...

0 · · · (1 + µ)rmInm − (m− 1)βATmAm 0
0 · · · 0 1

γβ Il

 .
Therefore the matrix H is also positive definite. The proof is complete.

3. The ALM with Full Jacobian Decomposition and LQP Regularization — Exact
Version

Now, we present the exact version of the ALM with full Jacobian decomposition and LQP regulariza-
tion for solving the model (1.1). Some remarks will also be proved. Based on our previous introduction
and motivation, the ALM with full Jacobian decomposition and LQP regularization can be summa-
rized as follows:

xk+1
1 := argmin

{
Lβ(x1, x

k
2, . . . , x

k
m, λ

k) + r1d(x1, x
k
1)
∣∣ x1 ∈ <n1

+
}
,

· · ·
xk+1
i := argmin

{
Lβ(xk1, . . . , xki−1, xi, x

k
i+1, . . . , x

k
m, λ

k) + rid(xi, xki)
∣∣ xi ∈ <ni+

}
,

· · ·
xk+1
m := argmin

{
Lβ(xk1, . . . , xkm−1, xm, λ

k) + rmd(xm, xkm)
∣∣ xm ∈ <nm+

}
,

λk+1 := λk − γβ(
∑m
j=1Ajx

k+1
j − b),

(3.1)

where the LQP regularizer d(·, ·) is defined in (2.2), β > 0, µ ∈ (0, 1), γ ∈ (0, 2) and

ri >
(m− 1)β

1− µ λmax(ATi Ai) ∀ i = 1, . . . ,m.

Recall the analysis in [3]. The LQP regularization terms rid(xi, xki) force the solution of the xi-
subproblem in (3.1) to stay strictly in the interior of <ni+ . Hence, the constraints <ni+ are not active
and the iterative scheme (3.1) can be further specified as

xk+1
1 := argmin

{
Lβ(x1, x

k
2, . . . , x

k
m, λ

k) + r1d(x1, x
k
1)
}
,

· · ·
xk+1
i := argmin

{
Lβ(xk1, . . . , xki−1, xi, x

k
i+1, . . . , x

k
m, λ

k) + rid(xi, xki)
}
,

· · ·
xk+1
m := argmin

{
Lβ(xk1, . . . , xkm−1, xm, λ

k) + rmd(xm, xkm)
}
,

λk+1 := λk − γβ(
∑m
j=1Ajx

k+1
j − b),

(3.2)

in which only m unconstrained minimization subproblems are involved.

Algorithm 1.
Step 0. Let ε > 0, β > 0, µ ∈ (0, 1), γ ∈ (0, 2) and ri > (m− 1)βλmax(ATi Ai)/(1− µ), i = 1, . . . ,m.
Choose (x0

1, . . . , x
0
m, λ

0) ∈ <n1
++ × · · · × <

nm
++ ×<l. Set k := 0.

89

M. Li & X. M. Yuan

Step 1. Find xk+1
i ∈ <ni++, i = 1, . . . ,m, in parallel, such that

xk+1
i := argmin

{
Lβ(xk1, . . . , xki−1, xi, x

k
i+1, . . . , x

k
m, λ

k) + rid(xi, xki)
}
. (3.3)

Step 2. Update the Lagrange multiplier

λk+1 := λk − γβ
(m∑
j=1

Ajx
k+1
j − b

)
. (3.4)

Step 3. Set wk+1 := (xk+1
1 , . . . , xk+1

m , λk+1). If ‖wk+1 − wk‖ ≤ ε, stop; otherwise set k := k + 1 and
goto Step 1.

Remark 3.1. Note that the unconstrained minimization problems in (3.2) are generally easier than
the constrained ones appearing in (3.1). In particular, for the special case of (1.1) where θi(xi),
i = 1, . . . ,m are differentiable, the scheme (3.2) reduces to

∇θ1(xk+1
1)−AT1 [λk − β(

∑m
j=1Ajx

k
j − b)] + βAT1 A1(xk+1

1 − xk1) + r1Φ′(xk1, xk+1
1) = 0,

· · ·
∇θi(xk+1

i)−ATi [λk − β(
∑m
j=1Ajx

k
j − b)] + βATi Ai(xk+1

i − xki) + riΦ′(xki , xk+1
i) = 0,

· · ·
∇θm(xk+1

m)−ATm[λk − β(
∑m
j=1Ajx

k
j − b)] + βATmAm(xk+1

m − xkm) + rmΦ′(xkm, xk+1
m) = 0,

λk+1 := λk − γβ(
∑m
j=1Ajx

k+1
j − b),

from which we can see that the main computation for generating a new iterate

wk+1 := (xk+1
1 , . . . , xk+1

m , λk+1) ∈ <n1
++ × · · · × <

nm
++ ×<l

is solving m systems of equations.

Remark 3.2. In Algorithm 1, we use different proximal coefficients ri for different subproblems. We
can choose a unified coefficient r for all the xi-subproblems and show the same theoretical assertions
under the condition

r >
(m− 1)β

1− µ max
i=1,...,m

{
λmax(ATi Ai)

}
.

Since the coefficient r is chosen to ensure the sufficient control of the proximity for all the xi-
subproblems, the condition is in the most conservative way. Choosing different values of ri for different
subproblems, however, makes it possible to choose ri that is independent of all the other coefficient
matrices Aj ’s with j 6= i. As is well known, a larger proximal coefficient means the proximal term plays
a heavier weight in the objective and thus the solution of the proximally regularized subproblem is
forced to be closer the previous iterate. Thus, a smaller value is preferred for the proximal coefficient
provided that it is sufficient to ensure the convergence. Because of this reason, in (3.2), we consider
choosing different values ri’s for the subproblems, instead of choosing a unified value despite that the
corresponding theoretical analysis is simpler.

Remark 3.3. Note that Algorithm 1 involves a relaxation parameter γ in the Lagrange-multiplier
updating step. This relaxation parameter is indeed very important to ALM-based splitting algorithms.
In fact, for the original ALM (1.4), it has been demonstrated in [4, 12] that the convergence can still
be ensured if we attach a relaxation factor γ ∈ (0, 2) to the Lagrange-multiplier updating step. The
key point is the fact elucidated in [42] that the ALM is indeed an application of the proximal point
algorithm in [34]; and thus the relaxation idea in [19] is applicable. When the model (1.1) with
two blocks of variables and functions is considered, it was proved in [15, 18] that the convergence
can be ensured if a relaxation factor γ ∈ (0,

√
5+1
2) is attached to the Lagrange-multiplier updating

90

The ALM with full Jacobian decomposition and LQP regularization

step in the ADMM scheme (1.5). Indeed, as well demonstrated in the literature (e.g., [4]), ALM-
based splitting schemes usually can be accelerated with a relaxation factor γ > 1 in their Lagrange-
multiplier updating steps. However, as shown in [6], even for the direct extension of ADMM (1.6)
without proximal regularization in its subproblems, it seems that there is no such a problem-data-
independent range for γ in the Lagrange-multiplier updating step even for m = 3. Interestingly, for
Algorithm 1 which is originated from splitting the ALM with full Jacobian decomposition, attaching
any γ ∈ (0, 2) can still ensure the convergence. Intuitively, it can be explained that because the
decomposed subproblems are regularized by the LQP regularization terms, the proximity to the last
iterate is well controlled. Accordingly, all the decomposed subproblems together constitute a good
approximation to the minimization subproblem in the ALM (1.4) and hence the range (0, 2) for the
relaxation parameter in the ALM is preserved in Algorithm 1. We regard it as an important feature
of Algorithm 1 because of the LQP regularization.

4. Convergence

In this section, we prove the global convergence for Algorithm 1. In order to further alleviate the
notation in our analysis, we define an auxiliary sequence {w̃k} as

w̃k :=


x̃k1
...
x̃km
λ̃k

 =


xk+1

1
...

xk+1
m

λk − β(
∑m
j=1Ajx

k+1
j − b)

 , (4.1)

where (xk+1
1 , . . . , xk+1

m) is generated by Algorithm 1. Then, based on (3.4) and (4.1), we immediately
have

xk+1
i = x̃ki , i = 1, . . . ,m and λk+1 = λk − γ(λk − λ̃k). (4.2)

Moreover, we have the following relationship
xk+1

1
...

xk+1
m

λk+1

 =


xk1
...
xkm
λk

−

In1 · · · 0 0
...

...
0 · · · Inm 0
0 · · · 0 γIl




xk1 − x̃k1
...

xkm − x̃km
λk − λ̃k

 ,
which can be rewritten into a compact form by using the notation of wk and w̃k:

wk+1 = wk −M(wk − w̃k), (4.3)

where M is defined in (2.14).
Now, we start to prove some properties for the sequence {wk} generated by Algorithm 1. Since we

will analyze the convergence rate for Algorithm 1 based on the solution characterization (2.10), and
the accuracy of an approximate solution w̃ ∈ Ω is measured by an upper bound of the quantity of
θ(x̃)− θ(x) + (w̃ − w)TF (w) for all w ∈ Ω (see (2.11)), we are interested in estimating how accurate
the point wk+1 generated by (3.1) is to a solution point of VI(Ω, F, θ). The main result is proved in
Theorem 4.3. To prove this main result, we first show two lemmas. The first lemma presents an upper
bound of θ(x̃k) − θ(x) + (w̃k − w)TF (w̃k) for all w ∈ Ω in term of a quadratic term involving the
matrices G and N defined in (2.12) and (2.15).

Lemma 4.1. Let {wk} be generated by Algorithm 1 and {w̃k} be defined in (4.1). Then, for any
w ∈ Ω, we have

θ(x̃k)− θ(x) + (w̃k − w)TF (w̃k) ≤ −(w − w̃k)TG(wk − w̃k) + ‖wk − w̃k‖2N , (4.4)

91

M. Li & X. M. Yuan

where the matrices G and N are defined in (2.12) and (2.15), respectively.

Proof. We first observe the first-order optimality conditions of the minimization problems in (3.3).
More specifically, the solution xk+1

i ∈ <ni++ of the xi−subproblem in (3.3) can be expressed as

xk+1
i := argmin

{
θi(xi)− (λk)TAixi + β

2

∥∥∥Ai(xi − xki) +
(m∑
j=1

Ajx
k
j − b

)∥∥∥2
+ rid(xi, xki)

}
,

and then the inequality

θi(xi)− θi(xk+1
i) + (xi − xk+1

i)T
{
−ATi

[
λk − β

(m∑
j=1

Ajx
k
j − b

)]
+βATi Ai(xk+1

i − xki) + riΦ′(xki , xk+1
i)

}
≥ 0, (4.5)

holds for any xi ∈ <ni+ , i = 1, . . . ,m. Note that it follows from (4.1) that

λk = λ̃k + β
(m∑
j=1

Ajx
k+1
j − b

)
. (4.6)

Substituting (4.6) into (4.5) and using xk+1
i = x̃ki , i = 1, . . . ,m, we have

θi(xi)− θi(x̃ki) + (xi − x̃ki)T
{
−ATi λ̃k + βATi Ai(x̃ki − xki)

−βATi
[m∑
j=1

Aj(x̃kj − xkj)
]

+ riΦ′(xki , x̃ki)
}
≥ 0 ∀xi ∈ <ni+ . (4.7)

Applying the assertion in Lemma 2.1 to (4.7) by setting P = riIni , z̄ = xki , z = x̃ki , ϑ(·) = θi(·),
q(z) = −ATi λ̃k + βATi Ai(x̃ki − xki) − βATi [

∑m
j=1Aj(x̃kj − xkj)] and z′ = xi in (2.6), for any xi ∈ <ni+ ,

i = 1, . . . ,m, we have
θi(x̃ki)− θi(xi) + (x̃ki − xi)T

{
−ATi λ̃k + βATi Ai(x̃ki − xki)− βATi

×
[m∑
j=1

Aj(x̃kj − xkj)
]

+ (1 + µ)ri(x̃ki − xki)
}
≤ µri‖xki − x̃ki ‖2. (4.8)

In addition, based on (4.1) we have(m∑
j=1

Aj x̃
k
j − b

)
+ 1
β

(λ̃k − λk) = 0,

or further as

λ̃k ∈ <l (λ− λ̃k)T
[(m∑
j=1

Aj x̃
k
j − b

)
+ 1
β

(λ̃k − λk)
]
≥ 0 ∀λ ∈ <l. (4.9)

Combining (4.8) and (4.9) together, and using the notation of θ andNx, we get w̃k = (x̃k1, . . . , x̃km, λ̃k) ∈
Ω; and for any w = (x1, . . . , xm, λ) ∈ Ω, it holds
θ(x̃k)− θ(x)

+


x̃k1 − x1

...
x̃km − xm
λ̃k − λ


T 


−AT1 λ̃k

...
−ATmλ̃k∑m

j=1Aj x̃
k
j − b

+


−βAT1 [

∑m
j=2Aj(x̃kj − xkj)] + (1 + µ)r1(x̃k1 − xk1)

...
−βATm[

∑m−1
j=1 Aj(x̃kj − xkj)] + (1 + µ)rm(x̃km − xkm)

1
β (λ̃k − λk)




≤ ‖xk − x̃k‖2Nx .
By using the notation of G and N in (2.12) and (2.15), and w and F in (2.9c), the compact form of
the above inequality is exactly (4.4).

92

The ALM with full Jacobian decomposition and LQP regularization

In the next lemma, we further analyze the right-hand side of the inequality (4.4) and reformulate
it as the sum of some quadratic terms. This new form is more convenient for our further analysis,
especially for the convergence rate analysis.

Lemma 4.2. Let {wk} be generated by Algorithm 1, {w̃k} be defined in (4.1), and G, H, N and H̃
be defined in (2.12)-(2.16). Then for any w ∈ Ω, we have

(w − w̃k)TG(wk − w̃k)− ‖wk − w̃k‖2N = 1
2
(
‖w − wk+1‖2H − ‖w − wk‖2H

)
+ 1

2‖w
k − w̃k‖2

H̃
. (4.10)

Proof. By using G = HM and M(wk − w̃k) = (wk − wk+1) (see (4.3)), it follows that
(w − w̃k)TG(wk − w̃k)− ‖wk − w̃k‖2N = (w − w̃k)THM(wk − w̃k)− ‖wk − w̃k‖2N

= (w − w̃k)TH(wk − wk+1)− ‖wk − w̃k‖2N . (4.11)
For any vectors a, c, d, e in the same space and a matrix P with appropriate dimensionality, we have
the identity

(a− c)TP (d− e) = 1
2
(
‖a− e‖2P − ‖a− d‖2P

)
+ 1

2
(
‖d− c‖2P − ‖e− c‖2P

)
.

In this identity, we take
a = w, c = w̃k, d = wk, e = wk+1 and P = H,

and submit it to the right-hand side of (4.11). The resulting equation is
(w − w̃k)TG(wk − w̃k)− ‖wk − w̃k‖2N
= 1

2
(
‖w − wk+1‖2H − ‖w − wk‖2H

)
+ 1

2(‖wk − w̃k‖2H − ‖wk+1 − w̃k‖2H − 2‖wk − w̃k‖2N).(4.12)

Now, we deal with the last term of the right-hand side of (4.12). By using (4.3) and (2.16), we get
‖wk − w̃k‖2H − ‖wk+1 − w̃k‖2H − 2‖wk − w̃k‖2N

= ‖wk − w̃k‖2H − ‖(wk − w̃k)− (wk − wk+1)‖2H − 2‖wk − w̃k‖2N
(4.3)= ‖wk − w̃k‖2H − ‖(wk − w̃k)−M(wk − w̃k)‖2H − 2‖wk − w̃k‖2N
= 2(wk − w̃k)THM(wk − w̃k)− (wk − w̃k)TMTHM(wk − w̃k)− 2‖wk − w̃k‖2N

(2.16)= (wk − w̃k)T (GT +G−MTHM − 2N)(wk − w̃k)
(2.16)= ‖wk − w̃k‖2

H̃
.

Substituting it in (4.12), we obtain the assertion (4.10). The proof is complete.

Now we are ready to present an inequality where an upper bound of θ(x̃k)− θ(x) + (w̃k −w)TF (w)
is found for all w ∈ Ω. This inequality is also crucial for analyzing the contraction property and the
convergence rate for the iterative sequence generated by Algorithm 1.

Theorem 4.3. Let {wk} be generated by Algorithm 1, {w̃k} be defined in (4.1), and H and H̃ be
defined in (2.13) and (2.16), respectively. Then for any w ∈ Ω, we have

θ(x̃k)− θ(x) + (w̃k − w)TF (w) ≤ 1
2
(
‖w − wk‖2H − ‖w − wk+1‖2H

)
− 1

2‖w
k − w̃k‖2

H̃
. (4.13)

Proof. Note that F is monotone. We thus have
(w̃k − w)TF (w) ≤ (w̃k − w)TF (w̃k).

It follows from the above inequality and (4.4) that
θ(x̃k)− θ(x) + (w̃k − w)TF (w) ≤ −(w − w̃k)TG(wk − w̃k) + ‖wk − w̃k‖2N (4.14)

93

M. Li & X. M. Yuan

for any w ∈ Ω. The assertion (4.13) follows immediately from (4.10) and (4.14).

The assertion (4.13) also enables us to study the contraction property of the sequence {wk} gener-
ated by Algorithm 1.
Lemma 4.4. Let {wk} be generated by Algorithm 1, {w̃k} be defined in (4.1), and H and H̃ be defined
in (2.13) and (2.16), respectively. Then for any w∗ ∈ Ω∗, we have

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − w̃k‖2H̃ . (4.15)
Proof. Setting w = w∗ in (4.13) where w∗ being an arbitrary solution point in Ω∗, we get

‖wk − w∗‖2H − ‖wk+1 − w∗‖2H
≥ ‖wk − w̃k‖2

H̃
+ 2[θ(x̃k)− θ(x∗) + (w̃k − w∗)TF (w∗)]

≥ ‖wk − w̃k‖2
H̃
.

The proof is complete.

Now, we are ready to prove the global convergence of Algorithm 1.
Theorem 4.5. The sequence {wk} generated by Algorithm 1 converges to some w∞ which is a solution
of VI(Ω, F, θ).
Proof. It follows from (4.15) that the sequence {wk} is bounded. Using (4.15), we have

∞∑
k=0
‖wk − w̃k‖2

H̃
≤ ‖w0 − w∗‖2H < +∞. (4.16)

Therefore, we have
lim
k→∞

‖wk − w̃k‖H̃ = 0. (4.17)

Thus the sequence {w̃k} is also bounded, and it has at least one cluster point. Let w∞ be a cluster
point of {w̃k} and the subsequence {w̃kj} converges to w∞. It follows from (4.4) and (4.17) that

lim inf
j→∞

{
θ(x)− θ(x̃kj) + (w − w̃kj)TF (w̃kj)

}
≥ 0 ∀w ∈ Ω,

and consequently
θ(x)− θ(x∞) + (w − w∞)TF (w∞) ≥ 0 ∀w ∈ Ω.

This means that w∞ is a solution of VI(Ω, F, θ). Note that the inequality (4.15) is true for all solution
points of VI(Ω, F, θ), hence we have

‖wk − w∞‖H ≤ ‖wl − w∞‖H ∀k ≥ 0, ∀l ≤ k. (4.18)
Since w̃kj → w∞ (j → ∞), using (4.17) we have wkj → w∞ (j → ∞). For any given ε > 0, there
exists a j0 > 0 such that

‖wkj0 − w∞‖H ≤ ε. (4.19)
Therefore, for any k ≥ kj0 , it follows from (4.18) and (4.19) that

‖wk − w∞‖H ≤ ‖wkj0 − w∞‖H ≤ ε.
This implies that the sequence {wk} converges to a point w∞ in Ω∗.

5. Convergence Rate

In this section, we analyze the convergence rate for the scheme (3.2) from different perspectives. We
divide the analysis into four subsections.

94

The ALM with full Jacobian decomposition and LQP regularization

5.1. A Worst-case O(1/t) Convergence Rate in the Ergodic Sense

First, we establish a worst-case O(1/t) convergence rate measured by the iteration-complexity for
Algorithm 1. Its proof is inspired by [26] for the original ADMM (1.5) and some contraction properties
proved in the last subsection are useful.

Theorem 5.1. Let {wk} be generated by Algorithm 1 and {w̃k} be defined by (4.1). Let w̃t be defined
as

w̃t := 1
t+ 1

t∑
k=0

w̃k. (5.1)

Then, for any integer t > 0, we have w̃t ∈ Ω and

θ(x̃t)− θ(x) + (w̃t − w)TF (w) ≤ 1
2(t+ 1)‖w − w

0‖2H ∀w ∈ Ω, (5.2)

where H is defined in (2.13).

Proof. First, because of (3.2) and (4.1), it holds that w̃k ∈ Ω for all integer k ≥ 0. Together with
the convexity of Ω, (5.1) implies that w̃t ∈ Ω. Summing the inequality (4.13) over k = 0, 1, . . . , t, we
obtain

t∑
k=0

θ(x̃k)− (t+ 1)θ(x) +
[t∑
k=0

w̃k − (t+ 1)w
]T
F (w)

≤ 1
2(‖w − w0‖2H − ‖w − wt+1‖2H)− 1

2

t∑
k=0
‖wk − w̃k‖2

H̃

≤ 1
2‖w − w

0‖2H ∀w ∈ Ω.
Using the notation of w̃t, it can be written as

1
t+ 1

t∑
k=0

θ(x̃k)− θ(x) + (w̃t − w)TF (w) ≤ 1
2(t+ 1)‖w − w

0‖2H ∀w ∈ Ω. (5.3)

Since θ(x) is convex and

x̃t = 1
t+ 1

t∑
k=0

x̃k,

we have that

θ(x̃t) ≤
1

t+ 1

t∑
k=0

θ(x̃k).

Substituting it in (5.3), the assertion of this theorem follows directly.

Note that it follows from the proof of Theorem 4.5 that the sequences {wk} and {w̃k} generated by
Algorithm 1 are bounded. Therefore, there exists a constant D > 0 such that

‖wk‖H ≤ D and ‖w̃k‖H ≤ D ∀k ≥ 0.

95

M. Li & X. M. Yuan

Recall that w̃t is the average of {w̃0, w̃1, . . . , w̃t}. Thus, we have ‖w̃t‖H ≤ D. For any w ∈ BΩ(w̃t) :={
w ∈ Ω | ‖w − w̃t‖H ≤ 1

}
, we get

θ(x̃t)− θ(x) + (w̃t − w)TF (w) ≤ 1
2(t+ 1)‖w − w

0‖2H

≤ 1
2(t+ 1)

(
‖w − w̃t‖H + ‖w̃t − w0‖H

)2
≤ 1

2(t+ 1)
(
‖w − w̃t‖H + ‖w̃t‖H + ‖w0‖H

)2
≤ (1 + 2D)2

2(t+ 1) .

Thus, for any given ε > 0, after at most t := d (1+2D)2

2ε − 1e iterations, we have

θ(x̃t)− θ(x) + (w̃t − w)TF (w) ≤ ε ∀w ∈ BΩ(w̃t),

which means w̃t is an approximate solution of VI(Ω, F, θ) with an accuracy of O(1/t). That is, a
worst-case O(1/t) convergence rate in the ergodic sense is established for Algorithm 1.

5.2. A Worst-case O(1/t) Convergence Rate in the Non-ergodic Sense

In this subsection, we establish a worst-case O(1/t) convergence rate in the non-ergodic sense for
Algorithm 1. Its proof is mainly inspired by [27] for the original ADMM (1.5); Lemma 2.5 in [10] is
also useful.

First, let us denote

H̄x := diag
(
(1 + µ)r1In1 + βAT1 A1, . . . , (1 + µ)rmInm + βATmAm

)
,

A := (A1, . . . , Am), H̄ ′x := H̄x − βATA+ 2Nx, H̄ ′ :=
(
H̄ ′x 0
0 1

γβ Il

)
. (5.4)

Then, we prove a lemma.

Lemma 5.2. Let {wk} be generated by Algorithm 1. Assume that A is a matrix of full column rank,

ri > (m− 1)βλmax(ATi Ai) ∀i = 1, . . . ,m (5.5)

and

0 < µ < min
{

min
i=1,...,m

{
1− (m− 1)βλmax(ATi Ai)

ri

}
,
(2− γ)βλmin(ATA)

4 maxi=1,...,m{ri}

}
. (5.6)

Then, H̄ ′ � 0, where H̄ ′ is defined by (5.4), and for any integer k ≥ 1, we have

‖wk+1 − wk‖2
H̄′ ≤ ‖w

k − wk−1‖2
H̄′ . (5.7)

Proof. The conditions (5.5) and

0 < µ < min
i=1,...,m

{
1− (m− 1)βλmax(ATi Ai)

ri

}
is equivalent to

ri >
(m− 1)β

1− µ λmax(ATi Ai) ∀ i = 1, . . . ,m.

Note that H � 0. Using the definitions of H and H̄ ′ in (2.13) and (5.4), we have
H̄ ′ = H + 2N � 0.

96

The ALM with full Jacobian decomposition and LQP regularization

The sequence {wk} generated by Algorithm 1 under conditions (5.5) and (5.6) converges to a solution
of VI(Ω, F, θ) by Theorem 4.5. It follows from (4.5) that

θi(xi)− θi(xk+1
i) + (xi − xk+1

i)T
{
−ATi λk + βATi

(m∑
j=1

Ajx
k
j − b

)
+βATi Ai(xk+1

i − xki) + riΦ′(xki , xk+1
i)

}
≥ 0 (5.8)

for any xi ∈ <ni+ , i = 1, . . . ,m. Applying the assertion in Lemma 2.1 to (5.8) by setting P = riIni ,
z̄ = xki , z = xk+1

i , ϑ(·) = θi(·), q(z) = −ATi λk +βATi

(∑m
j=1Ajx

k
j − b

)
+βATi Ai(xk+1

i −xki) and z′ = xi

in (2.6), for any xi ∈ <ni+ , i = 1, . . . ,m, we have

θi(xk+1
i)− θi(xi) + (xk+1

i − xi)T
{
−ATi λk + βATi

(m∑
j=1

Ajx
k
j − b

)
+βATi Ai(xk+1

i − xki) + (1 + µ)ri(xk+1
i − xki)

}
≤ µri‖xki − xk+1

i ‖2. (5.9)

Setting xi = xki , i = 1, . . . ,m in (5.9), we have

θi(xk+1
i)− θi(xki) + (xk+1

i − xki)T
{
−ATi λk + βATi

(m∑
j=1

Ajx
k
j − b

)
+βATi Ai(xk+1

i − xki) + (1 + µ)ri(xk+1
i − xki)

}
≤ µri‖xki − xk+1

i ‖2. (5.10)
Note that (5.9) is also true for k := k − 1 and thus we have

θi(xki)− θi(xi) + (xki − xi)T
{
−ATi λk−1 + βATi

(m∑
j=1

Ajx
k−1
j − b

)
+βATi Ai(xki − xk−1

i) + (1 + µ)ri(xki − xk−1
i)

}
≤ µri‖xk−1

i − xki ‖2

for any xi ∈ <ni+ , i = 1, . . . ,m. Setting xi = xk+1
i , i = 1, . . . ,m in the above inequality, we obtain

θi(xki)− θi(xk+1
i) + (xki − xk+1

i)T
{
−ATi λk−1 + βATi

(m∑
j=1

Ajx
k−1
j − b

)
+βATi Ai(xki − xk−1

i) + (1 + µ)ri(xki − xk−1
i)

}
≤ µri‖xk−1

i − xki ‖2. (5.11)
Adding (5.10) and (5.11), we get

(xk+1
i − xki)T

{
−ATi (λk − λk−1) + [βATi Ai + (1 + µ)riIni][(xk+1

i − xki)

−(xki − xk−1
i)] + βATi

[m∑
j=1

Aj(xkj − xk−1
j)

]}
≤ µri

(
‖xki − xk+1

i ‖2 + ‖xk−1
i − xki ‖2

)
∀ i = 1, . . . ,m.

Denote ∆xk+1
i := xk+1

i − xki , ∆xki := xki − x
k−1
i and ∆λk := λk − λk−1. From the above inequality, we

obtain

(∆xk+1
i)T

{
−ATi ∆λk + βATi

(m∑
j=1

Aj∆xkj
)

+ [βATi Ai + (1 + µ)riIni](∆xk+1
i −∆xki)

}
≤ µri

(
‖∆xk+1

i ‖2 + ‖∆xki ‖2
)
∀ i = 1, . . . ,m.

Summing the above inequalities over i = 1, . . . ,m, we have
−(∆xk+1)TAT∆λk + β(∆xk+1)TATA∆xk + (∆xk+1)T H̄x(∆xk+1 −∆xk)
≤ ‖∆xk+1‖2Nx + ‖∆xk‖2Nx .

97

M. Li & X. M. Yuan

It follows from the above inequality that
(∆xk+1)TAT∆λk ≥ β(∆xk+1)TATA∆xk + (∆xk+1)T H̄x(∆xk+1 −∆xk)−

(
‖∆xk+1‖2Nx + ‖∆xk‖2Nx

)
= ‖∆xk+1‖2

H̄x
− (∆xk+1)T (H̄x − βATA)∆xk − ‖∆xk+1‖2Nx − ‖∆x

k‖2Nx . (5.12)
Since H = diag(H̄x − βATA, 1

γβ Il) � 0, we have H̄x − βATA � 0. Then, using the Cauchy-Schwarz
inequality, we obtain

− 2(∆xk+1)T (H̄x − βATA)∆xk ≥ −‖∆xk+1‖2
H̄x−βATA − ‖∆x

k‖2
H̄x−βATA. (5.13)

Substituting (5.13) into (5.12), we get
2(∆xk+1)TAT∆λk

≥ 2‖∆xk+1‖2
H̄x
− ‖∆xk+1‖2

H̄x−βATA − ‖∆x
k‖2
H̄x−βATA − 2‖∆xk+1‖2Nx − 2‖∆xk‖2Nx

= ‖∆xk+1‖2
H̄x+βATA−2Nx − ‖∆x

k‖2
H̄x−βATA+2Nx .

Note that ∆λk+1 = ∆λk − γβA∆xk+1. It follows from the above formula that
1
γβ
‖∆λk‖2 − 1

γβ
‖∆λk+1‖2

= 1
γβ
‖∆λk‖2 − 1

γβ
‖∆λk − γβA∆xk+1‖2

= 2(∆xk+1)TAT∆λk − γβ‖A∆xk+1‖2

≥ ‖∆xk+1‖2
H̄x+(1−γ)βATA−2Nx − ‖∆x

k‖2
H̄x−βATA+2Nx .

Using this and the definition of H̄ ′x, we have(
‖∆xk‖2

H̄′x
+ 1
γβ
‖∆λk‖2

)
−
(
‖∆xk+1‖2

H̄′x
+ 1
γβ
‖∆λk+1‖2

)
≥ ‖∆xk+1‖2

H̄x+(1−γ)βATA−2Nx−H̄′x

= ‖∆xk+1‖2(2−γ)βATA−4Nx . (5.14)
It follows from

µ <
(2− γ)βλmin(ATA)

4 maxi=1,...,m{ri}
that (2− γ)βATA− 4Nx � 0. Using (5.14), we have

‖∆xk+1‖2
H̄′x

+ 1
γβ
‖∆λk+1‖2 ≤ ‖∆xk‖2

H̄′x
+ 1
γβ
‖∆λk‖2.

Then, by the definition of H̄ ′, we get the assertion (5.7).

Now, using previous results, we can establish a worst-case O(1/t) convergence rate in a non-ergodic
sense for Algorithm 1.

Theorem 5.3. Let {wt} be generated by Algorithm 1. Assume that A is a matrix of full column rank;
β > 0; γ ∈ (0, 2); ri > 0, i = 1, . . . ,m and µ ∈ (0, 1), where ri and µ satisfy the conditions:

ri > (m− 1)βλmax(ATi Ai)
and

0 < µ < min
{

min
i=1,...,m

{
1− (m− 1)βλmax(ATi Ai)

ri

}
,
(2− γ)βλmin(ATA)

4 maxi=1,...,m{ri}

}
.

Then, there is a constant c0 > 0 such that for any w∗ ∈ Ω∗ and any integer t ≥ 0,

‖wt+1 − wt‖2
H̄′ ≤

c0
t+ 1‖w

0 − w∗‖2H , (5.15)

98

The ALM with full Jacobian decomposition and LQP regularization

where H and H̄ ′ are defined in (2.13) and (5.4), respectively.

Proof. Since H̃ � 0, it’s easy to prove M−T H̃M−1 � 0. Note that H̄ ′ � 0. There is a constant
c0 > 0, such that

c0M
−T H̃M−1 � H̄ ′. (5.16)

And thus, it follows from M(wk − w̃k) = (wk − wk+1) (see (4.3)) and (4.16) that
∞∑
k=0
‖wk − wk+1‖2

H̄′ ≤
∞∑
k=0

c0‖wk − wk+1‖2
M−T H̃M−1

=
∞∑
k=0

c0‖wk − w̃k‖2H̃ ≤ c0‖w0 − w∗‖2H . (5.17)

It follows from (5.7) that
‖wt+1 − wt‖2

H̄′ ≤ ‖w
k+1 − wk‖2

H̄′ ∀ 0 < k ≤ t.
And thus we have

(t+ 1)‖wt+1 − wt‖2
H̄′ ≤

t∑
k=0
‖wk+1 − wk‖2

H̄′ ≤
∞∑
k=0
‖wk+1 − wk‖2

H̄′ .

From the above inequality and (5.17), we get the assertion (5.15). The proof is complete.

It follows from (4.3) and (4.4) that if wt+1 = wt, we have wt = w̃t and wt is the solution of
VI(Ω, F, θ). Therefore, ‖wt+1 −wt‖2

H̄′
can be viewed as an error measurement in term of the distance

to the solution set of VI(Ω, F, θ) for the t-th iteration of Algorithm 1. Notice that Ω∗ is convex and
closed. Let d := inf{c0‖w0 − w∗‖2H |w∗ ∈ Ω∗}. Then, for any given ε > 0, the inequality (5.15) shows
under the assumptions that A is a matrix of full column rank, (5.5) and (5.6), Algorithm 1 needs at
most

dd
ε
− 1e

iterations to ensure that ‖wt+1 − wt‖2
H̄′
≤ ε. Therefore, a worst-case O(1/t) convergence rate is

established for Algorithm 1 in a non-ergodic sense.

5.3. A Worst-case o(1/t) Convergence Rate in the Non-ergodic Sense

The worst-case O(1/t) convergence rate of Algorithm 1 in a non-ergodic sense established in the last
subsection can be easily refined as a worst-case o(1/t) convergence rate. We summarize it in the
following theorem.

Theorem 5.4. Let {wt} be generated by Algorithm 1. Assume that A is a matrix of full column rank;
β > 0; γ ∈ (0, 2); ri > 0, i = 1, . . . ,m and µ ∈ (0, 1), where ri and µ satisfy the conditions:

ri > (m− 1)βλmax(ATi Ai)

and

0 < µ < min
{

min
i=1,...,m

{
1− (m− 1)βλmax(ATi Ai)

ri

}
,
(2− γ)βλmin(ATA)

4 maxi=1,...,m{ri}

}
.

Then we obtain
‖wt+1 − wt‖2

H̄′ = o(1/t),

where H̄ ′ is defined in (5.4).

99

M. Li & X. M. Yuan

Proof. It follows from (5.17) that
∞∑
t=0
‖wt+1 − wt‖2

H̄′ < +∞.

On the other hand, Lemma 5.2 implies the monotone non-increasing of ‖wt+1−wt‖2
H̄′
. By Lemma 2.3,

we have ‖wt+1 − wt‖2
H̄′

= o(1/t), which completes the proof.

5.4. Linear Convergence

In this subsection, we investigate the linear convergence of the scheme (3.2) with additional assump-
tions on the model (1.1). Our discussion in this subsection is under the following assumptions.
Assumption 1. The functions θi are strongly convex with the parameters σi > 0, respectively, for
i = 1, . . . ,m. That is, the following inequality holds:

(xi − yi)T (gi(xi)− gi(yi)) ≥ σi‖xi − yi‖2

for any xi, yi ∈ <ni+ , gi(xi) ∈ ∂θi(xi), gi(yi) ∈ ∂θi(yi), i = 1, . . . ,m.
Assumption 2. The functions gi are Lipschitz continuous with the parameters Lθi > 0, respectively,
for i = 1, . . . ,m. That is, the following inequality holds:

‖gi(xi)− gi(yi)‖ ≤ Lθi‖xi − yi‖
for any xi, yi ∈ <ni+ , gi(xi) ∈ ∂θi(xi), gi(yi) ∈ ∂θi(yi), i = 1, . . . ,m.
Assumption 3. Assume for any w∗ = (x∗1, . . . , x∗m, λ∗) ∈ Ω∗, x∗i is an interior point of <ni+ , that is
x∗i ∈ <

ni
++ for any i = 1, . . . ,m.

By Assumption 3, there is a constant ς > 0 such that
Xk
i (X̃k

i)−1 � ςIni ∀i = 1, . . . ,m, (5.18)
since limk→∞ ‖xki − x∗i ‖ = 0 and limk→∞ ‖xki − x̃ki ‖ = 0. For convenience, let

Gβ := βdiag(AT1 A1, . . . , A
T
mAm)− βATA and Ψ(xk, x̃k) :=

 r1Φ′(xk1, x̃k1)
...

rmΦ′(xkm, x̃km)

 . (5.19)

Moreover, we denote

σθ := min
i=1,...,m

{σi}, Lθ := max
i=1,...,m

{Lθi} and g(x) :=

 g1(x1)
...

gm(xm)

 , (5.20)

where gi(x) ∈ ∂θi(x), i = 1, . . . ,m. Then we get g(x) ∈ ∂θ(x). By Assumptions 1 and 2, for any
x, y ∈ <n1

+ × · · · × <
nm
+ , g(x) ∈ ∂θ(x), g(y) ∈ ∂θ(y), we have

(x− y)T (g(x)− g(y)) ≥ σθ‖x− y‖2 (5.21)
and

‖g(x)− g(y)‖ ≤ Lθ‖x− y‖. (5.22)
We have the following assertion whose proof is similar as Lemma 4.1 and thus omitted.

Lemma 5.5. Let {wk} be generated by Algorithm 1 and {w̃k} be defined in (4.1). Then, for any
w ∈ Ω, we have

(x̃k − x)T g(x̃k) + (w̃k − w)TF (w̃k) ≤ −(w − w̃k)TG(wk − w̃k) + ‖wk − w̃k‖2N , (5.23)
where g(·), the matrices G and N are defined in (5.20), (2.12) and (2.15).

100

The ALM with full Jacobian decomposition and LQP regularization

Theorem 5.6. Let {wk} be generated by Algorithm 1, {w̃k} be defined in (4.1), and H and H̃ be
defined in (2.13) and (2.16), respectively. Assume that Assumption 1 holds. Then for any w ∈ Ω, we
have

(x̃k − x)T g(x) + (w̃k − w)TF (w)

≤ 1
2
(
‖w − wk‖2H − ‖w − wk+1‖2H

)
− 1

2‖w
k − w̃k‖2

H̃
− σθ‖x̃k − xk‖2, (5.24)

where g(·) and σθ are defined in (5.20).

Proof. Note that F is monotone. And thus we have
(w̃k − w)TF (w) ≤ (w̃k − w)TF (w̃k).

Since the functions θi, i = 1, . . . ,m are strongly convex, using the notation of g(x) and σθ, we obtain
(x̃k − x)T g(x̃k) ≥ (x̃k − x)T g(x) + σθ‖x̃k − x‖2.

It follows from the above two inequalities and (5.23) that
(x̃k − x)T g(x) + σθ‖x̃k − x‖2 + (w̃k − w)TF (w)
≤ −(w − w̃k)TG(wk − w̃k) + ‖wk − w̃k‖2N ∀w ∈ Ω. (5.25)

The assertion (5.24) follows immediately from (5.25) and (4.10).

Lemma 5.7. Let {wk} be generated by Algorithm 1, {w̃k} be defined in (4.1), and H and H̃ be defined
in (2.13) and (2.16), respectively. Assume that Assumption 1 holds. Then for any w∗ ∈ Ω∗, we have

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − w̃k‖2H̃ − 2σθ‖xk+1 − x∗‖2, (5.26)
where σθ is defined in (5.20).

Proof. Similar as (2.9), if w∗ ∈ Ω∗ we have
(x− x∗)T g(x∗) + (w − w∗)TF (w∗) ≥ 0 ∀w ∈ Ω. (5.27)

Setting w = w∗ in (5.24) where w∗ being an arbitrary solution point in Ω∗, using (5.27) we get
‖wk − w∗‖2H − ‖wk+1 − w∗‖2H
≥ ‖wk − w̃k‖2

H̃
+ 2σθ‖x̃k − xk‖2 + 2[(x̃k − x∗)T g(x∗) + (w̃k − w∗)TF (w∗)]

≥ ‖wk − w̃k‖2
H̃

+ 2σθ‖x̃k − xk‖2.
Note that xk+1 = x̃k. The assertion (5.26) is proved from the above inequality.

Lemma 5.8. Let {wk} be generated by Algorithm 1 and {w̃k} be defined in (4.1). Assume that As-
sumptions 2 and 3 hold, and the matrix A has full row rank. Then for w∗ = (x∗, λ∗) ∈ Ω∗ and κ > 1,
we have

‖λ̃k − λ∗‖2 ≤ c1‖xk+1 − xk‖2 + c2‖xk+1 − x∗‖2, (5.28)
where

c1 := 2κλ−1
min(AAT)

(
‖GTβGβ‖+ max

i=1,...,m
{r2
i }(1 + µς)

)
, c2 := κL2

θ

κ− 1λ
−1
min(AAT),

ς, Gβ and Lθ are defined in (5.18), (5.19) and (5.20), respectively.

Proof. Similar as (4.7), we get x̃ki ∈ <
ni
++ and

(xi − x̃ki)T {gi(x̃ki)−ATi λ̃k + βATi Ai(x̃ki − xki)− βATi [
m∑
j=1

Aj(x̃kj − xkj)]

+riΦ′(xki , x̃ki)} ≥ 0 ∀xi ∈ <ni+ , i = 1, . . . ,m. (5.29)

101

M. Li & X. M. Yuan

Combining (5.29) from i = 1 to m, we get x̃k = (x̃k1, . . . , x̃km) ∈ <n1
++ × · · · × <

nm
++; and for any

x = (x1, . . . , xm) ∈ <n1
+ × · · · × <

nm
+ , we have x1 − x̃k1

...
xm − x̃km


T 

 g1(x̃k1)
...

gm(x̃km)



+


−AT1 λ̃k − βAT1 [

∑m
j=2Aj(x̃kj − xkj)] + r1Φ′(xk1, x̃k1)

...
−ATmλ̃k − βATm[

∑m−1
j=1 Aj(x̃kj − xkj)] + rmΦ′(xkm, x̃km)


 ≥ 0.

Then we have x̃k ∈ <n1
++ × · · · × <

nm
++. For any x ∈ <

n1
+ × · · · × <

nm
+ , using the notation of g, Gβ and

Ψ, we get
(x− x̃k)T

[
g(x̃k)−AT λ̃k +Gβ(x̃k − xk) + Ψ(xk, x̃k)

]
≥ 0.

Since x̃k ∈ <n1
++ × · · · × <

nm
++, from the above variational inequality, we get

g(x̃k) = AT λ̃k −Gβ(x̃k − xk)−Ψ(xk, x̃k). (5.30)
Note that (x∗, λ∗) ∈ Ω∗. It holds that

(x− x∗)T
(
g(x∗)−ATλ∗

)
≥ 0 ∀x ∈ <n1

+ × · · · × <
nm
+ .

Since x∗ ∈ <n1
++ × · · · × <

nm
++, from the above variational inequality, we obtain

g(x∗) = ATλ∗. (5.31)
Recall that Assumption 2 holds, that is, gi is Lipschitz continuous with parameters Lθi , i = 1, . . . ,m.
Then, by the definition of Lθ in (5.20), we obtain

‖g(x̃k)− g(x∗)‖2 ≤ L2
θ‖x̃k − x∗‖2.

Substituting (5.30) and (5.31) into the above inequality, we have
‖AT λ̃k −ATλ∗ −Gβ(x̃k − xk)−Ψ(xk, x̃k)‖2 ≤ L2

θ‖x̃k − x∗‖2. (5.32)
Applying the following basic inequality

‖u− v‖2 ≥ (1− 1
κ

)‖u‖2 + (1− κ)‖v‖2 ∀κ > 0,

to the left-hand side of (5.32) by setting u = AT λ̃k − ATλ∗, v = Gβ(x̃k − xk) + Ψ(xk, x̃k) and κ > 1,
we have

(1− 1
κ

)‖AT λ̃k −ATλ∗‖2 + (1− κ)‖Gβ(x̃k − xk) + Ψ(xk, x̃k)‖2 ≤ L2
θ‖x̃k − x∗‖2.

Using the assumption that A has full row rank, we obtain λmin(AAT) > 0 and
‖AT λ̃k −ATλ∗‖2 = (λ̃k − λ∗)TAAT (λ̃k − λ∗) ≥ λmin(AAT)‖λ̃k − λ∗‖2.

Substituting this into the above inequality, we obtain

‖λ̃k − λ∗‖2 ≤ κλ−1
min(AAT)‖Gβ(x̃k − xk) + Ψ(xk, x̃k)‖2 + κL2

θ

κ− 1λ
−1
min(AAT)‖x̃k − x∗‖2. (5.33)

Using the definitions of Ψ(xk, x̃k) and Φ′(xki , x̃ki), i = 1, . . . ,m, we get

‖Ψ(xk, x̃k)‖2 =
m∑
i=1

r2
i ‖Φ′(xki , x̃ki)‖2 =

m∑
i=1

r2
i ‖(x̃ki − xki) + µ[xki − (Xk

i)2(x̃ki)−1]‖2

=
m∑
i=1

r2
i

∥∥[Ini + µXk
i (X̃k

i)−1](x̃ki − xki)∥∥2
.

From the above inequality and the definition of ς in (5.18), it follows that
‖Ψ(xk, x̃k)‖2 ≤ max

i=1,...,m
{r2
i }(1 + µς)‖x̃k − xk‖2.

102

The ALM with full Jacobian decomposition and LQP regularization

Using the above inequality, we get
‖Gβ(x̃k − xk) + Ψ(xk, x̃k)‖2 ≤ 2‖Gβ(x̃k − xk)‖2 + 2‖Ψ(xk, x̃k)‖2

≤ 2
(
‖GTβGβ‖+ max

i=1,...,m
{r2
i }(1 + µς)

)
‖x̃k − xk‖2.

Substituting this into (5.33), we get the assertion (5.28).

Theorem 5.9. Let {wk} be generated by Algorithm 1 and {w̃k} be defined in (4.1). Assume that
Assumptions 1-3 hold, and the matrix A has full row rank. Then, there is a constant δ > 0, such that

‖wk+1 − w∗‖2H ≤
1

1 + δ
‖wk − w∗‖2H ∀w∗ ∈ Ω∗, (5.34)

where H is defined in (2.13).

Proof. First, it follows from the definitions of λk+1 and λ̃k that
λk+1 − λ̃k = (γ − 1)(λ̃k − λk).

Using the Cauchy-Schwarz inequality, the above equation and (5.28), we have
‖λk+1 − λ∗‖2 = ‖λ̃k − λ∗ + λk+1 − λ̃k‖2

≤ 2‖λ̃k − λ∗‖2 + 2‖λk+1 − λ̃k‖2

= 2‖λ̃k − λ∗‖2 + 2(γ − 1)2‖λ̃k − λk‖2

≤ 2c1‖xk+1 − xk‖2 + 2c2‖xk+1 − x∗‖2 + 2(γ − 1)2‖λ̃k − λk‖2.
By this inequality and the definitions of H and H̃, there is a constant δ > 0 such that

δ‖wk+1 − w∗‖2H ≤ ‖wk − w̃k‖2H̃ + 2σθ‖xk+1 − x∗‖2.
Substituting this into (5.26), we get the assertion (5.34).

6. The ALM with Jacobian Decomposition and LQP Regularization — Inexact
Version

In this section, we delineate an inexact version of (3.2). The motivation for considering inexact versions
is that in general the subproblems in (3.2) still require iterations to pursue approximate solutions even
though they are easier unconstrained minimization problems. We thus can only expect to execute the
scheme (3.2) practically in the following sense:

xk+1
1 :≈ argmin

{
Lβ(x1, x

k
2, x

k
3, . . . , x

k
m−1, x

k
m, λ

k) + r1d(x1, x
k
1)
}
,

· · ·
xk+1
i :≈ argmin

{
Lβ(xk1, xk2, . . . , xki−1, xi, x

k
i+1, . . . , x

k
m, λ

k) + rid(xi, xki)
}
,

· · ·
xk+1
m :≈ argmin

{
Lβ(xk1, xk2, . . . , xkm−1, xm, λ

k) + rmd(xm, xkm)
}
,

λk+1 := λk − γβ(
∑m
j=1Ajx

k+1
j − b).

(6.1)

To make the approximation in (6.1) precise, we elaborate on its detail of implementation as follows.
Note that we only give a prototype algorithm for the inexact version (6.1), as our emphasis is to
show the possibility of designing inexact version for the scheme (3.2) when the generic case of (1.1)
is considered where the functions in its objective are generic functions. For a specific scenario where
the functions are specified, it is incremental to develop a concrete desirable algorithm based on the
algorithmic framework given below.

103

M. Li & X. M. Yuan

Algorithm 2.
Step 0. Let ε > 0, β > 0, µ ∈ (0, 1), γ ∈ (0, 2), ri > (m− 1)βλmax(ATi Ai)/(1− µ), i = 1, . . . ,m,
and {νk} be a nonnegative sequence satisfying

∑∞
k=0 νk < +∞. Choose (x0

1, . . . , x
0
m, λ

0) ∈ <n1
++× · · · ×

<nm++ ×<l. Set k := 0.
Step 1. Find xk+1

i ∈ <ni++, i = 1, . . . ,m, in parallel, such that

‖xk+1
i − xk+1

i∗ ‖ ≤ νk, (6.2)

where
xk+1
i∗ := argmin

{
Lβ(xk1, . . . , xki−1, xi, x

k
i+1, . . . , x

k
m, λ

k) + rid(xi, xki)
}
. (6.3)

Step 2. Update the Lagrange multiplier

λk+1 := λk − γβ
(m∑
j=1

Ajx
k+1
j − b

)
. (6.4)

Step 3. Set wk+1 := (xk+1
1 , . . . , xk+1

m , λk+1). If ‖wk+1 − wk‖ ≤ ε, stop; otherwise set k := k + 1 and
goto Step 1.

Remark 6.1. In Step 1, we find xk+1
i = xki only if xk+1

i∗ = xki .

7. Convergence Analysis

Now, we analyze the convergence of the inexact version (6.1) in the sense of (6.2)-(6.4). Similarly,
we first prove its global convergence and then establish its worst-case convergence rate measured by
the iteration-complexity. The analytic framework is analogous to that in the last section, but more
sophisticated reasoning and analysis is needed.

7.1. Global Convergence

We first prove the global convergence for Algorithm 2 from the contraction perspective. Similar as (4.1)
and (6.4), we define

λk+1
∗ := λk − γβ

(m∑
j=1

Ajx
k+1
j∗ − b

)
, (7.1)

and set

wk+1
∗ :=


xk+1

1∗
...

xk+1
m∗
λk+1
∗

 , w̃k :=


x̃k1
...
x̃km
λ̃k

 =


xk+1

1∗
...

xk+1
m∗

λk − β(
∑m
j=1Ajx

k+1
j∗ − b)

 , (7.2)

where (xk+1
1∗ , . . . , xk+1

m∗) are the exact solutions of (6.3). Then, based on (7.1) and (7.2), we immediately
have

xk+1
i∗ = x̃ki , i = 1, . . . ,m

and

λk+1
∗ = λk − γβ(

m∑
j=1

Ajx
k+1
j∗ − b) = λk − γ(λk − λ̃k).

104

The ALM with full Jacobian decomposition and LQP regularization

We also have the following relationship
xk+1

1∗
...

xk+1
m∗
λk+1
∗

 =


xk1
...
xkm
λk

−

In1 · · · 0 0
...

...
0 · · · Inm 0
0 · · · 0 γIl




xk1 − x̃k1
...

xkm − x̃km
λk − λ̃k

 ,
which can be rewritten into a compact form by using the notation of wk and w̃k:

wk+1
∗ = wk −M(wk − w̃k), (7.3)

where M is defined in (2.14). We first prove a simple lemma.

Lemma 7.1. Let {wk} be generated by Algorithm 2 and {wk∗} be defined by (7.2). Then, there exists
a positive constant ρ such that

‖wk+1
∗ − wk+1‖H ≤ ρνk ∀k ≥ 0, (7.4)

where H is defined by (2.13).

Proof. It follows from (7.1) that

λk+1
∗ − λk+1 = γβ

m∑
j=1

Aj(xk+1
j − xk+1

j∗).

Together with (6.2) and Lemma 2.4, the above equation implies (7.4) immediately. The proof is
complete.

Similarly to Lemma 4.1, Theorem 4.3 and Lemma 4.4, we have the following assertions but their
proofs are omitted.

Lemma 7.2. Let {wk} be generated by Algorithm 2 and {w̃k} be defined by (7.2). Then, we have
w̃k ∈ Ω and

θ(x̃k)− θ(x) + (w̃k − w)TF (w̃k) ≤ −(w − w̃k)TG(wk − w̃k) + ‖wk − w̃k‖2N (7.5)
for any w ∈ Ω, where the matrices G and N are defined in (2.12) and (2.15), respectively.

Theorem 7.3. Let {wk} be generated by Algorithm 2, {wk+1
∗ } and {w̃k} be defined in (7.2), and H

and H̃ be defined in (2.13) and (2.16), respectively. Then for any w ∈ Ω, we have

θ(x̃k)− θ(x) + (w̃k − w)TF (w) ≤ 1
2
(
‖w − wk‖2H − ‖w − wk+1

∗ ‖2H
)
− 1

2‖w
k − w̃k‖2

H̃
. (7.6)

Lemma 7.4. Let {wk} be generated by Algorithm 2, {wk+1
∗ } and {w̃k} be defined in (7.2), and H and

H̃ be defined in (2.13) and (2.16), respectively. Then for any w∗ ∈ Ω∗, we have
‖wk+1
∗ − w∗‖2H ≤ ‖wk − w∗‖2H − ‖wk − w̃k‖2H̃ . (7.7)

The following result shows a contraction property of the sequence generated by Algorithm 2, based
on which the convergence of Algorithm 2 can be established easily.

Lemma 7.5. Let {wk} be generated by Algorithm 2. Then {wk} is bounded, i.e., for any w∗ ∈ Ω∗,
there is a positive constant Cw∗, such that

‖wk − w∗‖H ≤ Cw∗ ∀k ≥ 0, (7.8)
and

‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H + 2ρCw∗νk + ρ2ν2
k − ‖wk − w̃k‖2H̃ , (7.9)

where H and H̃ are defined in (2.13) and (2.16), respectively.

105

M. Li & X. M. Yuan

Proof. According to (7.7), for any given w∗ ∈ Ω∗, we have
‖wk+1
∗ − w∗‖H ≤ ‖wk − w∗‖H .

It follows from the above inequality and (7.4) that
‖wk+1 − w∗‖H ≤ ‖wk+1

∗ − w∗‖H + ‖wk+1 − wk+1
∗ ‖H ≤ ‖wk − w∗‖H + ρνk. (7.10)

And thus for any l ≤ k we have

‖wk+1 − w∗‖H ≤ ‖wl − w∗‖H + ρ
k∑
i=l

νi.

Since
∑∞
k=0 νk < +∞, there is a constant Cw∗ > 0, such that

‖wk − w∗‖H ≤ Cw∗ < +∞ ∀k ≥ 0. (7.11)
Therefore, the sequence {wk} generated by Algorithm 2 is bounded. It follows from (7.4), (7.7)
and (7.11) that

‖wk+1 − w∗‖2H = ‖(wk+1
∗ − w∗) + (wk+1 − wk+1

∗)‖2H
≤ ‖wk+1

∗ − w∗‖2H + 2‖wk+1 − wk+1
∗ ‖H · ‖wk+1

∗ − w∗‖H + ‖wk+1 − wk+1
∗ ‖2H

≤ ‖wk − w∗‖2H − ‖wk − w̃k‖2H̃ + 2ρνk‖wk − w∗‖H + ρ2ν2
k

≤ ‖wk − w∗‖2H + 2ρCw∗νk + ρ2ν2
k − ‖wk − w̃k‖2H̃ .

The proof is complete.

Now, we are ready to prove the convergence of Algorithm 2.

Theorem 7.6. The sequence {wk} generated by Algorithm 2 converges to some w∞ which is a solution
of VI(Ω, F, θ).

Proof. It follows from (7.9) that for any l ≤ k and w∗ ∈ Ω∗, we have
‖wk+1 − w∗‖2H ≤ ‖wk − w∗‖2H + 2ρCw∗νk + ρ2ν2

k

≤ ‖wl − w∗‖2H +
k∑
i=l

(2ρCw∗νi + ρ2ν2
i). (7.12)

Thus the sequence {wk} is bounded, since
∑∞
i=0(2ρCw∗νi+ρ2ν2

i) < +∞. Summing the inequality (7.9)
over k = 0, 1, . . ., we get

∞∑
k=0
‖wk − w̃k‖2

H̃
≤ ‖w0 − w∗‖2H +

∞∑
k=0

(2ρCw∗νk + ρ2ν2
k) < +∞. (7.13)

Therefore, we have
lim
k→∞

‖wk − w̃k‖H̃ = 0. (7.14)

Thus the sequence {w̃k} is also bounded, and it has at least one cluster point. Let w∞ be a cluster
point of {w̃k} and the subsequence {w̃kj} converges to w∞. It follows from (7.5) and (7.14) that

lim inf
j→∞

{
θ(x)− θ(x̃kj) + (w − w̃kj)TF (w̃kj)

}
≥ 0 ∀w ∈ Ω,

and consequently
θ(x)− θ(x∞) + (w − w∞)TF (w∞) ≥ 0 ∀w ∈ Ω.

This means that w∞ is a solution of VI(Ω, F, θ). Note that the inequality (7.12) is true for all solution
points of VI(Ω, F, θ), hence we have

‖wk+1 − w∞‖2H ≤ ‖wl − w∞‖2H +
∞∑
i=l

(2ρCw∗νi + ρ2ν2
i) ∀k ≥ 0, ∀l ≤ k. (7.15)

106

The ALM with full Jacobian decomposition and LQP regularization

Since w̃kj → w∞ (j → ∞), using (7.14) we have wkj → w∞ (j → ∞). For any given ε > 0, there
exists a j0 > 0 such that

‖wkj0 − w∞‖2H ≤
ε2

2 and
∞∑

i=kj0

(2ρCw∗νi + ρ2ν2
i) ≤ ε2

2 . (7.16)

Therefore, for any k ≥ kj0 , it follows from (7.15) and (7.16) that

‖wk+1 − w∞‖H ≤

√√√√‖wkj0 − w∞‖2H +
∞∑

i=kj0

(2ρCw∗νi + ρ2ν2
i) ≤ ε.

This implies that the sequence {wk} converges to a point w∞ in Ω∗. The proof is complete.

7.2. A Worst-case O(1/t) Convergence Rate in the Ergodic Sense

Now we establish a worst-case convergence rate measured by the iteration-complexity for the inexact
version (6.1) in the sense of (6.2)-(6.4).

Theorem 7.7. Let the sequence {wk} be generated by Algorithm 2. For any integer t > 0, there is
a w̃t ∈ Ω which is a convex combination of the iterates w̃0, w̃1, . . . , w̃t defined by (7.2). Then for any
w ∈ Ω, we have

θ(x̃t)− θ(x) + (w̃t − w)TF (w) ≤ 1
t+ 1

(1
2‖w − w

0‖2H + ρ
t∑

k=0
νk‖w − wk+1‖H

)
, (7.17)

where w̃t := (
∑t
k=0 w̃

k)/(t+ 1) and H is defined by (2.13).

Proof. From (7.6), we have

θ(x)− θ(x̃k) + (w − w̃k)TF (w) + 1
2‖w − w

k‖2H ≥
1
2‖w − w

k+1
∗ ‖2H ∀w ∈ Ω.

It follows from (7.4) that

‖w − wk+1
∗ ‖2H ≥

(
‖w − wk+1‖H − ‖wk+1 − wk+1

∗ ‖H
)2

= ‖w − wk+1‖2H − 2‖w − wk+1‖H · ‖wk+1 − wk+1
∗ ‖H + ‖wk+1 − wk+1

∗ ‖2H
≥ ‖w − wk+1‖2H − 2ρνk‖w − wk+1‖H ∀w ∈ Ω.

From the above two inequalities, for any w ∈ Ω we have

θ(x)− θ(x̃k) + (w − w̃k)TF (w) + 1
2‖w − w

k‖2H ≥
1
2‖w − w

k+1‖2H − ρνk‖w − wk+1‖H . (7.18)

Summing the inequality (7.18) over k = 0, 1, . . . , t, we obtain

(t+ 1)θ(x)−
t∑

k=0
θ(x̃k) +

[
(t+ 1)w −

(t∑
k=0

w̃k
)]T

F (w) + 1
2‖w − w

0‖2H

≥ 1
2‖w − w

t+1‖2H − ρ
t∑

k=0
νk‖w − wk+1‖H

≥ −ρ
t∑

k=0
νk‖w − wk+1‖H ∀w ∈ Ω.

107

M. Li & X. M. Yuan

Since
∑t
k=0 1/(t + 1) = 1, w̃t is a convex combination of w̃0, w̃1, . . . , w̃t and thus w̃t ∈ Ω. Using the

notation of w̃t, we derive
1

t+ 1
(t∑
k=0

θ(x̃k)
)
− θ(x) + (w̃t − w)TF (w) ≤ 1

t+ 1
(1

2‖w − w
0‖2H + ρ

t∑
k=0

νk‖w − wk+1‖H
)

(7.19)

for any w ∈ Ω. Since θ(x) is convex and

x̃t = 1
t+ 1

t∑
k=0

x̃k,

we have that

θ(x̃t) ≤
1

t+ 1

t∑
k=0

θ(x̃k).

Substituting it in (7.19), the assertion (7.17) follows directly.

It follows from the proof of Theorem 7.6 that the sequences {wk} and {w̃k} are bounded. Therefore,
there exists a constant D > 0 such that

‖wk‖H ≤ D and ‖w̃k‖H ≤ D ∀k ≥ 0.

Recall that w̃t is the average of {w̃0, w̃1, . . . , w̃t}. Thus, we have ‖w̃t‖H ≤ D. Denote

E1 :=
∞∑
k=0

νk < +∞.

For any w ∈ BΩ(w̃t) :=
{
w ∈ Ω | ‖w − w̃t‖H ≤ 1

}
, we get

θ(x̃t)− θ(x) + (w̃t − w)TF (w)

≤ 1
t+ 1

(1
2‖w − w

0‖2H + ρ
t∑

k=0
νk‖w − wk+1‖H

)

≤ 1
t+ 1

[1
2
(
‖w − w̃t‖H + ‖w̃t‖H + ‖w0‖H

)2 + ρ
t∑

k=0
νk
(
‖w − w̃t‖H + ‖w̃t‖H + ‖wk+1‖H

)]
≤ 1
t+ 1

[1
2(1 + 2D)2 + ρE1

(
1 + 2D

)]
.

Thus, for any given ε > 0, after at most t := d (1+2D)(1+2D+2ρE1)
2ε − 1e iterations, we have

θ(x̃t)− θ(x) + (w̃t − w)TF (w) ≤ ε ∀w ∈ BΩ(w̃t),

which means w̃t is an approximate solution of VI(Ω, F, θ) with an accuracy of O(1/t). That is, a worst-
case O(1/t) convergence rate measured by the iteration-complexity in the ergodic sense is established
for the inexact version (6.1) in the sense of (6.2)-(6.4).

7.3. A Worst-case O(1/t) Convergence Rate in the Non-ergodic Sense

Lemma 7.8. Let {wk} be generated by Algorithm 2. Assume that A is a matrix of full column rank,

ri > (m− 1)βλmax(ATi Ai) (7.20)

and

0 < µ < min
{

min
i=1,...,m

{
1− (m− 1)βλmax(ATi Ai)

ri

}
,
(2− γ)βλmin(ATA)

4 maxi=1,...,m{ri}

}
. (7.21)

108

The ALM with full Jacobian decomposition and LQP regularization

Then, H̄ ′ � 0, where H̄ ′ is defined by (5.4), and there is a constant c3 > 0, such that for any integer
k ≥ 1, we have

‖wk+1 − wk‖2
H̄′ ≤ ‖w

k − wk−1‖2
H̄′ + c3(νk−1 + νk). (7.22)

Proof. As the proof in Lemma 5.2, we could prove H̄ ′ � 0, and the sequence {wk} generated by
the scheme (6.2)-(6.4) under conditions (7.20) and (7.21) converges to a solution of VI(Ω, F, θ) by
Theorem 7.6. Similar as (4.5), for (6.3), we have

θi(xi)− θi(xk+1
i∗) + (xi − xk+1

i∗)T
{
−ATi λk + βATi

(m∑
j=1

Ajx
k
j − b

)
+βATi Ai(xk+1

i∗ − x
k
i) + riΦ′(xki , xk+1

i∗)
}
≥ 0 (7.23)

for any xi ∈ <ni+ , i = 1, . . . ,m. Applying the assertion in Lemma 2.1 to (7.23) by setting P = riIni ,
z̄ = xki , z = xk+1

i∗ , ϑ(·) = θi(·), q(z) = −ATi λk + βATi (
∑m
j=1Ajx

k
j − b) + βATi Ai(xk+1

i∗ − xki) and z′ = xi
in (2.6), for any xi ∈ <ni+ , i = 1, . . . ,m, we have

θi(xk+1
i∗)− θi(xi) + (xk+1

i∗ − xi)
T
{
−ATi λk + βATi

(m∑
j=1

Ajx
k
j − b

)
+βATi Ai(xk+1

i∗ − x
k
i) + (1 + µ)ri(xk+1

i∗ − x
k
i)
}
≤ µri‖xki − xk+1

i∗ ‖
2. (7.24)

Setting xi = xki∗, i = 1, . . . ,m in (7.24), we have

θi(xk+1
i∗)− θi(xki∗) + (xk+1

i∗ − x
k
i∗)T

{
−ATi λk + βATi

(m∑
j=1

Ajx
k
j − b

)
+βATi Ai(xk+1

i∗ − x
k
i) + (1 + µ)ri(xk+1

i∗ − x
k
i)
}
≤ µri‖xki − xk+1

i∗ ‖
2. (7.25)

Note that (7.24) is also true for k := k − 1 and thus we have

θi(xki∗)− θi(xi) + (xki∗ − xi)T
{
−ATi λk−1 + βATi

(m∑
j=1

Ajx
k−1
j − b

)
+βATi Ai(xki∗ − xk−1

i) + (1 + µ)ri(xki∗ − xk−1
i)

}
≤ µri‖xk−1

i − xki∗‖2

for any xi ∈ <ni+ , i = 1, . . . ,m. Setting xi = xk+1
i∗ , i = 1, . . . ,m in the above inequality, we obtain

θi(xki∗)− θi(xk+1
i∗) + (xki∗ − xk+1

i∗)T
{
−ATi λk−1 + βATi

(m∑
j=1

Ajx
k−1
j − b

)
+βATi Ai(xki∗ − xk−1

i) + (1 + µ)ri(xki∗ − xk−1
i)

}
≤ µri‖xk−1

i − xki∗‖2. (7.26)
Adding (7.25) and (7.26), we get

(xk+1
i∗ − x

k
i∗)T

{
−ATi (λk − λk−1) + [βATi Ai + (1 + µ)riIni][(xk+1

i∗ − x
k
i)

−(xki∗ − xk−1
i)] + βATi

[m∑
j=1

Aj(xkj − xk−1
j)

]}
≤ µri

(
‖xki − xk+1

i∗ ‖
2 + ‖xk−1

i − xki∗‖2
)

109

M. Li & X. M. Yuan

for i = 1, . . . ,m. Denote ∆xk+1
i∗∗ := xk+1

i∗ −xki∗, ∆xk+1
i∗ := xk+1

i∗ −xki , ∆xki := xki−x
k−1
i , ∆xki∗ := xki∗−x

k−1
i

and ∆λk := λk − λk−1. From the above inequality, we obtain

(∆xk+1
i∗∗)T

{
−ATi ∆λk + βATi

(m∑
j=1

Aj∆xkj
)

+ [βATi Ai + (1 + µ)riIni](∆xk+1
i∗ −∆xki∗)

}
≤ µri

(
‖∆xk+1

i∗ ‖
2 + ‖∆xki∗‖2

)
∀ i = 1, . . . ,m.

Summing the above inequalities over i = 1, . . . ,m, we have
− (∆xk+1

∗∗)TAT∆λk + β(∆xk+1
∗∗)TATA∆xk + (∆xk+1

∗∗)T H̄x(∆xk+1
∗ −∆xk∗) ≤ ‖∆xk+1

∗ ‖2Nx + ‖∆xk∗‖2Nx .
It follows from the above inequality and ∆xk+1

∗ −∆xk∗ = ∆xk+1
∗∗ −∆xk that

(∆xk+1
∗∗)TAT∆λk

≥ β(∆xk+1
∗∗)TATA∆xk + (∆xk+1

∗∗)T H̄x(∆xk+1
∗∗ −∆xk)−

(
‖∆xk+1

∗ ‖2Nx + ‖∆xk∗‖2Nx
)

= ‖∆xk+1
∗∗ ‖2H̄x − (∆xk+1

∗∗)T (H̄x − βATA)∆xk − ‖∆xk+1
∗ ‖2Nx − ‖∆x

k
∗‖2Nx . (7.27)

Since H = diag(H̄x − βATA, 1
γβ Il) � 0, we have H̄x − βATA � 0. Then, using the Cauchy-Schwarz

inequality, we obtain
− 2(∆xk+1

∗∗)T (H̄x − βATA)∆xk ≥ −‖∆xk+1
∗∗ ‖2H̄x−βATA − ‖∆x

k‖2
H̄x−βATA. (7.28)

Substituting (7.28) into (7.27), we get
2(∆xk+1

∗∗)TAT∆λk

≥ 2‖∆xk+1
∗∗ ‖2H̄x − ‖∆x

k+1
∗∗ ‖2H̄x−βATA − ‖∆x

k‖2
H̄x−βATA − 2‖∆xk+1

∗ ‖2Nx − 2‖∆xk∗‖2Nx
= ‖∆xk+1

∗∗ ‖2H̄x+βATA − ‖∆x
k‖2
H̄x−βATA − 2‖∆xk+1

∗ ‖2Nx − 2‖∆xk∗‖2Nx .
By a simple manipulation, we get

2(∆xk+1)TAT∆λk

≥ ‖∆xk+1‖2
H̄x+βATA − ‖∆x

k‖2
H̄x−βATA − 2‖∆xk+1‖2Nx − 2‖∆xk‖2Nx

+2(∆xk+1 −∆xk+1
∗∗)TAT∆λk + (‖∆xk+1

∗∗ ‖2H̄x+βATA − ‖∆x
k+1‖2

H̄x+βATA)

+2(‖∆xk+1‖2Nx − ‖∆x
k+1
∗ ‖2Nx) + 2(‖∆xk‖2Nx − ‖∆x

k
∗‖2Nx). (7.29)

From the definitions of ∆xk+1 and ∆xk+1
∗∗ , we get

∆xk+1 −∆xk+1
∗∗ = (xk+1 − xk)− (xk+1

∗ − xk∗) = (xk+1 − xk+1
∗)− (xk − xk∗).

Together with (6.2) and the fact that {wk} is bounded, there is a positive constant c such that
2(∆xk+1 −∆xk+1

∗∗)TAT∆λk

= 2(xk+1 − xk+1
∗)TAT (λk − λk−1)− 2(xk − xk∗)TAT (λk − λk−1)

≥ −2‖xk+1 − xk+1
∗ ‖‖AT (λk − λk−1)‖ − 2‖xk − xk∗‖‖AT (λk − λk−1)‖

≥ −c(νk + νk−1).
Similarly, it’s easy to prove that there is a positive constant c3 such that

2(∆xk+1 −∆xk+1
∗∗)TAT∆λk + (‖∆xk+1

∗∗ ‖2H̄x+βATA − ‖∆x
k+1‖2

H̄x+βATA)

+2(‖∆xk+1‖2Nx − ‖∆x
k+1
∗ ‖2Nx) + 2(‖∆xk‖2Nx − ‖∆x

k
∗‖2Nx)

≥ −c3(νk−1 + νk).

110

The ALM with full Jacobian decomposition and LQP regularization

Note that ∆λk+1 = ∆λk − γβA∆xk+1. It follows from (7.29) and the above formula that
1
γβ
‖∆λk‖2 − 1

γβ
‖∆λk+1‖2

= 2(∆xk+1)TAT∆λk − γβ‖A∆xk+1‖2

≥ ‖∆xk+1‖2
H̄x+(1−γ)βATA−2Nx − ‖∆x

k‖2
H̄x−βATA+2Nx − c3(νk−1 + νk).

Using this and the definition of H̄ ′x, we have(
‖∆xk‖2

H̄′x
+ 1
γβ
‖∆λk‖2

)
−
(
‖∆xk+1‖2

H̄′x
+ 1
γβ
‖∆λk+1‖2

)
≥ ‖∆xk+1‖2

H̄x+(1−γ)βATA−2Nx − ‖∆x
k+1‖2

H̄′x
− c3(νk−1 + νk)

= ‖∆xk+1‖2(2−γ)βATA−4Nx − c3(νk−1 + νk). (7.30)
From

0 < µ <
(2− γ)βλmin(ATA)

4 maxi=1,...,m{ri}
,

it follows that (2− γ)βATA− 4Nx � 0. Using (7.30), we have

‖∆xk+1‖2
H̄′x

+ 1
γβ
‖∆λk+1‖2 ≤ ‖∆xk‖2

H̄′x
+ 1
γβ
‖∆λk‖2 + c3(νk−1 + νk).

Then, by the definition of H̄ ′, we get the assertion (7.22).

Theorem 7.9. Let {wt} be generated by Algorithm 2. Assume that A is a matrix of full column rank;
β > 0; γ ∈ (0, 2); ri > 0, i = 1, . . . ,m and µ ∈ (0, 1), where ri and µ satisfy the conditions:

ri > (m− 1)βλmax(ATi Ai)

and

0 < µ < min
{

min
i=1,...,m

{
1− (m− 1)βλmax(ATi Ai)

ri

}
,
(2− γ)βλmin(ATA)

4 maxi=1,...,m{ri}

}
.

Then for any w∗ ∈ Ω∗ and any integer t ≥ 0, we obtain

‖wt+1 − wt‖2
H̄′ ≤

1
t+ 1

{
c0
[
‖w0 − w∗‖2H +

∞∑
k=0

(2ρCw∗νk + ρ2ν2
k)
]

+ c3

∞∑
k=1

k(νk−1 + νk)
}
, (7.31)

where H and H̄ ′ are defined in (2.13) and (5.4), and the positive constants c0, Cw∗ and c3 are defined
in (5.16), Lemmas 7.5 and 7.8.

Proof. Using M(wk − w̃k) = (wk − wk+1) (see (4.3)), (5.16) and (7.13), we obtain
∞∑
k=0
‖wk − wk+1‖2

H̄′ ≤
∞∑
k=0

c0‖wk − wk+1‖2
M−T H̃M−1

≤
∞∑
k=0

c0‖wk − w̃k‖2H̃

≤ c0
[
‖w0 − w∗‖2H +

∞∑
k=0

(2ρCw∗νk + ρ2ν2
k)
]
. (7.32)

It follows from (7.22) that

‖wt+1 − wt‖2
H̄′ ≤ ‖w

k+1 − wk‖2
H̄′ + c3

t∑
j=k+1

(νj−1 + νj) ∀ 0 < k ≤ t.

111

M. Li & X. M. Yuan

And thus we have

(t+ 1)‖wt+1 − wt‖2
H̄′ ≤

t∑
k=0
‖wk+1 − wk‖2

H̄′ + c3

t−1∑
k=0

t∑
j=k+1

(νj−1 + νj)

≤
t∑

k=0
‖wk+1 − wk‖2

H̄′ + c3

t∑
k=1

k(νk−1 + νk).

From the above inequality and (7.32), we get the assertion (7.31). The proof is complete.

It follows from Remark 6.1, (7.3) and (7.5) that if wt+1 = wt, we have wt+1
∗ = wt = w̃t and wt is

the solution of VI(Ω, F, θ). Therefore, ‖wt+1 −wt‖2
H̄′

can be viewed as an error measurement in term
of the distance to the solution set of VI(Ω, F, θ) for the t-th iteration of Algorithm 2. Notice that Ω∗
is convex and closed. Let

d := c0 inf{‖w0 − w∗‖2H | w∗ ∈ Ω∗}+ c0

∞∑
k=0

(2ρCw∗νk + ρ2ν2
k) + c3

∞∑
k=1

k(νk−1 + νk).

If
∑∞
k=1 kνk <∞, we have d < +∞. Then, for any given ε > 0, the inequality (7.31) shows that under

the assumptions that A is a matrix of full column rank, (7.20), (7.21) and
∑∞
k=1 kνk <∞, Algorithm

2 needs at most
dd
ε
− 1e

iterations to ensure that ‖wt+1 − wt‖2
H̄′
≤ ε.

7.4. A Worst-case o(1/t) Convergence Rate in the Non-ergodic Sense

With Lemma 2.3, we can refine the result in Theorem 7.9 and prove a worst-case o(1/t) convergence
rate for Algorithm 2. The result is summarized in the following theorem.

Theorem 7.10. Let {wt} be generated by Algorithm 2. Assume that A is a matrix of full column
rank; β > 0; γ ∈ (0, 2); ri > 0, i = 1, . . . ,m and µ ∈ (0, 1), where ri and µ satisfy the conditions:

ri > (m− 1)βλmax(ATi Ai)

and

0 < µ < min
{

min
i=1,...,m

{
1− (m− 1)βλmax(ATi Ai)

ri

}
,
(2− γ)βλmin(ATA)

4 maxi=1,...,m{ri}

}
.

If
∑∞
t=1 tνt < +∞, then we obtain

‖wt+1 − wt‖2
H̄′ = o(1/t),

where H̄ ′ is defined in (5.4).

Proof. From (7.32), we have
∞∑
t=0
‖wt+1 − wt‖2

H̄′ < +∞.

On the other hand, Lemma 7.8 implies ‖wt+1−wt‖2
H̄′
≤ ‖wt−wt−1‖2

H̄′
+c3(νt−1+νt). If

∑∞
t=1 tνt < +∞,

then we obtain
∑∞
t=1 t(νt−1 + νt) < +∞. By Lemma 2.3, we have ‖wt+1 − wt‖2

H̄′
= o(1/t), which

completes the proof.

112

The ALM with full Jacobian decomposition and LQP regularization

7.5. Linear Convergence

Similarly as Theorem 5.9, we have the following assertion but the proofs are omitted.

Theorem 7.11. Let {wk} be generated by Algorithm 2 and {wk+1
∗ } be defined in (7.2). Assume that

Assumptions 1-3 hold, and the matrix A has full row rank. There is a constant δ > 0, such that

‖wk+1
∗ − w∗‖2H ≤

1
1 + δ

‖wk − w∗‖2H ∀w∗ ∈ Ω∗, (7.33)

where H is defined in (2.13).

Theorem 7.12. Let {wk} be generated by Algorithm 2. Assume that Assumptions 1-3 hold, the matrix
A has full row rank, and

0 ≤ νk ≤
δ

2ρ
√

(1 + δ)(2 + δ)
‖wk − w∗‖H ∀w∗ ∈ Ω∗,

where H, ρ and δ are defined by (2.13), (7.4) and (7.33). Then we have

‖wk+1 − w∗‖2H ≤
4 + 3δ

4(1 + δ)‖w
k − w∗‖2H .

Proof. Using the Cauchy-Schwarz inequality, (7.33) and (7.4), we have
‖wk+1 − w∗‖2H = ‖(wk+1

∗ − w∗) + (wk+1 − wk+1
∗)‖2H

≤ (1 + δ

2)‖wk+1
∗ − w∗‖2H + (2

δ
+ 1)‖wk+1 − wk+1

∗ ‖2H

≤
1 + δ

2
1 + δ

‖wk − w∗‖2H + (2
δ

+ 1)ρ2ν2
k .

If 0 ≤ νk ≤ δ

2ρ
√

(1+δ)(2+δ)
‖wk − w∗‖H , then from the above inequality we get

‖wk+1 − w∗‖2H ≤ 2 + δ

2(1 + δ)‖w
k − w∗‖2H + (2 + δ)ρ2ν2

k

δ

≤
(2 + δ

2(1 + δ) + δ

4(1 + δ)
)
‖wk − w∗‖2H

= 4 + 3δ
4(1 + δ)‖w

k − w∗‖2H .

The proof is complete.

8. Numerical Experiments

In this section, we apply the proposed ALM with full Jacobian decomposition and LQP regularization
to an allocation problem arising in market mechanisms (see, e.g., [5, 39, 45]) and report some prelimi-
nary numerical results to verify its efficiency. For succinctness, we only focus on the exact version (3.2)
and do not test the inexact version (6.1). We wrote our code by Matlab R2015a and all experiments
were conducted on a personal computer with an Intel Core i5-3210M CPU (2.50GHz) and 8.00 GB of
RAM.

We consider an economic system in which n resources are allocated by using m technological activi-
ties. The goal is to minimize the sum of cost functions of all the activities, denoted by θi (i = 1, . . . ,m).
The amount of each resource is denoted by bj ≥ 0 (j = 1, . . . , n), which justifies the nonnegativity

113

M. Li & X. M. Yuan

and budget constraints. As in [5], the allocation problem can be modeled as

min
{
m∑
i=1

θi(xi)
∣∣∣ m∑
i=1

xi = b, xi ∈ <n+, i = 1, . . . ,m
}
, (8.1)

where θi : <n → < is the cost function of the i-th activity and the vector b = (b1, . . . , bn) ∈ <n
represents all the resources. The model (8.1) is a special case of (1.1) with Ai := In for i = 1, . . . ,m.

To specify the cost functions in (8.1), we choose some stencil functions in Table 10.2 in [8] and list
them in Table 8.1. For such a function φ(s), note that its logarithmic-quadratic proximity mapping

Table 8.1. The stencil function φ(s) for generating θi in (8.1).

No. φ(s) : < → (−∞,+∞] argmins≥0φ(s) + τ
2 ‖s− x‖

2 − η log s

ii

{
ωs if s ≥ 0
ωs otherwise

p =
(
τx− ω +

√
(τx− ω)2 + 4τη

)
/(2τ)

v κ|s|q p > 0, such that
qκpq + τp2 − τxp− η = 0

vii ω|s|+ τ̃ |s|2 + κ|s|q p > 0, such that
qκpq + (2τ̃ + τ)p2 + (ω − τx)p− η = 0

ix

{
ωs if s ≥ 0
+∞ otherwise

p =
(
τx− ω +

√
(τx− ω)2 + 4τη

)
/(2τ)

x

{
−ωs1/q if s ≥ 0
+∞ otherwise

pq,

where p > 0 and τp2q − τxpq − ωq−1p− η = 0

xi

{
ωs−q if s > 0
+∞ otherwise

p > 0, such that
τpq+2 − τxpq+1 − ηpq − ωq = 0

xiv

{
−κ log s+ τ̃ s2/2 + αs if s > 0
+∞ otherwise

p = (τx− α+
√

(τx− α)2 + 4(τ + τ̃)(κ+ η))/2(τ + τ̃)

xv

{
−κ log s+ αs+ ωs−1 if s > 0
+∞ otherwise

p > 0, such that
τp3 + (α− τx)p2 − (κ+ η)p− ω = 0

xvi

{
−κ log s+ ωsq if s > 0
+∞ otherwise

p > 0, such that
ωqpq + τp2 − τxp− (κ+ η) = 0

xvii

{
−κ log(s− ω)− κ log(ω − s) if s ∈ (ω, ω)
+∞ otherwise

p > 0, such that
τp4 − (x+ ω + ω)τp3 − (κ+ κ+ η − xωτ
−ωωτ − xωτ)p2 + (κω + κω + ηω + ηω

−xτωω)p− ηωω = 0

Table 8.2. Parameters in φ(s).

ii v, vii, ix x xi xiv, xv, xvi xvii

ω ∼ U(102, 103)
ω ∼ U(−102,−103)

ω ∼ U(1, 5)
κ ∼ U(1, 5)
τ̃ ∼ U(1, 5)
q ∼ U(1, 5)

ω ∼ U(−5,−1)
q ∼ U(1, 5)

ω ∼ U(107, 108)
q ∼ U(1, 5)

ω ∼ U(1, 5)
κ ∼ U(1, 5)
τ̃ ∼ U(1, 5)
q ∼ U(1, 5)
α ∼ U(1, 5)

κ ∼ U(10−3, 10−1)
κ ∼ U(10−3, 10−1)
ω ∼ U(103, 104)
ω ∼ U(−104,−101)

argmin
s∈<

{φ(s) + τ

2‖s− x‖
2 − η log s}

114

The ALM with full Jacobian decomposition and LQP regularization

with η > 0 has a closed-form solution or can be efficiently computed by solving certain polynomial
equations. Furthermore, for a one-dimensional stencil function φ(s) in Table 8.1, it can be easily
extended to an n-dimensional function Φ(s) whose proximity function can also be easily computed.
Let us take the stencil function φ(s) listed as Item (ii) in Table 8.1 (ii) as an illustrative example.
Based on this φ(s), we can define

Φ(s) :=
n∑
i=1

φ(si) =
{ ∑n

i=1 ωisi if si ≥ 0,∑n
i=1 ωisi otherwise, (8.2)

where s = (s1, . . . , sn), ω = (ω1, . . . , ωn) and ω = (ω1, . . . , ωn) are vectors in <n. Particularly, if
ω = −ω = 1, we have Φ(s) = ‖s‖1 which corresponds to the standard l1-norm; otherwise, we have
Φ(s) = ‖W s‖1 which corresponds to the weighted l1-norm with W = diag(ω). Similarly, we can
extend all the other functions listed in Table 8.1 to n-dimensional functions for the use of the cost
functions {θi}10

i=1 in the model (8.1). The parametric vectors, e.g., ω, ω, κ, etc, are chosen randomly
by following some uniform distributions (see the right-column of Table 8.1 with U(a, b) representing
uniform distribution in the interval [a, b]). The resource amount vector b in the model (8.1) is set as
b := n1.

For simplicity, if n = 1, the i-th subproblem is equivalent to solving

min
xi∈<n+

{
θi(xi) + β + ri

2
[
xi −

(1− µ)rixki + λk − β(
∑m
j=1,j 6=i x

k
j − b)

β + ri

]
− µri(xki)2 log xi

}
. (8.3)

This is just the problem
min
xi∈<n+

{
φ(xi) + τ

2‖xi − x‖
2 − η log xi

}
,

where

φ := θi, τ := β + ri, x :=
(1− µ)rixki + λk − β(

∑m
j=1,j 6=i x

k
j − b)

β + ri
and

η := µri(xki)2.

It follows immediately from [11] that solving (1.1) is equivalent to finding a zero point of

e(w) :=


ex1(w)

...
exm(w)
eλ(w)

 =


x1 − P<n1

+
[x1 − (g1(x)−AT1 λ)]

...
xm − P<nm+

[xm − (gm(y)−ATmλ)]∑m
i=1Aixi − b

 , (8.4)

where gi(xi) ∈ ∂θi(xi), i = 1, . . . ,m, and PV [v] denotes the projection of v onto V in the Euclidean
norm. Therefore, we can use ‖e(wk)‖/‖e(w0)‖ to evaluate the quality of the iterate wk.

To see the efficiency of Algorithm 1 for solving the allocation problem (8.1), we compare it with
the alternating direction method with Gaussian back substitution (“ADM-G” for short) proposed
in [24] and the direct extension of ADMM (1.6) (“EADMM” for short). Note that the ADM-G is a
competitive algorithm in the category of ADMM-based prediction-correction methods and its efficiency
and stability have been well verified in the literature; and the EADMM usually performs very well
despite it lacks of convergence. Thus, we choose these two algorithms to compare.

For the involved parameters of these iterative schemes, we chose β = 1 and α = 1 for the ADM-G;
β = 1 for the EADMM; r = m/100, µ = 0.1, β = 0.9(1 − µ)r/(m − 1) and γ = 1.9 for Algorithm 1.
Since Ai = I for all i’s, and for Algorithm 1, β should satisfy

0 < β <
(1− µ)r

(m− 1)λmax(ATi Ai)
∀ i = 1, . . . ,m,

115

M. Li & X. M. Yuan

we chose β = 0.9(1 − µ)r/(m − 1) in the numerical experiments. All initial iterates are chosen as 1.
Note that the subproblems of Algorithm 1 in (3.3) can be solved in parallel. But for comparison with
ADM-G and EADMM whose subproblems can only be solved sequentially, we count the accumulated
time for solving all the subproblems for Algorithm 1.

In Figures 8.1 - 8.4, we plot the evolutions of the objective function values (“Obj-Fun-Val” for short)
and the values of ‖e(wk)‖/‖e(w0)‖ (“|ew|/|ew0|-Val” for short) with respect to the computing time
and iteration numbers for the cases of n where n = 100, 1000, 2000, 3000, 5000 and 8000. The plots in
Figures 8.1 - 8.4 show that among the three methods under comparison, the proposed Algorithm 1
performs far better than the others.

n=100: CPU time (s)
0 5 10 15 20

O
bj

-F
un

-V
al

103

104

ADM-G
EADMM
Algorithm 1

n=1000: CPU time (s)
0 200 400 600 800 1000 1200

O
bj

-F
un

-V
al

105

106

107

ADM-G
EADMM
Algorithm 1

n=2000: CPU time (s)
0 500 1000 1500 2000 2500

O
bj

-F
un

-V
al

105

106

107

ADM-G
EADMM
Algorithm 1

n=3000: CPU time (s)
0 1000 2000 3000 4000

O
bj

-F
un

-V
al

105

106

107

108

ADM-G
EADMM
Algorithm 1

n=5000: CPU time (s)
0 2000 4000 6000

O
bj

-F
un

-V
al

106

108

ADM-G
EADMM
Algorithm 1

n=8000: CPU time (s)
0 2000 4000 6000 8000 10000

O
bj

-F
un

-V
al

106

107

108

109

ADM-G
EADMM
Algorithm 1

Figure 8.1. Evolutions of objective function values w.r.t. computing time for variant n’s.

n=100: CPU time (s)
0 5 10 15 20

|e
w

|/|
ew

0|
-V

al

10-9

10-8

10-7

10-6

ADM-G
EADMM
Algorithm 1

n=1000: CPU time (s)
0 200 400 600 800 1000 1200

|e
w

|/|
ew

0|
-V

al

10-10

10-8

10-6

ADM-G
EADMM
Algorithm 1

n=2000: CPU time (s)
0 500 1000 1500 2000 2500

|e
w

|/|
ew

0|
-V

al

10-10

10-8

10-6

ADM-G
EADMM
Algorithm 1

n=3000: CPU time (s)
0 1000 2000 3000 4000

|e
w

|/|
ew

0|
-V

al

10-10

10-8

10-6

ADM-G
EADMM
Algorithm 1

n=5000: CPU time (s)
0 2000 4000 6000

|e
w

|/|
ew

0|
-V

al

10-10

10-8

10-6

ADM-G
EADMM
Algorithm 1

n=8000: CPU time (s)
0 2000 4000 6000 8000 10000

|e
w

|/|
ew

0|
-V

al

10-10

10-8

10-6

ADM-G
EADMM
Algorithm 1

Figure 8.2. Evolutions of ‖e(w)‖/‖e(w0)‖ w.r.t. computing time for variant n’s.

116

The ALM with full Jacobian decomposition and LQP regularization

n=100: Iter No
0 100 200 300 400 500

O
bj

-F
un

-V
al

103

104

ADM-G
EADMM
Algorithm 1

n=1000: Iter No
0 500 1000 1500 2000 2500 3000

O
bj

-F
un

-V
al

105

106

107

ADM-G
EADMM
Algorithm 1

n=2000: Iter No
0 500 1000 1500 2000 2500 3000

O
bj

-F
un

-V
al

105

106

107

ADM-G
EADMM
Algorithm 1

n=3000: Iter No
0 500 1000 1500 2000 2500 3000

O
bj

-F
un

-V
al

105

106

107

108

ADM-G
EADMM
Algorithm 1

n=5000: Iter No
0 500 1000 1500 2000 2500 3000

O
bj

-F
un

-V
al

106

108

ADM-G
EADMM
Algorithm 1

n=8000: Iter No
0 500 1000 1500 2000 2500 3000

O
bj

-F
un

-V
al

106

107

108

109

ADM-G
EADMM
Algorithm 1

Figure 8.3. Evolutions of objective function values w.r.t. iteration No. for variant n’s.

n=100: Iter No
0 100 200 300 400 500

|e
w

|/|
ew

0|
-V

al

10-9

10-8

10-7

10-6

ADM-G
EADMM
Algorithm 1

n=1000: Iter No
0 500 1000 1500 2000 2500 3000

|e
w

|/|
ew

0|
-V

al

10-10

10-8

10-6

ADM-G
EADMM
Algorithm 1

n=2000: Iter No
0 500 1000 1500 2000 2500 3000

|e
w

|/|
ew

0|
-V

al

10-10

10-8

10-6

ADM-G
EADMM
Algorithm 1

n=3000: Iter No
0 500 1000 1500 2000 2500 3000

|e
w

|/|
ew

0|
-V

al

10-10

10-8

10-6

ADM-G
EADMM
Algorithm 1

n=5000: Iter No
0 500 1000 1500 2000 2500 3000

|e
w

|/|
ew

0|
-V

al

10-10

10-8

10-6

ADM-G
EADMM
Algorithm 1

n=8000: Iter No
0 500 1000 1500 2000 2500 3000

|e
w

|/|
ew

0|
-V

al

10-10

10-8

10-6

ADM-G
EADMM
Algorithm 1

Figure 8.4. Evolutions of ‖e(w)‖/‖e(w0)‖ w.r.t. iteration No. for variant n’s.

9. Conclusions

We consider a separable convex minimization model whose variables are coupled by linear constraints
and they are subject to the positive orthant constraints, and its objective function is in form of m
functions without coupled variables. We suggest applying the Jacobian decomposition to the subprob-
lems obtained by the augmented Lagrangian method (ALM) at each iteration and regularizing the
decomposed subproblems by the logarithmic-quadratic proximal (LQP) terms. The ALM with full Ja-
cobian decomposition and LQP regularization is thus proposed for the generic case of the model under
consideration with m ≥ 3. The new scheme only requires solving some unconstrained subproblems at
each iteration and these subproblems are eligible for fully parallel computation. The new scheme can
be regarded as a further development of some existing work in combination of the LQP with Jacobian
decomposition of the ALM for the general case of m ≥ 3 which uses the standard quadratic proximal
terms for regularization; or the extension of existing work in combination of LQP and Gauss-Seidel

117

M. Li & X. M. Yuan

decomposition of the ALM for m = 2 to the generic case of m ≥ 3. We analyze both the exact and
inexact versions for the new scheme, and comprehensively investigate their convergence. The global
convergence, worst-case convergence rates measured by the iteration-complexity and the linear con-
vergence rates under additional assumptions are all derived. Note that the LQP term tends to be the
regular quadratic proximal term when µ→ 0, meaning the proposed Algorithm 1 asymptotically tends
to the proximal version of the Jacobian decomposition of ALM (1.8) in [25] when µ→ 0. Meanwhile,
our convergence analysis for Algorithms 1 and 2 holds for any fixed value of µ. Therefore, our conver-
gence analysis also implies that the same convergence rates can be derived for the proximal version of
the Jacobian decomposition of ALM (1.8) and its inexact version.

References

[1] A. Auslender and M. Teboulle. Entropic proximal decomposition methods for convex programs and varia-
tional inequalities. Math. Program., 91:33–47, 2001.

[2] A. Auslender and M. Teboulle. Interior projection-like methods for monotone variational inequalities. Math.
Program., 104:39–68, 2005.

[3] A. Auslender, M. Teboulle, and S. Ben-Tiba. A logarithmic-quadratic proximal method for variational
inequalities. Comput. Optim. Appl., 12:31–40, 1999.

[4] D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods. Academic Press, New York,
1982.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3:1–122,
2010.

[6] C. H. Chen, B. S. He, Ye Y. Y., and X. M. Yuan. The direct extension of ADMM for multi-block convex
minimization problems is not necessarily convergent. Math. Program., Ser A, 155:57–79, 2016.

[7] C. H. Chen, M. Li, and X. M. Yuan. Further study on the convergence rate of alternating direction method
of multipliers with logarithmic-quadratic proximal regularization. J. Optim. Theory Appli., 166:906–929,
2015.

[8] P. L. Combettes and J. C. Pesquet. Proximal splitting methods in signal processing. In H. H. Bauschke,
R. S. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, editors, Fixed-Point Algorithms
for Inverse Problems in Science and Engineering, pages 185–212. Springer, 2011.

[9] D. Davis and W. T. Yin. Convergence rate analysis of several splitting schemes. In R. Glowinski, S. J.
Osher, and W. T. Yin, editors, Splitting Methods in Communication, Imaging, Science, and Engineering,
pages 115–163. Springer, 2017.

[10] W. Deng, M. J. Lai, Z. M. Peng, and W. T. Yin. Parallel multi-block ADMM with o(1/k) convergence. J.
Sci. Comput., 71:712–736, 2017.

[11] B. C. Eaves. On the basic theorem of complementarity. Math. Program., 1:68–75, 1971.

[12] J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Math. Program., 55:293–318, 1992.

[13] J. Eckstein and W. Yao. Augmented Lagrangian and alternating direction methods for convex optimization:
A tutorial and some illustrative computational results. RUTCOR Research Report RRR 32-2012, 2012.

[14] F. Facchinei and J. S. Pang. Finite-Dimensional Variational Inequalities and Complementarity Problems.
Vol. I. Springer Series in Operations Research. Springer-Verlag, New York, 2003.

[15] R. Glowinski. Numerical Methods for Nonlinear Variational Problems. Springer-Verlag, New York, Berlin,
Heidelberg, Tokyo, 1984.

118

The ALM with full Jacobian decomposition and LQP regularization

[16] R. Glowinski. On alternating direction methods of multipliers: A historical perspective. In Modeling, Sim-
ulation and Optimization for Science and Technology, Volume 34 of the series Computational Methods in
Applied Sciences, pages 59–82. Springer, 2014.

[17] R. Glowinski and A. Marrocco. Approximation par éléments finis d’ordre un et résolution par pénalisation-
dualité d’une classe de problèmes non linéaires. R.A.I.R.O., R2:41–76, 1975.

[18] R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Me-
chanics. SIAM Studies in Applied Mathematics, Philadelphia, PA, 1989.

[19] E. G. Gol’shtein and N. V. Tret’yakov. Modified Lagrangian in convex programming and their generaliza-
tions. Math. Program. Studies, 10:86–97, 1979.

[20] D. R. Han, X. M. Yuan, and W. X. Zhang. An augmented-Lagrangian-based parallel splitting method for
separable convex programming with applications to image processing. Math. Comput., 83:2263–2291, 2014.

[21] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring Images: Matrices, Spectra, and Filtering. SIAM,
Philadelphia, 2006.

[22] B. S. He, L. S. Hou, and X. M. Yuan. On full Jacobian decomposition of the augmented Lagrangian method
for separable convex programming. SIAM J. Optim., 25:2274–2312, 2015.

[23] B. S. He, H. Liu, Wang Z. R., and X. M. Yuan. A strictly contractive Peaceman-Rachford splitting method
for convex programming. SIAM J. Optim., 24:1101–1140, 2014.

[24] B. S. He, M. Tao, and X. M. Yuan. Alternating direction method with Gaussian back substitution for
separable convex programming. SIAM J. Optim., 22:313–340, 2012.

[25] B. S. He, H. K. Xu, and X. M. Yuan. On the proximal Jacobian decomposition of ALM for multiple-block
separable convex minimization problems and its relationship to ADMM. J. Sci. Comput., 66:1204–1217,
2016.

[26] B. S. He and X. M. Yuan. On the O(1/n) convergence rate of Douglas-Rachford alternating direction
method. SIAM J. Numer. Anal., 50:700–709, 2012.

[27] B. S. He and X. M. Yuan. On nonergodic convergence rate of Douglas-Rachford alternating direction
method of multipliers. Numer. Math., 130:567–577, 2015.

[28] M. Hong and Z. Q. Luo. On the linear convergence of the alternating direction method of multipliers. Math.
Program., 162:165–199, 2017.

[29] M. Li, L.-Z. Liao, and X. M. Yuan. Inexact alternating direction method of multipliers with logarithmic-
quadratic proximal regularization. J. Optim. Theory Appli., 159:412–436, 2013.

[30] M. Li, D. F. Sun, and K.-C. Toh. A majorized admm with indefinite proximal terms for linearly constrained
convex composite optimization. SIAM J. Optim., 26:922–950, 2016.

[31] M. Li and X. M. Yuan. A strictly contractive Peaceman-Rachford splitting method with logarithmic-
quadratic proximal regularization for convex programming. Math. Oper. Res., 40:842–858, 2015.

[32] T. Y. Lin, S. Q. Ma, and S. Z. Zhang. On the global linear convergence of the ADMM with multiblock
variables. SIAM J. Optim., 25:1478–1497, 2015.

[33] T. Y. Lin, S. Q. Ma, and S. Z. Zhang. On the sublinear convergence rate of multi-block ADMM. J. Oper.
Res. Soc. China, 3:251–274, 2015.

[34] B. Martinet. Regularization d’inequations variationelles par approximations successives. Revue Francaise
d’Informatique et de Recherche Opérationelle, 4:154–159, 1970.

[35] J. G. Melo and R. D. C. Monteiro. Iteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-
block linearly constrained nonconvex programs. arXiv:1705.07229v1, 2017.

[36] A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in Optimization, Wiley-
Interscience Series in Discrete Mathematics. John Wiley & Sons, New York, 1983.

119

M. Li & X. M. Yuan

[37] Y. E. Nesterov. A method for unconstrained convex minimization problem with the rate of convergence
O(1/k2). Doklady AN SSSR, 269:543–547, 1983.

[38] Y. E. Nesterov. Gradient methods for minimizing composite objective function. Math. Program., Ser. B,
140:125–161, 2013.

[39] M. Patriksson. A survey on the continuous nonlinear resource allocation problem. European J. Oper. Res.,
185:1–46, 2008.

[40] Y. G. Peng, A. Ganesh, J. Wright, W. L. Xu, and Y. Ma. Robust alignment by sparse and low-rank
decomposition for linearly correlated images. IEEE Tran. Pattern Anal. Mach. Intel., 34:2233–2246, 2012.

[41] M. J. D. Powell. A method for nonlinear constraints in minimization problems. In R. Fletcher, editor,
Optimization, pages 283–298. Academic Press, New York, 1969.

[42] R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point algorithm in convex
programming. Math. Oper. Res., 1:97–116, 1976.

[43] M. Tao and X. M. Yuan. Recovering low-rank and sparse components of matrices from incomplete and
noisy observations. SIAM J. Optim., 21:57–81, 2011.

[44] M. Tao and X. M. Yuan. On the O(1/t) convergence rate of alternating direction method with logarithmic-
quadratic proximal regularization. SIAM J. Optim., 22:1431–1448, 2012.

[45] H. Uzawa. Market mechanisms and mathematical programming. Econometrica, 28:872–881, 1960.
[46] X. M. Yuan and M. Li. An LQP-based decomposition method for solving a class of variational inequalities.

SIAM J. Optim, 21:1309–1318, 2011.

120

	1. Introduction
	2. Preliminaries
	2.1. The Logarithmic-quadratic Proximal Regularization
	2.2. Variational Reformulation of (1.1)
	2.3. Some Notations

	3. The ALM with Full Jacobian Decomposition and LQP Regularization — Exact Version
	4. Convergence
	5. Convergence Rate
	5.1. A Worst-case O(1/t) Convergence Rate in the Ergodic Sense
	5.2. A Worst-case O(1/t) Convergence Rate in the Non-ergodic Sense
	5.3. A Worst-case o(1/t) Convergence Rate in the Non-ergodic Sense
	5.4. Linear Convergence

	6. The ALM with Jacobian Decomposition and LQP Regularization — Inexact Version
	7. Convergence Analysis
	7.1. Global Convergence
	7.2. A Worst-case O(1/t) Convergence Rate in the Ergodic Sense
	7.3. A Worst-case O(1/t) Convergence Rate in the Non-ergodic Sense
	7.4. A Worst-case o(1/t) Convergence Rate in the Non-ergodic Sense
	7.5. Linear Convergence

	8. Numerical Experiments
	9. Conclusions
	References

