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KUMMER THEORY FOR PRODUCTS OF ONE-DIMENSIONAL TORI

by

Flavio Perissinotto and Antonella Perucca

Abstract. — Let T be a finite product of one-dimensional tori defined over a number field K. We
consider the torsion-Kummer extension K(T [nt], 1

n
G), where n, t are positive integers and G is a finitely

generated group of K-points on T . We show how to compute the degree of K(T [nt], 1
n

G) over K and
how to determine whether T is split over such an extension. If K = Q, then we may compute at once the
degree of the above extensions for all n and t.

Résumé. — (La théorie de Kummer pour les produits de tores de dimension un) Soit T un produit fini
de tores de dimension un sur un corps de nombres K. Nous considérons l’extension de torsion-Kummer
K(T [nt], 1

n
G), où n, t sont des entiers strictement positifs et G un groupe de type fini engendré par

des K-points de T . Nous montrons comment l’on peut calculer le degré de K(T [nt], 1
n

G) sur K. Nous
montrons également comment déterminer si T est déployé sur une telle extension. Lorsque K = Q, nous
pouvons calculer en une seule fois les degrés de toutes les extensions ci-dessus pour tous les n et tous les
t.

1. Introduction

Kummer theory is a topic of significant interest in number theory, and in this paper we
investigate it for tori defined over a number field. So let T be a torus defined over a number
field K, and fix a finitely generated group G of K-points on T . We study the torsion-Kummer
extensions related to G, namely the extensions

K
(
T [m], 1

n
G
)
/K

where m, n are positive integers and n divides m.
The classical Kummer theory for tori by Ribet [4] shows that, if m = n = ℓ is a sufficiently
large prime, then the degree of the above torsion-Kummer extension is as large as possible.
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110 Kummer theory for products of one-dimensional tori

However, this does not allow to give a non-trivial lower bound for the degree in the general
case.
In [3] the second author considered one-dimensional tori and proved results on the torsion-
Kummer extensions supposing that m, n are powers of some given prime number. In this
work we remove the assumption on the parameters and consider more generally products of
one-dimensional tori. Our main result is the following:

Theorem 1.1. — Let T be a finite product of one-dimensional tori defined over a number
field K, and fix a finitely generated group G of K-points on T . If m, n are positive integers
such that n divides m, then there is an explicit finite procedure to determine whether T is split
over K(T [m], 1

nG) and to compute the degree of this extension over K and over K(T [m]).

To prove this theorem we fully describe the procedure mentioned in the statement, see Sec-
tion 3 for the case of a single one-dimensional torus and Section 4 for the general case. Then
in Section 5 we prove the following result:

Theorem 1.2. — Let T be a finite product of one-dimensional tori defined over Q, and fix
a finitely generated group G of Q-points on T . It is possible to compute at once the degree of
all number fields Q(T [m], 1

nG), where m, n are positive integers such that n divides m.

The above result is stated over Q for simplicity, however one may generalize it to those
number fields such that the analogous computations are feasible. For example, by the results
in [2] we have the following:

Remark 1.3. — In Theorem 1.1 we may compute at once the degree of the torsion-Kummer
extensions for all m and n if the splitting field of T is multiquadratic.

Finally, in Section 6 we present various examples of computations of the degree of torsion-
Kummer extensions. Notice that the results about one-dimensional tori from Sections 2 and 3
may be used to study further arithmetic problems.
The challenge is to study Kummer theory for all tori, and in this work we have settled a first
important case in higher-dimension.

Acknowledgements. — We thank Claus Fieker for helpful discussions.

2. Torsion fields of one-dimensional tori

Fix a number field K and some algebraic closure K. Let T be a non-split one-dimensional
torus over K with splitting field L, and call T (K) the group of K-points. Every such torus is
defined by the equation x2 − dy2 = 1 for some d ∈ K× which is not a square and its splitting
field is L = K(

√
d), see for example [6, Section 4.9]. Over L the above equation becomes

(x +
√

dy)(x −
√

dy) = 1 thus for every field L ⊆ F ⊆ K the map

(1) T (F ) ↪→ F × (x, y) 7→ x +
√

dy

is a bijection (the image of T (K) consists of the elements of L× whose L/K-norm is 1). The
multiplication of K× induces a group law for T , namely we have

(2) (x1, y1) ∗ (x2, y2) = (x1x2 + dy1y2, x1y2 + x2y1) .
Publications mathématiques de Besançon – 2023



Flavio Perissinotto and Antonella Perucca 111

For every positive integer m we let ζm ∈ K be a root of unity of order m and write µm = ⟨ζm⟩.
Moreover, we call T [m] ⊂ T (K) the group of points of order dividing m. By (1) we have the
following group isomorphism:

(3) µm → T [m] ζ 7→
(ζ + ζ−1

2 ,
ζ − ζ−1

2
√

d

)
.

We set Qm := Q(ζm) and call Q+
m the largest totally real subfield of Qm. Moreover, we use the

notation Km := K(ζm) and K+
m := K ·Q+

m. We call K(T [m]) the smallest extension of K over
which the points of T [m] are defined. We write K2∞ , K∞ for the union of the fields K2m , Km

and we similarly define K(T [2∞]) and K(T [∞]). We clearly have K(T [1]) = K(T [2]) = K.
If m is odd, then we have K(T [2m]) = K(T [m]) hence to study the torsion fields we may
suppose that either m is odd or 4 | m.

Proposition 2.1. — Let m, n ⩾ 3 with n | m. Then we have

(4) K(T [m]) = K+
m

(ζn − ζ−1
n√

d

)
= K+

m · K(T [n]) .

In particular, K(T [m]) is at most quadratic over K+
m and we have L(T [m]) = Lm. Thus

L ⊆ K(T [m]) holds if and only if L ⊆ K+
m or K+

m = Km (for example, it holds if ζ4 ∈ K).

Proof. — By (3) we get K(T [n]) = K+
n ( ζn−ζ−1

n√
d

) and this implies the second equality in (4).

We conclude the proof of (4) because ζm−ζ−1
m

ζn−ζ−1
n

is a real number contained in Qm. If L ̸⊆ K+
m,

then L ⊆ K(T [m]) holds if and only if
√

d and ζm−ζ−1
m√

d
generate the same quadratic extension

over K+
m, that means ζm − ζ−1

m ∈ K+
m and hence K+

m = Km. □

Remark 2.2. — If 4 | m, then by (4) we have

(5) K(T [m]) = K+
m(

√
−d) .

Moreover, if m is odd and w is its squarefree part, then L ⊆ K(T [m]) holds if and only if
L ⊆ K(T [w]) because by (4) the degree of K(T [m])/K(T [w]) is odd.

Theorem 2.3. — Suppose that ζ4 /∈ K and 4 | m, and write m = wt2e, where wt is odd and
w is the squarefree part of wt. Let r ⩾ 2 be the largest integer such that Q+

2r ⊆ K. If e ⩽ r,
then L ⊆ K(T [m]) holds if and only if L ⊆ K+

4w or ζ4 ∈ K+
4w. If e ⩾ r +1, then L ⊆ K(T [m])

holds if and only if L ⊆ K(T [w2r+1]) if and only if L ⊆ K+
w2r+1 or ζ4 ∈ K+

w2r+1.

Proof. — We make repeated use of (5), and by Remark 2.2 we may assume t = 1. Notice that
we have Q+

w2e = Q+
4w ·Q+

2e . If e ⩽ r then K(T [m]) = K+
4w(

√
−d) ·Q+

2e = K+
4w(

√
−d). Therefore

if L ⊆ K+
4w or ζ4 ∈ K+

4w, then L ⊆ K(T [m]), while if
√

d, ζ4 ̸∈ K+
4w, then K+

4w(
√

d) ̸=
K+

4w(
√

−d) hence L ̸⊆ K(T [m]). Now let e ⩾ r +1. Notice that if L ⊆ K+
w2r+1 or ζ4 ∈ K+

w2r+1 ,
then L ⊆ K(T [w2r+1]), while if

√
d, ζ4 ̸∈ K+

w2r+1 , then K+
w2r+1(

√
d) ̸= K+

w2r+1(
√

−d) hence
L ̸⊆ K(T [w2r+1]). To conclude, suppose that L ̸⊆ K(T [w2r+1]) and hence K ∩ Q2∞ = Q+

2r .
Let K ′ = K+

4w(
√

−d), so we have K ′∩Q2∞ ⊆ Q+
2∞ because ζ4, ζ2r+1 −ζ−1

2r+1 ̸∈ K ′ and K ′∩Q2∞

is at most a quadratic extension of Q+
2r . Therefore K ′ ·Q+

2∞ ∩Q2∞ = Q+
2∞ and, as ζ4 ∈ L · K ′,

we deduce that L ̸⊆ K(T [w2∞]) = K ′ · Q+
2∞ . □

Publications mathématiques de Besançon – 2023



112 Kummer theory for products of one-dimensional tori

3. Kummer theory for a non-split one-dimensional torus

Let T be a non-split one-dimensional torus defined over a number field K, and call L the
splitting field. Let G be a finitely generated and torsion-free subgroup of T (K). For all positive
integers m, n with n | m, consider the torsion-Kummer extension K(T [m], 1

nG) which is
obtained by adding to K(T [m]) the coordinates of all points P ∈ T (K) such that nP ∈ G. We
present an explicit finite procedure to compute the degree of the extension K(T [m], 1

nG)/K.
Notice that for n = 1 we are computing the degree of K(T [m])/K, thus we can also determine
the degree of K(T [m], 1

nG) over K(T [m]). Also notice that we could remove the assumption
that G is torsion-free because, if the torsion subgroup of G has order t, then we can reduce to
the torsion-free case replacing m by lcm(m, nt). We call G′ ⊂ L× the image of G under (1).

Remark 3.1. — We have[
K
(
T [m], 1

n
G
)

: K

]
=
{

2[L(ζm, n
√

G′) : L] if L ⊆ K(T [m], 1
nG)

[L(ζm, n
√

G′) : L] otherwise .

Thus we may reduce to the multiplicative group (and do the computations thanks to [1])
provided that we can determine whether L ⊆ K(T [m], 1

nG). We may suppose that n is a
power of 2 because, if n is odd, then the degree of K(T [m], 1

nG)/K(T [m]) is odd.

We are left to investigate the following question:

Question 3.2. — Given m ⩾ 1 and f ⩾ 0 with 2f | m, do we have L ⊆ K(T [m], 1
2f G)?

Notice that we could easily investigate Question 3.2 also if G is not torsion-free, reducing to
the torsion-free case by replacing m.

Theorem 3.3 ([3, Lemmas 3.3 and 3.4]). — We have L ⊆ K
(1

2G
)

if and only if there is
some P ∈ G such that L ⊆ K

(1
2P
)
. This means, identifying P with its image P ′ ∈ L× by (1),

that
√

P ′ ∈ L and NL/K(
√

P ′) ̸= 1. If a basis of G is given and P exists, then we may take
P to be a sum of a subset of basis elements.

Consider K ′ := K(T [4]) = K(
√

−d) and suppose w.l.o.g. that ζ4 ̸∈ K ′. We call L′ = L(ζ4). We
let s ⩾ 2 be the largest integer satisfying Q+

2s ⊆ K ′. For s ⩾ 3, we call Q−
2s the subextension

of Q2s of relative degree 2 which is neither Q+
2s nor Q2s−1 . By [3, Theorem 2.3] we know that

K(T [2s]) = K ′ and we have either K ′ ∩ Q2∞ = Q−
2s+1 and L′ = K ′

2s+1 = K(T [2s+1]), or
K ′ ∩ Q2∞ = Q+

2s and L′ = K ′
2s ̸⊆ K(T [2∞]).

If F is a number field, an element a ∈ F × is called strongly 2-indivisible if there is no root of
unity ζ ∈ F ∩ µ2∞ such that aζ is a square in F ×. We call elements a1, . . . , ar ∈ F × strongly
2-independent if

∏
j∈J aj is strongly 2-indivisible for any non empty subset J of {1, . . . , r}.

We refer to [1, Section 2] for properties of strongly 2-indivisible and strongly 2-independent
elements of a number field.
Consider a Z-basis P1, . . . , Pr for G and its image under (1). Up to replacing this basis of G′

in a computable way, see [1, Theorem 14], we may suppose that it is of the form ξia
2δi

i , where
the ai’s are strongly 2-independent elements of (L′)×, the δi’s are non-negative integers and
the ξi’s are roots of unity in L′ of order 2hi for some non-negative integer hi such that hi = 0
or ζ2hi+δi /∈ L′. If ζ4 /∈ K ′, then we have NL′/K′(ai) ∈ {±1} by [3, proof of Lemma 3.8].
Publications mathématiques de Besançon – 2023
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Theorem 3.4 ([3, Theorems 3.9 and 3.10]). — With the above notation, suppose that ζ4 ̸∈
K ′. Consider the property L′ ⊆ K ′(T [2v], 1

2f G) for non-negative integers v ⩾ f .

1. If L′ = K ′
2s+1 = K(T [2s+1]), then the property holds if and only if v ⩾ s + 1 or

min({s + 1} ∪ {s + 1 − hi : i ∈ I} ∪ {δj : j ∈ J}) ⩽ f

where I consists of the indices satisfying hi ̸= 0 and J of the indices satisfying hj = 0
and NL′/K′(aj) = −1.

2. If L′ = K ′
2s ̸⊆ K(T [2∞]), then the property holds if and only if there is some j ∈ J such

that δj ⩽ f and
hj + δj ⩽ max({v} ∪ {hi + min(f, δi) : i /∈ J}

∪ {hi + min(f, δi − 1) : i ∈ J})

where J is the set of indices j satisfying NL′/K′(aj) = −1. Thus L ⊆ K(T [2∞], 1
2∞ G)

holds if and only if J ̸= ∅.

We conclude this section by answering Question 3.2. By (5), if ζ4 ∈ K ′ and L ̸⊆ K(T [m]),
then 4 ∤ m hence L ⊆ K

(
T [m], 1

2f G
)

holds if and only if f = 1 and there exists P as in
Theorem 3.3 with base field K(T [m]). Now assume ζ4 ̸∈ K ′: by Theorem 3.4 we may determine
whether L ⊆ K(T [2v], 1

2f G) holds for any integer v ⩾ max(2, f), as this is equivalent to
L′ ⊆ K ′(T [2v], 1

2f G).
Suppose that 4 | m, and write m = wt2v, where wt is odd and with squarefree part w. By
Remark 2.2 we reduce to the case t = 1. If L ⊆ K(T [4w]), then we are done. Else, we replace
K by K(T [4w]) = K+

4w(
√

−d) and, since again ζ4 ̸∈ K, we have reduced to the known case
where m is a power of 2.
Finally suppose that 4 ∤ m hence f ∈ {0, 1}. By Proposition 2.1 we can determine whether
L ⊆ K(T [m]). If not, then we consider the largest subfield F ⊆ K(T [m]) whose Galois group
over K has exponent dividing 2, and we investigate whether L ⊆ F (1

2G) with Theorem 3.3.

4. Kummer theory for a product of one-dimensional tori

Let T =
∏r

i=1 Ti be a finite product of one-dimensional tori defined over a number field K,
and let Li = K(

√
di) be the splitting field of Ti.

Remark 4.1. — For m = 1, 2 we have K(T [m]) = K, while for m ⩾ 3 by Proposition 2.1
we have

(6) K(T [m]) = K+
m

(√
d1d2, . . . ,

√
d1dr,

ζm − ζ−1
m√

d1

)
.

We may thus compute the degree of K(T [m])/K (this is an extension of K+
m obtained by

adding square roots). Moreover, all Ti are isomorphic over K(T [m]) because they are either
all split over K(T [m]) or none is, and they are all split over K(T [m],

√
d1).

We fix a finitely generated subgroup G of T (K) and consider the group Gi consisting of the
coordinates in Ti of the points in G.

Publications mathématiques de Besançon – 2023



114 Kummer theory for products of one-dimensional tori

Remark 4.2. — For m ⩾ 1 the extension K(T [m], 1
2G)/K(T [m]) is generated by square-

roots of elements of K(T [m]). Indeed, if P = (x, y) ∈ Gi \ Ti[2], then by [3, Lemma 3.1] we
have K(1

2P ) = K(
√

2(x + 1)).

Proof of Theorem 1.1. — Avoiding trivial cases we may suppose that either m ⩾ 3 or m =
n = 2. By Remark 4.3 we reduce to the case in which all Gi are torsion-free. We then reduce
to the case where the Ti’s are pairwise not K-isomorphic (up to replacing G). Indeed, having
a point in the power of a torus amounts to having a group of points on the torus, so we may
suppose that Ti ̸= Tj for i ̸= j. Moreover, if w.l.o.g. T1 and T2 are K-isomorphic, then we
may replace T2 by T1 because, if H1 ⊂ T1(K) and H2 denotes its isomorphic image in T2,
then we have

K
(
T1[m], 1

n
H1
)

= K
(
T2[m], 1

n
H2
)

.

For the case m = n = 2 see Remark 4.2, while for m ⩾ 3 we reduce to a single one-dimensional
torus over K(T [m]) by Remark 4.1, and then we refer to Section 3. □

Remark 4.3. — If Gi has a torsion group of order ti, then we may reduce to the case where
G is torsion-free provided that we work over the torsion field

(7) K
(
T1[lcm(m, nt1)], . . . , Tr[lcm(m, ntr)]

)
.

For m ⩾ 3 this field is

K+
lcm(m,nt1,...,ntr)

(√
d1d2, . . . ,

√
d1dr,

ζm − ζ−1
m√

d1

)
while for m = n = 2 it is

K+
lcm(2t1,...,2tr)

(
ζt1 − ζ−1

t1√
d1

, . . . ,
ζtr − ζ−1

tr√
dr

)
,

so the degree of this torsion field is computable, similarly to Remark 4.1.

Remark 4.4. — For every i, let ni be a positive integer dividing m, and call n their least
common multiple. Then the compositum of the fields K(Ti[m], 1

ni
Gi) equals K(T [m], 1

nG′),
where G′ is any finitely generated subgroup of T (K) whose points have coordinates in Ti that
form the group G′

i = n
ni

Gi.

5. Products of one-dimensional tori defined over Q

This section is devoted to the proof of Theorem 1.2. We write T =
∏r

i=1 Ti, where Ti is given
by the equation x2 − diy

2 = 1 for some squarefree di ∈ Q. By Theorem 1.1 we can deal with
finitely many pairs (m, n) so we may suppose m ⩾ 3 and we apply Remark 4.1 to work with
T1 over Q(T [m]).

Remark 5.1. — We may compute at once the degree of Q(T [m]) for all m ⩾ 1, where
w.l.o.g. m is odd or 4 | m. Indeed, by (6) we have

(8) Q(T [m]) = Q+
m

(√
−d1, . . . ,

√
−dr

)
Publications mathématiques de Besançon – 2023



Flavio Perissinotto and Antonella Perucca 115

if 4 | m since (ζm − ζ−1
m ) ·

√
−1 ∈ Q+

m, and

(9) Q(T [m]) = Q+
m

(√
−pd1, . . . ,

√
−pdr

)
if m is odd and it has some prime divisor p ≡ 3 mod 4, since (ζm − ζ−1

m ) ·
√

−p ∈ Q+
m. Else,

we have

(10) [Q(T [m]) : Q+
m] = 2[Q+

m(
√

d1d2, . . . ,
√

d1dr) : Q+
m].

Indeed, in this last case the field Q+
m( ζm−ζ−1

m√
d1

) has degree 2 over the field Q+
m and their

exponents over Q differ by a factor 2. Thus the former field is not contained in a compositum
of the latter with a multiquadratic field. We conclude by Lemma 5.2.

Lemma 5.2. — If c, c1, . . . , cn are rational numbers, then there is an explicit finite procedure
to compute at once the degree of Q+

m(√c1, . . . ,
√

cn)/Q+
m for all m ⩾ 1 and to determine those

m ⩾ 1 such that
√

c ∈ Q+
m(√c1, . . . ,

√
cn).

Proof. — The second assertion follows from the first (applied to c1, . . . , cn and c, c1, . . . , cn

respectively). For the first assertion suppose w.l.o.g. that the degree of Q(√c1, . . . ,
√

cn) is
2n. Then we may compute the requested degree for all m as

(11) 2n

#
{

I ⊆ {1, . . . , n} :
∏

i∈I
√

ci ∈ Q+
m

} .

Given a squarefree positive integer z, it is a standard fact (see for example [7, Chapter 2])
that

√
z ∈ Qm if and only if mz | m, where mz = z if z ≡ 1 (mod 4) and mz = 4z otherwise.

Therefore we can compute the denominator of (11) at once for all m. □

We work now over the base field K = Q(
√

d1d2, . . . ,
√

d1dr). As each Ti is split over L =
K(

√
d1) = Q(

√
d1, . . . ,

√
dn), the torus T over the field K is isomorphic to T r

1 and has splitting
field L. The image of the group G under this isomorphism is generated by points of the form(

xj ,
yj
√

dj√
d1

)
where (xj , yj) ∈ Tj(Q) for some j ∈ {1, . . . , r} .

We may suppose that the image of G is torsion free up to replacing m by lcm(m, nt), where
t is the order of its torsion subgroup (notice that t | 24 because L is multiquadratic).
Calling G′ the image of this group in L×

m, by [2] we may compute the degree of all extensions
Lm( n

√
G′)/Lm at once.

Notice that K(T1[m]) = Q(T [m]) for m ⩾ 3. By the above discussion and by Remark 3.1, to
conclude the proof of Theorem 1.2 it suffices to answer Question 3.2 for T1 over the field K
for every m and f at once.
We first determine those m ⩾ 3 such that

√
d1 ∈ Q(T [m]), where w.l.o.g. m is odd or 4 | m.

By Remark 5.1 the suitable m are those for which d1 is the squarefree part of:

– a subproduct of (−d1) · · · (−dr) times a positive divisor of m (respectively, an odd positive
divisor of m) if 8 | m (respectively, if 4 | m but 8 ∤ m);

– a subproduct of (−pd1) · · · (−pdr) times a positive divisor of m congruent to 1 mod 4, if
m is odd and p | m holds for some prime number p ≡ 3 mod 4;

Publications mathématiques de Besançon – 2023



116 Kummer theory for products of one-dimensional tori

– a subproduct of (d1d2) · · · (d1dr) times a positive divisor of m, if all primes p | m are such
that p ≡ 1 mod 4.

We now determine those m ⩾ 3 such that
√

d1 ∈ Q(T [m], 1
2G), where w.l.o.g. m is odd or

4 | m. By Remark 4.2, this field is the extension of Q(T [m]) obtained by adding, for every
generator (ah, bh) of G, the element

√
2(ah + 1). Recall that ah ∈ Q, so by Remark 5.1 we can

apply Lemma 5.2 to find the suitable m. Notice that, if all prime divisors of m are congruent
to 1 mod 4, then the condition is

√
d1 ∈ Q+

m

(√
d1d2, . . . ,

√
d1dr,

√
2(ah + 1)

)
.

Finally, suppose that f ⩾ 2 hence 4 | m. We first determine whether
√

d1 ∈ Q(T [m]), and
we reduce to the case

√
d1 /∈ Q(T [m]). If 8 | m, then we also have

√
d1 /∈ Q(T [2∞m]), as for

every positive integer t the maximal field of exponent 2 over Q contained in Q(T [2tm]) is the
same. If 8 ∤ m, then

√
d1 ∈ Q(T [2∞m]) is equivalent to

√
d1 ∈ Q(T [2m]) (because 8 | 2m)

and hence to Q(
√

d1, T [m]) = Q(T [2m]), so we can determine by Lemma 5.2 which m satisfy
this condition.
Consider the multiquadratic field L = Q(

√
d1, . . . ,

√
dr) and its extensions Lm. We apply

Lemma 5.4 over L to find, for all m such that 4 | m, appropriate generators for the subgroup
of L× corresponding to G (we use below the notation of the lemma).
Lemma 5.4 provides a finite partition of the integers m for which the divisibility parameters
of the group G′ in Lm stay the same in each subset of the partition. Therefore we need to
apply Theorem 3.4 over Q(T [m]) only for finitely many m.
Consider the case

√
d1 ∈ Q(T [2m]) and hence 8 ∤ m and f = 2. We can apply Theorem 3.4-1

to T1 over Q(T [m]), noticing that s = 2 because
√

d1 /∈ Q(T [m]). Thus
√

d1 ∈ Q(T [m], 1
4G)

holds if and only if

(12) min({3} ∪ {3 − hi : i ∈ I} ∪ {δj : j ∈ J}) ⩽ 2 .

Now consider the remaining case
√

d1 /∈ Q(T [2∞m]). Recall that the 2-adic valuation v of m
is at least f . Applying Theorem 3.4-2 to T1 over Q(T [m]) we have

√
d1 ∈ Q(T [m], 1

2f G) if
and only if J ̸= ∅ and (v, f) satisfies, for some j ∈ J , the two conditions δj ⩽ f and

hj + δj ⩽ max
(
{v} ∪ {hi + min(f, δi) : i /∈ J} ∪ {hi + min(f, δi − 1) : i ∈ J}

)
.(13)

If f ⩾ max{δj}, then the second condition does not depend on f and we only need to check
it for v < max{hj + δj}. If f is small and fixed, then for each j we check the first condition,
and then we check the second condition for v < hj + δj . This leaves only finitely many pairs
(v, f) to be checked.
This concludes the investigation of Question 3.2 and also the proof of Theorem 1.2.
In the proof of Lemma 5.4 and in Examples 6.6 and 6.7 we will make use of the following:

Theorem 5.3 (Schinzel [5, Theorem 2]). — Let K be a number field, and let a ∈ K×. If
n is a positive integer, then the extension Kn( n

√
a)/K is abelian if and only if am = bn holds

for some b ∈ K× and for some positive divisor m of n satisfying K = Km.

Lemma 5.4. — Let L be a multiquadratic number field, and let H be a torsion-free subgroup
of L×. We may compute at once, for all m ⩾ 1 such that 4 | m, a Z-basis of H whose elements
are of the form ξia

2δi

i , where ξi ∈ µ8, δi ⩾ 0, and where the elements ai ∈ L×
m are strongly

2-independent. Moreover, we may suppose that the order of ξi equals 2hi where hi = 0 or
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ζ2hi+δi /∈ Lm. There is a finite partition of the integers m such that ξi, δi, ai are the same for
all m in each subset of the partition.

Proof. — As 4 | m, we may suppose w.l.o.g. that ζ4 ∈ L. Notice that, up to refining the
partition in the end, the condition on the parameters hi can be easily dealt with: if ζ2hi+δi ∈
Lm, then we can change ai by a root of unity to ensure hi = 0. It suffices to determine ξi, δi,
ai for m odd because these objects are the same for 2f m (strongly 2-independent elements
in Lm are still strongly 2-independent in L2f m by [1, Proposition 9]).
By [1, Theorem 14] we determine the requested basis for m = 1, calling A1, . . . , Ar the
involved strongly 2-independent elements. Consider the finite set S consisting of the 2a-th
roots of
(14) ζ2b

∏
I

A2ci

i

where I ⊆ {1, . . . , r} and a, b, ci are non-negative integers such that b ∈ {0, 1, 2, 3} and a and
ci satisfy the following restrictions:

• a ⩽ 3 and ci < a for all i, if b = 0;

• a + b ⩽ 6 and 0 < a − ci ⩽ 3 for all i, if b ̸= 0.

We define a partition of the integers m such that the elements belonging to the same subset
of the partition have the same intersection S ∩ Lm (we can determine this intersection for all
m by [2, Sections 5 and 6]).
Notice that ζ16 /∈ Lm and that no product

∏
i∈J Ai for any non-empty J ⊆ {1, . . . , r} has a

16-th root in L∞ by Theorem 5.3. Thus if for some element of the form (14) we have a−ci > 3
for some i ∈ I, then its 2a-th root is not in L∞. Moreover, if ci ⩾ a for some i, we can reduce
to the product over I \ {i}.
If b = 0, then increasing a and all ci by the same amount does not change S ∩ Lm. If b ̸= 0,
the root of (14) is equal to

ζ2a+b

∏
I

2a−ci
√

Ai.

If this element belongs to Lm for some m, then Lm(
∏

I
2a−ci

√
Ai) = Lm(ζ2a+b) is an extension

of degree at most 2maxi(a−ci) of Lm, hence a + b ⩽ 3 + maxi(a − ci) ⩽ 6. Therefore we can
lift the restrictions above without changing the defined partition.
In each subset of the partition we may use the same ξi, δi, ai, thus we only need to apply [1,
Theorem 14] over Lm for finitely many m. Indeed, the algorithm from [1, Theorem 14] only
involves elements of S ∩ Lm, and it applies with exactly the same steps for m, m′ satisfying
S ∩ Lm = S ∩ Lm′ , leading to the same ai and the same parameters δi and hi. □

6. Examples

Example 6.1. — Consider the torus T over Q given by x2 +5y2 = 1. The splitting field L =
Q(

√
−5) is not contained in Q(T [5]) = Q+

5 ( ζ5−ζ−1
5√

−5 ) = Q(
√

5,
√

5+
√

5
8 ). The point P = (1

9 , 4
9)

corresponds to P ′ = −
(2−

√
−5

3
)2 ∈ L×. Since

√
P ′ /∈ L, Theorem 3.3 implies L ̸⊆ Q(T [10], 1

2P )
hence by Remark 3.1 the degree of Q(T [10], 1

2P ) is 4. Alternatively, one may compute that
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Q(T [10]) has degree 4 and notice by Remark 4.2 that Q(T [10], 1
2P ) = Q(T [10], 2

3
√

5) =
Q(T [10]).

Example 6.2. — Let K = Q4 and consider the torus x2 − 2y2 = 1 over K whose splitting
field is L = Q8. The point P = (3, 2) corresponds to P ′ = (1 +

√
2)2 and we have

√
P ′ ∈ L

and NL/K(1 +
√

2) = −1 so by Theorem 3.3 we get L ⊆ K(1
2P ). The point Q = (9

7 , 4
7)

corresponds to Q′ = 9+4
√

2
7 and we have

√
Q′ /∈ Q(

√
2) because 63 + 28

√
2 is not a square in

Z[
√

2], so by Theorem 3.3 we get L ̸⊆ K(1
2Q).

In the following examples we consider a torus T = T1 × T2 over a number field K, where for
i = 1, 2 the torus Ti is defined by x2 − diy

2 = 1 for some di ∈ K. For m ⩾ 3 by (6) we have

K(T [m]) = K(T1[m],
√

d1d2) .

Example 6.3. — If d1 = 5, d2 = 13, and K = Q, then by Remark 4.1 the tori T1 and T2
are isomorphic and not split over F = Q(T [8]) = Q+

8 (
√

−5,
√

−13). We call L the splitting
field of T over F . To study Q(T [8], 1

8P ) for the point P = ((2207
2 , 987

2 ); (497
81 , 136

81 )) in T (Q) we
replace P by the group H ⊂ T1(F ) generated by P1 = (2207

2 , 987
2 ) and P2 = (497

81 , 136
√

13
81

√
5 ).

We check with Theorem 3.4 that T1 is split over F (1
8H). We have ζ4 /∈ F (T1[2∞]), and the

points P1, P2 correspond to a16
1 , a4

2, where a1 = 1+
√

5
2 , a2 = 2+

√
13

3 are strongly 2-independent
over F (

√
5), and NL/F (a1) = NL/F (a2) = −1: we conclude because δ2 = 2 ⩽ 3, δ1 = 4, and

h1 = h2 = 0, so that h2 + δ2 ⩽ h1 + min(3, δ1 − 1).

Example 6.4. — Let d1 = 3, d2 = 7, K = Q, and consider the point P = ((7, 4); (4
3 , 1

3))
in T (Q). We have F = Q(T [6]) = Q(

√
−1,

√
21) and F (1

2P ) = F (
√

2) by Remark 4.2. The
degree of F (1

3P )/F is the same as that of L( 3√H)/L, where L = F (
√

3) and H is generated
by a = 7 + 4

√
3 and b = (4 +

√
7)/3. The degree is 9 because a, b, ab, ab2 are not cubes in L×.

We conclude that Q(T [6], 1
6P ) is a number field of degree 72.

Example 6.5. — Let d1 = −2, d2 = −3, K = Q, and consider the point P = ((−7
9 , 4

9);
(11

13 , 4
13)) in T (Q). By Remark 4.1 we have Q(T [98]) = Q+

49(
√

14,
√

6) hence by Remark 4.2
we get Q(T [98], 1

2P ) = Q+
49(

√
14,

√
6,
√

13/3), which is a number field of degree 168.

Finally, we give two examples where we apply the procedure seen in Section 5.

Example 6.6. — Consider the torus T over Q defined by x2 − 3y2 = 1 with splitting field
L = Q(

√
3), and the point P = (7, 4). We determine those m, n such that L ⊆ Q(T [m], 1

nP ),
with n | m and w.l.o.g. n = 2f . Notice first that L ⊆ Q(T [m]) holds if and only if 12 | m.
Therefore for f = 0, 1 the suitable m are the multiples of 12, as Q(T [m]) = Q(T [m], 1

2P ).
If f ⩾ 2, we show that the suitable m are the multiples of 12 or of 8. Suppose in fact that
L ̸⊆ Q(T [m]) i.e. 12 ∤ m. The point P corresponds to a2, where a = 2 +

√
3 ∈ L× is strongly

2-independent in L. If 8 | m, then a = (1+
√

3√
2 )2 ∈ Lm is the square of an element with norm

−1 over Q(T [m]), while a is not a fourth power in Lm for any m by Theorem 5.3 because
ζ4 /∈ L and

√
a /∈ L4. As seen in Section 5, we must have L ̸⊆ Q(T [2∞m]) hence we apply

Theorem 3.4 (2): if 8 ∤ m, then J = ∅ and hence L ̸⊆ Q(T [m], 1
4P ); if 8 | m, then f and the

2-adic valuation v of m satisfy the given conditions hence L ⊆ Q(T [m], 1
2f P ).
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Example 6.7. — Consider the torus T = T1×T2 over Q, where T1 is defined by x2−2y2 = 1
and T2 by x2 − 3y2 = 1. Also consider the point P = ((9

7 , 4
7); (7, 4)) in T (Q). By Remark 4.1

we replace P by the group H ⊂ T1(Q(
√

6)) generated by P1 = (9
7 , 4

7) and P2 = (7, 2
√

6).
We thus determine the positive integers m, n with n | m and w.l.o.g. n = 2f such that the
splitting field L = Q(

√
2,

√
3) is contained in Q(T [m], 1

nH). Clearly
√

2 ∈ Q(T [m]) holds if
and only if 8 | m or 12 | m, and we have

√
2 ∈ Q(T [m], 1

2H) = Q(T [m],
√

14) if and only
if 8 | m or 12 | m or 28 | m. Now suppose f ⩾ 2 and

√
2 /∈ Q(T [m], 1

2H). Hence we only
need to consider f = 2 and m divisible by 4 and not by 8, 12, 28. The point P1 corresponds
to some a ∈ L× that is not plus or minus a square, and that is a square in Lm if and only
if

√
7 ∈ Lm (i.e. 28 | m or 21 | m), as 9

7 + 4
√

2
7 = (2

√
2+1)2

7 . The point P2 corresponds to
b4 for b =

√
2

2 +
√

6
2 ∈ L× that is not a square in L×

m by Theorem 5.3 because ζ4 /∈ Q(
√

3),
b2 ∈ Q(

√
3) and b /∈ Q(ζ4,

√
3). Moreover, ab ∈ L×

m is not a square, else (for some possibly
larger m) a and ab but not b would be squares. Since

√
2 ∈ Q(T [2m]) \ Q(T [m]) we only

need to check (12), which is not satisfied as I = J = ∅, so we find no further suitable m. We
conclude that L ⊆ Q(T [m], 1

nG) holds if and only if 8 | m, or 12 | m, or we have 2 | n and
28 | m.
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