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DISTRIBUTION OF THE 2-SELMER RANK UNDER TWISTING

by

Mark Watkins

Abstract. — Consider the elliptic curve y2 = x3−x (which is associated to congruent numbers). Heath-
Brown described the 2-Selmer rank distribution of the quadratic twists of this curve over the set of odd
squarefree integers, using methods involving computing the moments of the 2-Selmer rank via an analysis
of quadratic residue symbols (these appear in a Monsky matrix).
Swinnerton-Dyer then investigated the distribution of the 2-Selmer rank under twisting for a wider family
(elliptic curves with full 2-torsion and no 4-torsion), using a Markov chain analysis to show the expected
distribution. However, his result used an unnatural ordering of the integers, namely by the number
of prime factors. This was remedied by Kane, who showed the result under the natural ordering via
methodology similar to Heath-Brown’s.
More recently, Smith (as part of a larger work) has shown the same result using Swinnerton-Dyer’s
method, essentially showing that the input (involving quadratic residue symbols of the prime divisors of
the twist factor) to his Markov chain analysis can be shown to have the expected equi-distribution under
the natural ordering. We give an exposition of Smith’s work, with an explicit (and effective) error bound.
We also discuss the related problem of the 4-rank of quadratic class groups, initially done by Fouvry and
Klüners.

Résumé. — (Distribution des rangs des 2 groupes de Selmer pour les tordues quadratiques) On considère
la courbe elliptique y2 = x3 − x (qui est associée au problème des nombres congruents). Heath-Brown a
décrit la distribution du rang du groupe du 2-Selmer des tordues quadratiques de cette courbe par les
entiers impairs sans facteurs carrés en utilisant des méthodes sur le calcul des moments des rangs des
2-Selmer par une analyse des symboles quadratiques (qui apparaissent dans une matrice de Monsky).
Swinnerton-Dyer a ensuite étudié la distribution du rang des 2-Selmer pour une famille de tordues qua-
dratiques plus large (de courbes elliptiques avec la 2 torsion complète et sans 4-torsion), en utilisant des
chaînes de Markov pour obtenir la valeur attendue distribution. Cependant, son résultat utilise un ordre
non naturel des entiers, à savoir un ordre donné par le nombre de facteurs premiers. Ceci a été complété
par Kane, qui a démontré le même résultat avec l’ordre naturel via une méthode similaire à celle de
Heath-Brown.
Plus récemment, Smith (dans le cadre d’un travail plus général) a également montré le même résultat
en utilisant la méthode de Swinnerton-Dyer, en établissant essentiellement que la donnée (impliquant
des symboles de résidus quadratiques des diviseurs premiers l’entier tordant la courbe de départ) pour
son analyse de la chaîne de Markov conduit à la valeur attendue d’équi-distribution sous l’ordre naturel.
Nous présentons le travail de Smith en donnant une borne d’erreur explicite (et efficace). Nous discutons
également du problème connexe du 4-rang des groupes de classes quadratiques, initialement réalisé par
Fouvry et Klüners.

2020 Mathematics Subject Classification. — 11G05, 11G40, 11L40.
Key words and phrases. — congruent number problem, Selmer groups, ranks of elliptic curves, Legendre
symbol distribution.



60 Distribution of the 2-Selmer rank under twisting

1. Introduction

Let E/Q be an elliptic curve with full 2-torsion, writing it in an integral model as y2 =
(x − c1)(x − c2)(x − c3). We can assume that c1 < c2 < c3 and c2 = 0 by variable transfor-
mations. Moreover, we can assume that there is no nontrivial common square factor of the
ci, as else this could be divided out to give a simpler model. We write δij = ci − cj , and
will also assume that none of the quantities given by δijδik = (ci − cj)(ci − ck) are square;
as Swinnerton-Dyer notes [53, Theorem 1ff], this is equivalent to there being no rational
4-torsion point.1
We let Ω be the set of bad primes of the above model of E (this is the set of prime divisors
of δ12δ13δ23 and thus always contains 2) and Ω̃ when appending the infinite place. We will
consider the quadratic twists Ed : y2 = (x− dc1)(x− dc2)(x− dc3) of E by squarefree d that
are coprime to Ω. As we are interested in twist families, we can assume there is no prime
that has the same nonzero valuation at all the δij ; if there is, we can twist E by this prime
p and the resulting curve is then good at p. On the other hand, we do allow the δij to have
a common prime divisor in the alternative case where the twisted curve would not be good
at p.
Note that, at least with our assumptions as above, the coprimality of d with Ω is not really
restrictive; one can consider the other twists via replacing E by a twist Ẽ of it by products
of primes in Ω and applying the results to Ẽ instead.2 In this case the δij can have common
prime factors p; if so, upon twisting, any such p will still divide at least one of them.

1.1. Our subject of interest shall be the 2-Selmer group of Ed, or more precisely how its size
is distributed for |d| ≤ X. What exactly is this 2-Selmer group? We give a fuller discussion
below in Section 7 but for now it suffices to give a brief description (following [53, Section 3])
in terms of everywhere locally soluble 2-coverings. These are intersections of three quadric
equations miy

2
i = x−dci where m1m2m3 is a nonzero square, and we denote such a curve by

C(~m). Any rational point (X,Y ) on Ed gives a quadruple (X,Y1, Y2, Y3) on3 some C(~m), and
finding such a quadruple would conversely yield a point on Ed. We need only consider the
mi up to squares, and upon treating the mi as elements of Q?/(Q?)2, the triples ~m form an

1Kane [23] seems to conflate a rational 4-torsion point with a (cyclic) rational 4-isogeny at various places, and
moreover simply elides the condition in the statement of his Theorem 3.
Note that a curve with full 2-torsion can always be brought into the form y2 = x(x + 1)(x + λ) and the
condition of having a 4-torsion point is that λ = µ2 is square, whence (µ, µ2 + µ) is indeed a 4-torsion point.
On the other hand, in the context of such a curve with full 2-torsion, the primitive part of the 4-division
polynomial factors as (x2 − λ)(x2 − 2x + λ)(x2 − 2λx + λ), which can have linear factors without λ being
square, whereupon there is a 4-isogeny but no 4-torsion.
In any event, the condition could be a red herring for rank distribution, as if E has full 2-torsion there is
always (see Section 13.1) an isogenous curve with full 2-torsion and no 4-torsion – as the rank (though not
the 2-Selmer rank) is an isogeny invariant, this then allows one to avert the issue.
2At least in his preprint version, Smith [48] doesn’t seem to regard this point too transparently, though it is
a minor quibble in any event once one can consider Ẽ to begin with.
On the other hand, Heath-Brown [18] only investigates the twists by odd (squarefree) integers for y2 = x3−x,
and as he doesn’t additionally consider the same for y3 = x3 − 4x, his results (pedantically) do not cover all
twists for the case of congruent numbers. Meanwhile, Kane [23] notes (inter alia) this idea of replacing E by
Ẽ when deriving Corollary 4 from his Theorem 3.
3Namely, given (X,Y ) we can take mi = X − dci and Yi = 1 for all i.
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abelian group under component-wise multiplication: ~m × ~m′ = (m1m
′
1,m2m

′
2,m3m

′
3). The

2-Selmer group is then the subset of ~m such that C(~m) is everywhere locally soluble.
In particular, we can restrict attention to ~m where the mi are units at all primes outside
Ω̃ that do not divide d, as if mi has odd valuation at such a prime l, then the equation
miy

2
i = x− dci is already insoluble in Ql.

The 2-Selmer group is then computable in terms of Legendre symbols involving the primes
dividing d and the various places in Ω̃ (including a specification of the sign of d corresponding
to the infinite place), and it contains the group of ~m such that C(~m) has a global solution.
This latter group is isomorphic to Ed(Q)/2Ed(Q) in terms of the Mordell–Weil group Ed(Q).
Thus an upper bound on the rank of the 2-Selmer group gives a bound on the Mordell–Weil
rank. Somewhat trivially, due to the 2-torsion points on Ed, the 2-Selmer rank is at least 2.
1.1.1. We shall ultimately show the following result, in terms of the numbers

(1) ρs = 2s∏s
v=1(2v − 1)

∞∏
n=0

(
1− 1/22n+1) = 1/2s(s−1)/2∏s

v=1(1− 1/2v)

∞∏
n=1

1
1 + 1/2n ,

for which ρ0 +ρ2 +ρ4 + · · · = ρ1 +ρ3 +ρ5 + · · · = 1 (the n-product is ≈ 0.419422). We assume
E is twist-minimal, meaning there are no bad primes p that can be removed by quadratic
twisting; as above, this says the vp(δij) are not all the same.

Theorem 1.1. — Let E/Q be a twist-minimal elliptic curve with full rational 2-torsion and
no rational 4-torsion point, and consider quadratic twists Ed of E by4 odd squarefree integers
|d| ≤ X coprime to the product of the bad primes of E. Then for any ω < 1/2, the proportion
of such d such that Ed has 2-Selmer rank of (s+ 2) is ρs/2 +OE,ω

(
1/(log logX)ω

)
, with an

effective constant in the error.
In other words, writing s(Ed) for the 2-Selmer rank of Ed, we have

#{|d| ≤ X : µ(d) 6= 0, gcd(d,Ω) = 1 | s(Ed) = s+ 2}
#{|d| ≤ X : µ(d) 6= 0, gcd(d,Ω) = 1} = ρs

2 +OE,ω

( 1
(log logX)ω

)
.

Let us immediately say that our methods are largely based on those of Smith [48] and
Swinnerton-Dyer [53], with some various technical aspects added to our exposition of their
work, mostly to explicitly obtain the stated error bound.5

1.1.2. We describe our above observation more fully, namely that the gcd(d,Ω) = 1 condition
can be softened by working with twists of E involving bad primes.
As an example, we might consider E as 15a with (c1, c2, c3) = (−16, 0, 9), where Ω = {2, 3, 5}.
Then, for instance, the twists of E by 3l (where 3 - l, since 3l is squarefree) are the same as

4Kane states his Theorem 3 in terms of positive squarefree integers, but I do not think it is correct (for
parity reasons). For instance, with the elliptic curve of conductor 225 given by twisting 15a by −15, thus
(c1, c2, c3) =

(
−15 · 16, 0, 15 · 9

)
in our model, all of its twists by positive squarefree integers coprime to 15

have even parity. There are also decent reasons to twist by fundamental discriminants instead of squarefree
integers, but we shall opt for the latter.
5Although Smith references Kane’s work, his setup does not depend on it. He is somewhat uncareful (see [48,
Corollary 1.2]) with the issue we highlighted in Footnote 4 regarding the necessity of including both positive
and negative twists in the average, but this is merely an accounting item in any event (note that for the
congruent number curve, which is indeed Smith’s main application, there is no distinction between positive
and negative twists).
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62 Distribution of the 2-Selmer rank under twisting

the twists of E3 by l, where E3 is the twist of E by 3. This E3 is twist-minimal and meets
the torsion conditions, and we can thus apply Theorem 1.1 to it. This then gives

#{|d| ≤ X : µ(d) 6= 0, 3|d, gcd(d/3,Ω) = 1 | s(Ed) = s+ 2}
#{|d| ≤ X : µ(d) 6= 0, 3|d, gcd(d/3,Ω) = 1}

= #{|d| ≤ X/3 : µ(d) 6= 0, gcd(d,Ω) = 1 | s((E3)d) = s+ 2}
#{|d| ≤ X/3 : µ(d) 6= 0, gcd(d,Ω) = 1} = ρs

2 +OE3,ω(· · ·),

which in particular has the same ratio of twists with a given 2-Selmer rank. The same analysis
also applies when twisting by any other product of primes from Ω.
1.1.3. We can also mention what happens, or is expected to happen, when we loosen the
requirements on E.
First we consider the effect of modifying the 2-torsion condition. This is perhaps best consid-
ered in terms of the Galois nature of the cubic f in E : y2 = f(x). When f has exactly one
rational root (so there is one 2-torsion point) the distribution is quite different, as noted by
Xiong [58]. The results in this genre are more commonly described in terms of the φ-Selmer
group where φ : Ed → E′d is the isogeny corresponding to the 2-torsion point; up to a correc-
tion for the 2-torsion point, this φ-Selmer group injects into the 2-Selmer group, as indeed
we have the exact sequence

0→ E′d[2]/φ(Ed[2])→ Selφ(Ed)→ Sel2(Ed)
φ→Selφ̂(E′d)

so that sφ(Ed) − 1 ≤ s(Ed) ≤ sφ(Ed) + sφ̂(Ed) in terms of the φ- and φ̂-Selmer ranks. In
particular, Xiong’s main result shows that typically6 the φ-Selmer distribution has mean√

(log log d)/2 as d → ∞, with the 2-Selmer mean thus also being unbounded. So this is
dramatically different than the full 2-torsion case, where the 2-Selmer mean is bounded.
When f is irreducible with Galois group Sym3, the work of Klagsbrun, Mazur, and Rubin [25]
(specialized to Q) gives the distribution of the 2-Selmer rank (albeit under Swinnerton-Dyer’s
ordering, see Section 1.2.1 below), with again the mean being finite.7 I am unaware of any
work for the case where f has Galois group Alt3.
Secondly, when E has full 2-torsion, the 4-torsion condition can likely be mollified some-
what (it ultimately comes from Swinnerton-Dyer’s analysis, appearing for us in Lemma 8.3),
perhaps handling some additional cases that have different transition probabilities (see Sec-
tion 1.2.1) – though again one presumably wants to avoid cases where the 2-Selmer mean is
in fact unbounded.8

6One atypical case is for A(a, b) : y2 = x(x2 +ax+b) with b(a2−4b) a square; here we see that [58, Remark (2)
to Theorem 1] notes in passing that both the φ- and φ̂-Selmer means are bounded (as considered by Yu [60]),
so the 2-Selmer mean is also bounded. The other atypical case is when b is square (so that the 2-isogenous
curve A(−2a, a2−4b) has full 2-torsion), where Xiong and Zaharescu [59] show that the φ-Selmer mean is even
larger, namely (log log d)/2, at least when A(−2a, a2 − 4b) has no rational 4-torsion point. (It seems Xiong’s
Remark glosses over the fact that Theorem 1 of [59] excludes the case where A(−2a, a2 − 4b) has a 4-torsion
point (phrased therein as “ab not a square” in the model y2 = x(x+ a)(x+ b)), so we mention it here).
7In various talks, Smith has stated that his results extend to this case.
8Similar to the last part of Footnote 6, the final paragraph of [58, Remark (2) to Theorem 1] seems to imply
a mis-statement in this regard. Note first that if E has full 2-torsion and a rational 4-torsion point, then there
is a 2-isogeny φ : E → E′ for some E′ that also has full 2-torsion. In this case, with E : y2 = x(x2 + ax+ b),
both a2−4b and b are squares, so the last sentence of Xiong’s Remark should apply. However, this again seems
suspect when E has a 4-torsion point.
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Finally, when E is not twist-minimal but meets the stated torsion conditions, this corresponds
to a re-ordering of the d with respect to the associated twist-minimal curve C. For instance,
if E is C twisted by 5, the twists of E up to X are given by the twists of C up to X/5 that
are coprime to 5, together with the twists of C up to 5X that are multiples of 5. Although we
don’t give the details, it is possible to include congruential information (say mod m) about
d in the above Theorem 1.1, with the main term being the same, though the error term then
also depends on the modulus m. Upon re-combining the progressions modulo m, we then get
a result for the twists of E with an error term depending on C and m, or in other words on
E. Thus Theorem 1.1 is also true as stated in the non-twist-minimal case.

1.2. History. —As noted in the Abstract, the first to consider the 2-Selmer distribution
was Heath-Brown [17, 18], who looked at odd squarefree twists of the congruent number curve
E : y2 = x3 − x. In [17] he computed the average size of the 2-Selmer group, then in [18] all
of the integral moments of this, which then gave the distribution.9
His method consisted of noting that the 2-Selmer rank can be written in terms of (a matrix
of) Legendre symbols (pi|pj) for prime divisors of d = p1 · · · pr, and then showed suitable equi-
distribution of the values of such symbols. Dividing the primes into dyadic-like intervals, when
both of the primes are large a bilinear bound (such as [17, Lemma 4], which he notes perhaps
originated with Heilbronn [20]) saves a suitable amount, while when one of the primes is small
and the other is large one can apply (albeit ineffectively in some ranges) results about primes
in arithmetic progressions. One significant difficulty is then in handling the cases where both
primes are small – I must say that I do not completely understand Heath-Brown’s mechanism
here, though it seems to do with a careful consideration (in [18, Sections 6-7]) of “unlinked
indices” and the main terms therein (see also [9, Section 7.3-7.6] or [8, (48ff)]).
In his calculations for the kth moment, Heath-Brown ends up with an error term of
X(log logX)4k/(logX)1/4k . The transition range for when this becomes useful is when 16k ∼
log logX/(log log logX), that is when k ∼ (log log logX)/ log 16. The reduction to his The-
orem 2 in Section 8 (passing from moments to a distribution) is inexplicit as given, but
presumably can be done with explicit error terms. At any rate, I do not expect that one
would save more than a (small) power of (log logX) in the end.10 Also note that his work
utilizes the ineffective theorem of Siegel and Walfisz in [17, Lemma 6] and [18, Lemma 5].
The results for the average size were generalized by Yu [61] to elliptic curves with full 2-
torsion11 (though restricting twists to certain arithmetic progressions).
1.2.1. The next investigation for the distribution of the 2-Selmer rank was undertaken by
Swinnerton-Dyer [53], who considered curves with full 2-torsion but no rational 4-torsion
point. Rather than deal with the question of the equi-distribution of (pi|pj), he took a different
tact, essentially assuming they were equi-distributed by considering ordering d by the number
of prime factors (rather than the ordinary ordering of |d| ≤ X). Fixing the number r of prime

9As Fouvry and Klüners [8, p. 459] note, the latter need not be automatic from the former.
10At the very end of [23], Kane suggests the power might be 1/8.
11In fact, Heath-Brown had prognosticated in [17, Remark 1, p. 173] that this should be possible, though
was unsure whether the constant (that is, the average size of the 2-Selmer group) should remain the same, as
indeed Yu showed. On the other hand, extending the results to curves without full 2-torsion (cf. [18, p. 335])
has proven to be more difficult.
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64 Distribution of the 2-Selmer rank under twisting

factors, he used the description of the 2-Selmer rank in terms of everywhere locally soluble 2-
covers. Upon restricting consideration to the first j primes dividing d, this yields a sequence12
of estimations sj(Ed) for which sr(Ed) is equal to the 2-Selmer rank s(Ed). Moreover, and
critical to his result, Swinnerton-Dyer was able to show that these sj+1(Ed) have a probability
distribution derived from that for sj(Ed) in a sufficiently generic case (and averaging over
suitable d for this to make sense). In particular, the probability that sj+1 = sj+2 is 1/22sj+1,
the probability that sj+1 = sj is 3/2sj −5/22sj+1, and the remainder has sj+1 = sj−2. After
showing non-generic cases are rare when there is no 4-torsion, he concludes by applying a
Markov chain analysis to this probability distribution, with the stationary state given by the
ρs listed in (1).
1.2.2. Kane [23] then extended Heath-Brown’s results about moments to the general case
of full 2-torsion, again excluding the case where E has a rational 4-torsion point. Kane’s
methods use Swinnerton-Dyer’s description of the 2-Selmer group, though after that largely
follow Heath-Brown, showing suitable equi-distribution of (pi|pj) for “active” indices. Also,
the final step, of passing from moments to a distribution, is done by complex analysis rather
than linear algebra, using Swinnerton-Dyer’s known limiting distribution to bootstrap it (the
given argument has an inexplicit style, relying on compactness and convergent subsequences,
etc.).
1.2.3. More recently, as part of a larger work, a preprint of Smith [48] gives a different method
for showing the distribution of 2-Selmer ranks. Again one needs to consider equi-distribution
of (pi|pj), but he introduces a new13 idea with permuting indices: the 2-Selmer rank is the
kernel dimension of a matrix over F2, and is thus invariant under row/column permutations.
This allows him to ignore (i, j) where neither the bilinear estimate nor primes in arithmetic
progressions gives a viable bound. He then completes the proof via Swinnerton-Dyer’s Markov
chain analysis.
Although his preprint version gives the error bound as relying on Siegel’s ineffective theorem,
as discussed in Footnote 25 below I think this is mostly an oversight/inefficiency. His error
term saves a small power of (log logX), though is inexplicit about what power this is (we
shall obtain any power less than 1/2).
Smith goes on to discuss much more than the 2-Selmer rank, indeed considering the 2∞-
Selmer rank (and also the associated problem of the 2∞-rank of quadratic class groups), but
we will not consider such matters here.
1.2.4. Finally, there are the related works of Fourvy and Klüners [8, 9], which consider
an analogous problem for the 4-rank of quadratic narrow class groups. Again the principal
difficulty14 is in demonstrating adequate equi-distribution for (pi|pj). In [8] they show the
expected moments of 4-ranks largely by imitating Heath-Brown’s method of linked indices,
and thereby derive the distribution of 4-ranks in [7]. As the ordinary class group is equal to

12It is a bit fanciful to say that the sequence {sj(Ed)}j “converges” to s(Ed) as j → r for any given d, as only
the final value for j = r is relevant, though in the sense of 2-Selmer distributions (that is, when considering
many d) the usage of the term is more reasonable.
13Kane’s work includes a permuting of the indices, but it seems only to be used in the rather limited context
in that he prefers to allow prime variables to run freely rather than be subject to p1 < · · · < pr (say), and he
thus overcounts by the natural factor of r!.
14The earlier work of Gerth [12] had mostly avoided this by considering the problem under the ordering by
number of prime factors, as Swinnerton-Dyer later adopted in the 2-Selmer case.
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the narrow class group except for a thin subset of discriminants (positive discriminants with
no prime divisor that is 3 mod 4), the results then carry over to it also (cf. [8, Corollary to
Lemma 10]).
In [9] they then consider the restriction of the problem to this thin subset of “Gaussian”
discriminants, showing an expected distribution of the 4-rank of the narrow class group for
them. We will discuss this in Sections 10-12 below. However, we will not consider their more
notable result, namely that they are also able to get the distribution when including the
4-rank of the ordinary class group (which is either the same or 1 less).
The error terms are comparable to Heath-Brown’s result (with 2k rather than 4k), reduced
by the expected relative factor 1/

√
logX in the latter case. Again the results are ineffective.

A recent preprint of Chan, Koymans, Milovic, and Pagano [3] then extends Smith’s results
about higher Selmer groups to the 8-rank of quadratic class groups for Gaussian discriminants.
More relevant for our discussion, it also shows how to derive the previous result about narrow
4-ranks of such discriminants via Smith’s methods, again with an ineffective error term that
saves a power of (log logX). We put in a (little) bit of extra effort in our setup to be able to
include this case in Section 12, and in a sequel [57] to the current paper we give an exposition
of [3].

1.3. Our presentation is largely a reworking of Smith’s methods, and we claim almost no
novelty. We recall the basic background on primes and divisors in Section 3, and then in
Section 4 give a convenient way of splitting up squarefree integers into boxes (Cartesian
products of dyadic-like intervals). Here we implicitly use that the jth prime divisor pj of a
typical integer is expected to have log log pj ∼ j.
Section 5 is probably our most significant contribution, as we replace Smith’s inductive
scheme [48, Proposition 6.3] by a more direct consideration of the product

∏
(i,j)

[
1 + (pi|pj)

]
over suitable index pairs (i, j). Upon multiplying out the product, we then use bilinear bounds
or primes in arithmetic progressions to bound the resulting sums, and it is here where we are
able to avoid using Siegel’s ineffective theorem. The main upshot is that we can split boxes
by Legendre symbol conditions, except those corresponding to (i, j) that are both small, with
the splitting reducing the number of integers in the box roughly by the expected power-of-2.
Section 6 then gives Smith’s argument on how to average over permutations of indices, essen-
tially showing that our exclusion of small (i, j)-pairs does not introduce a very large error, at
least for the 2-Selmer rank distribution (which is invariant under said permutations). How-
ever, the error here is still ultimately the largest in our analysis; also, as the box-splitting
aspects are not permutation-invariant, we obtain no information about whether each small
(i, j)-pair reduces the number of integers by roughly 1/2 (see Smith’s comment after his
statement of Proposition 6.3).
We then shift gears and in Section 7 give an outline of Swinnerton-Dyer’s description of the 2-
Selmer group, and proceed to sketch his argument regarding 2-Selmer estimations, genericity,
and the ensuing Markov chain. Combined with the previous analysis about box-splitting, this
then gives the main Theorem 1.1. However, we intend Section 7 to largely be an overview,
and indeed in Section 8 we give many more details, largely replicating Swinnerton-Dyer’s
arguments in a somewhat more robust form (for instance, he speaks of “random primes” which
thus need a suitable interpretation, and as Kane notes, one can instead use formal symbols
to make this more rigourous). Additionally, as the use of Markov chains seems somewhat of
a black box, we give a brief sketch of how this can be done in our specific case (which is
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somewhat easier in that the transition matrix is essentially tridiagonal). It is admitted that
this section is rather long and technical.
We then recapitulate the main argument in Section 9, and in Sections 10-12 discuss the
analogous problem for quadratic class groups.
Finally, in Section 13 we do some exercises to show a few “well-known” facts that were
mentioned along the way.
1.3.1. As a significant aspect of Smith’s work on the 2-Selmer distribution involves transfer-
ring Swinnerton-Dyer’s results from a less natural ordering to the expected ordering, it seems
useful to review this. In fact, the idea of ordering integers by the number of prime factors
seems to originate with Gerth [12, (1.1)] in the context of 4-ranks of quadratic class groups.
Defining Sr(X) to be the set of squarefree integers up to X that have exactly r prime factors,
the basic idea behind the “unnatural” ordering is to consider an arithmetic function F and
the limit

lim
r→∞

lim
X→∞

∑
m∈Sr(X) F (m)∑
m∈Sr(X) 1 .

On the other hand, the integers of size X have a normal distribution in their number of
prime factors, with mean and variance log logX. Thus the integers with r ∼ log logX should
dominate under the standard ordering.
We first recall Kane’s method for passing from Swinnerton-Dyer’s ordering to the natu-
ral one. His main tool in this regard is [23, Proposition 10]. In our notation, given r with
(log logX)/2 < r < 2 log logX, Kane shows that

1
r!

∑
~p∈SDr (X)

F (p1, . . . , pr) =
(

1
#G

∑
g∈G

F (g)
)(

#SDr (X)
r!

)
+OD

(
X log log logX

log logX

)

where D is 4 times the product of the primes in Ω, while SDr (X) is the set of squarefree
integers up to X coprime to D with each written in r! ways as a product p1 · · · pr, and F is
a function (with suitable boundedness) from G =

(
UD/U

2
D

)r to C, where UD = (Z/DZ)?.
Note that this implicitly uses information about the distribution of quadratic residue symbols,
relying thereupon on results for primes in arithmetic progressions and thus zero-free regions
for Dirichlet L-functions. Also, the relative error is not too striking, as one might expect from
results involving divisor distributions. Kane then sums this over |r−log logX| ≤ (log logX)3/4

to pass to the natural ordering of integers (with sufficiently small error from other r).
In Smith’s version, he first introduces boxes, which are themselves mostly just a technique
to allow the replacement of a constraint like p1 · · · pr ≤ X by bounds on each individual pi.
This gives a relative error that is a (large) power of 1/ log logX, but otherwise is harmless.
One is then led to consider the distribution of (pi|pj) as pi, pj range over their respective
intervals. When pi is much smaller than pj , one can simply consider pi fixed and use results
on primes in arithmetic progressions modulo pi. More subtle is the case where pi and pj are
both large (with respect to X), where a mean-value result dating back to Heilbronn shows
that a bilinear sum

∑
i

∑
j αiβj(pi|pj) has suitable cancellation.

This leaves the (i, j) for which pi and pj are both small, and it is here that Smith (crucially)
employs an additional insight. Namely, there is (in Kane’s result) a natural action of Symr on
G, and Smith observes that our desired F (involving the 2-Selmer rank) is invariant under it.
He then gives a suitable averaging method over such permutations, so that the contributions
from the (i, j) with both small are adequately “mixed” in with the other index pairs. In
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contrast, both Heath-Brown and Kane had to deal more directly with such (i, j)-pairs (albeit
in the context of moments). Ultimately, Smith’s method provides (in our version) a somewhat
stronger error term, and moreover gives an effective constant therein.

2. Notation and parameters

2.1. We accumulate various notations and parameters in one place, for the convenience of
the aspiring reader. We will be considering the elliptic curve given by E : y2 = (x− c1)(x−
c2)(x− c3), where the integers ci have no common nontrivial square factor, and c1 < c2 < c3
with c2 = 0. We write δij = (ci − cj) for the root-differences and Ω for the set of bad primes
(these are divisors of the δij), and Ω̃ when appending the infinite place. We consider twisting
E by squarefree integers |d| ≤ X coprime to Ω. Here X is the main parameter in the paper.
While we eventually consider both positive and negative d, in the discussion of prime divisors
it is more convenient to only consider positive integers, and therein we write d̃. With this
in mind, we can re-interpret the above schema in a slightly different way (Section 3.1),
considering a set of primes P from which all the divisors of d̃ must come. We will require
that P be the set of all primes in specified coprime residue classes RP to some fixed modulus
MP . We will write ξP for the number of such residue classes, and also αP = ξP/φ(MP) for
their relative density. (The 2-Selmer case has αP = 1).
We then write SP(U) for the set of positive squarefree integers up to U all of whose prime
factors come from P. The size of this is denoted as ΦP(U). Moreover, we write SPt (U) and
ΦPt (U) for the restriction of these to the squarefree integers with exactly t prime factors.
2.1.1. We write T for a box (Section 4.2), which is a Cartesian product of singleton sets of
primes and basic (real) intervals, with T the Cartesian product of singleton sets and sets of
all primes from the basic intervals that are in P, and T̂ as the set of squarefree integers thus
represented. This box will have various associated quantities. The size limit on the singleton
sets depends on η0, which we discuss more in Section 2.2. The number of singleton primes in
the Cartesian product is denoted k0, and r̃ is the number of such singletons plus the number
of basic intervals (thus r̃ will also be the number of prime factors of d̃). We also introduce a
parameter η1 (see Section 4.3.1), and write k1 for the number of singletons plus basic intervals
that are less than Q1, where here Q1 is exp exp

(
(log logX)η1

)
.

We then have (Section 4.4.1) a third parameter ηs associated to Ps = exp
(
(log logX)ηs

)
;

this occurs in the analysis of exceptional zeros, with also a putative (though likely empty)
sequence {Mi} of exceptional conductors (Section 3.4).
A culmination of all this jargon is then the definition of a pleasant box in Section 4.5.
2.1.2. The process of cutting up boxes in Section 5 then introduces various decorations of T .
In particular, we write its Cartesian product as

∏
l Tl. We then have two key sets K and L.

The first consists of residue class restrictions (to the modulus MP) for each of the r̃ primes
dividing d̃; the second has Legendre symbol specifications for each pair (i, j), associated to
primes pi and pj dividing d̃ (so giving

(r̃
2
)
conditions).

We then write T (K) for the elements of T that meet the residue class specifications of K, and
this is still a Cartesian product as T (K) =

∏
l Tl(K). We call this the K-trimming of the box.

We write T (K,L) for the elements of T (K) which meet the Legendre symbol specifications
in L. This need not be a Cartesian product.
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Then we have (Section 5.2.1) the (K,L, [k0, k1])-trimming of a box, denoted T̃ (K,L)k1
k0
, re-

stricting T by K for the first k1 primes and L for (i, j) with 1 ≤ i < j ≤ k1 and i ≤ k0. This
will have a Cartesian product T̃ (K,L)k1

k0
=
∏
l T̃ l(K,L)k1

k0
.

We write (m|n) for the Kronecker (and thus also Legendre or Jacobi) symbol.
In Section 6 we then write D(r̃,P) for the set of all possible choices of (K,L) for given r̃
and P, and Symu for the symmetric group on u symbols. This symmetric group acts (with
u = r̃) on K and L by permuting the indices, and therein we write Kσ and Lσ for an element
σ ∈ Symr̃. Given a d̃ represented by a box T , the set Wd̃(K,L) contains the permuations
σ ∈ Symr̃ for which d̃ is in T̃ (Kσ,Lσ)k1

k0
.

While the above template only considers positive d̃, we also want to allow negative d with the
2-Selmer group. It turns out we can do this with a minimal obfuscation of notation, mainly
needing just T̂±, which is twice as large as T̂ , including both d̃ and −d̃ for the d̃ ∈ T̂ .
2.1.3. The discussion of the 2-Selmer group in Section 7 then introduces another milieu of
notation. Firstly there is K̃, which specifies merely the Legendre symbol for primes in Ω̃
(rather than a residue class). Moreover, as above, we want to consider d of both signs, and
will attach the sign ε of d as a subscript on K̃.
We can also mention the local Hilbert symbol at l, which we write as (x, y)l.
Then there are various vector spaces such as Yl = Q?

l /(Q?
l )2, and Vl as the set of triples in Yl

whose product is 1, with VB = ⊕Vl then the sum being over all l ∈ B, where B is the union
of Ω̃ with the primes dividing d. Finally there is UB ⊂ VB, which is generated by (1, l, l) and
(l, l, 1) for all l ∈ B; and WB ⊂ VB, which is the sum of the Wl, which are local images of the
Kummer map.
We then have the local pairing el on Vl × Vl and its sum eB, which yields the pairing matrix
M(Ed) on UB × WB. This gives the 2-Selmer rank sr̃(Ed), and as the notation suggests,
we have a sequence of estimations sc(Ed) corresponding to restricting the pairing matrix
to the first c primes dividing d (with the r̃th estimation then being the 2-Selmer rank).
As the 2-Selmer rank is the same for all d meeting some given (K̃ε,L) conditions, we can
also consider M(K̃ε,L) and sj(K̃ε,L). The set of all possible (K̃ε,L) is Y(r̃,#Ω̃), and the
restriction (which by convention includes the class of d in

∏
l∈Ω̃ Q?

l /(Q?
l )2) of this to the first

c primes is Y(r̃,#Ω̃)[c].
The expected 2-Selmer distribution ρs is given in various places, e.g. (1) above.
Section 8 then introduces formal symbols ṗj in place of primes, and Pu for the set of u of
them. We then have U cB and W c

B restricted to using only the first c primes (or now, formal
symbols), with U cB(K̃ε,L) (sometimes abbreviated Ũ c) and W c

B(K̃ε,L) the restriction of these
to the pairing matrix kernels. We have ~w1

p and ~w2
p as basis vectors for Wp, and similarly for

~α1
p and ~α2

p with Up. Finally, in the Markov chain analysis we have the transition matrix M
and the vectors ~hc of 2-Selmer rank distributions.

2.2. Next we discuss the three η-parameters.
We fix a parameter η0 with 0 < η0 < 1 and let P0 = exp

(
(log logX)η0

)
, with k0 the number

of prime factors up to P0 of a given squarefree integer d̃ ≤ X, with the expectation that k0 is
roughly log logP0 = η0 log log logX. We will allow k0 to be as large as κ0 log logP0 for some
parameter κ0 > 3. The error from excluding d̃ with larger k0 will (essentially) be of relative
size � 1/(logP0)κ0(log κ0−1) which is the same as � (1/ log logX)η0[κ0(log κ0−1)].
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We also fix a parameter η1 with 0 < η1 < 1 and let Q1 = exp exp
(
(log logX)η1

)
, with k1 as

(essentially) the number of prime factors up to Q1 of a given positive squarefree d̃ ≤ X, with
the expectation that k1 is roughly log logQ1 = (log logX)η1 . We will require that η1 < η0/2
for our schema of cancellation to work out. Note that here logQ1 is exp

(
(log logX)η1

)
and

so is itself asymptotically smaller than any fixed power of (logX), but larger than any power
of (log logX).
We will allow k1 to be as large as κ1 log logQ1 for a parameter κ1, in fact we will sim-
ply take κ1 = 3, and the error from ignoring d̃ with larger k1 will be of relative size
� 1/(logQ1)κ1(log κ1−1), which saves more than any power of (log logX) asymptotically, so
that this error will be smaller than the previous one.
2.2.1. The main impediment against taking η0 large is a combinatorial argument (Corol-
lary 6.2) that will have a relative error of 2k0/2k1/

√
log logX which we can see is

≤ κ1(log logX)κ0η0(log 2)/2+η1−1/2. To optimize the error it does not matter much how we
take η1 (subject to 0 < η1 < η0/2), and are left to maximize

min
(
η0[κ0(log κ0 − 1)], 1/2− κ0η0(log 2)/2− η1

)
.

This can be seen to be arbitrarily close to 1/2 by taking κ0 = 1/η0
√

log 1/η0 and letting
η0 → 0, so the first term in the minimum tends to ∞, and the second to 1/2.
2.2.2. We also have a parameter ηs > 0 with Ps = exp

(
(log logX)ηs

)
. This quantity will

be the size of allowable moduli in our usage of the prime number theorem in arithmetic
progressions for which we do not care if there is an exceptional zero or not. If we apply said
theorem with primes of size ≥ Q1, we will still have a savings of Q1/P εs

1 = exp
(
(logQ1)/P εs

)
where ε = 1/2 if we want an effective result (and any ε > 0 if we relied on Siegel’s ineffective
theorem). Thus we need (log logQ1) to be somewhat larger than ε logPs, or that (log logX)η1

exceeds ε(log logX)ηs . As such, we will require ηs < η1, whereupon the choice of ε is almost
irrelevant, and we shall indeed take it as 1/2 to obtain an effective result.15 We will thus
need to exclude conductors ≥ Ps associated to exceptional zeros, and the density of such can
be bounded by a result of Landau. The relative error therein is � 1/(log logX)99+ηs and so
taking 0 < ηs < η1 < η0/2 are the only meaningful constraints.
We will consider η0, η1, and ηs to be fixed throughout the argument, and thus will not include
them as subscripts in the O() or � notation. We also allow all implicit constants to depend
on E (thus P), and similarly elide this from the notation. The letter c will sometimes be
used to denote a constant (different at each appearance) that we do not give explicitly, for
instance with exp

(
−c
√

logU
)
as the error in the prime number theorem.

3. Background on the distribution of primes and divisors

First we collect results about the distribution of the number of prime divisors for squarefree
integers, and also some results about the distribution of primes.

15Our Ps is first utilized as t and then termed D1 by Smith, and its size is chosen in the Definition on p. 71
before Corollary 6.11, wherein the latter in its second paragraph identifies the quantities. We analyze his
situation more fully in Footnote 25 below, attempting to indicate why he appears to be reliant on Siegel’s
ineffective theorem.
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3.1. We will consider positive squarefree integers whose prime divisors come from a specified
set P. The instance for 2-Selmer groups will have P be the set of all primes except those in a
finite set Ω. Another typical example (we shall call it the Gaussian case, after the Gaussian
integers) would be to restrict all the prime divisors to be 1 mod 4. Although one can derive
some results under a lesser notion of regularity (such as merely requiring the set P to have
a natural density), we shall only consider cases where P contains all the primes in specified
coprime residue classes RP to a fixed modulus MP .
For instance, in the case of 2-Selmer groups we can take the collection of all coprime residue
classes modulo the product of the primes in Ω, and indeed, one can also reverse the above
phrasing, noting that to any set of primes P determined by congruence conditions, there is
a set of bad primes ΩP given by p|MP . It will sometimes be convenient to require that 8
divides MP , which can typically be done with no loss of generality.
The most pertinent constant associated to P is the number ξP of coprime residue classes that
it contains, and we write αP = ξP/φ(MP), and assume this is nonzero.
3.1.1. We let ΦP(U) be the number of squarefree integers up to U that have all their prime
divisors in P. An asymptotic for this is rather trivial for the 2-Selmer case, as one has linear
behavior, with a factor of 1/ζ(2) for squarefreeness, and a factor of the product of p/(p+ 1)
over p ∈ ΩP . Meanwhile, the case with P was already touched upon by Landau [30], and his
methods (of comparing to ζ(s)αP ) readily show that there is some constant β(P) > 0 such
that

ΦP(U) ∼ β(P) U

(logU)1−αP
.

3.2. We also require results on the number of integers with a specified number of prime
factors, and we write SPt (U) for the set of squarefree integers up to U with exactly t prime
factors, all of which are in P. We also notate its size by ΦPt (U).
In the case where P is the set of all primes, a classical result due to Erdős16 and Kac [6] states
that the number of prime divisors for squarefree integers up to U is normally distributed with
mean (log logU) and standard deviation

√
log logU . Adapting this to the case with P yields

a similar result with both appearances of log logU multiplied by αP .
This approximation is not too sharp in the tails, where one has a Poisson distribution. Indeed,
a version of this with uniformity is due to Sathe [42, 43, 44, 45] (see also Selberg [46]), and
in the P-situation we find there are constants βt(P) such that17

(2) ΦPt (U) ∼ βt(P) U

logU
(αP log logU)t−1

(t− 1)!

uniformly for t < (2 − ε)αP log logU for any ε > 0. Here the βt(P) are uniformly bounded
(as t varies) by positive constants that only depend on P.

3.3. A classical result of Mertens [35] gives an asymptotic for the sum of the reciprocal of
the primes up to U , and this can be adapted to the P-case, with an error term determined by

16The paper in question places a Germanic umlaut on the ‘o’ in his name.
17For fixed t such a result essentially follows from the prime number theorem (see Landau’s Handbuch, Sec-
tion 56), and including uniformity (at least après Selberg) is mostly a technical matter. There is a transition
at t ∼ 2αP log logU ; when P is the set of all primes, see Hwang [21].
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the zero-free region for the L-functions with conductors dividing MP . For instance, we find
that there are constants mP and cP such that

(3)
∑
p≤U
p∈P

1
p

= αP log logU +mP +OMP
(
exp(−cP

√
logU)

)
.

For upper bounds on the size of sets of integers with many small prime factors taken from P,
we have a particularly convenient formulation of Tudesq [54]. Writing ωE(n) for the number
of prime divisors of a squarefree integer n that are in a set of primes E (this should cause no
confusion with the elliptic curve E), and Ẽr(U) for the sum of the reciprocals of the primes
in E up to U , we have the following.

Lemma 3.1 (Tudesq [54, Theorem 2]). — There exist absolute constants T1 and T2 such
that

#
{
n ≤ U : ωEj (n) = ej , 0 ≤ j ≤ l

}
≤ T1 · U exp

(
−

l∑
j=0

Ẽr
j(U)

)
l∏

j=0

(
Ẽr
j(U) + T2

)ej
ej !

for all choices of U ≥ 1, disjoint sets of primes Ej indexed 0 to l, and ej ≥ 0 (which are thus
allowed to depend on U).

3.4. We also require basic results about the distribution of primes in arithmetic progressions.
For this we recall the definition of an exceptional zero (sometimes called a Siegel zero) of a
Dirichlet L-function. Given a parameter λ > 0, a (necessarily quadratic) Dirichlet character
of conductor M is said to be λ-exceptional if its L-function has a real zero β with β ≥
1− λ/(logM).
A result18 of Landau [31, (14), (8)] implies that the set of exceptional characters is sparse,
and indeed by taking λ arbitrarily small their conductors can be made to grow faster than
any power-sequence. In particular, writing {Mi(λ)} for the putatively infinite sequence of
exceptional conductors ordered increasingly, there is some λ such that Mi+1(λ) ≥ Mi(λ)2

for all i ≥ 0. We shall fix such a λ for this paper, thusly also fixing the attendant sequence
(possibly finite, or indeed likely empty) of exceptional conductors for this λ.
3.4.1. We then recall the prime number theorem for arithmetic progressions (written in terms
of cancellation for character sums). Let ψ be a nontrivial Dirichlet character of conductorM ,
and assume that ψ is non-exceptional. There is an absolute constant c > 0 such that (see [56]
for instance) ∑

p≤U
ψ(p)� U exp

(
−c logU√

logU + 9 logM

)
(logUM)4.

When ψ is exceptional with zero β, the right side has an extra term Uβ.
We also have results on how bad an exceptional zero β can be. The ineffective theorem of
Siegel [47] says that for any ε > 0 there is some cε so that β < 1 − cε/M

ε for all M . A
flaw in this result is that given ε, one has no means to compute cε, even in theory. From
Dirichlet’s class number formula and rudimentary bounds on L′χ(s) near s = 1 one can show
that β < 1 − c/

√
M(logM)2 for some explicit c > 0. (The analysis for the derivative can

18The historical pedant will note that Landau only considered imaginary quadratic fields, and indeed the most
direct methods for generalizing to the real quadratic case did not arise for a couple of decades.

Publications mathématiques de Besançon – 2022



72 Distribution of the 2-Selmer rank under twisting

also be handled more carefully when Lχ(1) is small, obtaining the result of Goldfeld and
Schinzel [15, Corollary] that β < 1− c/

√
M for c = 6/π + o(1); this could then be improved

by nearly (logM) in the numerator by the bounds on Lχ(1) from the work of Goldfeld [14]
and Gross and Zagier [16]).
3.4.2. We will also require a bound for a bilinear sum over primes joined by a Legendre
symbol. Various results of this type exist in the literature, with Heath-Brown commenting that
Heilbronn [20] seems to be the first to broach the subject. His method is rather simple – apply
Cauchy’s inequality twice and use the estimate of Pólya and Vinogradov for partial character
sums – though as later authors noted, even the later is unneeded (character periodicity
suffices).

Lemma 3.2. — Let {αp} be complex numbers bounded by 1 and supported on primes p with
P ≤ p ≤ 2P in a fixed residue class modulo 8, and similarly for {βq}. Then∑

p∼P

∑
q∼Q

αpβq(p|q)�
PQ

min(P,Q)1/9 .

We recall the proof of this in Section 13.3, with sundry comments about the literature.

4. Parametrising squarefree integers via boxes

We next describe our basic partitioning of the (positive) squarefree integers, dividing them
up into boxes, and showing that almost all such integers are represented by boxes of certain
types.

4.1. For C a positive integer, the C-compressed basic intervals19 starting at Z (briefly, basic
intervals of parameters (C,Z)) are defined by

(2vZ + 2vZ(u− 1)/C, 2vZ + 2vZu/C] for v ≥ 0 and 1 ≤ u ≤ C.

The ratio of the endpoints is thus (1 +u/C)/
(
1 + (u− 1)/C

)
≤ 1 + 1/C. We shall use this for

Z = P0 = exp
(
(log logX)η0

)
and C = b(log logX)99c. Note that this ensures that each basic

interval is of some size, since Z is on a different exponential scale than C (so in particular
exp(
√

logZ) asymptotically exceeds any power of C).
For any C, every prime (indeed, every real number) greater than Z is in exactly one basic
interval of parameters (C,Z), so every squarefree integer is represented in a unique nonde-
creasing basic product of said parameters, namely

∏
i{pi}×

∏
j Ij for some increasing sequence

{pi} of distinct primes with all pi ≤ Z and some sequence Ij of basic intervals (Aj , Bj ] of
parameters (C,Z) with Bj ≤ Bj+1.

19I think Smith’s version of this (see t′i/ti near the top of p. 68 and D1 in the Definition on p. 71) has the
compression factor be a small power of (log logX) for small primes, and then grow to (logX) for larger ones.
Our choice shall suffice for our purposes.
Publications mathématiques de Besançon – 2022



M. Watkins 73

4.2. We let P be a set of primes determined by congruence conditions as in Section 3.1.
For a given η0 with 0 < η0 < 1, we define an (X, η0,P)-box T to be a Cartesian prod-
uct

∏
u{pu} ×

∏
t T t where the primes pu are distinct and in P, with the pu ordered in-

creasingly with each ≤ exp
(
(log logX)η0

)
; while the T t are a strictly increasing sequence

of basic intervals (At, Bt] of parameters (b(log logX)99c, P0) with
∏
u pu

∏
tBt ≤ X and

P0 = exp
(
(log logX)η0

)
. As a technical convenience, we require that P0 is larger than every

prime in ΩP (equivalently, X is large enough).
We let k0 be the number of primes pu ≤ P0 (corresponding to singleton sets), and r̃ be k0
plus the number of basic intervals, and term the box to be of type (r̃, k0). We will typically
index 1 ≤ u ≤ k0 and k0 < t ≤ r̃, and allow T u to refer to {pu}.
The squarefree integers with prime divisors from P that are represented by a box come from
the set T =

∏
u{pu} ×

∏
t Tt where Tt consists of the primes in T t that are in P. Indeed,

there is a natural injective map from this set to SPr̃ (X), recalling the latter is the set of
(positive) integers up to X with exactly r̃ prime factors, all of which are in P. We say that
d̃ is represented by a box if it is in the image T̂ of this map, and say that the box-data {pu}
and (At, Bt] form the basic product of d̃.
Fixing (X, η0,P), every d̃ ∈ SPr̃ (X) is represented by at most one (X, η0,P)-box, and moreover
we can show that almost all such d̃ are represented by such a box. Writing ΦPr̃ (X) = #SPr̃ (X)
and C = b(log logX)99c we have the following.

Lemma 4.1. — For r̃ with |r̃ − αP log logX| ≤ (αP/99)(log logX), the union of all
(X, η0,P)-boxes with type (r̃, k0) (as k0 varies) essentially covers SPr̃ (X), with the excep-
tional set having size

� ΦPr̃ (X) log logX
C

� ΦPr̃ (X)
(log logX)98 .

Proof. — The exceptional set of d̃ ∈ SPr̃ (X) for a given r̃ has:

(a) d̃ whose basic product of parameters (C,P0) has
∏
u pu

∏
tBt > X;

(b) d̃ with at least two prime factors from the same basic interval.

4.2.1. For (a), writing (At, Bt] for the basic intervals in the unique basic product containing
d̃, the exceptional set is majorized by the d̃ with d̃

∏
t(Bt/At) ≥ X, and such d̃ are ≥ X/(1 +

1/C)r̃. We write U for this, and the number of exceptions is bounded as ≤ ΦPr̃ (X)−ΦPr̃ (U)�
ΦPr̃ (X)

[
1 − 1/(1 + 1/C)r̃

]
� ΦPr̃ (X)(log logX)/C, where we used the Sathe asymptotic (2)

and r̃ ≤ (100αP/99) log logX.
4.2.2. Situation (b) is similar to the “comfortable spacing” of Smith (Definition 5.3 on p. 44),
which he considers at the end of the proof of Proposition 5.6 (p. 56); see also [3, Section 4.2.1].
Writing λ = 1 + 1/C, the number Nb of d̃ in (b) is bounded by∑

P0<q<
√
X

∑
q/λ<p<qλ

ΦPr̃−2(X/pq).
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When p is small, say p < X1/3, we have ΦPr̃−2(X/pq)� ΦPr̃ (X)/pq following from the Sathe
asymptotic (2), thus giving a bound of

�
∑

P0<q≤
√
X

ΦPr̃ (X)
q

∑
q/λ<p<qλ

1
p
.

By the Mertens asymptotic (3) the p-sum here is (for some constant c > 0)

� log log qλ
log q/λ + exp

(
−c
√

log q
)
� 1

C log q + exp
(
−c
√

log q
)
,

and the resulting convergent q-sums give a contribution to Nb bounded as

� ΦPr̃ (X)
[ 1/C

logP0
+ exp

(
−c
√

logP0
)]
� ΦPr̃ (X)

[ 1
(log logX)99+η0

+ 1
(log logX)999

]

where exp
(
−c
√

logP0
)

= exp
(
−c(log logX)η0/2)� 1/(log logX)999 since η0 > 0.

For the remaining p > X1/3 we use the crude ΦPr̃−2(X/pq) � X/pq and get a contribution
bounded as

∑
P0<q<

√
X

∑
q/λ<p<qλ

p>X1/3

X

pq
�

∑
X1/3/2<q<

√
X

X

q

[ 1
C(log q) + exp(−c

√
log q)

]
� X

C(logX) ,

and since X/ logX � ΦPr̃ (X) for our r̃, this then gives the desired bound. �

4.3. Next we show that the set of d̃ whose prime factorization is not suitably regular are
sparse; namely, we expect that αP log log pl for pl the lth prime factor (written increasingly) is
suitably close to l. Smith requires this for many l in his regularity condition [48, Definition 5.3],
while we shall opt for a reduced version.20
Since this will not be the dominant error term, we make no attempt to optimize.21

Lemma 4.2. — The union of SPr̃ (X) over |r̃ − αP log logX| ≥ αP(log logX)/99 has size
bounded as � ΦP(X)/(logX)αP/20000.

Proof. — Using Tudesq’s formulation (Lemma 3.1), we take E0 as the set of all primes
not in P and e0 = 0, while E1 is the set of primes in P up to X and e1 = r̃. Writing
a = (98αP/99)(log logX), we can bound the number of integers in SP(X) with fewer than a

20Note that we do not, and indeed Smith did not, use his condition of “extravagant spacing” for our result; it
only becomes relevant in his Section 7 when considering higher Selmer groups.
21A referee notes that Turán’s method [55] might be able to show these more directly, without relying on the
full force of the asymptotic in (2).
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prime factors as22

� X

logX
∑
e1<a

(αP log logX + T̃ 2)e1

e1! � (X/ logX) · exp(a logαP + a log log logX)
exp(a log(98αP/99) + a log log logX − a)

= X

logX exp
(
a+ a log(99/98)

)
= X

logX
(
(logX)αP

)(98/99)[1+log(99/98)]

= X

logX (logX)αP ·
(
(logX)αP )(98/99)[1+log(99/98)]−1 � ΦP(X)

(logX)αP (1/2)(1/992) ,

where we used Stirling’s formula, and (98/99)
[
1 + log(99/98)

]
− 1 ≤ −(1/2)(1/992) so as to

save a (small) power of (logX).
For the large e1 we write a = (100αP/99)(log logX) and find the contribution is

� X

logX
∑
e1>a

(αP log logX + T̃ 2)e1

e1! � (X/ logX) · exp(a logαP + a log log logX)
exp(a log(100αP/99) + a log log logX − a)

= X

logX exp
(
a− a log(100/99)

)
= X

logX
(
(logX)αP

)(100/99)[1−log(100/99)]

= X

logX (logX)αP ·
(
(logX)αP )(100/99)[1−log(100/99)]−1 � ΦP(X)

(logX)αP (1/2)(1/1002) ,

where we used that (100/99)
[
1− log(100/99)

]
− 1 ≤ −(1/2)(1/1002). �

We recall P0 = exp
(
(log logX)η0

)
and introduce Q1 = exp exp

(
(log logX)η1

)
.

Lemma 4.3. — Suppose that |r̃ − αP log logX| ≤ (αP/99) log logX.
For κ0 > 3, the number of d̃ ∈ SPr̃ (X) that have more than a0 = κ0αP log logP0 prime factors
up to P0 = exp

(
(log logX)η0

)
is

� ΦPr̃ (X)
(logP0)αPκ0(log κ0−1−θ) = ΦPr̃ (X)

(log logX)αPη0κ0(log κ0−1−θ)

where θ = log(100/99). We shall eventually take κ0 = 1/η0
√

log 1/η0 and η0 → 0, thus saving
an arbitrarily large power of (log logX).
The number of d̃ ∈ SPr̃ (X) with more than a1 = 3αP log logQ1 prime factors up to Q1 =
exp exp

(
(log logX)η1

)
is

� ΦPr̃ (X)
(logQ1)αP ·3(log 3−1−θ) �

ΦPr̃ (X)
(log logX)999 .

Proof. — For the first statement, we apply Tudesq’s result (Lemma 3.1) with E0 the set of
all primes not in P and e0 = 0, while E1 is the set of primes in P up to P0 with e1 > a0 =
κ0αP log logP0, and E2 is the set of primes in P exceeding P0 with e2 = r̃− e1. This implies
the number of exceptions is

� X

logX
∑
e1>a0

(αP log logP0 + T̃ 2)e1

e1!
(αP log logX + T̃ 2)r̃−e1

(r̃ − e1)! .

22Here T̃ 2 is Tudesq’s T2 plus a bound for mP plus the error term in the Mertens asymptotic (3). It never
plays a rôle because we only consider (u+ T̃ 2)e = ue(1 + T̃ 2/u)e with e roughly of size u.
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Since r̃ ≤ (100αP/99)(log logX), by Sathe’s asymptotic (2) we have

X

logX
(αP log logX + T̃ 2)r̃−e1

(r̃ − e1)! � ΦPr̃+1−e1(X)� ΦPr̃ (X) · (100/99)e1 .

Then, since e1 > a0 = κ0αP log logP0 ≥ 3αP log logP0, the sum over e1 is bounded (for
sufficiently large X) by a decreasing geometric sequence in e1, thus being dominated by
e1 = a0. So the number of exceptions is

� ΦPr̃ (X)
(
(100αP/99) log logP0 + (100/99)T̃ 2

)ba0c

ba0c!

� ΦPr̃ (X)
exp

(
a0 log log logP0 + a0 log(100αP/99)

)
exp

(
a0 log log logP0 + a0 log(αPκ0)− a0

)
= ΦPr̃ (X)

exp
(
αP(log logP0) · κ0[log κ0 − 1− log(100/99)]

)
where we used Stirling’s approximation and a0 = κ0αP log logP0.
The same argument for the second part of the Lemma readily gives a bound of � ΦPr̃ (X) ·
(100/99)a1 · (αP log logQ1 + T̃ 2)ba1c/ba1c! on the size of the exceptional set, and then using
a1 = κ1αP log logQ1 with κ1 = 3 in conjunction with Stirling’s formula implies this is

� ΦPr̃ (X)
(logQ1)αP ·3(log 3−1−log(100/99)) ,

and the result then follows since logQ1 = exp
(
(log logX)η1

)
exceeds any power of (log logX)

asymptotically (when η1 > 0). �

4.3.1. Given a fixed parameter η1 > 0, for a box T we let k1 be the maximal index t for
which the basic interval (At, Bt] has Bt ≤ Q1 = exp exp

(
(log logX)η1

)
. We then accumulate

our above analyses with the following result.

Lemma 4.4. — For η0, η1 > 0 and κ0 > 3, the set of all (X, η0,P)-boxes that have
|r − αP log logX| ≤ (αP/99)(log logX) and additionally k0 ≤ κ0αP log logP0 and k1 ≤
3αP log logQ1 essentially covers SP(X). The exceptional set has size

� ΦP(X)
(log logX)αPη0κ0(log κ0−1−θ) + ΦP(X)

(log logX)998

where θ = log(100/99).

Proof. — Apply Lemmata 4.2 and 4.3, taking the union over r̃ with the latter. �

4.4. We recollect our (likely empty) sequence of exceptional conductors of Dirichlet L-
functions (Section 3.4), and show that the boxes that contain a multiple of one of them
do not contribute many d̃. As Smith notes (Proposition 6.10), we can decontextualize the
analysis from any discussion of Siegel zeros. We let Ps = exp

(
(log logX)ηs

)
for a given pa-

rameter ηs > 0.
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4.4.1. Consider a sequence of integers {wl} that has w0 ≥ Ps and wl+1 ≥ w2
l for all l ≥ 0.

Write w′l for the part of wl coprime to MP , so that we have w′l ≥ P 2l
s /MP .

Lemma 4.5. — With the notation as given above, the set of d̃ ∈ SPr̃ (X) such that a
(X, η0,P)-box that represents d̃ also represents a multiple of some w′l has size

� ΦPr̃ (X) 1/C
logPs

� ΦPr̃ (X)
(log logX)99+ηs

.

Proof. — Suppose w′l = p1 · · · pm divides some squarefree integer represented by a box T .
Then for every d̃ ∈ T̂ there are (increasing) prime factors q1, . . . , qm of d̃ such that pi = qi if
pi ≤ P0 and pi/(1 + 1/C) ≤ qi ≤ pi(1 + 1/C) otherwise (where C is the compression factor
b(log logX)99c as previously).
As with the proof of (b) in the above Lemma 4.1, we write λ = 1 + 1/C, and first note that
the number of d̃ in such boxes is bounded as

�
∏
pi≤P0
pi|w′l

∏
pj>P0
pj |w′l

∑
pj/λ≤qj≤pjλ

ΦPr̃−m

(
X
/∏

i

pi
∏
j

qj

)
.

For w′l ≤
√
X we use Sathe’s asymptotic (2) to bound ΦPr̃−m in terms of ΦPr̃ , getting

� ΦPr̃ (X)
∏
pi≤P0
pi|w′l

1
pi

∏
pj>P0
pj |w′l

∑
pj/λ≤qj≤pjλ

1
qj
.

The q-sums here are � (1/C log pi) + exp(−c
√

log pi), and the considerations are dominated
by the case when w′l is prime and exceeds P0. A similar (cruder) argument works when
w′l ≥

√
X.

Since w′l � P 2l
s this gives a bound on the number of d̃ in such boxes as

� ΦPr̃ (X) ·
[ 1/C

2l logPs
+ exp

(
−c
√

2l logPs
)]
,

where the first term in brackets dominates since ηs > 0. The sum over l is convergent, and
we conclude the statement of the Lemma. �

Note that Smith doesn’t exploit the compression factors of the intervals here, and so his
error estimate is X/(log logX)ηs (or perhaps X/(log logX)η0), with this then to be balanced
against the power-savings of (log logX) that comes from the other parts of the argument.
Contrarily, our version ensures that ηs does not directly affect our ultimate error bound
(though we still will need 0 < ηs < η1 < η0/2).

4.5. Finally, we define pleasant boxes, and accumulate the results above to show that almost
every squarefree d̃ is represented by such a box.
Let η0, η1, ηs > 0 and κ0 > 3 be given parameters. Then a (κ0, η1, ηs)-pleasant (X, η0,P)-box
of type (r̃, k0) is one with |r̃ − αP(log logX)| ≤ (αP/99) log logX, and k0 ≤ κ0αP log logP0
with log logP0 = η0 log log logX, and k1 ≤ 3αP log logQ1 where log logQ1 = (log logX)η1

and k1 is the largest index t with Bt ≤ Q1 for the basic interval (At, Bt], and such that there
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is no d̃ represented by the box that is a multiple of the coprime-to-P part of some element
of the sequence {Mi} of exceptional (Siegel) conductors that is ≥ Ps = exp

(
(log logX)ηs

)
.

Lemma 4.6. — The exceptional subset of d̃ ∈ SP(X) that are not represented by a
(κ0, η1, ηs)-pleasant (X, η0,P)-box has size (with θ = log(100/99))

� ΦP(X)
(log logX)αPη0κ0(log κ0−1−θ) + ΦP(X)

(log logX)99 .

Proof. — Apply Lemmata 4.4 and 4.5. �

Recall also that every d̃ ∈ SP(X) is represented by at most one (X, η0,P)-box.

5. Cutting up boxes

We recall P is the set of all primes lying in the residue classes RP modulo MP , and that a
box T represents positive squarefree integers with prime factors from P.

5.1. We now consider restricting boxes so that for all l with 1 ≤ l ≤ r̃ the lth prime factor
is required to be in a specific residue class modulo MP . Note that this is somewhat different
than the previous P-restriction. For instance, we might have P contain all the primes that
are 1 mod 8 and 3 mod 8, and now require that the first prime divisor is 1 mod8, the second
and third are 3 mod 8, while the fourth is 1 mod 8, etc.23
We thus define the K-trimming of a box. For each l with 1 ≤ l ≤ r̃ we let Kl be a residue
class modulo MP . Recall that the squarefree integers represented by a box T naturally lie
in a Cartesian product

∏
l Tl, where each Tl is a singleton set or the set of primes in a

basic interval (Al, Bl] that are in P. Assuming that each singleton set meets its requisite
K-condition (otherwise we just take T (K) as empty), we define T (K) =

∏
l Tl(K) where Tl(K)

is the set of primes in the basic interval (Al, Bl] that are in the residue class specified by Kl
(in other words, it is the subset of Tl that meets said Kl-condition).
This procedure of K-trimming does not lose much in our estimates because we are simply
taking progressions to a fixed modulus MP . (Note that we can specify d̃ to be in any desired
coprime residue class to an auxiliary modulus m via including m in the modulus MP (if
necessary) and considering only the K that give the desired class. This does little more than
induce an extra factor of ϕ(m) in various estimates. We can similarly restrict to a non-coprime
residue class by only considering boxes that have the common primes in the singleton sets.
This then gives a method of handling non-twist-minimal curves, as suggested at the end of
Section 1.1.3.)

5.2. We let L be a set of Legendre symbol specifications, meaning for 1 ≤ i < j ≤ r̃ we
take Lij ∈ {±1}. We then define the (K,L)-restriction of a box. This is the set of d̃ ∈ T̂ (K)
with d̃ = p1 · · · pr̃ such that (pi|pj) = Lij for all 1 ≤ i < j ≤ r̃. This is more severe than the
K-trimming, as in general it will no longer be a Cartesian product. However, if we instead
only specify Legendre symbol conditions for a suitable subset of the (i, j), then we will indeed
retain the Cartesian product aspect. Moreover, it is convenient to simultaneously limit the
trimming effect of K.
23Smith only requires that the lth prime have a specific Legendre symbol specification with each of the bad
primes, which suffices when considering the 2-Selmer group.
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5.2.1. For a box T , recall k0 is the number of primes up to P0 = exp
(
(log logX)η0

)
, with

these primes associated to singleton sets in the Cartesian product, while k1 is the largest l
such that the lth basic interval has Bl ≤ Q1 = exp exp

(
(log logX)η1

)
.

We define the (K,L, [k0, k1])-trimming of a box, which we denote as T̃ (K,L)k1
k0
. This corre-

sponds to the set of d̃ represented by T with d̃ = p1 · · · pr̃ such that pi is in the residue class
specified by K for i ≤ k1, and (pi|pj) = Lij for i, j that satisfy 1 ≤ i < j ≤ k1 and i ≤ k0. We
let I(k0, k1) be this set of (i, j)-pairs.
The latter condition i ≤ k0 ensures that the prime pi will be from a singleton set in the
product for T . We thus have a Cartesian product

T̃ (K,L)k1
k0

=
∏
l

T̃ l(K,L)k1
k0
.

For l ≤ k0 this set T̃ l(K,L)k1
k0

is simply the singleton Tl if the (K,L)-conditions are met and is
empty otherwise. Meanwhile, for l with k0 < l ≤ k1 the set T̃ l(K,L)k1

k0
is the subset of Tl that

is specified by: the Legendre symbol specifications from L for index pairs (j, l) ∈ I(k0, k1)
with j ≤ k0 (which are thus specifications with respect to singleton primes); and the residue
condition from Kl. These are somewhat arbitrary sets of primes over which we need not have
much control. One expects that T̃ l(K,L)k1

k0
is 1/ξP2k0 as large as Tl, but this is not easy to

show in general.24
Finally, for l > k1 we simply have T̃ l(K,L)k1

k0
= Tl, which thus consists of all the primes

in a basic interval that are in P. The regularity of such primes will allow us to show that
the partitioning of T according to the index pairs not in I(k0, k1) is indeed fairly uniform,
reducing the size roughly by the expected powers of 2 and ξP .

5.3. We now turn to showing the main result about trimmed boxes, namely that when the
trimmed box T̃ (K,L)k1

k0
is further restricted by all the (K,L)-conditions, the size is therein

reduced by the expected powers of 2 and ξP .
Smith uses an inductive scheme in his Proposition 6.3, while we (similar to Kane in particular)
instead consider the product over

[
1 + (pi|pj)

]
, namely∏

(i,j)∈Ir̃\I(k0,k1)

[
1 + (pi|pj)

]
where Ir̃ is the set of all (i, j)-pairs with 1 ≤ i < j ≤ r̃. At any rate, the crux of Smith’s ar-
gument is that the exclusion of I(k0, k1) (which we handle later by a combinatorial argument
involving the fixity of the 2-Selmer rank under permutations) allows suitable uniformity to
be adduced.
5.3.1. As a motivation for the forthcoming proof, we will end up needing to estimate sums
either of a bilinear form

(4)
∑
pm

∑
pn

ambn(pm|pn)

24One can readily show this expectation upon assuming the Generalized Riemann Hypothesis, at least for l
that exceed k0 by a sufficient amount (roughly that the primes in Tl exceed the square of the modulus, the
latter being bounded by 4P0).

Publications mathématiques de Besançon – 2022



80 Distribution of the 2-Selmer rank under twisting

where pm ∈ Tm and pn ∈ Tn with m < n and {am}, {bn} are arbitrary sequences bounded
by 1, or the ostensibly simpler congruential form

(5)
∑
pn

(M |pn)

for some modulus M .
We have a natural ambient loss of

2k0k1 ≤ 2(κ0η0 log log logX)·(κ1 log logQ1) = exp
(
3κ0η0(log 2)(log log logX)(log logQ1)

)
to overcome, corresponding to the amount we cannot directly access from the pairs in
I(k0,k1). Moreover, our losses will have to take into account the number of relevant subsets of
Ir̃\I(k0, k1) that occur when multiplying out

∏[
1 + (pi|pj)

]
: this number is bounded by 2(r̃2)

– though this is quite large, it will suffices in ranges where one of the primes exceeds
exp

(
(log logX)3); meanwhile the number of such subsets that do not involve an index exceed-

ing k1 is bounded by 2(k1
2 ), and to handle these it suffices to require η0 > 2η1. (Perhaps by

re-arranging the argument one only needs η0 > η1, but such an improvement would ultimately
be irrelevant).
We also lose a negligible C2 = (log logX)198 from interval splitting, and in the bilinear case
(log pm)(log pn) from the density of primes. Finally, there is a loss of ξk1

P coming from the
K-splitting on the first k1 primes.
5.3.2. In the figure we divided the (m,n)-range (also reflecting tom > n for symmetrical con-
venience) into 4 parts. This depends on a splitting at the parameter Y = exp

(
(log logX)998),

and we write kY for the largest index l such that the right endpoint Bl of the basic interval
T l has Bl ≤ Y .
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these it suffices to require η0 > 2η1. (Perhaps by re-arranging the argument one
only needs η0 > η1, but such an improvement would ultimately be irrelevant).

We also lose a negligible C2 = (log logX)198 from interval splitting, and in the
bilinear case (log pm)(log pn) from the density of primes. Finally, there is a loss

of ξk1

P coming from the K-splitting on the first k1 primes.

5.3.2. In the Figure we divided the (m,n)-range (also reflecting to m > n for
symmetrical convenience) into 4 parts. This depends on a splitting at the parame-
ter Y = exp

�
(log logX)998

�
, and we write kY for the largest index l such that the

right endpoint Bl of the basic interval T̄l has Bl ≤ Y .

k0 kY k1
→ n

k0

kY

k1

m↑

B

A

D

D

C

The first region A has m ≤ k0 and n ≤ k1 (and its reflection) and corresponds
to the indices in I(k0, k1). These will thus not appear in the current analysis, but
rather in a permutation argument in the next section.

The second region B has m,n ≥ kY where from the bilinear sum (4) we will

save p
1/9
m ≥ Y 1/9, and since we have Y = exp

�
(log logX)998

�
� 2r

2

this easily

suffices. The third region C has k0 < m,n ≤ k1 and here we save � P
1/9
0 in the

bilinear estimation. Since we assume η0 > 2η1, while log logQ1 ≥ k1/3 for pleasant
boxes, this savings is

exp
�
(logP0)/9

�
= exp

�
(log logX)η0/9

�

� exp
�
9(log logX)2η1

�
= exp

�
9(log logQ1)

2
�
≥ exp(k21).

This exceeds the losses from the number of relevant subsets.
The fourth regionD hasm ≤ kY and n > k1 and its reflection. For this region we

can estimate the sum in (5) by results for primes in arithmetic progressions. When
there is no exceptional zero, we save a dramatic amount exp

�
c
√
logQ1

�
, which is

asymptotically (much) larger than exp(r̃2). Even when there is an exceptional zero,
if the conductor has M ≤ Ps we can use the “trivial” bound on zeros and obtain

an adequate result, namely a savings of size Q
1/M�

1 ≥ exp
�
(logQ1)/P

�
s

�
. If we then

write Ps = exp
�
(log logX)ηs

�
, our savings requirement can be phrased as saying

that log logQ1 = (log logX)η1 should sufficiently exceed logP �
s = �(log logX)ηs ,

and so it suffices to take ηs < η1 (note also that we can take � = 1/2 without any

The first region A has m ≤ k0 and n ≤ k1 (and its reflection) and corresponds to the indices
in I(k0, k1). These will thus not appear in the current analysis, but rather in a permutation
argument in the next section.
The second region B has m,n ≥ kY where from the bilinear sum (4) we will save p1/9

m ≥ Y 1/9,
and since we have Y = exp

(
(log logX)998)� 2r2 this easily suffices. The third region C has
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k0 < m,n ≤ k1 and here we save� P
1/9
0 in the bilinear estimation. Since we assume η0 > 2η1,

while log logQ1 ≥ k1/3 for pleasant boxes, this savings is
exp

(
(logP0)/9

)
= exp

(
(log logX)η0/9

)
� exp

(
9(log logX)2η1

)
= exp

(
9(log logQ1)2) ≥ exp(k2

1).
This exceeds the losses from the number of relevant subsets.
The fourth region D has m ≤ kY and n > k1 and its reflection. For this region we can
estimate the sum in (5) by results for primes in arithmetic progressions. When there is no
exceptional zero, we save a dramatic amount exp

(
c
√

logQ1
)
, which is asymptotically (much)

larger than exp(r̃2). Even when there is an exceptional zero, if the conductor has M ≤ Ps
we can use the “trivial” bound on zeros and obtain an adequate result, namely a savings
of size Q1/Mε

1 ≥ exp
(
(logQ1)/P εs

)
. If we then write Ps = exp

(
(log logX)ηs

)
, our savings

requirement can be phrased as saying that log logQ1 = (log logX)η1 should sufficiently exceed
logP εs = ε(log logX)ηs , and so it suffices to take ηs < η1 (note also that we can take ε = 1/2
without any difficulty).25 We will still need to exclude exceptional conductors with M ≥ Ps,
as codified above in our definition of pleasantness in Section 4.5.
Note that we can actually use prime distribution in arithmetic progressions for many more
(m,n)-pairs than those in D. Indeed, we could typically expect to save something like
exp

( log exp(en)
log exp(em)

)
= exp(en−m) from primes of size exp(en) in arithmetic progressions to mod-

uli exp(em), so when n−m� (log logX)η1 log log logX (roughly) we could expect save the
desired factor. Thus for m,n� k0k1 it is only rather close to the diagonal that usage of the
bilinear bound is necessitated.

5.4. Let us now state and show the desired result.

Proposition 5.1. — Let T be a (κ0, η1, ηs)-pleasant (X, η0,P)-box and T̃ (K,L)k1
k0

its
(K,L, [k0, k1])-trimming. Assume that η0/2 > η1 > ηs > 0. Then

#T (K,L) =
#T̃ (K,L)k1

k0
/ξr̃−k1
P

2(r̃2)−(k0
2 )−k0(k1−k0)

+O

(
#T (K)(log logX)198

2(r̃2)−(k0
2 )−k0(k1−k0)

·
exp

(
5(log logX)2η1

)
exp

(
(log logX)η0/9

)).
Proof. — We consider

VL(~p) =
∏

(i,j)∈Ir̃\I(k0,k1)

[
1 + Lij(pi|pj)

]
,

which is used to pick off the Legendre conditions from the Cartesian product

(6)
∏
a≤k1

T̃ a(K,L)k1
k0
×
∏
b>k1

Tb(K)

25My impression concerning the reason that Smith’s proof uses the ineffective Siegel bound is that he doesn’t
particularly exploit that Q1 will be significantly larger thanM . His usage of the Siegel bound occurs at the top
of p. 64, where he makes the savings estimate of xβ � exp( log ti

tc
), where c > 0 is the Siegel exponent (having

c = 1/2 would thus be an effective result). His ti here corresponds to ourQ1, so that its log is exp
(
(log logX)η1

)
,

and his t to our exp
(
(log logX)ηs

)
. He then merely exploits his condition (6) that log ti � tc6 (which implicitly

requires him to later utilize small c), while in fact by taking η1 > ηs these are on much different scales. This
is then replicated in condition (iii) of [3, Proposition 5.7], and thus their result is also ineffective in the form
given.
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so that

#T (K,L) = 1
2w

∏
a≤k1

∑
pa∈T̃a(K,L)k1

k0

∏
b>k1

∑
pb∈Tb(K)

VL(~p)

where w =
(r̃
2
)
−
(k0

2
)
− k0(k1 − k0) is the number of the index pairs in the product.

Multiplying VL(~p) out, the component with all 1’s gives the main term as

1
2w

∏
l≤k1

#T̃ l(K,L)k1
k0

∏
l>k1

#Tl(K) = 1
2w

∏
l≤k1

#T̃ l(K,L)k1
k0

∏
l>k1

#Tl
#Tl(K)

#Tl

= 1
2w#T̃ (K,L)k1

k0

∏
l>k1

#Tl(K)
#Tl

.

We can handle the latter product using estimates on primes in arithmetic progressions, here
to the fixed modulus MP for primes exceeding Q1. Each term in the product is then 1/ξP +
O
(
exp(−c

√
logQ1)

)
, yielding a negligible error.

5.4.1. Otherwise, each component of VL(~p) when multiplied out corresponds to some
nonempty subset S of Ir̃\I(k0, k1). Let n be the largest index appearing in a pair in S,
and let m be the largest index such that (m,n) ∈ S.
When (m,n) is in B or C (so in particular m > k0) we will apply the bilinear bound. To
uniformize notation over indices, we write Ul for the components in the Cartesian product (6).
The underlying sets Um and Un need not be too regular in this case. The relevant sum is
bounded as

� 1
2w

∏
l 6=m,n

∑
pl∈Ul

∣∣∣∣∣ ∑
pm∈Um

∑
pn∈Un

apmbpn(pm|pn)
∣∣∣∣∣

for some coefficients apm and bpn that respectively take into account the other Legendre
symbols involving pm and pn (thus depending on the pl). In particular, these coefficients are
bounded in size by 1.
By Lemma 3.2 the contribution for each such S is thus

� 1
2w

∏
l 6=m,n

#Ul ·
BmBn

B
1/9
m

where the Bm is the right endpoint of the mth basic interval for Tm and similarly for n.
For the l 6= m,n we apply the trivial bound #Ul ≤ #Tl(K), with this being an equality for
l > k1. Meanwhile, since Tm(K) contains all the primes in the basic interval Tm in the Km
residue class, by estimates for primes in arithmetic progresions (to the fixed modulus MP)
we have Bm � #Tm(K) ·C log #Tm(K), and similarly for n (here C is the compression factor
b(log logX)99c).
The number of sets S such that (m,n) is in B is trivially bounded as 2(r̃2), and their total
contribution is thereby bounded as

∏
l

#Tl(K) · 2(r̃2)(C logX)2

2wY 1/9 = #T (K)
2w · 2(r̃2)(C logX)2

Y 1/9 � #T (K)
2w(logX)999 ,
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as Y = exp
(
(log logX)998) dominates the discussion. The number of sets S such that (m,n)

is in C is bounded as 2(k1
2 ), and their total contribution is bounded as

� #T (K)
2w

2(k1
2 )(C logQ1)2

P
1/9
0

where (logQ1) is exp
(
(log logX)η1

)
and P0 is exp

(
(log logX)η0

)
, and for pleasant boxes k1 ≤

3 log logQ1 implies 2k2
1/2 ≤ exp(4(log logQ1)2) = exp

(
4(log logX)2η1

)
, so that η0 > 2η1 gives

the desired bound.
5.4.2. Otherwise, the contribution from a set S is bounded as

(7) � 1
2w

∏
l 6=n

∑
pl∈Ul

∣∣∣∣∣ ∑
pn∈Un

(M |pn)
∣∣∣∣∣

where here M is the product of the primes taken from the Uj with (j, n) ∈ S. In particular,
each such prime from Uj is bounded by Y (else we would be in case B), so the modulus is
no more than Y kY . Since n > k1 we have that Un = Tn(K) is the set of primes in a basic
interval that are in the residue class specified by Kn.
Ergo, we can apply results about primes in arithmetic progressions. Our assumption that the
box is ηs-pleasant implies that the inner sum in (7) is

� Bn

B
1/
√
Ps

n

+Bn exp
(
−c logBn√

logBn + 9 logM

)
(logBnM)4.

Since n > k1 we have Bn ≥ Q1 and so logBn � exp
(
(log logX)η1

)
, which much ex-

ceeds logM ≤ kY log Y � (log logX)999. Meanwhile, we can similarly note the bound
(logBn)/

√
Ps � exp

(
(log logX)η1

)
exp

(
−(log logX)ηs/2

)
, so that η1 > ηs implies the inner

sum in (7) is
� Bn exp

[
−c exp

(
(log logX)η1/2

)]
.

We have that Bn � #Tn(K) ·C log #Tn(K)� #Tn(K)(log logX)99(logX) and again use the
trivial bound #Ul ≤ #Tl(K) for l 6= n. Thus the above bound (7) is

� 1
2w

#T (K)
#Tn(K) ·#Tn(K) (logX)(log logX)99

exp exp
(
(log logX)η1/2

) � #T (K)/2w

exp exp
(
(log logX)η1/3

)
(indeed, there is an extra exponentiation in the denominator compared to the bound from
the bilinear estimate, as due to n ≥ k1 we save exp

(
−c
√

logQ1
)
, which is on a different

exponential scale than the Y or P0 of before). Multiplying by 2(r̃2) for the number of sets S
is harmless, and we conclude the Proposition. �

It will be slightly more convenient to rearrange the above formula, and we do so upon writing
v =

(k0
2
)

+ k0(k1 − k0).

Corollary 5.2. — Let T be an (κ0, η1, ηs)-pleasant (X, η0,P)-box and T̃ (K,L)k1
k0

its
(K,L, [k0, k1])-trimming. Assume that η0/2 > η1 > ηs > 0. Then

2(r̃2)−vξr̃−k1
P #T (K,L) = #T̃ (K,L)k1

k0
+O

(
#T (K)ξr̃−k1

P ·
exp

(
6(log logX)2η1

)
exp

(
(log logX)η0/9

)).
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5.5. Although we will not need it until Section 7, it is also useful to record an upper bound
on #T (K,L).

Lemma 5.3. — Let T be a (κ0, η1, ηs)-pleasant (X, η0,P)-box, and assume that the param-
eters satisfy η0/2 > η1 > ηs > 0. Then

#T (K,L)� #T (K)
2(r̃2)

2v

where v =
(k0

2
)

+ k0(k1 − k0). (This bound is 2v more than the expected amount).

Proof. — From Proposition 5.1 we have

(8) #T (K,L) =
#T̃ (K,L)k1

k0
/ξr̃−k1
P

2(r̃2)−v
+O

(
#T (K)
2(r̃2)−v

·
exp

(
6(log logX)2η1

)
exp

(
(log logX)η0/9

)),
and since η0 > 2η1 the error term fits into our bound here.
Meanwhile, we have

T̃ (K,L)k1
k0

=
∏
l

T̃ l(K,L)k1
k0

=
∏
l≤k1

T̃ l(K,L)k1
k0
×
∏
l>k1

Tl,

and using #T̃ l(K,L)k1
k0
≤ #Tl(K) this implies

#T̃ (K,L)k1
k0
≤
∏
l≤k1

#Tl(K)
∏
l>k1

#Tl(K) #Tl
#Tl(K) = #T (K)

∏
l>k1

#Tl
#Tl(K) .

We can again estimate the latter product by results on primes in arithmetic progressions to
the fixed modulusMP for primes exceeding Q1, finding each term is ξP+O

(
exp(−c

√
logQ1)

)
.

We thus conclude #T̃ (K,L)k1
k0
� #T (K)ξr̃−k1

P and so

#T̃ (K,L)k1
k0
/ξr̃−k1
P

2(r̃2)−v
� #T (K)ξr̃−k1

P /ξr̃−k1
P

2(r̃2)−v
= #T (K)

2(r̃2)
2v,

with then the same asymptotic bound holding for #T (K,L) by (8). �

6. Averaging over permutations

As we exposit in Section 7, the 2-Selmer rank of Ed is determined by the values of the
Legendre symbols (pi|pj) for primes pi, pj dividing d, along with the values of the Legendre
symbols (q|pi) for bad primes q ∈ Ω, and the sign of d. The Legendre symbols are a weaker
condition than our requirements from K that pi be in a given residue class modulo MP . Thus
for any given (K,L) the 2-Selmer rank is the same for every d ∈ SPr̃ (∞) that satisfies said
(K,L)-conditions, and we write s+

r̃ (K,L) for it. The 2-Selmer rank is similarly the same for
every −d ∈ SPr̃ (∞) for which |d| satisfies the (K,L)-conditions, and we write s−r̃ (K,L) for it.
More explicitly, the 2-Selmer rank is the dimension of the kernel of a square matrix of size
2(r̃+ #Ω̃) with F2 entries corresponding to Legendre symbols, with 2 rows/columns for each
odd prime involved (and 3 for p = 2 and 1 for the infinite place). As such, to compute
the 2-Selmer rank it does not matter how we permute the rows and columns. This latter
observation is keenly exploited by Smith.
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6.1. We let D(r̃,P) be the set of all possible choices (K,L) for given r̃ and P. This has size
2(r̃2)ξr̃P where ξP is the number of residue classes in RP .
6.1.1. Given a pleasant box T , a fixed sign ε for d, and a fixed value of s, we want to estimate∑

(K,L)∈D(r̃,P)
sεr̃(K,L)=s

#T (K,L).

However, we do not have good control over the individual #T (K,L), as Proposition 5.1 only
describes their relative size in T̃ (K,L)k1

k0
. To circumvent this difficulty, we consider the effect

of permuting (K,L) by σ ∈ Symr̃, where this set is the symmetric group on the indices j with
1 ≤ j ≤ r̃. (Note that many of the T (Kσ,Lσ) will be empty, for in particular the permutation
σ must respect the K-conditions for the singleton sets Tl for l ≤ k0).
Since the 2-Selmer rank is fixed under such permutations, we then have

r̃!
∑

(K,L)
sεr̃(K,L)=s

#T (K,L) =
∑

(K,L)
sεr̃(K,L)=s

∑
σ∈Symr̃

#T (Kσ,Lσ),

and will be able to demonstrate adequate control over the sizes of T averaged over σ.

6.2. We start by noting a purely combinatorial Lemma. For a given d̃ represented by a box
T we define

Wd̃(K,L) = {σ ∈ Symr̃ | d̃ ∈ T̃ (Kσ,Lσ)k1
k0
}.

Smith’s combinatorial result shows that most (K,L) have Wd̃ of nearly its expected size,
saving a factor of essentially 2k0k2

1/r̃ in a mean-square estimate for it. As a convenience, we
write v =

(k0
2
)

+ k0(k1 − k0).

Lemma 6.1. — Let T be a box and assume 2k0+1ξPk
2
1 ≤ r̃. For any d̃ ∈ T̂ we have

∑
(K,L)∈D(r̃,P)

[
r̃!/ξk1

P
2v −#Wd̃(K,L)

]2

≤ 2(r̃2)ξr̃P ·
r̃!2/ξ2k1

P
22v

2k0+1ξPk
2
1

r̃
.

This is essentially Smith’s Proposition 6.7, or the content of [3, Proposition 5.8] (they apply
Cauchy’s inequality in their statement of the result). Note that r̃ is typically of size (log logX),
while k1 ≤ 3(log logX)η1 and k0 ≤ κ0η0 log log logX for pleasant boxes. Taking η1 → 0 and
κ0η0 → 0 (in an appropriate way) will then ensure that the r̃-factor dominates.

Proof. — For σ ∈ Symr̃ we write S(σ) for the set of (K,L) with d̃ in T̃ (Kσ,Lσ)k1
k0
. We can

note that the mean value of Wd̃(K,L) is as suggested, namely∑
(K,L)∈D(r̃,P)

#Wd̃(K,L) =
∑

σ∈Symr̃

#S(σ) = r̃!/ξk1
P

2(k0
2 )+k0(k1−k0)

· 2(r̃2)ξr̃P ,

as either sum in question is the size of{
(σ,K,L)

∣∣∣ d̃ ∈ T̃ (Kσ,Lσ)k1
k0

}
,

and each σ-section has the same size, as the allowable (K,L)-specifications are given by
v =

(k0
2
)

+ k0(k1 − k0) Legendre conditions and k1 residue conditions modulo MP .
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6.2.1. We proceed to compute the mean value of #Wd̃(K,L)2. This is the number of pairs
(σ1, σ2) with d̃ in both T̃ (Kσ1 ,Lσ1)k1

k0
and T̃ (Kσ2 ,Lσ2)k1

k0
. We can invert the problem by

starting with the two permutations σ1, σ2 and writing S(σ1, σ2) for the set of (K,L) with d̃
in both T̃ (Kσ1 ,Lσ1)k1

k0
and T̃ (Kσ2 ,Lσ2)k1

k0
. Indeed, we then have∑

(K,L)∈D(r̃,P)
#Wd̃(K,L)2 =

∑∑
σ1,σ2∈Symr̃

#S(σ1, σ2).

corresponding to two different partitions of{
(σ1, σ2,K,L)

∣∣∣ d̃ ∈ T̃ (Kσ1 ,Lσ1)k1
k0
∩ T̃ (Kσ2 ,Lσ2)k1

k0

}
.

Contrary to the S(σ), the S(σ1, σ2) can be of different sizes, depending on how many in-
dependent conditions are specified. We proceed to bound S(σ1, σ2) based upon how many
indices the permutations simultaneously map to ≤ k1.
We write U(σ1, σ2) = {i : 1 ≤ i ≤ r̃ | σ1(i) ≤ k1, σ2(i) ≤ k1} and u(σ1, σ2) for its size, and
note when u(σ1, σ2) = u there are at least (2v − uk0) independent conditions for L and at
least (2k1 − u) independent conditions for K. For (σ1, σ2) such that u(σ1, σ2) = u, we thus
have the bound

#S(σ1, σ2) ≤ 2(r̃2)ξr̃P/22v−uk0ξ2k1−u
P .

We then bound the number A(u) of pairs of permutations with u(σ1, σ2) = u. There are(r̃
u

)
subsets of 1 ≤ i ≤ r̃ of size u. Fixing such a subset V , we then bound the number of

σ1 that have U(σ1, σ2) = V for some σ2. There are
(k1
u

)
ways to choose the image set of V

under σ1, and u! ways to permute the images. Meanwhile, the other (r̃ − u) elements of the
domain can be chosen to have arbitrary images outside of σ1(V ), giving a factor of (r̃ − u)!.
Symmetrically, the same argument for σ2 yields the same result. Summing over V , this gives
a bound for A(u) of

≤
(
r̃

u

)[(
k1
u

)
u!(r̃ − u)!

]2

= r̃!
u!(r̃ − u)!

(
k1!

(k1 − u)! (r̃ − u)!
)2

= r̃!2 (r̃ − u)!
u!r̃!

k1!2

(k1 − u)!2 ≤ r̃!
2 (r̃ − u)!

r̃!
k1!2

(k1 − u)!2 ≤ r̃!
2
(
k2

1
r̃

)u
,

where we used that k2
1 ≤ r̃ in the final step.

Summing over u then gives the mean-square bound
∑

(K,L)
#Wd̃(K,L)2 ≤ 2(r̃2)ξr̃P · r̃!2

∞∑
u=0

(
k2

1
r̃

)u 2uk0ξuP
22vξ2k1

P
= r̃!2 2(r̃2)ξr̃P

22vξ2k1
P

(
1− 2k0ξPk

2
1

r̃

)−1

so that with µ = (r̃!/ξk1
P )/2v and λ = 2k0ξPk

2
1/r̃ we have

∑
(K,L)

[
r̃!/ξk1

P

2(k0
2 )+k0(k1−k0)

−#Wd̃(K,L)
]2

=
∑

(K,L)

[
µ2 − 2µ#Wd̃(K,L) + #Wd̃(K,L)2]

≤ 2(r̃2)ξr̃P ·
r̃!2/ξ2k1

P
22v

[
1− 2 + 1/(1− λ)

]
.

As we assume λ ≤ 1/2, the final bracketed term is ≤ 2λ, and the result follows. �
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We then have the indicated Corollary coming from applying Cauchy’s inequality.

Corollary 6.2. — Assume 2k0+1ξPk
2
1 ≤ r̃. Then for any d̃ ∈ T̂ we have

∑
(K,L)∈D(r̃,P)

∣∣∣∣∣ r̃!/ξk1
P

2v −#Wd̃(K,L)
∣∣∣∣∣ ≤ 2(r̃2)ξr̃P ·

r̃!/ξk1
P

2v

(
2k0+1ξPk

2
1

r̃

)1/2

.

6.3. We next show that pleasant boxes restricted by (K,L) have the expected size when
averaged over Symr̃.

Proposition 6.3. — Let T be a (κ0, η1, ηs)-pleasant (X, η0,P)-box and assume that η0/2 >
η1 > ηs > 0. Then

∑
(K,L)∈D(r̃,P)

∣∣∣∣∣ r̃!ξr̃P #T
2(r̃2)
−

∑
σ∈Symr̃

#T (Kσ,Lσ)
∣∣∣∣∣� r̃!#T ·

(
2k0+1ξPk

2
1

r̃

)1/2

.

This is Smith’s Theorem 6.4, or Theorem 5.9 of [3]. We use the above estimate from our
Proposition 5.1 on T̃ (K,L)k1

k0
as the fulcrum in a triangle inequality.

Proof. — The quantity of interest here is bounded as

≤ 1
2(r̃2)ξr̃P

∑
(K,L)

∣∣∣∣∣r̃!#T − 2vξk1
P

∑
σ∈Symr̃

#T̃ (Kσ,Lσ)k1
k0

∣∣∣∣∣
+ 2vξk1

P

2(r̃2)ξr̃P

∑
σ∈Symr̃

∑
(K,L)

∣∣∣∣∣#T̃ (Kσ,Lσ)k1
k0
− 2(r̃2)ξr̃P

2vξk1
P

#T (Kσ,Lσ)
∣∣∣∣∣.

For the first sum we use
∑
σ #T̃ (Kσ,Lσ)k1

k0
=
∑
d̃ #Wd̃(K,L) and get a bound of

1/ξr̃P
2(r̃2)

∑
(K,L)

∣∣∣∣∣r̃!#T − 2vξk1
P
∑
d̃∈T̂

#Wd̃(K,L)
∣∣∣∣∣ ≤ 1/ξr̃P

2(r̃2)
∑
d̃∈T̂

∑
(K,L)

∣∣∣r̃!− 2vξk1
P #Wd̃(K,L)

∣∣∣
≤ 1/ξr̃P

2(r̃2)
∑
d̃∈T̂

2(r̃2)ξr̃P · r̃!
(

2k0+1ξPk
2
1

r̃

)1/2

= #T · r̃!
(2k0+1ξPk

2
1

r̃

)1/2

where between the lines we used the previous Corollary 6.2.
The second term is bounded by Corollary 5.2 as

� 2vξk1
P

2(r̃2)ξr̃P

∑
σ∈Symr̃

∑
(K,L)

(
#T (K)ξr̃−k1

P ·
exp

(
6(log logX)2η1

)
exp

(
(log logX)η0/9

))� r̃!#T · 2v

exp
(
c(log logX)η0

)
and as v log 2 � k0k1 � (log log logX)(log logX)η1 is dominated by c(log logX)η0 asymp-
totically, the 2v can be ignored. Also exp

(
c(log logX)η0

)
� log logX � r̃1/2, implying this

error is smaller than the previous, giving the Proposition. �
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6.4. Using the above Proposition we can then compute (cf. above with Section 6.1.1)

r̃!
∑

(K,L)
sεr̃(K,L)=s

#T (K,L) =
∑

(K,L)
sεr̃(K,L)=s

∑
σ∈Symr̃

#T (Kσ,Lσ)

=
∑

(K,L)
sεr̃(K,L)=s

r̃! #T
2(r̃2)ξr̃P

+O

(
r̃!#T · 2k0/2k1√

log logX

)

By the analysis given in the next section we shall find that (as r̃ →∞) the number of (ε,K,L)
with 2-Selmer rank (s+ 2) is ∼ ρs · 2(r̃2)ξr̃P for some constant ρs, and will thus we will be able
to conclude that for a pleasant box T we have

#{d ∈ T̂± : s(Ed) = s+ 2} =
∑

(K,L)∈D(r̃,P)
s+
r̃ (K,L)=s

#T (K,L) +
∑

(K,L)∈D(r̃,P)
s−r̃ (K,L)=s

#T (K,L) ∼ ρs ·#T.

Summing over all such pleasant boxes will then give the main Theorem 1.1.

7. The 2-Selmer group, in brief

We return to the situation we introduced in Section 1.1, namely considering an elliptic curve
E : y2 = (x− c1)(x− c2)(x− c3) with Ω its set of bad primes,26 and Ω̃ when appending the
infinite place. We can assume the ci are integral with no common nontrivial square factor.
We consider twists Ed : y2 = (x−dc1)(x−dc2)(x−dc3) of E by squarefree d that are coprime
to Ω. We write δij = (ci − cj), and the bad primes will be those that divide at least one of
the δij (with i 6= j). We let MP be 4 times the product of the primes in Ω (which necessarily
contains 2), and take RP to contain all the coprime residue classes, so that αP = 1.
We will be somewhat sketchy about the 2-Selmer group and genericity here, postponing more
details to the next section. Our exposition will mostly follow Swinnerton-Dyer [53, Section 3]
(see also his [52] for some extra details).

7.1. For the 2-Selmer group, we are interested in finding everywhere locally soluble quadric
intersections miy

2
i = x − dci where m1m2m3 is a nonzero square, denoting such a curve

by C(~m). As elements of Q?/(Q?)2 the triples ~m = (m1,m2,m3) form an abelian group as
~m × ~m′ = (m1m

′
1,m2m

′
2,m3m

′
3) under component-wise multiplication, and we can restrict

attention to ~m where the mi are units at all primes outside Ω̃ that do not divide d.
7.1.1. Thus we can re-interpret the situation locally. Following Swinnerton-Dyer’s notation
we write B for the union of Ω̃ with the primes dividing d.
We let Yl = Q?

l /(Q?
l )2 for l ∈ B, which is naturally a vector space over F2, being of dimension 2

for l ≥ 3 (and dimension 3 for l = 2 and 1 for l = ∞). We let Vl be the space of 3-tuples
(m1,m2,m3) ∈ Y 3

l with m1m2m3 = 1; this is again naturally a vector space over F2, of twice
the dimension of Yl. We then let VB =

∑
l∈B Vl.

We then define UB as the subspace of VB generated by the diagonally embedded elements
(1, l, l) and (l, l, 1) for all l ∈ B (with l = −1 corresponding to the infinite place). Meanwhile,
26Note that the given model is always bad at 2 (and thus 2 ∈ Ω), though a minimal model for E need not be:
e.g., the elliptic curve of conductor 15 with (c1, c2, c3) = (−9, 0, 16).
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we define Wl ⊂ Vl as the image generated by the points on Ed(Ql) under the Kummer map,
defined away from 2-torsion points as (X,Y )→ (X−dc1, X−dc2, X−dc3), and for 2-torsion
points by continuity. With WB =

∑
l∈BWl, the 2-Selmer group is then the intersection of UB

and WB (both of these vector spaces have half the dimension of VB).
There is also Tate’s pairing-based interpretation. We define el on Vl × Vl by

el
(
(m1,m2,m3)× (m′1,m′2,m′3)

)
= (m1,m

′
1)l + (m2,m

′
2)l + (m3,m

′
3)l

where (u, v)l is the Hilbert symbol (with values in F2) defined as 0 if z2 = ux2 + vy2 has a
nontrivial solution (x, y, z) ∈ Q3

l and 1 otherwise. We extend ⊕lel to VB × VB by additivity.
Our desired matrix is then eB on UB × WB (or more precisely on bases therein), and the
dimension of the kernel of this matrix is the 2-Selmer rank.
In particular, the Hilbert symbols in question are determined (with an obvious identification of
±1 with F2) by: the Legendre symbols (pi|pj) for primes pi and pj that divide d (so associated
to L), by (q|pj) for q ∈ Ω̃, and by the sign of d. The conditions for (q|pj) are weaker than
our congruential K-conditions, at least assuming 8 divides MP as we have ensured. We refer
to these weaker Legendre conditions for bad primes as K̃-conditions.
Thus the entries of the pairing matrix M(Ed) (though not the underlying interpretation in
the terms of 2-covers) are the same for all d ∈ SPr̃ (∞) that meet given (K̃,L)-specifications.
It will be notationally convenient to place the sign-condition on d as a subscript on K̃. In
particular, all d as above have the same 2-Selmer rank that we denote by s(K̃+,L). Similarly
all −d ∈ SPr̃ (∞) with |d| satisfying the (K̃,L)-specifications have the same 2-Selmer rank,
denoted by s(K̃−,L).
7.1.2. There is still the issue of choosing a decent basis for UB and theWl so that this pairing
has nice properties, such as being (skew-)symmetric or even alternating. As Swinnerton-Dyer
explains, one must identify UB with WB via an isomorphism, and for this can use an abstract
theory of maximal isotropic subspaces to ameliorate the situation in general. For p|d we can
be more concrete, noting that Wp will have three nontrivial elements (from the 2-torsion
under the Kummer map)27

~w1
p = (δ12δ13, dδ12, dδ13), ~w2

p = (dδ21, δ21δ23, dδ23), and ~w3
p = (dδ31, dδ32, δ31δ32).

We shall discuss the choice of isomorphism with UB more in Section 8.3.

7.2. Additionally, one can “estimate” the 2-Selmer rank using only the places in Ω̃ and the
first c primes dividing d (for both local solubility and in defining suitable 2-covers). In terms
of the pairing matrix, this corresponds to taking the submatrix of size 2(#Ω+c)-by-2(#Ω+c)
associated to Ω̃ and the first c primes.28
This submatrix is then the same for all (K̃ε,L) that have the same c-restriction, which indeed
have the same cth 2-Selmer rank estimation sc(K̃ε,L).
Now this “estimation” is merely taking the rank of a minor of the full matrix, and indeed
for any solitary (K̃ε,L) the principal mathematical feature it has is that the r̃th-estimation
is indeed equal to the 2-Selmer rank. However, as described in Section 7.2.2 below, when

27In our description here we take (following Swinnerton-Dyer [53, (12)]) the second and third as basis elements;
but in the next section we use the first and second (which seems more natural).
28One need not take the primes in order, but there is also no reason not to do so.
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averaging over (K̃ε,L) one can relate the distribution of sc to that of sc+1, at least in the
generic case.
7.2.1. With regards to UB restricted to the first c primes dividing d, which we denote by U cB,
this is then generated by (1, l, l) and (l, 1, l) where l runs over the places in Ω̃ and the first c
primes dividing d.
On the other hand, there is some subtlety when interpreting the restriction of (K̃ε,L) to
the first c primes. Namely, defining Lji from Lij by quadratic reciprocity (feasible since the
K̃-conditions fix each prime modulo 4), we then define Ljj =

∏
i 6=j Lij . Considering the first

c conditions for L in the sense of the 2-Selmer group then means to require all the prescribed
L-conditions to be met for Lij for 1 ≤ i, j ≤ c. This is now

(c
2
)
+c conditions for 0 ≤ c ≤ r̃−1.

(In other words, the diagonal entries depend on all the primes dividing d, and this information
should be retained even when considering the restriction – it may be more trenchant to include
ε in the definition of Ljj somehow, but this is unneeded).
Similarly, we can define K̃q0 =

∏
j K̃qj , and restricting the K̃ε-conditions to the first c primes

will mean considering ε and all K̃qj with 0 ≤ j ≤ c. In particular, the 0th conditions are
always present, and the ultimate prime is not independent information. (This is equivalent
to fixing the class of d in Q?

l /(Q?
l )2 for all l ∈ Ω̃).

Note that the 0th 2-Selmer estimation already depends on d. Indeed, we shall show below
that all the sc have the same parity, and thus s0 contains whether the twist has even or
odd parity. The global root numbers for E and Ed differ29 by a factor of (d|−NE) when
twisting by fundamental discriminants d coprime to the conductor NE ; if this transferred
to 2-Selmer parities, our specification of d in Q?

l /(Q?
l )2 for all l ∈ Ω̃ would be a stronger

formulation therein. It turns out to be rather nontrivial to make this transference, though
Monsky [36] combines computations of Kramer [29] with Kolyvagin’s theorem [26] to do so.
For our purposes we can avoid the latter, and in Section 13.2 we show the weaker result that
exactly half of the (K̃ε,L) have s0 with even parity.30

7.2.2. The purpose of the above estimation is that we can often relate sc to sc+1, at least in
a distributional sense. First let us note that sr̃(K̃ε,L) is indeed the 2-Selmer rank, and it is
always 2 more than sr̃−1(K̃ε,L), with this addition of 2 corresponding to the 2-torsion points
(see Section 8.4.1).
When the c-restriction of (K̃ε,L) is suitably generic, there is a distributional relation between
sc(K̃ε,L) and sc+1(K̃ε,L) for c < r̃ − 1.
The essential reason for this is a consideration of the appending of the information from the
(c+1)st prime (call it p) to the pairing matrix, which is discussed by Swinnerton-Dyer in [53,
Section 5]. We first consider the kernel of the pairing submatrix Mc(K̃ε,L), and the pairing
restricted to said kernel is clearly 0. Upon appending the information for the (c+ 1)st prime,
29This is typically noted in a context of a functional equation for the L-functions, thus using modularity, and
then follows from the work of Atkin and Lehner [1] with modular forms. I am not sure of the history, but
I think Kramer’s work [29] is the first to delve into the issue for elliptic curves as such, though as noted, it
seems more pertinent to then consider the Selmer parities rather than the global root number per se.
30Kane asserts this in [23, Lemma 1], though his claim that E can be twisted to have good or multiplicative
reduction everywhere is false (e.g. for the congruent number curve, of conductor 25). This prevents Kramer’s
Corollary 1 (to Proposition 6) from being used in such situations. Also, given that Kane moves to such a
minimal twist, this would seem to inhibit the replacement of E by E′ (to handle twists by bad primes) as
discussed in our Introduction (cf. Footnote 2).
Publications mathématiques de Besançon – 2022



M. Watkins 91

the essential part of the pairing matrix for the first (c+ 1) primes can be written in the form

G =
( 0 A
AT C

)
where A is 2-by-s

(
with s = sc(K̃ε,L)

)
and C is 2-by-2 and alternating. Given the c-restriction

Mc(K̃ε,L), there are thus (2s+ 1) conditions that determine sc+1(K̃ε,L).
With the above beneficial choice of basis for Wp for p dividing d, given an element ~u =
(u1, u2, u3) ∈ UcB we can compute that the pairing between u and ~w2

p is given by (dδ21, u1)p +
(δ21δ23, u2)p + (dδ23, u3)p. Here the middle term is 0 as both components are units modulo
p, and similarly the first term becomes (p, u1)p and the third (p, u3)p. Since u1u2u3 = 1, this
is the same as (p, u2)p. Similarly, the pairing for ~u with ~w3

p is (p, u3)p. This then gives the
matrix A.
Meanwhile, a beneficial choice of ~α2

p and ~α3
p as basis vectors for Up ensures that C is alter-

nating (and that the lower part of the matrix is indeed AT), and with the off-diagonal entry
depending on (d, p)p for c < r̃−1; thus this off-diagonal entry is independent, in Swinnerton-
Dyer’s sense, of the entries in A (which only depend on Legendre symbols involving p and
the first c primes).
7.2.3. Swinnerton-Dyer gives genericity conditions that ensure that the entries of A are suit-
ably independent, by ensuring they involve differing primes in Legendre symbols. Moreover,
the nondiagonal entry of C depends on all primes dividing d, and thus is always independent
(for c 6= r̃ − 1) of the other considerations. Upon showing that non-genericity occurs for at
most O

(
2(c+1

2 )2(c+1)#Ω̃ · (15/16)c
)
of the possible (K′ε,L′)-restrictions to the first c primes, he

then reduces the problem to the generic case. Thereupon we note the pairing matrix G has
rank 0 when A = C = 0, rank 4 when A has rank 2, and rank 2 otherwise. In the first case the
2-Selmer rank estimate (which is the dimension of the kernel) increases by 2, in the second
case it decreases by 2, and in the final case it remains constant. It is then an exercise to show
that of the 22s+1 choices for (A,C), one of them induces G of rank 0, and that 2 · 3(2s − 1)
yield G with rank 2 (the nonzero entries in A either need to lie all in the same column, or be
replicated the same in each column).
We sum this up as follows, postponing more details (mostly about genericity) to the next
section. We let Y(r̃,#Ω̃) be the set of all 2 · 2(r̃2)2r̃#Ω̃ choices of (K̃ε,L), and Y(r̃,#Ω̃)[c] the
set of c-restrictions of them.

Lemma 7.1. — Suppose that no element of {δ12δ13, δ21δ23, δ31δ32} is square (which is equiv-
alent to E having no rational 4-torsion). For c < r̃− 1, the number of (K̃′ε,L′) ∈ Y(r̃,#Ω̃)[c]
with Mc(K̃′ε,L′) nongeneric is O

(
2(c+1

2 )2(c+1)#Ω̃ · (15/16)c
)
.

Lemma 7.2. — Let (K̃′ε,L′) ∈ Y(r̃,#Ω̃)[c] be generic and consider the subset of (K̃ε,L) ∈
Y(r̃,#Ω̃) whose c-restriction is (K̃′ε,L′). (Note here that genericity necessarily implies c <
r̃ − 1).
The sc+1(K̃ε,L) are then distributed from s = sc(K̃′ε,L′) in the following manner:

– a proportion 1/22s+1 of them have sc+1(K̃ε,L) = s+ 2 = sc(K̃′ε,L′) + 2,

– a proportion 3/2s − 5/22s+1 have sc+1(K̃ε,L) = s = sc(K̃′ε,L′),
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– a proportion 1− 3/2s + 2/4s have sc+1(K̃ε,L) = s− 2 = sc(K̃′ε,L′)− 2.

7.3. Finally we sketch the Markov chain analysis as given by Swinnerton-Dyer, again post-
poning more details (and indeed, a somewhat different formulation) to the next section.

7.3.1. Firstly we note the (K̃ε,L) that are non-generic at some j ≥ J are not very
problematic. Indeed, the number of (K̃ε,L) ∈ Y(r̃,#Ω̃) that are non-generic at j is
� (15/16)j2(r̃2)2r̃#Ω̃, and by Lemma 5.3 we have #T (K̃,L) � #T (K̃)2v/2(r̃2) where v ≤
k0k1 ≤ κ0η0 log log logX · 3(log logX)η1 . Summing over j and K̃ε then gives that the total
number of d ∈ T̂ that are in some T (K̃,L) that is nongeneric for some choice of ε and some
j with J ≤ j < r̃ − 1 is bounded as � #T · 2v(15/16)J . This is then adequately small with
J ∼ (log logX)/99 (say).

7.3.2. The essential idea of the Markov chain is to consider a starting distribution ~hJ whose
sth component is the number (or proportion) of (K̃ε,L) ∈ Y(r̃,#Ω) whose 2-Selmer J-
estimation sJ(K̃ε,L) is s. Ignoring genericity, this will then lead to a distribution ~hj for
J ≤ j < r̃ − 1 with

hj+1
s = hjs−2 ·

1
22s+1 + hjs ·

( 3
2s −

5
22s+1

)
+ hjs+2 ·

(
1− 3

2s + 4
22s+1

)
.

(One can, and we shall in the next section, interpret this in terms of matrices). The question is
then what the distribution ~hr̃−1 looks like, with our expectation that it should be reasonably
close to a linear combination of the two stable distributions (one for each parity of sJ). These
are given in terms of

ρs = 2s∏s
j=1(2j − 1)

∞∏
n=0

(
1− 1/22n+1),

for which we have ρ0 + ρ2 + ρ4 + · · · = ρ1 + ρ3 + ρ5 + · · · = 1 as expected from a probability
distribution, and indeed for s ≥ 0 (with ρ−2 = ρ−1 = 0) we have

ρs = ρs−2 ·
1

22(s−2)+1 + ρs ·
( 3

2s −
5

22s+1

)
+ ρs+2 ·

(
1− 3

2s+2 + 4
22(s+2)+1

)
.

The main theorem of Markov chains31 then implies that the distribution tends exponentially
quickly (with rate determined by the second largest eigenvalue λ2) to the stable distribu-
tion(s). As our walking length is r̃ − J ≥ 97(log logX)/99, this gives an error estimate of
O(λr̃−J2 ) = O

(
1/(logX)c

)
.

There are minor issues with including non-genericity into this analysis, which we regard more
in the next section. We sum this up as follows, recalling that sr̃ is 2 more than sr̃−1, and that
half of the (K̃ε,L) yield 2-Selmer rank of each parity.
31For those who have not seen the argument before, one first determines the distribution after u steps when
starting in the ground state (which is either 0 or 1 in our case). This gives that the probability of being in
state S is ρS(u) = αS + O(e−κu) for some κ > 0. One then considers starting in state I, and computes the
probability β(m) that the first time to reach the ground state will be at the mth step. The probability of
being in state S at the vth step when starting in state I is then

∑
m
ρS(v −m)β(m). In our case, we reach

the ground state for the first time almost surely within a bit more than J steps, say J +
√
J(log J)2, with

then nearly r̃ − 2J ≥ 97(log logX)/99 steps remaining. This then gives the probability of being in state S as
ρS+O(1/(logX)c) for some c > 0, and this is suitably uniform over starting states I by taking J appropriately
small.
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Lemma 7.3. — Consider the set of (K̃ε,L) ∈ Y(r̃,#Ω̃) that are j-generic for all j with
J ≤ j < r̃ − 1, where J = b(log logX)/99c. Then the proportion of such (K̃ε,L) whose
sr̃-value is a given value (s+ 2) is ρs/2 +O(1/(logX)c) for some c > 0.

This then allows us to complete the proof of Theorem 1.1 as put forth in Section 6.4. (We
will recapitulate the entire proof structure in Section 9).

7.4. We now give an extended example, to try to illuminate the notion of genericity. This
example is a bit contrived, as in practice the number of primes dividing d tends to infinity
(thus much exceeds #Ω̃), while we only have 5 primes dividing d.

7.4.1. We consider the congruent number curve E : y2 = x3 − x, so Ω̃ = {2,∞}. We will
consider twisting E by a product d = εp1p2p3p4p5 of a sign and five primes.
First we consider the 0th estimation which (as in Section 7.2.1), specifies the sign of d and
its class in Q?

2/(Q?
2)2 (indeed, the K-condition for ∞ specifies (−1|d) and the K-condition

at 2 specifies (2|d), while ε gives the sign). In our example we will consider d ≡ 1 (8) with d
positive.
We have (c1, c2, c3) = (−1, 0, 1) so (δ12, δ13, δ23) = (−1,−2,−1). We immediately see that
the 0th estimation is in fact the r̃th estimation for E itself (with d = 1), for which the
2-Selmer rank is 2, with the elements given by (1, 1, 1), (2,−1,−2), (1,−1,−1), and (2, 1, 2),
corresponding to global torsion elements for E1.
In fact, let us derive this a bit more concretely, taking the opportunity to note a subtlety with
W2. We have a 4-by-4 pairing matrix corresponding to bases for U0

B, and Wl for l ∈ {∞, 2}.
The former is generated by the elements (1, 2, 2), (2, 1, 2), (1,−1,−1) and (−1, 1,−1), while
W∞ is generated by (1,−1,−1). Now, two independent elements of W2 can be determined by
2-torsion points, namely (2,−d,−2d) and (d,−1,−d), associated respectively to the torsion
points X = −d and X = 0, under the Kummer map (X,Y )→ (X − dc1, X − dc2, X − dc3) =
(X + d,X,X − d) extended by continuity. A third independent 2-adic point can be seen
to come from X = 28, as then X3 − d2X = X(X2 − d2) has both X and X2 − d2 ≡
X2 − 1 (8) in the 7 mod 8 square class, so that their product is square. The Kummer image
(28 + d, 28, 28 − d) is then 2-adically equivalent to (5, 7, 3) for our d ≡ 1 (8). We can then
compute the pairing matrix on such bases as in Table 1, where in the computations we
repeatedly used multiplicativity of Hilbert symbols combined with the 3 facts: (2, 2)2 = 0,
(2, u)2 = 0 for u ≡ 1, 7 (8) while (2, u) = 1 for u ≡ 3, 5 (8), and (u, v)2 = 0 for odd u, v
unless u ≡ v ≡ 3 (4). For instance, we have the calculation 〈(−1, 1,−1), (2,−d,−2d)〉2 =
(−1, 2)2 +(1,−d)2 +(−1,−2d)2 = (−1,−d)2 = 1 since d ≡ 1 (8). As seen, the kernel is indeed
generated by (2, 1, 2) and (1,−1,−1). (We later make the pairing matrix be symmetric by
modifying the bases).

Table 1. Initial pairing matrix for the congruent number curve

(1,−1,−1)∞ (5, 7, 3)2 (2,−d,−2d)2 (d,−1,−d)2
(1, 2, 2) 0 (2, 21)2 = 1 (2, 2)2 = 0 (2, d)2 = 0
(2, 1, 2) 0 (2, 15)2 = 0 (2,−d)2 = 0 (2,−1)2 = 0

(1,−1,−1) 0 (−1, 21)2 = 0 (−1, 2)2 = 0 (−1, d)2 = 0
(−1, 1,−1) 1 (−1, 15)2 = 1 (−1,−d)2 = 1 (−1,−1)2 = 1
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We give our definition of genericity for the cth estimation in Section 8.4.3 below, and for
c 6= r̃ − 1 it is that the kernel U cB(Kε,L) of the cth pairing matrix Mc(Kε,L) should not
have any element of the form (1, u, u) with u 6= 1, and should also not have any two elements
(u1, u2, u3) and (v1, v2, v3) with u1 = v2. From this we find, somewhat trivially, that the 0-
restriction of every (K̃ε,L) with d ≡ 1 (8) and d positive is nongeneric. However, this doesn’t
stop us from carrying out the appending process in Section 7.2.2 – it simply means that the
proportions given in Lemma 7.2 need not apply.
7.4.2. We proceed from the 0-restrictions to 1-restrictions by appending p1. This introduces
only the information from L11 = (d/εp1|p1) for Legendre conditions, while the K-conditions
again specify p1 modulo 8. Thus we find there are 8 different 1-restrictions, specified by
(p1 mod 8,L11) ∈ (Z/8Z)? × {±1}.
The description in Section 8.3 gives a way of selecting local images of basis elements for
U c+1
B /U cB, (this being valid for c < r̃−1). We describe the result in Table 2. Here δ13

12 = δ12δ13
is a typographical shorthand, as is δ23

21 for δ21δ23, while we write p = p1, and νp for a quadratic
non-residue modulo p. In reading the left half of the table, the rows correspond to a condition
on (δ12δ13|p) and the columns to one on (δ12|p), with the entry in the table then giving the
applicable local image.

Table 2. Local images for basis elements for p in the pairing matrix

(δ13
12 |p) (δ12|p) = +1 (δ12|p) = −1
+1 (1, p, p) (1, pνp, pνp)
−1 (νp, p, pνp) (νp, pνp, p)

(δ23
21 |p) (δ21|p) = +1 (δ21|p) = −1
+1 (p, 1, p) (pνp, 1, pνp)
−1 (p, νp, pνp) (pνp, νp, p)

For the congruent number curve δ12δ13 = 2 while δ21δ23 = −1, and δ12 = 1 so δ21 = −1 (in
particular the (δ12|p) = (1|p) = −1 column is irrelevant). The appended local images of the
basis elements with the matrix G of Section 7.2.2 are: (1, p, p) when (2|p) = +1 and (νp, p, pνp)
when (2|p) = −1; and (p, 1, p) when (−1|p) = +1 and (pνp, νp, p) when (−1|p) = −1. We can
take νp = −1 when (−1|p) = −1 and νp = 2 when (2|p) = −1 (and either works for p ≡ 3 (8)).
For such a local image s there is s̃ ∈ U c+1

B that maps to it such that the pairing of s̃ with
respect to the Wl for l ∈ Ω̃ and to the Wp for the first c primes is always 0 (this s̃ is unique,
up to translates by elements of U cB(Kε,L), and possibly the other appended element).
We summarize the G-matrices in the various cases in Table 3. Therein we have written
l = (d, p1)p1 = (d/εp1, p1)p1 + (εp1, p1)p1 , where the first term corresponds to L11, and the
second is (p1, p1)p1 = (−1, p1)p1 . Note that the upper-right 2-by-2 corner A has rank 2 for
p ≡ 3 (8), and thus U1

B(K̃ε,L) will be trivial in this case, as the kernel of G is trivial and
the first 2-Selmer estimation is 0. Meanwhile A has rank 1 for p ≡ 5, 7 (8), and here G has
a kernel of dimension 2, giving the first 2-Selmer estimation. Finally, when p ≡ 1 (8) we see
A = 0, and thus whether the first 2-Selmer estimation is 4 or 2 depends on whether l = 0.
The computation of A is similar to the recipe given in Section 7.2.2 (though using the first
and second elements as a basis rather than the second and third as Swinnerton-Dyer did),
namely for a row (u1, u2, u3) the left column corresponds to (u1, p)p and the right column to
(u2, p)p.
The final accounting is that 2 of the 8 selections of (p1 mod 8,L11) give a first 2-Selmer
estimation of 0, while 5 of them give 2, and 1 gives 4. Indeed, instead of obtaining five
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Table 3. Basis elements (local images) and matrices G in various cases

p ≡ 1 (8)

(1,−1,−1)
(2, 1, 2)
(1, p, p)
(p, 1, p)


0 0 0 0
0 0 0 0
0 0 0 l
0 0 l 0


(1,−1,−1)

(2, 1, 2)
(νp, p, pνp)
(pνp, νp, p)


0 0 0 1
0 0 1 0
0 1 0 l
1 0 l 0

 p ≡ 3 (8)

p ≡ 5 (8)

(1,−1,−1)
(2, 1, 2)

(νp, p, pνp)
(p, 1, p)


0 0 0 0
0 0 1 0
0 1 0 l
0 0 l 0


(1,−1,−1)

(2, 1, 2)
(1, p, p)

(pνp, νp, p)


0 0 0 1
0 0 0 0
0 0 0 l
1 0 l 0

 p ≡ 7 (8)

independent conditions from the entries of A and the off-diagonal entry of C, we find that
the upper-left and lower-right entries of A are forced to be 0, as they correspond to (1, p)p.
Thus we have three independent conditions, with indeed 23 possibilities. The estimation
increases (to 4) only when A = C = 0
For our running example we will take p1 ≡ 5 (8) with l = 1 (which is L11 = −1). Then a
basis of U1

B(K̃ε,L) is given by (1,−1,−1) and (2p, 1, 2p). Indeed, the latter is not only the
local image at p, as we readily compute that

〈(2p, 1, 2p), (5, 7, 3)〉2 = (2p, 15)2 = (2, 15)2 + (p, 15)2 = 0 + 0,
〈(2p, 1, 2p), (2,−d,−2d)〉2 = (2p,−d)2 = (2,−d)2 + (p,−d)2 = 0 + 0,

and 〈(2p, 1, 2p), (d,−1,−d)〉2 = (2p,−1)2 = (2,−1)2 + (p,−1)2 = 0 + 0.
7.4.3. In passing from a 1-restriction to a 2-restriction, we will have 2 new Legendre condi-
tions and again a congruence condition mod 8. Thus each 1-restriction will yield 16 different
2-restrictions, via (p2 mod 8,L12,L22) ∈ (Z/8Z)? × {±1} × {±1}.
In some cases there are simplifications. For instance for p1 ≡ 3 (8), whether or not the second
2-Selmer estimation is 0 or 2 depends solely on L22, so is independent of p2 (8) and L12
(indeed, this case is generic, and we get the expected split).
Continuing our example with p1 ≡ 5 (8) and l = 1, we can then produce the matrices G seen
in Table 4, where we wrote p = p2. Here we wrote e = (p1, p)p and e = e+1; however we need
not simply have l = (d, p)p, as this is only valid for the local image – in general l depends
on (d, p)p but could also involve Legendre symbols with other primes and p. In any event,
specifiying e is equivalent to specifying L12, and similarly with l and L22.

Table 4. Matrices G in various cases for second estimation

p ≡ 1 (8)

(1,−1,−1)
(2p1, 1, 2p1)

(1, p, p)
(p, 1, p)


0 0 0 0
0 0 e 0
0 e 0 l
0 0 l 0


(1,−1,−1)
(2p1, 1, 2p1)
(νp, p, pνp)
(pνp, νp, p)


0 0 0 1
0 0 e 0
0 e 0 l
1 0 l 0

 p ≡ 3 (8)

p ≡ 5 (8)

(1,−1,−1)
(2p1, 1, 2p1)
(νp, p, pνp)

(p, 1, p)


0 0 0 0
0 0 e 0
0 e 0 l
0 0 l 0


(1,−1,−1)
(2p1, 1, 2p1)

(1, p, p)
(pνp, νp, p)


0 0 0 1
0 0 e 0
0 e 0 l
1 0 l 0

 p ≡ 7 (8)
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For our running example we take p2 ≡ 7 (8) and e = 1 (so L12 = (p1|p2) = −1), which gives
us a 2-estimation of 0. For the purposes of this 2-estimation it doesn’t matter what L22 is,
though when considering later basis elements it will.
7.4.4. Upon passing from a 2-restriction to a 3-restriction we see there are three new Legendre
conditions and again a congruence condition mod 8. Thus each 2-restriction corresponds to
32 different 3-restrictions.
In our running example, since we had a 2-estimation of 0, the only consideration is whether
(d, p3)p3 is 0 or not, as this determines the off-diagonal entry of C (though again we stress
that, following Swinnerton-Dyer’s setup, this determination involves lifting a local image).
When C = 0 the 3-estimation is 2, and else C has trivial kernel and the 3-estimation is 0.
We take p3 ≡ 3 (8), with (d, p3)p3 so that C = 0.
It is now a chore to calculate the elements in U3

B(K̃ε,L) corresponding to the local images.
It is probably easier, and fitting more with our pedagogical aims in this example, to return
to the full 10-by-10 pairing matrix and work from there.
In Table 5 we give the relevant matrix, writing x = x+ 1, with lij = (pi, pj)pj for i 6= j and
ljj = (pj , d)pj .

Table 5. Pairing matrix after appending (p1, p2, p3) ≡ (5, 7, 3) mod 8

W∞ W̃ 0
2 W̃ 1

2 W̃ 2
2 W 1

p1 W 2
p1 W 1

p2 W 2
p2 W 1

p3 W 2
p3

(1, 2, 2) 0 1 0 0 0 1 0 0 0 1
(−1, 1,−1) 1 0 0 0 0 0 1 0 1 0
(1,−1,−1) 0 0 0 0 0 0 0 1 0 1

(2, 1, 2) 0 0 0 0 1 0 0 0 1 0
(1, p1, p1) 0 0 0 1 1 l11 0 l12 0 l13
(p1, 1, p1) 0 0 0 0 l11 0 l12 0 l13 0
(1, p2, p2) 0 0 0 0 0 l12 0 l22 0 l23
(p2, 1, p2) 0 1 1 0 l12 0 l22 1 l23 0
(1, p3, p3) 0 0 0 1 0 l13 0 l23 1 l33
(p3, 1, p3) 0 1 1 0 l13 0 l23 0 l33 1

Note that we have symmetrised the initial pairing matrix (seen in Table 1), which is the 4-
by-4 upper-left corner, by swapping the second and fourth rows, and adding the first column
to the other columns. Thus the first column label W∞ here is the pairing with (−1,−1,−1)
at ∞, the column label W̃ 0

2 is W∞ + W 0
2 where the latter is the pairing with (5, 7, 3) at 2,

the column label W̃ 1
2 is W∞ + W 1

2 where the latter is with T1 = (2,−d,−2d) at 2, and the
column label W̃ 2

2 is W∞ +W 2
2 where the latter is with T2 = (d,−1,−d) at 2. In general W 1

p

is the pairing with T1 at p and W 2
p is the pairing with T2 at p.

Each 2-by-2 block in the matrix has a specific pattern. For instance, the diagonal 2-by-2 blocks
in the lower-right are determined by the congruence class of p modulo 8; the given array dis-
plays 3 of the 4 possibilities therein. These are readily calculated as 〈(2,−d,−2d), (1, p, p)〉p =
(2, p)p and 〈(d,−1,−d), (p, 1, p)〉p = (−1, p)p in the diagonal entries, while 〈(2,−d,−2d),
(p, 1, p)〉p = (−d, p)p = (−1, p)p + (d, p)p and 〈(d,−1,−d), (1, p, p)〉p = (d, p)p. The off-
diagonal blocks in the lower-right section are computed in a similar manner, as 〈(2,−d,−2d),
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(1, pi, pi)〉pj = (2, pi)pj = 0 while 〈(2,−d,−2d), (pi, 1, pi)〉pj = (−d, pi)pj = (pj , pi)pj , and the
behaviours switch for T2 = (d,−1,−d).
The entries in the 4-by-6 upper-right block are determined by the congruence classes mod 8
for (p1, p2, p3), as similarly are those in the 6-by-4 lower-left block. We summarise the com-
putations therein in Table 6.

Table 6. Pairing computations

W 1
p W 2

p

(1, 2, 2) 0 (2, p)p
(−1, 1,−1) (−1, p)p 0
(1,−1,−1) 0 (−1, p)p

(2, 1, 2) (2, p)p 0

W∞ W̃ 0
2 W̃ 1

2 W̃ 2
2

(1, p, p) 0 0 0 (2, p)2

(p, 1, p) 0 (−1, p)2 (−1, p)2 0

To achieve symmetry, and indeed make the whole matrix be alternating, we can replace the
last 6 rows (~r5, . . . , ~r10) by

(~r5 + ~r4, ~r6 + ~r2 + ~r3, ~r7 + ~r1 + ~r3, ~r8 + ~r1 + ~r3, ~r9 + ~r1 + ~r3 + ~r4, ~r10 + ~r1 + ~r2)

In any case, we want to determine a basis for the 2-dimensional kernel; so far we have
specified (l11, l12) = (1, 1) and that l33 yield a 2-dimensional kernel – for our example we
take (l13, l22, l23, l33) = (1, 0, 0, 1), and the nontrivial kernel elements are (p2p3,−1,−p2p3),
(2, p1p3, 2p1p3), and (2p2p3,−p1p3,−2p1p2).
What is then important for us is that U3

B(K̃ε,L) is now generic, given the definition32 we
cited in the last paragraph of Section 7.4.1. Thus when passing from this generic 3-restriction
to various 4-restrictions we should find that 1/32 of the possibilities yield a 4-estimation of 4,
while 19/32 of them yield 2, and 3/8 of them yield 0.
7.4.5. We then pass from our 3-restriction to various 4-restrictions. The 2-by-2 matrix A is
simply33 (

(p2p3, p4)p4 (−1, p4)p4
(2, p4)p4 (p1p3, p4)p4

)
To have A = 0 we need p4 to be 1 mod 8 while all the (pi, p4)p4 for 1 ≤ i ≤ 3 need to
be the same; this is 1/16 of the possibilities, and then one of the 2 values (d, p4)p4 yields a
kernel of rank 4. A calculation shows that the 2 Legendre specifications that achieve this are
(l14, l24, l34, l44) as (0, 0, 0, 0) and (1, 1, 1, 1). In the former case the 2 new basis elements can
be taken as (1, p4, p4) and (p4, 1, p4), while in the latter (p1p4, 1, p1p4) and (p2p3, p2p4, p3p4)
are suitable lifts for them.
32Note here the existence of co-ordinates (namely −1 and 2) which are not dependent on the pi, while
Swinnerton-Dyer’s Lemma 6 (our Lemma 8.4) removes such instances (as a convenience) when bounding
the proportion of nongeneric specifications. See Footnote 39 for more.
I think one needs to have 4 primes involved to meet the wider notion of genericity, for which an example
(with d ≡ 1 (8) and positive) is (p1, p2, p3, p4) ≡ (3, 3, 3, 5) modulo 8 and (l11, l12, l13, l14, l22, l23, l24, l33, l34, l44)
as (0, 1, 1, 1, 0, 0, 0, 0, 0, 0), with basis elements given by (2p2p3p4,−p2p4,−2p3), (p1p2p4, p3p4, p1p2p3), and
(2p1p3,−p2p3,−2p1p2).
33As with the previous Footnote 32, in a more “generic” example all of the entries of A would depend on
L-information with the appended prime, and not merely on its K-information.
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7.4.6. Finally, every 4-restriction is necessarily nongeneric (since c = r̃ − 1), and indeed the
2-Selmer rank is simply the fourth 2-Selmer estimation plus 2 for the global torsion.
In our running example, where (p1, p2, p3, p4) ≡ (5, 7, 3, 1) modulo 8, we now must have
p5 ≡ 1 (8) for d ≡ 1 (8) to hold, and all the Legendre symbols with p5 have already been
specified by the values of (d, pi)pi for 1 ≤ i ≤ 4.
The above two cases that have 4-estimation of 4 do indeed in turn have 2-Selmer rank 6, with
a basis given by the stated four elements and the global 2-torsion elements (2,−d,−2d) and
(d,−1,−d) appended.

8. Genericity and the 2-Selmer group

We next give a description of genericity, which turns out to be of some import when trying
to generalize Smith’s later results to the class group case.34

8.1. In the previous section we noted that the 2-Selmer rank of Ed and its various estimations
were determined by E and the conditions (K̃ε,L) on d. However, a description of the actual
elements of UB (and ostensibly to determine if we are in a generic case) would therein involve
writing things in terms of prime divisors of d.
As Kane [23, Proposition 18] alludes to, we can circumvent this by operating on purely formal
symbols, thereby removing prime divisors of d from the picture (and thus eviscerating any
notion of a “random prime” from the terminology). While this is somewhat of an exercise in
pedantry, it will hopefully clarify some matters.
We write (a|b)? for the value of a nontrivial Legendre symbol in F2, with similarly K̃? and
L? taking values in F2 rather than {±1}.
8.1.1. We fix an elliptic curve E : y2 = (x−c1)(x−c2)(x−c3), and thus the set of bad places
Ω̃ and the differences δij = ci − cj between the roots of the cubic.
Given u, we define the set Pu of u formal symbols ṗi for 1 ≤ i ≤ u. We operate on such
symbols by multiplication/concatenation, and assume this is commutative. We define νṗ to be
a “quadratic non-residue” for the formal symbol ṗ, so that we have (νṗ|ṗ) = (ṗ, νṗ)ṗ = 1 ∈ F2.
As such, we then consider Q?

ṗ/(Q?
ṗ)2 to have four elements, which we take to be {1, νṗ, ṗ, νṗṗ}.

8.1.2. We will also make use of basic formal variables K̇?qj for q ∈ Ω̃ and 1 ≤ j ≤ r̃, and
similarly L̇?ij for 1 ≤ i < j ≤ r̃. (The moniker of “variables” here is simply to distinguish them
from the above formal symbols). We also have the derived formal variables K̇?q0 =

∑
j K̇?qj for

q ∈ Ω̃, and for j > i we have (corresponding to quadratic reciprocity) L̇?ji = L̇?ij + K̇?∞iK̇?∞j ,
while L̇?jj =

∑
i 6=j L̇?ij .

We define Hilbert symbols for the formal symbols in terms of the formal variables, namely
as (q|ṗj)? = (q, ṗj)ṗj = K̇?qj for q ∈ Ω̃ (with q = −1 for ∞) and 1 ≤ j ≤ r̃, and (ṗi|ṗj)? =
(ṗi, ṗj)ṗj = L̇?ij for 1 ≤ i 6= j ≤ r̃, and (ṗj , ṗj)ṗj = (−1, ṗj)ṗj = K̇?∞j . We also define the
convenient ḋ = ε̇ṗ1 · · · ṗr̃ so that we have L̇?jj = (ḋ/ε̇ṗj , ṗj)ṗj . Here ε̇ corresponds to the sign
of d, and has either (ε̇, ṗj)ṗj = 0 for all j when it is positive, while (ε̇, ṗj)ṗj = (−1, ṗj)ṗj = K̇?∞j
otherwise.
34The substitute in [3, Definition 6.4] requires every nonobvious vector in the kernel of the L-matrix (inter-
preted over F2) to have approximately r̃/2 ones and r̃/2 zeros in its co-ordinates.
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We note (x, y)ṗ = 0 when neither x nor y is divisible by ṗ; also, we often simplify via
multiplicativity, for instance if ṗ‖x then (x, y)ṗ = (x/ṗ, y)ṗ + (ṗ, y)ṗ = 0 + (ṗ, y)ṗ.

8.1.3. Given a linear combination in the formal variables K̇? and L̇?, one idea is to write it
in a canonical form in terms of the basic formal variables. This need no longer be a linear
combination, though the only non-monomials will be terms like K̇?∞iK̇?∞j that arise when
replacing L̇?ji by L̇?ij . On the other hand, we do not particularly want to consider L̇?ij and L̇?ji
to be independent in any event.
We thus consider a set of linear combinations in the formal variables to be independent if
they are independent in the free algebra (over F2) modulo: the relations L̇?ij = L̇?ji for i 6= j;
the relations from K̇?q0 =

∑
j K̇?qj for q ∈ Ω̃; and the relations L̇?jj =

∑
i 6=j L̇?ij for 1 ≤ j ≤ r̃.

The point of independence comes about when we apply the evaluation homomorphism at
(K̃?,L?) to the formal variables (K̇?, L̇?). We call a linear combination in the formal variables
an expression. If a set of n expressions is independent, then exactly 1/2n of the possible
(K̃?,L?) have the evaluation of all the expressions be 0.
Indeed we should stress that this conclusion is precisely why we formalised the notion of
“random primes” in the first place.
8.1.4. Given an expression, we can thus write it in a canonical form as a linear combination
of basic formal variables, using the above quotient-algebra relations to do so. If this canonical
form includes a specific basic formal variable, we say that the expression depends on said
variable.
Our plan to show independence of a set of expressions will be a form of triangularisation;
namely, we will find a basic formal variable such that exactly one expression depends on it
– said expression is then independent of the others in the set, and we can recurse on the
complement after removing it. It also useful to note that the “diagonal” formal variables L̇?jj
have a useful property herein. To wit, if there is some i such that none of the expressions
depends35 on L̇?ij (for i < j) or L̇?ji (for j < i), then a unique expression with L̇?jj appearing
will be independent of the others; indeed, either L̇?ij or L̇?ji will appear in its canonical form,
and it will be the only expression to depend on such. Moreover, this situation commonly
occurs in our setup of restricting the Legendre conditions to the first c formal variables, with
consideration of appending the (c+ 1)st; when c < r̃− 1 we will see that none of the relevant
expressions will depend on L̇?jr̃ for any j, and the above commentary then implies that a
unique expression involving L̇?jj will be independent of the others.

8.2. We then define VB analogously to the schema of the previous section (again following [53,
Section 3]), though now in terms of formal symbols rather than primes. We write B = Ω̃∪Pr̃,
and given l ∈ B we define Yl = Q?

l /(Q?
l )2, and Vl as the vector space of triples (µ1, µ2, µ3) ∈ Y 3

l
with µ1µ2µ3 = 1.
The pairing of Tate on Vl × Vl is then given as the sum

∑
i(mi,m

′
i)l over the 3 co-ordinates.

Here the Hilbert symbol (a, b)l is well-defined for l ∈ B for a, b ∈
⊕

l∈B Yl in terms of various
formal variables K̇? and L̇?. We then extend this pairing by additivity to VB × VB where
VB =

⊕
l∈B Vl.

35There is a important point to be aware of here, namely that if L̇?ii appears in an expression, such an expression
will then depend on either L̇?ij or L̇?ji.
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8.2.1. We then define UB to be the subspace generated by the diagonally embedded elements
(1, l, l) and (l, 1, l) (and (l, l, 1) if desired) over l ∈ B, where again l = −1 is taken for the
infinite place. We further define U cB as the subspace generated by such elements for l ∈ Ω̃∪Pc.
We have dimVB = 4(r̃ + #Ω̃) while dimU cB = 2(c + #Ω̃). Indeed, by class field theory one
can show UB is a maximal isotropic subspace for eB.
There is a homomorphism (the Kummer map) from Eḋ to VB that is given by (X,Y ) →
(X−ḋc1, X−ḋc2, X−ḋc3) away from 2-torsion points, and by continuity we find the respective
images of the 2-torsion points (ḋci, 0) to be

~w1 = (δ12δ13, ḋδ12, ḋδ13), ~w2 = (ḋδ21, δ21δ23, ḋδ23), and ~w3 = (ḋδ31, ḋδ32, δ31δ32),
These are globally defined, and for l ∈ B we take Wl to be the subspace of Vl generated by
their projections. For l 6∈ {2,∞} thisWl is a maximal isotropic subspace with respect to el (as
Tate showed), and upon considering l ∈ {2,∞} separately one finds that dimWB = 2(r̃+#Ω̃).
8.2.2. Upon choosing bases for UB and WB and applying the evaluation homomorphism
at a given (K̃?,L?) to the formal symbols (K̇?, L̇?), the pairing matrix M(K̃ε,L) is then
well-defined (with F2-entries) on UB × WB ⊂ VB × VB, and the dimension of its kernel is
independent of a choice of basis. We denote this rank by sr̃(K̃ε,L). The left kernel of the
pairing matrix corresponds to elements of UB that are “everywhere locally soluble” when
interpreted in terms of elliptic curves.
Moreover, we can consider the restriction of the pairing matrix to the symbols in Ω̃ ∪ Pc,
thus considering only U cB and W c

B (the latter being the direct sum of Wl for l ∈ Ω̃ ∪Pc) and
we denote the dimension of its kernel by sc(K̃ε,L).

8.3. We now describe how to obtain a relatively nice isomorphism τB between UB and WB,
or at least on the relevant subspaces therein. As Swinnerton-Dyer notes, this can be done by
specifying maximal isotropic subspacesKl ⊂ Vl for each l in such a way that VB = UB

⊕
⊕lKl.

We then define
U ′B = UB ⊕ (WB +KB) and W ′B = WB/(WB ∩KB) =

⊕
l∈B

Wl/(Wl ∩Kl),

and upon taking tB : VB → UB to be the projection along ⊕lKl, this induces an isomorphism
τB from W ′B to U ′B, which suffices for our purposes; in particular the induced pairing e′B is
then symmetric. One aims to select Kl in such a way to ensure U ′B is as small as possible,
namely equal to UB ∩WB.
For l ∈ Pr̃ we can be more direct and indeed select the isotropic subspace Kṗ explicitly as
being generated by (1, νṗ, νṗ) and (νṗ, 1, νṗ), with the resulting ṗ-part then being orthogonal,
and we can ensure the pairing is alternating. For l ∈ Ω̃ the situation is more complex,36 and
we will simply be happy with a symmetric pairing.
8.3.1. We now give an explicit choice of isomorphism that yields an alternating pairing for for-
mal symbols. We do this locally (as given by a local isomorphism τṗ) for every formal symbol
ṗ, and then note how to glue them together. The global torsion gives ~w1

ṗ = (δ12δ13, ḋδ12, ḋδ13)
and ~w2

ṗ = (ḋδ21, δ21δ23, ḋδ23) as a basis for Wṗ. We want to determine τṗ~α1
ṗ and τṗ~α

2
ṗ such

36As Swinnerton-Dyer notes in his Theorem 2, one can achieve the alternating aspect for all l ∈ Ω̃ other
than 2, the infinite place, and those primes that have even valuation at all the δij .
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that the 2-by-2 matrix of their pairings with ~w1
ṗ and ~w2

ṗ is alternating, moreover with the
off-diagonal term being (ḋ, ṗ)ṗ.
By rotely computing the pairing,37 we find there are four elements x ∈ Vṗ that have eṗ(x, ~w1

ṗ)
not depending on (ḋ, ṗ)ṗ. First there is (1, ṗ, ṗ) which has the pairing as (ṗ, ḋδ12)ṗ+(ṗ, ḋδ13)ṗ =
(ṗ, δ12δ13)ṗ, and (1, νṗṗ, νṗṗ) for which it is similarly given by (νṗṗ, δ12δ13)ṗ = (ṗ, δ12δ13)ṗ; and
(νṗ, ṗ, νṗṗ) which yields

(νṗ, δ12δ13)ṗ + (ṗ, ḋδ12)ṗ + (νṗṗ, ḋδ13)ṗ = 0 + (ṗ, ḋδ12)ṗ + (ṗ, ḋδ13)ṗ + (νṗ, ḋδ13)ṗ
= (ṗ, δ12δ13)ṗ + (νṗ, ṗ)ṗ = (ṗ, δ12δ13)ṗ + 1,

with a similar computation giving the same result for (νṗ, νṗṗ, ṗ). Thus two of these four
possibilities for τṗ~α1

ṗ will have a pairing equal to 0 with ~w1
ṗ, with which two depending on

whether δ12δ13 is a square modulo ṗ (thus determined by K̃).
We then want τṗ~α1

ṗ to have a pairing with ~w2
ṗ that only depends on (ḋ, ṗ)ṗ. The pairing of

(1, ṗ, ṗ) with ~w2
ṗ is (ṗ, ḋδ21)ṗ = (ṗ, ḋ)ṗ + (ṗ, δ21)ṗ while the pairing of (1, νṗṗ, νṗṗ) with it is

(νṗṗ, ḋδ21)ṗ = (νṗ, ḋδ21)ṗ + (ṗ, ḋ)ṗ + (ṗ, δ21)ṗ = 1 + (ṗ, ḋ)ṗ + (ṗ, δ21)ṗ.

Thus one of these two will have a pairing-value of (ṗ, ḋ)ṗ with ~w2
ṗ, depending on whether δ21

is square modulo ṗ. When δ12δ13 is square modulo ṗ, this then gives us our τṗ~α1
ṗ. Similarly,

we have that the pairing of (νṗ, ṗ, νṗṗ) with ~w2
ṗ is

(νṗ, ḋδ21)ṗ + (ṗ, δ21δ23)ṗ + (νṗṗ, ḋδ23)ṗ = 1 + (ṗ, δ21δ23)ṗ + [(νṗ, ḋδ23)ṗ + (ṗ, ḋδ23)ṗ]
= (ṗ, ḋ)ṗ + (ṗ, δ21)ṗ,

and that with (νṗ, νṗṗ, ṗ) is

(νṗ, ḋδ21)ṗ + (νṗṗ, δ21δ23)ṗ + (ṗ, ḋδ23)ṗ = 1 + (ṗ, δ21δ23)ṗ + [(ṗ, ḋ)ṗ + (ṗ, δ23)ṗ]
= 1 + (ṗ, ḋ)ṗ + (ṗ, δ21)ṗ,

so again one of these pairing-values will be (ṗ, ḋ)ṗ, giving us our choice of τṗ~α1
ṗ in the case

where δ12δ13 is not a square modulo ṗ.
This then gives an adequate choice of τṗ~α1

ṗ, and we can repeat the process to choose τṗ~α2
ṗ

with respect to ~w2
ṗ, with the result being alternating as desired.

8.3.2. The above gives a method for selecting τṗ locally for each ṗ; however, there is still the
task of glueing these together into a global τ -map, which need not be trivial, particularly
due to the occurrence of νṗ. It turns out (as an application of quadratic reciprocity and/or
class field theory) that we can select νṗ freely in VB for all but one of the formal symbols
(which we take to be ṗr̃). The local isomorphism at the final formal symbol is then fixed by
the condition with the global torsion (rather than by the above setup), and indeed in this
case we have (τṗ~αiṗ, ~w

j
ṗ)ṗ = 0 for i, j ∈ {1, 2} (equivalently, the matrix G below has C = 0).

Writing ṗk for ṗ now, note also that the off-diagonal entry of (ṗk, ḋ)ṗk is only the local image,
and as in the extended example in Section 7.4 one needs to lift it, which can cause various
(ṗk, ṗi)ṗk for i < k to also appear. However, the off-diagonal entry of C will always depend
on (ṗk, ḋ)ṗk .

37Swinnerton-Dyer achieves the same conclusion at the bottom of p. 524, via his Lemma 2.
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8.4. We can then consider the process of passing from Mc(K̃ε,L) to Mc+1(K̃ε,L) for 0 ≤
c < r̃, writing ṗ for the (c+ 1)st formal symbol (it is fixed for our analysis). This follows [53,
Section 5] of Swinnerton-Dyer.
We restrict the pairing matrix to the kernels of Mc, writing Ũ c = U cB(K̃ε,L) for the relevant
subset of U cB, and similarly with W̃ c for W c

B. Upon appropriate choice of bases the pairing
matrix on (Ũ c ⊕ τṗUṗ)× (W̃ c ⊕Wṗ) is then of the form

G =
( 0 A
AT C

)
where C is alternating with non-diagonal entry depending on (ṗ, ḋ)ṗ when c < r̃ − 1.
8.4.1. We can then compute sc+1 in terms of sc and the ranks of A and C. Indeed, when
A = C = 0 the rank of G is 0 and thus sc+1 = sc + 2. When A itself has rank 2 we see
that G has rank 4 and so sc+1 = sc − 2, while if A has rank 1 we find that G has rank 2
(independently of what C is) and sc+1 = sc.
Note that when Ũ c+1 contains two elements that depend on ṗc+1 in an independent manner,
we must then have sc+1 = sc + 2, and so A = C = 0.
This will certainly be the case when c = r̃ − 1, since then Ũ r̃ contains the images under τ of
the global elements ~w1 = (δ12δ13, ḋδ12, ḋδ13) and ~w2 = (ḋδ21, δ21δ23, ḋδ23), and these are not
in Ũ r̃−1 since they depend on ḋ (and thus ṗr̃). From this we find that sr̃ = 2 + sr̃−1.
8.4.2. In general, we will need to know more about the entries of A. We write Y 0

B for the
direct sum of the Yl = Q?

l /(Q?
l )2 over l ∈ Ω̃.

For a given element (u1, u2, u3) ∈ Ũ c, each ui can be written as ξ
∏
a ṗ

ea
a for some ξ ∈ Y 0

B and
~e with ea ∈ {0, 1} for 1 ≤ a ≤ c. In particular ṗ = ṗc+1 will not divide ui. Thus the pairing
of (u1, u2, u3) with ~w1

ṗ is given by

(δ12δ13, u1)ṗ + (ḋδ12, u2)ṗ + (ḋδ13, u3)ṗ = 0 + (ṗ, u2)ṗ + (ṗ, u3)ṗ = (ṗ, u1)ṗ,

the last step since u1u2u3 = 1. The pairing with ~w2
ṗ similarly gives (ṗ, u2)ṗ.

The entries of A thus consist of (ṗ, u1)ṗ and (ṗ, u2)ṗ for various (u1, u2, u3) ∈ U cB, and each
(ṗ, u)ṗ = (ṗc+1, u)ṗ is some expression in the K̇?q,(c+1) for q ∈ Ω̃ and the L̇?(c+1),j with 1 ≤ j ≤ c.
Thus the expression (ṗ, u)ṗ is nontrivial unless u = 1.
Meanwhile, for (ṗ, ḋ)ṗ from C, this is equal to (ṗ, ḋ/ε̇ṗ)ṗ + (ṗ, ε̇ṗ)ṗ, where the former is
L̇?(c+1),(c+1) and the latter is either K̇?∞,(c+1) or 0 (depending on ε̇). In particular, when c < r̃−1
we see that this expression is independent of the others (in the sense of Section 8.1.3), due
to the presence of the diagonal entry L̇?(c+1),(c+1).
As for the entries of A, we write {un} for a basis of Uc(K̃ε,L) and consider the 2sc expressions
given by (ṗ, un1 )ṗ and (ṗ, un2 )ṗ for 1 ≤ n ≤ sc. A dependency between these expressions would
in particular imply there is some nonempty minimal subset

⋃
a∈Z1{(ṗ, u

a
1)ṗ}∪

⋃
a∈Z2{(ṗ, u

b
2)ṗ}

of said expressions for which the product
∏
a(ua1)

∏
b(ub2) is equal to 1. If one of the products

is empty, say the second, then we can just add the elements (ua) themselves together and get
something whose first component is 1. Otherwise, we can add the elements (ua) together to
get (U1, U2, U3) and similarly the (ub) to get (U ′1, U ′2, U ′3) with U1 = U ′2. Thus if Ũ c contains
no nontrivial element of the form (1, U2, U2) or (U1, 1, U1), and no 2 nontrivial elements of
the form (U1, U2, U3) and (U ′1, U ′2, U ′3) with U1 = U ′2, the entries of A then determine 2sc
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independent expressions in the formal variables (and thus are independent in the sense of
specifying a coset of Y(r̃,#Ω̃)[c]).

8.4.3. This then gives the definition: a specification (K̃ε,L) ∈ Y(r̃,#Ω̃) is generic at c if
Uc(K̃ε,L) has no nontrivial element of the form (1, u0, u0) or (u0, 1, u0), and also doesn’t
contain 2 nontrivial elements (u1, u2, u3) and (v1, v2, v3) with u1 = v2. We similarly define
genericity of (K̃′ε,L′) ∈ Y(r̃,#Ω̃)[c], and sum up as follows.

Lemma 8.1. — Let (K̃′ε,L′) ∈ Y(r̃,#Ω̃)[c] and suppose it is generic. Consider the set of
(K̃ε,L) ∈ Y(r̃, #̃Ω)[c+1] whose c-restriction is (K̃′ε,L′). The sc+1(K̃ε,L) are then distributed
from s = sc(K̃′ε,L′) in the following manner:

– a proportion 1/22s+1 of them have sc+1(K̃′ε,L′) = s+ 2 = sc(K̃ε,L) + 2,

– a proportion 3/2s − 5/22s+1 have sc+1(K̃′ε,L′) = s = sc(K̃ε,L),

– a proportion 1− 3/2s + 2/4s have sc+1(K̃′ε,L′) = s− 2 = sc(K̃ε,L)− 2.

Proof. — Given the above description of sc+1 in terms of sc and the assumption of genericity,
we need only note that the given proportions correspond to the number of choices of (A,C)
with the requisite ranks of G as given above. �

8.5. Next we will follow Swinnerton-Dyer’s analysis [53, Section 4] to bound the size of the
set of the nongeneric (K̃ε,L) ∈ Y(r̃,#Ω̃)[c]. This is perhaps little more than 5+ pages of
re-presenting his (lengthy) arguments, though we make some corrections and minor improve-
ments, and handle the notion of “probability” more robustly.
8.5.1. We begin by noting some basic calculations for the pairings. Let (u1, u2, u3) be an
element of U cB(K̃ε,L), so that it is in U cB and meets the c-restriction of the (Kε,L) conditions.
Let ṗ = ṗa for some 1 ≤ a ≤ c and suppose it does not divide any of the components ui. The
pairing of (u1, u2, u3) with ~w1

ṗ = (δ12δ13, ḋδ12, ḋδ13) is then

(δ12δ13, u1)ṗ + (ḋδ12, u2)ṗ + (ḋδ13, u3)ṗ = 0 + (ṗ, u2)ṗ + (ṗ, u3)ṗ = (ṗ, u2u3)ṗ = (ṗ, u1)ṗ,

and similarly the pairings with ~w2
ṗ and ~w3

ṗ are respectively (ṗ, u2)ṗ and (ṗ, u3)ṗ. The conditions
that (u1, u2, u3) be locally soluble at ṗ (and so be in the space U cB(K̃ε,L) of everywhere locally
soluble elements) are thus that each of the expressions

(9) (ṗ, u1)ṗ, (ṗ, u2)ṗ, and (ṗ, u3)ṗ

should be zero when evaluating the formal variables (K̇?, L̇?) therein at (K̃?,L?). (This is at
most two independent conditions, since u3 = u1u2).
When ṗ divides one of the components of u, then it divides exactly two of them. When u1 is
a unit at ṗ, then we find that the pairing with ~w1

ṗ is (writing u2 = ṗξ2)

0 + (ḋδ12, u2)ṗ + (ḋδ13, u3)ṗ = (ḋδ12, p)ṗ + (ḋδ12, ξ2)ṗ + (ḋδ13, p)ṗ + (ḋδ13, ξ3)ṗ
= (δ12δ13, p)ṗ + (ḋ, ξ2ξ3)ṗ = (δ12δ13, p)ṗ + (ṗ, u1)ṗ,
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where we used (ḋ, ξ2ξ3)ṗ = (ṗ, ξ2ξ3)ṗ = (ṗ, ṗξ2 · ṗξ3)ṗ = (ṗ, u2u3)ṗ = (ṗ, u1)ṗ in the last step.
Again this must evaluate to 0 for (u1, u2, u3) to be in U cB(K̃ε,L). The other two computations
take a different form, with the pairing with ~w2

ṗ being

(ḋδ21, u1)ṗ + (δ21δ23, u2)ṗ + (ḋδ23, u3)ṗ
= (ṗ, u1)ṗ + (δ21δ23, ṗ)ṗ + (ḋδ23, ṗ)ṗ + (ḋδ23, ξ3)ṗ
= (ṗ, u1)ṗ + (δ21δ23, ṗ)ṗ + (ḋ, ṗ)ṗ + (δ23, ṗ)ṗ + (ṗ, ξ3)ṗ
= (δ21, ṗ)ṗ + (ṗ, u1u3ḋ/ṗ)ṗ = (δ21, ṗ)ṗ + (ṗ, u2)ṗ + (ṗ, ḋ/ṗ)ṗ,

and the pairing with ~w3
ṗ is then (δ31, ṗ)ṗ + (ṗ, u3)ṗ + (ṗ, ḋ/ṗ)ṗ. Upon rotating the indices, we

can then catalogue the expressions from the nine computations as:

(10)
(δ12δ13, ṗ) + (ṗ, u1) (δ21, ṗ) + (ṗ, u2) + (ṗ, ḋ/ṗ) (δ31, ṗ) + (ṗ, u3) + (ṗ, ḋ/ṗ)
(δ21δ23, ṗ) + (ṗ, u2) (δ12, ṗ) + (ṗ, u1) + (ṗ, ḋ/ṗ) (δ32, ṗ) + (ṗ, u3) + (ṗ, ḋ/ṗ)
(δ31δ32, ṗ) + (ṗ, u3) (δ13, ṗ) + (ṗ, u1) + (ṗ, ḋ/ṗ) (δ23, ṗ) + (ṗ, u2) + (ṗ, ḋ/ṗ)

where the first line corresponds to u1 being a unit, the second line to u2 being such, etc.,
and we have suppressed the ṗ-subscript on the Hilbert symbols. In each case, for (u1, u2, u3)
to be in U cB(K̃ε,L) the given three expressions must be 0 (for every ṗ) when evaluating the
formal variables (K̇?, L̇?) at (K̃?,L?), though of course at most two of the three expressions
are independent.
8.5.2. We now give some rudimentary bounds on the number of various nongeneric elements.
However, the main (and most lengthy) demonstration will be left to the next subsection. We
write Y c

B for the sum of the Yl = Q?
l /(Q?

l )2 over l ∈ Ω̃ ∪Pc.

Lemma 8.2 ([53, Lemma 4]). — The proportion of (K̃ε,L) ∈ Y(r̃,#Ω̃)[c] with a nontrivial
element in U cB(K̃ε,L) of the form (1, ξ, ξ) with ξ ∈ Y 0

B is � (1/2)c for 0 ≤ c < r̃ − 1.

Clearly we can handle (ξ, 1, ξ) and (ξ, ξ, 1) in the same manner by symmetry.

Proof. — Since ξ is a unit for every formal symbol ṗj , from (9) we have expressions (ṗj , ξ)ṗj
for 1 ≤ j ≤ c, all of which must be zero when the formal variables K̇? and L̇? are evaluated.
We wish to show that these expressions are all independent,38 and this readily follows (when
c < r̃ − 1) as they involve K̇?qj for different j. In other words, we have (ṗj , ξ)ṗj =

∑
q|ξ K̇?qj

where the nonempty q-sum is over those q ∈ Ω̃ with q|ξ, and we can take any such q and note
that (ṗj , ξ)ṗj is the unique expression that depends on the basic formal variable K̇?qj .
The independence of expressions implies each reduces the proportion of (K̃ε,L) by a factor
of 2, so for any ξ the proportion of (K̃ε,L) with (1, ξ, ξ) in U cB(K̃ε,L) is 1/2c, and as the total
number of ξ is (2#Ω̃ − 1)� 1, the Lemma follows. �

Lemma 8.3 ([53, Lemma 5]). — Suppose that δ12δ13 is not a square. The proportion of
(K̃ε,L) ∈ Y(r̃,#Ω̃)[c] with a nontrivial element in U cB(K̃ε,L) of the form (1, u2, u2) with
u2 ∈ Y c

B is � (3/4)c for 0 ≤ c < r̃ − 1.

38Already in this case we can begin to see the nuances of extending the notion of genericity to a case where
αP 6= 1. For instance, when ξ = −1 and the formal symbols ṗj correspond to primes that are restricted to be
1 mod 4, all the conditions are trivial.
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Again we can also handle (u2, 1, u2) and (u2, u2, 1) analogously by symmetry.

Proof. — Let A be the set of formal symbols in Pc that divide u2, and B be the set of those
that don’t. For the latter, we again have the expressions (ṗj , u2)ṗj from (9) that must evaluate
to zero at (K̃?,L?). On the other hand, for formal symbols in A, from the first line of (10)
we have the expressions (δ12δ13, ṗj)ṗj and (δ21, ṗj)ṗj + (ṗj , u2)ṗj + (ṗj , ḋ/ṗj)ṗj .
Our tactic to show these expressions are independent shall be to show that each depends
on some K̇- or L̇-variable that appears in no other expression. This is easiest for the last
type of expression, as they involve ḋ/ṗj and thus L̇?jj (and thus L̇?jr̃ if one prefers), and as
c < r̃− 1 these ensure independence; so these expressions are independent of each other, and
also independent of those remaining.
We can assume that u2 6∈ Y 0

B (else the previous Lemma applies), so the expressions from B

with (ṗj , u2)ṗj each involve at least one L̇?jk for some k. The only way such an expression could
fail to be independent with the others is if some other expression included L̇?kj . However, every
k for which L̇?jk appears in (ṗj , u2)ṗj =

∑
q|ξ2 K̇

?
qj+

∑
k:ṗk|u2 L̇

?
jk corresponds to a formal symbol

ṗk ∈ A, so in particular there is no occurrence of L̇?kj in the B-expressions. We conclude that
these B-expressions are independent of each other (since each involves a different j), and
independent of those remaining.
Finally, since δ12δ13 is not square (in Q) the expressions (δ12δ13, ṗj)ṗj with A are nontrivial.
These indeed only involve K̇, and as each involves a different j, they are independent of each
other.
Summing up, we have #B + 2#A = c + #A expressions, all of which are independent in
terms of basic formal variables, so for a given u2 the proportion of (K̃ε,L) with (1, u2, u2)
in U cB(K̃ε,L) is 1/2c+#A. We then aggregate over possible choices of u2, of which there are
2#Ω̃( c

#A
)
possibilities for a given value of #A. This gives a total proportion of

c∑
a=1

(
c

a

)
2#Ω̃

2c+a � (3/4)c

as the a-part of sum (with a = 0 included) is (3/2)c by the binomial expansion. �

We can generalize Lemma 8.3 slightly,39 to further restrict the types of ~u.

Lemma 8.4 ([53, Lemma 6]). — The proportion of (K̃ε,L) ∈ Y(r̃,#Ω̃)[c] for which there is
a nontrivial element in U cB(K̃ε,L) of the form (ξ, u2, u2ξ) (and again similarly by symmetry)
with ξ ∈ Y 0

B is � (3/4)c for 0 ≤ c < r̃ − 1.

Proof. — We let A be set of formal symbols in Pc that divide u2 and B be the set of those
that do not. We can assume that A is nonempty. For ṗj ∈ B we have the expressions (ξ, ṗj)ṗj
and (u2, ṗj)ṗj from (9). For ṗj ∈ A we take the second expression from (10), namely that
(δ21, ṗj)ṗj + (ṗj , u2)ṗj + (ṗj , ḋ/ṗj)ṗj . (Note here ξ could be δ12δ13, when the other expressions
from (10) are not independent).
Again the latter expressions involve L̇?jj and thus are independent of each other and those
remaining, while the second type of expression for formal symbols in B involves L̇?jk for

39As noted with Footnote 32, both this and Lemma 8.5 handle specific subcases that are convenient to avoid
in the proof of Lemma 8.6, though if either fails one can still have genericity.
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some k that are all associated to a formal symbol in A, with thus L̇?kj not occurring and
the expressions hence being independent of each other and those remaining. Finally, we can
assume that ξ 6= 1, so that the expressions of the first type with B are all independent. Thus
we have #A+2#B = c+#B independent expressions, and as before conclude the proportion
of (K̃ε,L) is O

(
(3/4)c

)
. �

Swinnerton-Dyer then launches into the main result, though he only gives details for a special
case.40 I think it is superior to split off this part of the proof explicitly.

Lemma 8.5 ([53, Lemma 7]). — The proportion of (K̃ε,L) ∈ Y(r̃,#Ω̃)[c] for which there
are two elements in U cB(K̃ε,L) of the form (u1, u2, u3) and (v1, v2, v3) with u1 = v2 and
u2 = v3ξ for some ξ ∈ Y 0

B is � (7/8)c for 0 ≤ c < r̃ − 1.

Proof. — Let (u1, u2, u3) and (u3ξ, u1, u2ξ) be elements as specified. There are then four types
of formal symbols ṗj to consider; each will give at least two expressions that are mutually
independent, and some types will yield a third. Then we will show that by removing at most 2
formal symbols (thus at most 6 expressions) from consideration the totality of the expressions
remaining will be independent.
We let B1 be the set of formal symbols in Pc that divide u1 and u2 (and thus do not divide
u3 = u1u2). For ṗj ∈ B1 we have (from the third line of (10))

(δ31δ32, ṗj)ṗj + (ṗj , u3)ṗj and (δ13, ṗj)ṗj + (ṗj , u1)ṗj + (ṗj , ḋ/ṗj)ṗj
from (u1, u2, u3), and from (u3ξ, u1, u2ξ) also have (second entry of first line)41

(δ21, ṗj)ṗj + (ṗj , u1)ṗj + (ṗj , ḋ/ṗj)ṗj ,

whereupon adding the latter two yields the expression (δ21δ13, ṗj)ṗj .
With B2 as the set of formal symbols that divide u1 and u3, for ṗj ∈ B2 we have (second
line)

(δ21δ23, ṗj)ṗj + (ṗj , u2)ṗj and (δ12, ṗj)ṗj + (ṗj , u1)ṗj + (ṗj , ḋ/ṗj)ṗj
from (u1, u2, u3), and from (u3ξ, u1, u2ξ) also have (last entry of third line)

(δ23, ṗj)ṗj + (ṗj , u1)ṗj + (ṗj , ḋ/ṗj)ṗj ,

so that adding the latter two yields the expression (δ12δ23, ṗj)ṗj .
Letting B3 be the set of formal symbols that divide u2 and u3, for ṗj ∈ B3 we have (first line)

(δ12δ13, ṗj)ṗj + (ṗj , u1)ṗj and (δ21, ṗj)ṗj + (ṗj , u2)ṗj + (ṗj , ḋ/ṗj)ṗj
and this will suffice (for (u3ξ, u1, u2ξ), the relevant entries on the second line will involve ξ,
and so it seems easier to just ignore them).
Lastly, with B4 as the set of formal symbols that do not divide any ui, for ṗj ∈ B4 we get
expressions from (9) as

(ṗj , u1)ṗj , (ṗj , u2)ṗj , and (ṗj , u3ξ)ṗj .

40Note that his second special case is superfluous, as we then have (u1, u2, u3) and (v1, v2, v3) with u3v3 ∈ Y 0
B ,

and so can add ~u and ~v and be in the case of the previous Lemma.
41It’s not completely clear to me, but I think Swinnerton-Dyer implicitly uses the first entry of the first line,
whence (δ12δ13, ṗj)ṗj = (ṗj , u3ξ)ṗj here, and (δ31δ32, ṗj)ṗj = (ṗj , u2ξ)ṗj below, though I must admit I don’t
see how the computation then concludes in terms of merely ξ.
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Since u3 = u1u2 the latter can be replaced by (ṗj , ξ)ṗj , which is nontrivial for ξ 6= 1.
(Swinnerton-Dyer has the third expressions from B1 and B2 in terms of ξ (perhaps incor-
rectly), and then juxtaposes ξ = 1 into this).
In Table 7, we give the relevant expressions for each case (reading across the rows), where we
suppressed the j-subscript on ṗj .

Table 7. Expressions in the various cases

B1 (δ31δ32, ṗ)ṗ + (ṗ, u3)ṗ (δ13, ṗ)ṗ + (ṗ, u1)ṗ + (ṗ, ḋ/ṗ)ṗ (δ21δ13, ṗ)ṗ
B2 (δ21δ23, ṗ)ṗ + (ṗ, u2)ṗ (δ12, ṗ)ṗ + (ṗ, u1)ṗ + (ṗ, ḋ/ṗ)ṗ (δ12δ23, ṗ)ṗ
B3 (δ12δ13, ṗ)ṗ + (ṗ, u1)ṗ (δ21, ṗ)ṗ + (ṗ, u2)ṗ + (ṗ, ḋ/ṗ)ṗ
B4 (ṗ, u1)ṗ (ṗ, u2)ṗ (ṗ, ξ)ṗ

8.5.3. We thus have at least 2 and sometimes 3 expressions for each ṗj , which are at least
independent among themselves. Similar to previously, the expressions that involve ḋ/ṗj can
all be shown to independent of each other and all the others, as they uniquely involve L̇?jj .
(Note that B4 has no such expressions).
It is more subtle to consider the expressions that are of the form
(11) (δ, ṗj)ṗj + (ṗj , ui)ṗj or (ṗj , ui)ṗj ,

the latter type coming from B4 (which indeed gives two such expressions), and the former
from the other three cases. Here we note u1u2 6∈ Y 0

B , as else the previous Lemma 8.4 applies
with u3 = u1u2. Thus there is some formal symbol dividing u1u2, which we call ṗ?1. Moreover,
since u1, u2 6∈ Y 0

B , there is some other formal symbol ṗ?2 that divides one of u1 or u2 but not
the other. We then exclude from consideration the (at most 6) expressions arising from these
special formal symbols.
Letting k1 and k2 be the indices of these formal symbols, the above expressions in (11) depend
on L̇?jk1

but not L̇?jk2
for u3 = u1u2, on L̇?jk2

but not L̇?jk1
for whichever of u1 or u2 is divisible

by ṗ?2, and on both L̇?jk1
and L̇?jk2

for the other.42

Moreover, by construction (or destruction?) we have excluded L̇?k1j
and L̇?k2j

from occurring
in the expressions, having removed those corresponding to ṗk1 and ṗk2 . Thus these expressions
are independent of each other, and also the remaining ones (which only depend on K̇).
Finally, we have the expressions (δ21δ13, ṗj)ṗj for B1 and (δ12δ23, ṗj)ṗj for B2; when the
relevant δ is not square, they will be independent of each other (coming from different j) and
from all the other expressions (not depending on L̇). We then conclude by noting

δ21δ13 + δ12δ23 = (c2 − c1)(c1 − c3)− (c2 − c1)(c2 − c3) = −(c2 − c1)2 < 0,
so that at least one of the initial summands is not a square.
Writing bi for the size of Bi (so that their sum is c), we deduce that there at least 2(b1 + b2 +
b3 + b4)− 6 + min(b1, b2) independent expressions. (We can simply ignore (ṗj , ξ)ṗj from B4,
though Swinnerton-Dyer does include it in his analysis).

42Here, when using the term “depends” for an expression, we should pedantically be careful to refer to
whichever of L̇?jk1 or L̇?k1j is a basic formal variable (that is, whether j < k1 or not); however, we employ a
bit of economy in language.
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8.5.4. Given two elements of the specified type, the above then gives that the proportion
of (K̃ε,L) with both elements in U cB(K̃ε,L) is � 1/22c−6+min(b1,b2). Upon aggregating over
possible choices of (u1, u2, ξ), of which there are 2#Ω̃( c

b1,b2,b3,b4

)
in terms of the vector ~b (of

divisibilities) associated to (u1, u2), summing over all such possibilities of ~b then gives a
proportion of

� 1
22c

∑∑
i
bi=c

(
c

b1, b2, b3, b4

)( 1
2b1

+ 1
2b2

)
= 2(1 + 1 + 1 + 1/2)c

4c � (7/8)c,

where we applied the 4-fold multinomial expansion. �

8.6. Finally we turn to the most difficult case (indeed, the most generic) of Swinnerton-
Dyer’s non-genericity analysis. Here we will have two elements that have a total three inde-
pendent co-ordinates, and 8 possibilities for the types of primes. By excluding three formal
symbols involving the products of the independent co-ordinatess, we will be able to show that
every other formal symbol contributes 3 independent expressions, and at least one of the 8
classes yields 4.

Lemma 8.6 ([53, Lemma 7]). — The proportion of (K̃ε,L) ∈ Y(r̃,#Ω̃)[c] for which there
are two elements in U cB(K̃ε,L) of the form (u1, u2, u3) and (v1, v2, v3) with u1 = v2 is �
(15/16)c for 0 ≤ c < r̃ − 1.

Smith notes (p. 77) the same bound when u1 = v2ξ for some ξ ∈ Y 0
B – the proof follows in

the same manner, with some of the apperances of u being uξ instead.

Proof. — We write the elements as (u, v, uv) and (w, u, uw).
The most special set B1 of formal symbols are those that divide u but neither v nor w (note
that these did not occur in the previous Lemma 8.5). The expressions for (u, v, uv) thus come
from the second line of (10) and are

(δ21δ23, ṗj)ṗj + (ṗj , v)ṗj and (δ12, ṗj)ṗj + (ṗj , u)ṗj + (ṗj , ḋ/ṗj)ṗj

while those for (w, u, uw) come from the first line and are

(δ12δ13, ṗj)ṗj + (ṗj , w)ṗj and (δ21, ṗj)ṗj + (ṗj , u)ṗj + (ṗj , ḋ/ṗj)ṗj .

In particular,43 the expressions with (ṗj , ḋ/ṗj)ṗj can be added to get (−1, ṗj)ṗj . The other
two expressions will be independent of each other since vw 6∈ Y 0

B .
Next, the set of formal symbols ṗj that divide none of u, v, w yield the expressions

(ṗj , u)ṗj , (ṗj , v)ṗj , and (ṗj , w)ṗj .

For each such j these will be independent of each other since uv, uw, vw, uvw 6∈ Y 0
B .

43As with Footnote 38 (and indeed, more dramatic in impact), these extra conditions are trivial when the
formal symbols correspond to primes that are restricted to be 1 mod 4, making the notion of genericity more
delicate. Similar comments apply to other cases.
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8.6.1. For the rest of the divisibility possibilities, we will take one expression involving ḋ/ṗj
and two independent expressions that do not. The cases where ṗj does not divide u and not
both v and w will have expressions from (9).
When ṗj divides u we can always take the expression with ḋ/ṗj to be of the form

(δ, ṗj)ṗj + (ṗj , u)ṗj + (ṗj , ḋ/ṗj)ṗj .

When ṗj divides all of u, v, w the other conditions are

(δ31δ32, ṗj)ṗj + (ṗj , uv)ṗj and (δ31δ32, ṗj)ṗj + (ṗj , uw)ṗj ,

and when ṗj divides u and v but not w they are

(δ31δ32, ṗj)ṗj + (ṗj , uv)ṗj and (δ12δ13, ṗj)ṗj + (ṗj , w)ṗj ,

while when ṗj divides u and w but not v they are

(δ21δ23, ṗj)ṗj + (ṗj , v)ṗj and (δ31δ32, ṗj)ṗj + (ṗj , uw)ṗj .

When ṗj doesn’t divide u, we can always take one of the expressions as

(δ12δ13, ṗj)ṗj + (ṗj , u)ṗj .

When ṗj divides v but not w we take the other two expressions as

(δ12δ13, ṗj)ṗj + (ṗj , w)ṗj , and (δ21, ṗj)ṗj + (ṗj , v)ṗj + (ṗj , ḋ/ṗj)ṗj ,

while when it divides w but not v we take

(δ31δ32, ṗj)ṗj + (ṗj , uw)ṗj , and (δ13, ṗj)ṗj + (ṗj , w)ṗj + (ṗj , ḋ/ṗj)ṗj .

Finally, when ṗj divides v and w we consider (u, v, uv) + (w, u, uw) = (uw, uv, vw) and apply
the third line of (10) to get

(δ31δ32, ṗj)ṗj + (ṗj , vw)ṗj and (δ13, ṗj)ṗj + (ṗj , uw)ṗj + (ṗj , ḋ/ṗj)ṗj .
8.6.2. We now turn to analysis of independence of these expressions. Again those that involve
ḋ/ṗj are the easiest, as the expressions uniquely involve L̇?jj , ensuring they are independent
of each other, and of all the others.
We then select three formal symbols that distinguish u, v, w. This is possible since uv, uw, vw,
uvw 6∈ Y 0

B (when uvw = ξ ∈ Y 0
B our elements in U cB(K̃ε,L) are (u, v, uv) and (w, u, vξ), and

Lemma 8.5 applies). With k1, k2, k3 as the indices of said symbols, the 7 nontrivial products x
from u, v, w each have (ṗj , x)ṗj depending on a different nontrivial combination of L̇?jk1

, L̇?jk2
,

and L̇?jk3
. Thus such expressions will be independent from all the others if no L̇?kij appears

elsewhere, and indeed we ensure so by excluding the three formal symbols ṗk1 , ṗk2 , and ṗk3
from consideration in our set of expressions.
We are then left with the expressions (−1, ṗj)ṗj from B1, which don’t depend on L̇, and are
thus independent of the others (and of each other as the j differ).
Writing bi for the size of Bi (so that their sum is c), we conclude there are at least 3

∑
i bi −

12 + b1 independent expressions.
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8.6.3. Given two elements of the specified type, the above then gives that the proportion
of (K̃ε,L) with both elements in U cB(K̃ε,L) is � 1/23c−12+b1 . We can then aggregate over
possible choices of (u, v, w), of which there 2#Ω̃(c

~b

)
in terms of the vector ~b (of divisibilities)

corresponding to (u, v, w). Summing over all such possibilities of ~b then gives a proportion of

� 1
23c

∑∑
i
bi=c

(
c
~b

)
1

2b1
= (1 + 1 + 1 + 1 + 1 + 1 + 1 + 1/2)c

8c = (15/16)c

where we applied the 8-fold multinomial expansion. �

8.7. Finally we make some comments about the Markov chain analysis.
As with Section 7.3.2, we let

ρs = 2s∏s
j=1(2j − 1)

∞∏
n=0

(
1− 1/22n+1),

for which we have ρ0 + ρ2 + ρ4 + · · · = ρ1 + ρ3 + ρ5 + · · · = 1, while for s ≥ 0 we have the
recurrence relation (with ρ−1 = ρ−2 = 0)

ρs = ρs−2 ·
1

22(s−2)+1 + ρs ·
( 3

2s −
5

22s+1

)
+ ρs+2 ·

(
1− 3

2s+2 + 4
22(s+2)+1

)
.

Numerically we have ρ0 ≈ 0.4194224418 and(
ρ0
ρ0
,
ρ2
ρ0
,
ρ4
ρ0
,
ρ6
ρ0
,
ρ8
ρ0
, . . .

)
=
(

1, 4
3 ,

16
315 ,

64
615195 ,

256
19923090075 , . . .

)
,

while ρ1 = 2ρ0 ≈ 0.8388448836 and(
ρ1
ρ1
,
ρ3
ρ1
,
ρ5
ρ1
,
ρ7
ρ1
,
ρ9
ρ1
, . . .

)
=
(

1, 4
21 ,

16
9765 ,

64
78129765 ,

256
10180699028325 , . . .

)
.

Rather than directly utilizing the ρs, Smith phrases his result (Corollary 6.11) in terms of
the proportion of alternating matrices over F2 of size (2m + s) with kernel of dimension
s, and indeed it turns out that this proportion is ρs as m → ∞. However, as far as I can
tell,44 this is something that one can only conclude ex post facto after computing the Markov
stable state, and simply matching the obtained ρs with the known limiting proportion of
alternating matrices.45 This is thus unlike the case of 4-ranks of narrow class groups of
Gaussian discriminants (no prime factors are 3 mod 4) in Section 12, where the relevant
Rédei matrix that yields the 4-rank is directly a symmetric matrix involving just the (pi|pj),
with indeed no restriction from any K̃-information; so the proportion of L that give a specific
rank of this Rédei matrix is thus the proportion of associated symmetric matrices over F2.
Thereby we avoid the Markov chain completely in this case.46

44Smith is terse, but I think he directly re-interprets Swinnerton-Dyer’s P (d,M) in [53, (21)] as this proportion.
However, this P (d,M) is for the specific alternating matrices induced by congruence and Legendre symbol
conditions, and it is unobvious to me (though true) they are proportionally rank-distributed in the whole. In
any case, Smith’s ultimate statement is correct.
45Said proportion, which is related to Delaunay’s elliptic curve adaptation [5] of the (number fields) heuristic
of Cohen and Lenstra, is discussed more by Bhargava, Kane, Lenstra, Poonen, and Rains [2, Section 1.4,
Section 3.6ff].
46On the other hand, Gerth’s analysis [12] of the distribution of 4-ranks of narrow quadratic class groups
in the general case was similar to our current situation, and indeed computing the actual proportions of
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8.7.1. We let M be the infinite matrix (indexed starting at 0) whose nonzero entries are the
“transition probabilities” given by

Ms,s+2 = 1
22s+1 , Ms,s =

( 3
2s −

5
22s+1

)
, and Ms,s−2 =

(
1− 3

2s + 4
22s+1

)

(the latter for s ≥ 2), noting the row-sums are all equal to 1. This naturally splits into
even/odd numbered rows and columns, and for s ≤ 7 the entries are given by47


1/2 1/2 0 0
3/8 19/32 1/32 0
0 105/128 91/512 1/29

0 0 1953/211 379/213

 ,


7/8 1/8 0 0
21/32 43/128 1/128 0

0 465/512 187/211 1/211

0 0 8001/213 763/215

 ,
where the left/right matrix has the even/odd-indexed entries. We write Me and Mo for the
respective restrictions of M to the even/odd rows and columns, retaining the indexing of
these, and write M? when a statement applies to both restrictions.
Since M? has row-sums of 1 it has 1 as an eigenvalue (with (1, 1, 1, . . .) as the eigenvector).
Thus the transpose MT

? also has 1 as an eigenvalue, with the associated eigenvector being
the stable vector ~ρ?.
8.7.2. Let ~wc? be the vector whose sth component gives the proportion of elements (K̃ε,L) ∈
Y(r̃,#Ω̃) whose c-restriction is generic (as defined in Section 8.4.3) with sc = s. We can
rephrase Lemma 8.1 as saying that the sth component of M? ~w

c
? is the proportion of such

elements with sc+1 = s.
Meanwhile, if we write ~ε c? for the similar vector containing the proportion of elements whose
c-restriction is nongeneric with a given sc, there is a transition matrixW c

? (with at most three
nonzero entries per row and column) with row-sums of 1 such that the entries of W c

?~ε
c
? have

the proportion of such elements with sc+1 = s. By the combination of Lemmata 8.2, 8.3, 8.4,
8.5, and 8.6, we see the 1-norm of the nongeneric ~ε c? is � (15/16)c for E with no rational
4-torsion point (only Lemma 8.3 uses this torsion condition). The following Lemma shows
such errors do not accumulate when M? and W c

? are applied.

Lemma 8.7. — Suppose that the distribution of 2-Selmer estimations at J is given by ~hJ?
(including (K̃ε,L) that are nongeneric). Then the distribution of 2-Selmer estimations at
(r̃− 1) is given by M r̃−1−J

?
~hJ? + ~β? for some ~β? whose 1-norm is � (15/16)J when E has no

rational 4-torsion point.

ranks for (e.g.) matrices of size m over F2 with an anti-symmetric corner of size roughly m/2 with the rest
being symmetric (this corresponds to quadratic reciprocity) was done by a Markov analysis (moreover, more
extensive than the one here); the fact that said proportions were asymptotically the same as those from
selecting a random F2 matrix (with no conditions whatsoever) again seemed to appear in a rather ex post
facto manner.
47From the columns of the M? one finds the ratios in the stable distributions, for instance ρ1 =
(7/8)ρ1 + (21/32)ρ3 so that ρ3 = (4/21)ρ1, and ρ3(1 − 43/128) = (1/8)ρ1 + (465/512)ρ5 so that ρ5 =
(512/465)ρ1

[
(85/128)(4/21)− (1/8)

]
= (16/9765)ρ1, etc.
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Proof. — We have that ~hc+1
? = M?(~hc? − ~ε c? ) + W c

?~ε
c
? for each c, and by iteratively applying

this for J ≤ c < r̃ − 1 we find that

~hr̃−1
? = M r̃−1−J

?
~hJ? −

r̃−2∑
u=J

M r̃−1−u
? ~εu? +

r̃−2∑
u=J

M r̃−2−u
? W u

? ~ε
u
? .

Since M? and the W u
? have row-sums of 1 while the 1-norm of ~εu? is � (15/16)u, the latter

two sums give an error whose 1-norm is also thus bounded (the dominant term comes from
u = J). �

8.8. This previous Lemma 8.7 shows that the distribution of 2-Selmer estimations sr̃−1 (and
thus the 2-Selmer ranks themselves) has a main term of M r̃−1−J

?
~hJ? , and thus we are in a

situation where Markov chain analysis can be applied. An alternative (and largely equivalent)
approach to the situation is to compute the rate of convergence to the dominant eigenvector
(namely ~ρ?) of the transpose MT

? . We sketch the ideas here, being somewhat more hands-on
than applying a black box.
8.8.1. The desired plan would then be to write M? = T−1DT where D is diagonal; thus its
entries are the eigenvalues, and indeed T can be taken as the matrix whose columns are the
eigenvectors of M? (normalized in whatever manner). Then we have Mu

? = T−1DuT , and if 1
is indeed the dominant eigenvalue we then see that Du tends rapidly to a matrix with one
nonzero entry. Upon suitably bounding the entries of T and T−1 this then gives a bound on
how far the entries of M r̃−1−J

?
~hJ? will be from those of ~ρ?.

It is fairly easy to show that the second largest eigenvalue tends to 1/4 (and the third to 1/16,
etc.) as the size of the matrix becomes large. However, controlling the size of the entries of
T−1 (for instance) seems rather nontrivial. Moreover, at some point we need to use some
notion of smallness of J (so in particular the entries of ~hJ? for s ≥ 2J + O(1) are nonzero)
with respect to r̃.
Let us take J = b(log logX)/99c as a specific value.
8.8.2. We then proceed by truncatingM? to a finite size (dependent onX). First we note that
M2J
?
~hJ? will have almost all of its 1-norm in the components up to U for U = b

√
log logX/9c.

This follows since the transition entry for s→ s− 2 is ≥ 1− 3/2s, and so multiplying up to
U gives roughly 1/2U2/4 decay, thus saving a small power of (logX).
We let M [U ]

? be the resulting truncated transition matrix; this is not quite simply the upper-
left U -corner ofM?, but also modifies the ultimate diagonal entry to ensure the row sums are
still 1. The truncated matrix thus retains 1 as an eigenvalue, though the eigenvector ~ρ [U ]

? is
no longer quite ~ρ?. However, the difference between these is small – indeed, as in Footnote 47,
for s < U the ratio of sth component to the 0th component (in the even parity case) is still
the same, and the final ratio changes negligibly. Rescaling to have unit 1-norm introduces
another (negligible) error of size � 1/(logX)c in each entry of ~ρ [U ]

? .
We let (~h[U ]

? )3J be the truncation of M2J
?
~hJ? to the components up to U .

The second eigenvalue λ2 can be shown to tend to 1/4 (from below) and indeed the charac-
teristic polynomial tends to (x−1)(x−1/4)(x−1/16)(x−1/64)(· · ·) as U →∞. One way to
handle the error analysis with the size of the entries in the resulting matrix of eigenvectors
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is to first balance48 the matrix M
[U ]
? by transforming it by a diagonal matrix B? so that

S? = B−1
? M

[U ]
? B? is symmetric. Then (as was known to Jacobi) the eigenvector matrix V for

S? can be taken to have orthonormal columns, so that the inverse is simply the transpose.
For our tridiagonal situation, in the even parity case (the odd case is similar) the balancing
matrix will have entries

(Be)nn =
n/2−1∏
i=1

√
(Me)2i,2i−2/(Me)2i−2,2i

for n ≥ 2, with (Be)00 = 1. Thus the size of the nth diagonal entry is roughly 2n2 . We then
have that

(M [U ]
? )l = (B?S?B−1

? )l = (B−1
? V DV −1B?)l = B−1

? V −1DlV B?
where D is the matrix of eigenvalues. The size bound on the entries of B? then implies that(
(M [U ]

? )l(~h[U ]
? )3J − ~ρ [U ]

?
)
has entries bounded as � U32U2

λl2.
Note (S?)nn > (S?)n,n−2, and it follows S? is positive definite; so its eigenvalues are nonneg-
ative, and their sum is bounded by the diagonal-sum ≤ 4/3, so λ2 ≤ 1/3.
The above then gives the following Lemma (which is still somewhat of a sketch).

Lemma 8.8. — With J = b(log logX)/99c and r̃ ≥ (98/99) log logX, the distribution
of 2-Selmer estimations at (r̃ − 1) is given by ~ρ? + ~β? for some ~β? whose 1-norm is �
(15/16)J + 1/(logX)1/500 when E has no rational 4-torsion point.

Proof. — Lemma 8.7 reduces the situation to considering M r̃−1−J
?

~hJ? , and our above
truncation process shows that with U = b

√
log logX/9c this is sufficiently close to

(M [U ]
? )r̃−1−3J(~h[U ]

? )3J .
The entries of

(
(M [U ]

? )j(~h[U ]
? )3J − ~ρ [U ]

?
)
are then bounded as � U32U2

λj2, and applying this
with j = r̃−1−3J ≥ −1+(95/99) log logX and U ≤

√
log logX/9 gives the result (recalling

λ2 ≤ 1/3), since ~ρ [U ]
? differs from ~ρ? negligibly. �

A more detailed approach to the above Markov error analysis has been given by Koymans
and Pagano [28], in the case of 4-ranks of quadratic class groups.

8.9. Finally, we want to interpret this distribution of ρs-values for (K̃ε,L) in terms of boxes.
We thus replicate the sketched computation from the end of Section 6.4.

Proposition 8.9. — Suppose T is a (κ0, η1, ηs)-pleasant (X, η0,P)-box, and assume that
η0/2 > η1 > ηs > 0. Also assume that E has no rational 4-torsion point. Then

#{d : d ∈ T̂± | sr̃(Ed) = s+ 2} = #T · ρs +O

( #T
(log logX)u

)
for u = 1/2− κ0η0 log

√
2− η1.

Proof. — For a pleasant box T (defined as in Section 4.5), from Proposition 6.3 we have

#{d : d ∈ T̂± | sr̃(Ed) = s} =
∑

(ε,K,L)
sεr̃(K,L)=s

#T (K,L) =
∑

(ε,K,L)
sεr̃(K,L)=s

#T
2(r̃2)ξr̃P

+O

(
#T · 2k0/2k1√

log logX

)
,

48This is a case of Parlett–Reinsch balancing [37] from the context of computing eigenvalues.
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where k0 ≤ κ0η0 log log logX and k1 ≤ 3(log logX)η1 (by pleasantness).
By Lemma 8.8 and the equal split in parity amongst (K̃ε,L), the proportion of (ε,K,L) with
sr̃ of (s+2) is ρs/2+O

(
(15/16)J

)
where J = b(log logX)/99c. Noting that there are 2 ·2(r̃2)ξr̃P

choices of (ε,K,L), we thus conclude

#{d : d ∈ T̂± | sr̃(Ed) = s+ 2} = #T ·
[
ρs +O

(
(15/16)J

)]
+O

(
#T · 2k0/2k1√

log logX

)
,

and substituting for J and using the above bounds for k0 and k1 gives the result. �

We should stress that this result, which uses the box machinery of Section 4 and the box-
splitting of Sections 5-6, is what allows the passage from the “unnatural” ordering to the
normal one, as discussed in Section 1.3.1.

9. Recapitulation

Let us put together the various parts of our argument, and optimize the error.
We assume the parameters satisfy 0 < ηs < η1 < η0/2 < 1/100 and also that E has no
rational 4-torsion point.

9.1. From Section 4, we know almost all d̃ are represented by pleasant boxes. Indeed, by
Lemma 4.6 (in our case of αP = 1) the exceptional subset of d̃ ∈ SP(X) that are not
represented by a (κ0, η1, ηs)-pleasant (X, η0,P)-box has size

� X

(log logX)η0κ0(log κ0−1−log(100/99)) + X

(log logX)99 .

Also, every positive squarefree d̃ that is coprime to Ω is in at most one such box.
Then in Sections 5-6 we showed results about the size of boxes when split up by Legendre
symbol conditions on the primes involved. In particular, for a pleasant box T we found that

#{d : d ∈ T̂± | sr̃(Ed) = s} =
∑

(ε,K,L)
sεr̃(K,L)=s

#T (K,L) =
∑

(ε,K,L)
sεr̃(K,L)=s

#T
2(r̃2)ξr̃P

+O

(
#T · 2k0/2k1√

log logX

)
,

where k0 ≤ κ0η0 log log logX and k1 ≤ 3(log logX)η1 (by pleasantness). This used the bounds
on the η, but not the 4-torsion assumption.
Finally, in Sections 7-8 we showed (using the no 4-torsion assumption to handle nongener-
icity) that the proportion of (ε,K,L) with sr̃ of (s + 2) is ρs/2 + O

(
(15/16)J

)
where J =

b(log logX)/99c, so that for any pleasant box T we have

#{d : d ∈ T̂± | sr̃(Ed) = s+ 2} = #T ·
[
ρs +O

(
(15/16)J

)]
+O

(
#T · 2k0/2k1√

log logX

)
.

Summing over pleasant boxes, we thereby conclude that

#{|d| ≤ X : µ(d) 6= 0, gcd(d,Ω) = 1 | s(Ed) = s+ 2}
#{|d| ≤ X : µ(d) 6= 0, gcd(d,Ω) = 1} = ρs

2 +O

(
1

(log logX)min(u,v)

)

where v = η0κ0(log κ0 − 1− log(100/99)) and u = 1/2− κ0η0 log
√

2− η1.
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9.1.1. It remains to optimize this exponent in the error. The choice of κ0 > 3 is still available
to us, and we shall take it so that κ0η0 = 1/

√
log(1/η0). In particular, we then have

u = 1/2− κ0η0 log
√

2− η1 = 1/2− log
√

2√
log(1/η0)

− η1 → 1/2

as η0 → 0 (so that η1 → 0 also), while

v = η0κ0
(
log κ0 − 1− log(100/99)

)
= log(1/η0

√
log(1/η0))− log(100e/99)√

log(1/η0)

= log(1/η0)− (1/2) log log(1/η0)− log(100e/99)√
log(1/η0)

→∞

as η0 → 0. Thus min(u, v)→ 1/2, and this then shows the stated Theorem 1.1.

10. The 4-rank of (narrow) class groups of quadratic fields

A related topic to 2-Selmer ranks of quadratic twists of elliptic curves is the 4-rank of the
narrow class group of quadratic fields. One key similarity is that an analysis of the equi-
distribution of (pi|pj) will play a significant rôle.

10.1. The subject of 4-ranks (and higher 2-power ranks) for narrow class groups of quadratic
fields was studied in a series of papers (such as [38, 39]) in the 1930s by Rédei, starting with
a joint paper with Reichardt [41].
The most relevant observation for our purposes is that the 4-rank can be written in terms of
the dimension of the kernel of the matrix of Legendre symbols (sometimes called the Rédei
matrix, or perhaps the Legendre matrix). We write (a|b)? for the value of a nonzero Legendre
symbol (a|b) when mapped from {±1} to F2.
Let d = ε

∏
i pi be a fundamental discriminant with r prime divisors, and write d =

∏
p̂i for

its factorization into prime-power discriminants (allowing −4 as such, with a slight abuse of
notation in that 2̂ ∈ {−4,−8, 8} is not uniquely defined). Write Rd for the r-by-r matrix over
F2 defined by (p̂i|pj)? for i 6= j, and Rdjj =

∑
i 6=j R

d
ij . The 4-rank e(d) of the narrow class

group of Q(
√
d) is then equal to one less than the dimension of the kernel of the Rédei matrix

Rd, so that e(d) = dim(kerRd)− 1.
(This also holds for non-fundamental discriminants, which we do not consider).
The column-sums are zero by construction, and when d < 0 the row-sums are all zero by
quadratic reciprocity. When d > 0 a row-sum is zero when it corresponds to a prime that
is 1 mod 4, and is nonzero when it corresponds to a prime that is 3 mod 4; meanwhile, for
2̂ = 8 it is zero, while nonzero for 2̂ ∈ {−4,−8}.
Stevenhagen has written a couple of modern resources [50, 51] on Rédei matrices (and Rédei
symbols for 8-ranks).
10.1.1. The special case of “Gaussian” discriminants (often just called “special” discrimi-
nants), where d > 0 and no prime dividing d is 3 mod 4, yields a symmetric Rédei matrix,
and thus can be more readily amenable to further study.49 Indeed, Rédei [39] claimed to have
49There are other cases where one can force the Rédei matrix to be symmetric, such as d < 0 with exactly
one prime factor that is 3 mod 4. I don’t know if anyone has tried to describe the 4-rank distribution for such
a situation. (A bound for the 8-rank is given by Lu [33]).
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obtained the distribution of the 4-ranks for Gaussian discriminants when ordering by number
of prime factors, though as Gerth and Graham [13] point out, the error analysis is spotty.50
Also, the ordinary class group will be the same as the narrow class group except possibly for
Gaussian discriminants, and indeed the occurrences of when these differ are then related to
the question of the solubility of the negative Pell equation.

10.2. Gerth [12] considered 4-ranks of the class group for general quadratic fields under the
ordering by number of prime factors.51 He was able to determine the 4-rank distribution (in
the sense of giving an algorithm to compute it in time polynomial in r) for any fixed number
r of prime factors, and then gave a somewhat complicated Markov analysis to determine the
limiting behavior as r →∞.
Gerth gets (under his ordering) that the proportion of imaginary quadratic fields with 4-rank
equal to e is

γI(e) = 1
2e2

∞∏
u=1

(1− 1/2u)
e∏

u=1
(1− 1/2u)−1

e∏
u=1

(1− 1/2u)−1,

while in the case of real quadratic fields the proportion is

γR(e) = 1
2e(e+1)

∞∏
u=1

(1− 1/2u)
e∏

u=1
(1− 1/2u)−1

e+1∏
u=1

(1− 1/2u)−1.

Gerth notes that these turn out to be related to the heuristic predictions [4] of Cohen and
Lenstra (who only handled odd primes) that one might expect at p = 2, namely that the
4-rank considers the 2-rank of the square of the class group, and thus difficulties with genus
theory are obviated.
10.2.1. Another interpretation of these proportions is in terms of ranks of random matrices
over F2. The imaginary quadratic case corresponds to the limiting probability (as r → ∞)
that a random matrix of size (r − 1)-by-(r − 1) has a kernel of dimension e, while the real
quadratic case has the matrices of size r-by-(r− 1). (See Landsberg [32] for counting random
matrices with a given kernel dimension).
Meanwhile, the proportion of Gaussian discriminants with 4-rank equal to e is

γG(e) = 1
2e(e+1)/2

∞∏
u=1

(1 + 1/2u)−1
e∏

u=1
(1− 1/2u)−1,

and this corresponds to the limiting probability that a symmetric matrix over F2 has a kernel
of dimension e. Note that large e occur much more readily here, as indeed the symmetric
nature of the Rédei matrix ensures that the entries are not as independent as in the general
case (cf. the discussion of [9, Section 1.3]).

50Stevenhagen also notes [49, Proposition 2.5] that Rédei’s proof does not adequately handle the error term
(and it was 50 years until this was remedied), though he erroneously claims the proof was in [40] (and moreover
habitually gives the wrong page numbers in his citations of [39]).
51Note that this allowed him to ignore even discriminants, as the number of odd parts d′ = d/8 with d′ ≤ X/8
having (r − 1) prime factors is asymptotically negligible compared to the number of d with r prime factors –
assuming (of course) that r is fixed while X →∞, as per the ordering.
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We can indeed re-interpret the 2-Selmer case for quadratic twists of elliptic curves to have
proportions (having fixed the parity) of 2-ranks equal to s as

ρs = 1
2s(s−1)/2

∞∏
u=1

(1 + 1/2u)−1
s∏

u=1
(1− 1/2u)−1,

and this corresponds to the limiting probability that an alternating matrix over F2 (whose
dimension is a given parity) has a kernel of dimension s.
In Table 8 we list (approximations to) the above proportions for e ≤ 5.

Table 8. Asymptotic proportions of kernel dimensions in various cases

e = 0 e = 1 e = 2 e = 3 e = 4 e = 5
γI(e) 0.288788 0.577576 0.128350 0.005239 0.000047 9.69 · 10−8

γR(e) 0.577576 0.385051 0.036672 0.000699 0.000003 3.08 · 10−9

γG(e) 0.419422 0.419422 0.139807 0.019972 0.001331 0.000043
ρs/2 0.209711 0.419422 0.279615 0.079890 0.010652 0.000687

10.3. Fouvry and Klüners [8] were then able to adapt Heath-Brown’s analysis (from 2-
Selmer ranks) of equi-distribution of (pi|pj) to the case of general quadratic (fundamental)
discriminants. They obtain the main term for the moments52 by an analysis of unlinked
indices; one aspect of their work is that they indeed interpret this main contribution in terms
of the heuristic of Cohen and Lenstra.53
As with Heath-Brown’s work on the 2-Selmer group, the error term was not given too explic-
itly (for the distribution), and was ineffective (already for the moments).
10.3.1. Fouvry and Klüners [9, Corollary 2] then considered the narrow 4-rank distribution
for Gaussian discriminants, though almost in an en passant sense, as it was part of their
articulation of a more profound analysis that allowed them to handle both the narrow and
the ordinary class group (ultimately giving nontrivial bounds on the frequency of solubility
of the negative Pell equation).
The preprint [3] of Chan, Koymans, Milovic, and Pagano then notes that Smith’s methods
can be used for the case of Gaussian discriminants, in particular replicating the above result
of Fouvry and Klüners for the 4-rank (and moreover then utilizing the 8-rank to improve the
lower bound on the negative Pell solubility frequency).

10.4. Our work here is largely to re-prove, using Smith’s methods, the aforementioned results
of Fouvry and Klüners for narrow 4-rank distribution, both for Gaussian discriminants and
the general case. We write F± for respectively the sets of positive and negative fundamental
discriminants, and G for the set of Gaussian discriminants (which by our convention are
always fundamental).
We shall show the following results, where e(d) is the 4-rank of the narrow class group of
Q(
√
d), and the γ?(e) are defined as above.

52It is only in [7] that they pass from the moments to the 4-rank distribution, wherein they note that one
needs (in general) a suitable growth bound for this to be unique.
53To the best of my knowledge, no one has gone back and tried to interpret Heath-Brown’s “linked indices”
analysis in terms of Delaunay’s elliptic curve adaptation [5] of this heuristic.
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Theorem 10.1. — For any ω < 1/2 we have
#{d ≤ X : −d ∈ F− | e(−d) = e}

#{d ≤ X : −d ∈ F−} = γI(e) +Oω

( 1
(log logX)ω

)
.

Theorem 10.2. — For any ω < 1/2 we have
#{d ≤ X : d ∈ F+ | e(d) = e}

#{d ≤ X : d ∈ F+}
= γR(e) +Oω

( 1
(log logX)ω

)
.

Theorem 10.3. — For any ω < 1/2 we have
#{d ≤ X : d ∈ G | e(d) = e}

#{d ≤ X : d ∈ G} = γG(e) +Oω

( 1
(log logX)ω

)
.

10.4.1. Smith’s permutation idea with box-splitting fairly readily reduces the situation to
a calculation of what proportion of the (K,L) have a given dimension of the kernel of the
associated Rédei matrix.
The main term in the Gaussian case follows without any unwieldy Markov analysis, as we only
have L-conditions, and they exactly require a symmetric matrix over F2, so the distribution
therein falls out almost immediately.
For the general case I do not see any better method to calculate said proportions (in the limit
as r → ∞) than Gerth’s Markov chain technique; thus we only sketch the main milestones
therein.
10.4.2. We will try to conserve relevant notation with Section 2.1, and will use the basic
results from Section 3 and Section 4 regarding squarefree integers and boxes, and also Smith’s
box-splitting from Section 5 and permutation idea in Section 6. We will not use anything from
the later sections on the 2-Selmer group.

11. The general cases of 4-ranks

First we discuss the case of 4-ranks of class groups for general quadratic fields. This naturally
splits into two cases for real/imaginary fields, and each of these into three subcases for the
2-valuation of the fundamental discriminant. The latter aspect ultimately has no effect on
the 4-rank distribution.

11.1. We take P to be the set of odd primes, with the modulus MP as 8. In order to
normalize the notation between the cases of even and odd fundamental discriminants, we
write d̃ = |d|/2f where d̃ is odd and f ∈ {0, 2, 3}. We then write p̂0 ∈ {1,−4,−8, 8} and
p0 ∈ {1, 4, 8} so that d =

∏
i p̂i and |d| = p0d̃. We again write r̃ for the number of prime

divisors of d̃.
We consider each of the possibilities for f and the sign of d separately. As with Section 2.2, we
take parameters η0/2 > η1 > ηs > 0 and κ0 > 3, and will eventually take κ0η0 = 1/

√
log(1/η0)

and η0 → 0 as in Section 9 to minimize the error term. From Lemma 4.6, we know that the
exceptional set of d̃ that are not represented by a (κ0, η1, ηs)-pleasant (X/2f , η0,P)-box has
size bounded as

� X

(log logX)η0κ0(log κ0−1−log(100/99)) + X

(log logX)99 .
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We let K specify each divisor pi of d̃ modulo 8.54 We let L be a specification of Legendre
symbols so that Lij = (pi|pj) for 1 ≤ i < j ≤ r̃. As for the 4-rank of the narrow class group
of Q(

√
d) in terms of this, we need be no more specific at this point than to say that it is

determined by the tuple (f, sgn(d),K,L), and in particular we write it as efε (K,L).
Note also that we may wish to restrict K to ensure d is a fundamental discriminant; for
instance, when (f, ε) = (0,−) we wish for d̃ to be 3 mod 4, so an odd number of prime
divisors (thus K-specifications) should be 3 mod 4. This causes no difficulties in the analysis,
as we just sum over half the K instead.
Let T be a pleasant box. As with Section 6.4 we have

r̃!
∑

(K,L)
efε (K,L)=e

#T (K,L) =
∑

(K,L)
efε (K,L)=e

∑
σ∈Symr

#T (Kσ,Lσ)

=
∑

(K,L)
efε (K,L)=e

r̃! #T
2(r2)ξrP

+O

(
r̃!#T · 2k0/2k1√

log logX

)
,

where k0 ≤ κ0η0 log log logX and k1 ≤ 3(log logX)η1 . By Gerth’s analysis (which we briefly
outline below) we have an asymptotic (as r̃ →∞) for the number of (f, ε,K,L) with narrow
4-rank e. This turns out to be independent of f , but not of ε, tending to γI(e) in the imaginary
case and γR(e) in the real quadratic case. Although Gerth does not explicitly give an error
bound, as with the Markov analysis in Section 8.7 it can be shown to be O

(
1/(logX)c

)
– this

has recently been carried out explicitly by Koymans and Pagano in [28].
Thus for a pleasant box T we have

#{d̃ ∈ T̂ : efε (d̃) = e} =
∑

(K,L)∈D(r̃,P)
efε (K,L)=e

#T (K,L)

= γε(e)
δ(f, ε) ·#T +O

(
#T · 2k0/2k1√

log logX

)

where δ(f, ε) is 1 for (f, ε) ∈ {(3,+), (3,−)} and 2 for (f, ε) ∈ {(0,±), (2,±)} (the latter to
account for fundamental discriminants). Summing over all such pleasant boxes then leads to
same minimization problem for the exponent of (log logX) in the error term as in Section 9,
and so we conclude both Theorems 10.2 and 10.1.

11.2. Now we turn to a brief synopsis of Gerth’s method to compute the relevant proportions
of (f, ε,K,L) with a given 4-rank e.

54We can take the modulus to be 4 when f = 0, and also in the imaginary case (where we can exclude the
row and column associated to 2 in the Rédei matrix).

Publications mathématiques de Besançon – 2022



120 Distribution of the 2-Selmer rank under twisting

11.2.1. Let us first consider the case where f = 0 and the sign of d is negative. We recall
that the Rédei matrix is defined as

Rd11 (p̂1|p2)? · · · (p̂1|pi)? (p̂1|pj)? · · · (p̂1|pr)?
(p̂2|p1)? Rd22 · · · (p̂2|pi)? (p̂2|pj)? · · · (p̂2|pr)?
· · · · · · · · · · · · · · · · · · · · ·

(p̂i|p1)? · · · · · · Rdii (p̂i|pj)? · · · (p̂i|pr)?
(p̂j |p1)? · · · · · · (p̂j |pi)? Rdjj · · · (p̂j |pr)?
· · · · · · · · · · · · · · · · · · · · ·

(p̂r|p1)? (p̂r|p2)? · · · (p̂r|pi)? (p̂r|pj)? · · · Rdrr


where the diagonal entries are taken to be the sum of the other entries in the column. By
quadratic reciprocity the row-sums are also zero. Thus we can remove any one row and any
one column from the matrix and its rank will remain the same. Also, we can permute the
rows and columns without changing the rank. Finally, the matrix is anti-symmetric for primes
that are 3 mod 4 in that Rdij 6= Rdji for i 6= j that both correspond to such a prime, and else
is symmetric, with Rdij = Rdji for all other pairs (i, j).
Gerth then considers the anti-symmetric submatrix of Rd corresponding to the rows/columns
that are 3 mod 4. As a technical measure (which he admits at the end of Section 3 is not
too relevant) he has the prime associated to the excluded row/column of Rd ensure that the
number of anti-symmetric primes remaining is even (in the current case, we know that the
number of pi that are 3 mod 4 is odd, as |d| itself is 3 mod 4).
He then computes in Proposition 3.4 and 3.5 the number of (n+1)-by-(n+1) anti-symmetric
matrices of rank u that have a given n-by-n anti-symmetric upper-left corner of rank v. When
n is even, the number with u = v is 22v−n, the number with u = v + 1 is 2v+2 − 3 · 22v−n,
and the rest have u = v + 2. Rewriting this in terms of the kernel dimensions ũ = n+ 1− u
and ṽ = n− v, and dividing out by the total number 2n+1 of such matrices, we find that the
proportions are (see also Markov process D in his Appendix I)

1/21+2ṽ with ũ = ṽ + 1,
2/2ṽ − 3/21+2ṽ with ũ = ṽ,
1− 2/2ṽ + 1/22ṽ with ũ = ṽ − 1.

When n is odd there is a minor codicil55 when the matrix has a given type (see (iv) and (v) in
Proposition 3.5), but otherwise the proportions are the same. These “transition probabilities”
then give a Markov chain that describes the proportion of anti-symmetric matrices of size n
that have a kernel of dimension ũ. Solving this Markov chain gives rapid convergence to the
γI(ũ)-proportions given above for the distribution of the dimension of the kernel. However,
one must still contend with the symmetric part of Rd.
Indeed, almost all d will have nearly r/2 (up to an error of size roughly

√
r) prime divisors

that are 3 mod 4, so we essentially have an r-by-r matrix with an upper-left quadrant (after
re-ordering the primes) that is anti-symmetric, with the rest symmetric. Gerth then uses the

55I don’t think this is quite a “non-generic” case as in Swinnerton-Dyer’s analysis, but perhaps could be
considered as such; the proportion in cases (iv) and (v) has a 1/2n decay.
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output of the anti-symmetric Markov chain as input to another one for the symmetric part,
and shows that the latter does not change the distribution of kernel dimensions too much.56
The argument for the other imaginary cases is similar (though Gerth does not handle them
directly, as per Footnote 51), as there is an extra row/column with p̂0, but otherwise the
entries of the matrix have the same pattern,57 and the limiting analysis is the same. This
then gives Theorem 10.1.
11.2.2. The situation for real quadratic fields has the distinction that the row-sums (or
column-sums in Gerth’s version) are 0 only for primes that are 1 mod 4 (and also for p = 2
when p̂0 = 8). Thus we can remove any single row from the Rédei matrix without changing
the rank, but cannot similarly remove a column. After permuting the anti-symmetric portion
of size l-by-(l − 1) to the upper-left quadrant of the matrix, we will have Rdij 6= Rdji for
1 ≤ i 6= j ≤ l − 1; with Rdlj = 1 for 1 ≤ j ≤ l − 1 and Rdlj = 0 for l ≤ j; and Rd(i+1),j = Rdji
for l ≤ i and 1 ≤ j ≤ l − 1, with Rd(i+1),j = Rd(j+1),i for l ≤ i, j. Gerth then notes that after
column exchanges this can be written as (vM) where v is a column of (l − 1) ones and the
rest ones, and M is a matrix as in the previous case, having an anti-symmetric (l − 1)-by-
(l − 1) quadrant with the rest being symmetric. Although Gerth only works with the case
that f = 0, this ansatz in terms of symmetry and anti-symmetry of F2-entries also holds
when there is a row and column corresponding to a nontrivial p̂0.
Again Gerth gives the proportion of such matrices with a given rank in terms of the rank of
a smaller such matrix (one less in each dimension), and again there is a slight codicil, here
when n is even (see (iv) and (v) of Proposition 5.6). Here the proportions are

1/22+2ṽ with ũ = ṽ + 1,
3/2ṽ+1 − 3/22+2ṽ with ũ = ṽ,
1− 3/2ṽ+1 + 2/22+2ṽ with ũ = ṽ − 1,

leading to the limiting distribution with γR(ũ) as above. Upon showing that the appending of
the symmetric part does not significantly change the distribution, Theorem 10.2 then follows.
(The wider applicability of such Markov chain analysis, particularly to the Selmer case, is
considered by Klagsbrun, Mazur, and Rubin [25]).

12. The case of Gaussian discriminants

Next we turn to the case of Gaussian discriminants. Recall that these are positive fundamental
discriminants d with no prime factor that is 3 mod 4. We first describe the case where d is
odd.

12.1. Here we take P to be the set of primes that are 1 mod 4 (so that ξP = 1 and αP = 1/2),
and the modulus MP to be 4. Although it is ultimately not important to us, one can give the

56Note that merely flipping one entry of a symmetric matrix (e.g., the (2, 1)-entry) already has a large effect
on the rank distribution (for instance, the proportion of full rank matrices is reduced roughly from 41.9% to
31.5%), though I think one needs to de-symmetrize something on the order of (log r) entries for the statistics
to approach those of random matrices in the limit.
57Note that when f = 2 it is no longer the row-sum that is zero, but rather the row-sum omitting the
p̂0-column; thus one can omit any column but this one, and retain the rank.
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constant in the asymptotic as

ΦP(X) ∼ 1
π

∏
p≡1 (4)

√
1− 1/p2 · X√

logX

for the number of squarefree numbers up to X whose prime factors are all 1 mod 4.
12.1.1. Our setup in Section 4 allows us to still utilize the parametrization of relevant d by
pleasant boxes.
By Lemma 4.6 we find that the exceptional subset of d̃ ∈ SP(X) that are not represented by
a (κ0, η1, ηs)-pleasant (X, η0,P)-box has size

� ΦP(X)
(log logX)αPη0κ0(log κ0−1−log(100/99)) + ΦP(X)

(log logX)99 .

Here the K-conditions are redundant in that they simply re-specify that the primes are to be
taken 1 mod 4. As with Section 6.4, for a pleasant box T we have

r̃!
∑

L∈D(r̃,P)
e(L)=e

#T (L) =
∑
L

e(L)=e

∑
σ∈Symr̃

#T (Lσ) =
∑

L∈D(r̃,P)
e(L)=e

r̃! #T
2(r̃2)

+O

(
r̃!#T · 2k0/2k1√

log logX

)
,

where k0 ≤ αPκ0η0 log log logX and k1 ≤ 3αP(log logX)η1 .
In this case in turns out that we can give a fairly simple exact expression for the number
of L that yield a given rank. Indeed (see below for more details), by excluding one row and
column we are left with a symmetric matrix of size (r̃ − 1) over F2, and the ranks of such
can be determined by means other than a Markov chain. With γG the limiting distribution
(as above) as r̃ →∞ we thus find that for a pleasant box T we have

#{d̃ ∈ T̂ : e(d̃) = e} =
∑

L∈D(r̃,P)
e(L)=e )

#T (L) = γG(e) ·#T +O

(
#T · 2k0/2k1√

log logX

)

Summing over all such pleasant boxes leads to a similar minimization problem as in Section 9
for the exponent of (log logX) in the error, and we obtain Theorem 10.3.
12.1.2. The final task is then to indeed compute the distribution of 4-ranks from L-specif-
ications. Here we use that the Rédei matrix is symmetric and has row- and column-sums
equal to zero; such a matrix is determined by any minor obtained by removing a row and
column, and the minor itself will be symmetric when the same row and column is removed.
The problem is thereby reduced to the distribution of kernel dimensions of symmetric matrices
of size (r̃−1) over F2. As Stevenhagen notes [49, Proposition 2.3], this can be done in a fairly
elementary manner, and indeed for each r̃ (not just in the limit as r̃ →∞).
One can initially work over an arbitrary finite field with q elements, where the number of
nonsingular symmetric matrices of size n is

An(q) = q(
n+1

2 ) ∏
1≤k≤n
k odd

(1− 1/qk),
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and the number of symmetric matrices with rank w is Aw(q) ·
[
n
w

]
q
where

[
n
w

]
q

=
n∏
i=1

(qi − 1)
/ w∏

i=1
(qi − 1)

n−w∏
j=1

(qj − 1)

is the number of w-dimensional subspaces of a vector space of dimension n. Upon taking
q = 2 this then gives an exact expression for the proportion of Rédei matrices of size r̃ and
rank r̃ − 1− e (thus kernel dimension (e+ 1) and hence 4-rank of e) as

γ r̃G(e) = 1
2(e+1

2 )

r̃−1∏
j=e+1

(1− 1/2j)
/ (r̃−e−1)/2∏

j=1
(1− 1/22j),

and taking the limit as r̃ →∞ then gives the stated formula.
(One might hope that the first part of Gerth’s analysis, that an anti-symmetric matrix has
a distribution of kernel dimensions matching that of a random matrix, might have a similar
interpretation as here – I must admit to being fairly ignorant of the subject of such anti-
symmetric matrices).

12.1.3. The case of d even is mostly the same, with d replaced by d̃ = d/8 in the application
of the results from Section 4, and then the prime 2 can be taken to be the one excluded from
the Rédei matrix. The latter choice ensures that the K-specifications will only need to be
modulo 4, rather than 8 as might seem at first glance from the appearance of (2|pi). Thus
they are again irrelevant and the rank only depends on L, and we conclude as before.

12.2. Finally, let us say something about the extension of Fouvry and Klüners [9] to consider
the 4-rank of the ordinary class group. Their main result for this (Theorem 2) is that the
proportion of Gaussian discriminants with narrow 4-rank e and ordinary 4-rank e is γG(e)/2e,
and thus the proportion for those with narrow 4-rank e and ordinary 4-rank (e−1) is γG(e)(1−
1/2e).
Following their argument, the condition that the 4-ranks are equal can be detected by Rédei
symbols involving the infinite prime, and these can be given as quartic residue symbols in
this case (see [9, Section 3.3, Section 4], or Stevenhagen’s version given in [50, Section 4]
or [51, Section 10]). Thus it appears one should replace the Legendre specifications by Q-
specifications (taking values in {±1,±ζ4}) for quartic symbols between the prime divisors,
and then the ordinary 4-rank is determined by (K,Q) (also fixing whether d is even or odd).
Writing πj for a primary factor of pj , these symbols are then detected by

[
1 +Qij(pi|πj) +

Q2
ij(pi|πj)2 +Qij(pi|πj)3], with the relevant boxes then being reduced roughly by a factor of 4

for each pair (i, j). As Fourvy and Klüners note (Section 6.3), the methods for bilinear bounds
are quite robust and can rather easily be adapted give the desired cancellation. Meanwhile,
one can introduce Hecke Grössencharacters over Q(

√
−1) to handle the congruential sums

(see [9, Section 5, Proposition 7]).
Smith’s application of permutations should also readily extend to this case.
Finally, one would need to determine the 4-rank distribution by an analysis of what proportion
of (K,Q) yield given 4-ranks of the class groups.
However, the introduction of all the necessary machinery would take us too far afield, and so
we leave this problem for the interested reader.
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12.3. Let us briefly mention the case of 8-ranks, where instead of Legendre symbols one can
determine it in terms of Rédei symbols (see [51, Definition 4.4]). These are certainly not so
nice from an analytic standpoint, though can still be analyzed via Artin representations (in
the guise of Frobenius equi-distribution and the Chebotarev density theorem), where at least
some results about equi-distribution exist.
In any event, Fouvry and Klüners [10] are able to show various distribution results regarding
the 8-rank. For instance (Theorem 2) they show that the proportion of Gaussian discrim-
inants with both 4-ranks equal to 1 is equally split between narrow 8-rank 0 and 1 (both
proportions being γG(1)/4). My understanding is that their λD (see Theorem 3, Definition 2,
and Section 4.3) detects a weaker condition than the Rédei symbol equalities that would
actually determine the 8-rank; but on the other hand this λD can be usefully shoe-horned
into the analysis over Q(

√
−1) in a manner similar to [9]. (Thus they avoid any specifics with

Artin representations).
12.3.1. The recent preprint of Chan, Koymans, Milovic, and Pagano [3] considers the 8-rank
distribution (by an analogue of Smith’s later methods that we didn’t discuss here), and in
particular they re-obtain the result for the proportion of Gaussian discriminants with equal
narrow and ordinary 4-ranks. Contrary to the above, their arguments do not use any analytic
number theory over Q(

√
−1), as they instead work via the Chebotarev density theorem.

Our sequel [57] to the current work gives an exposition of this; from the standpoint of the
2∞-Selmer rank distribution as considered by Smith, this corresponds to the 4-Selmer case.
Here there are various simplifications that occur so as to avoid the need to get too heavily into
co-homological machinery (for instance, when defining the higher 2k-pairing matrices), and
the methods (due mostly to Smith) turn out to be largely combinatorial in nature, involving
an arrangement to show equi-distribution of a Frobenius element.
Indeed, for generic (K̃ε,L), Smith isolates three of the primes dividing d (one of them re-
stricted to be large, say log log pk ∼ (2/3) log logX, and the other two small, say log log pj ∼
(1/3) log logX), and then describes situations where the 4-Selmer pairing matrix (or more
properly, the characters on its ambient space) depends on a Frobenius element for the large
prime in a field defined by the small primes. However, this leads to much too large of a field
degree when all the small primes pj ∈ Tj are used at once, so Smith proceeds to cover the
Tj by suitable “grids” (subsets with a few extra properties, such as Legendre conditions) of
much smaller size, thereby reducing the field degree and allowing the Chebotarev theorem
to be gainfully applied. (In the general 2k-Selmer case there are k small primes involved; but
more crucially, for k > 2 setting up the beneficial situations where the Selmer pairing matrix
depends on a Frobenius element involves significantly deeper co-homological considerations).

13. Exercises

13.1. Let us do the exercise mentioned in Footnote 1. Our proof of this is somewhat
tedisome, though essentially elementary.

Lemma 13.1. — Suppose that an elliptic curve E over Q has full 2-torsion. Then there
is some isogenous curve (possibly E itself) that has full 2-torsion and no rational 4-torsion
point.
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Proof. — The generic form of a curve E with full 2-torsion is y2 = x(x+ 1)(x+ λ), and this
has a 4-torsion point (µ, µ2 +µ) when λ = µ2. Thus we can assume λ is square (and neither 0
nor 1, as these are singular), or else we are already done.
We can write E as A(1 +λ, λ) for A(a, b) : y2 = x(x2 +ax+ b), and recall there is a 2-isogeny
map from A(a, b) to A(−2a, a2 − 4b). In particular, our given curve E is 2-isogenous to the
curve E′ given by A

(
−2(1+λ), (λ−1)2). This E′ has a model y2 = x(x−(µ−1)2)(x−(µ+1)2),

which can then be transformed to y2 = x(x + 1)(x + β) where β = 1 − (µ − 1)2/(µ + 1)2 =
4µ/(µ+ 1)2. Now E′ has full 2-torsion, and so unless β (ergo µ) is square we are done.
Otherwise we write θ2 = 4µ/(µ + 1)2, so that E′ is isomorphic to A(1 + θ2, θ2), and is thus
2-isogenous to the curve E′′ given by A

(
−2(1 + θ2), (θ2 − 1)2). Again this E′′ has a model

y2 = x(x− (θ − 1)2)(x− (θ + 1)2) which can be transformed to y2 = x(x+ 1)(x+ γ) where
γ = 1−(θ−1)2/(θ+1)2 = 4θ/(θ+1)2. We see that E′′ has full 2-torsion, and the condition that
it have a 4-torsion point is that θ be square, say θ = ρ2. We would then have ρ4 = 4µ/(µ+1)2,
which we will find has no rational solutions other than from µ ∈ {0, 1}.
Indeed, upon writing z = ρ(µ+1) and µ = r/s with gcd(r, s) = 1 we see that z4 = 4µ(µ+1)2 =
4(r/s)(r/s+ 1)2. This yields z4s3 = 4r(r+ s)2, where exactly one of r, s, (r+ s)2 is even, and
thus has 2-valuation congruent to 2 mod 4, while the other two 2-valuations are multiples
of 4. Breaking this up into the three cases, first when r is even we write (r, s, (r + s)2) =
(4a4, b4, z4b12/16a4), and upon writing c4 = z4b12/16a4 = (r + s)2, by equating the sum
of r and s with (r + s) we are left with the equation 4a4 + b4 = ±c2. Similarly, when s
is even we have a4 + 4b4 = ±c2, while when (r + s) is even we get a4 + b4 = ±2c2 from
(r, s, (r + s)2) = (a4, b4, 4z4b12/16a4). Clearly none of these is solvable with the minus sign;
with the plus sign, by Fermat descent the only coprime solution with no co-ordinate of 0 is
(±1,±1,±1) to the third, which corresponds to µ = r/s = 1.
Thus E′′ has no rational 4-torsion point and we are done. �

13.2. Our second exercise appeared in Section 7.2.1. We want to show that exactly half of the
choices of (Kε,L) yield 2-Selmer rank of each parity. As Yu [61] points out, Monsky [36] shows
that a stronger statement (namely the root number changes by (d|−NE) when twisting by a
fundamental discriminant d coprime to NE) follows from work culminated by Kolyvagin [26];
this follows directly by [26] when the analytic rank is ≤ 1, and one can always reduce to
such a case by a suitable quadratic twist, with calculations of Kramer [29] then giving the
applicable parity under twisting. What we show here is that we can avoid Kolyvagin’s work
if we only aim to show that a 50-50 split in parity (essentially, we can ignore the “base case”
of the twisting calculation).
Let us recap our situation. We fix an elliptic curve E with full 2-torsion that is twist-minimal
in the sense that no prime has the same nonzero valuation at all the δij . We then wish to
show that the 2-Selmer ranks for specifications (K̃ε,L) have an equal 50-50 split in parity. As
noted in Swinnerton-Dyer’s analysis, the 2-Selmer rank has the same parity as the 2-Selmer
estimation for the 0th restriction (K̃ε,L)[0], which contains no information about L, while the
K̃ε[0]-conditions specify the sign of d and (by convention) the image of |d| in

∏
l∈Ω Q?

l /(Q?
l )2.

We denote the K̃op
ε [0]-conditions to mean those that flip the local condition at each q ∈ Ω̃

that is not 1 mod 4, corresponding to the image of d itself (when negative).
Publications mathématiques de Besançon – 2022



126 Distribution of the 2-Selmer rank under twisting

13.2.1. Let us review what appears in the literature for the 2-Selmer rank when twisting.
The main paper is that of Kramer [29]. We let E/Q be an elliptic curve and will consider
twisting it by odd squarefree d coprime to the conductor NE .
As Mazur and Rubin catalogue [34, Theorem 2.7], one consequence of Kramer’s results is
that the 2-Selmer ranks s(E) of E and s(Ed) of Ed are related as

s(Ed) ≡ s(E) +
∑
p

δp
(
E,Q(

√
d)/Q

)
,

where the congruence is mod 2 (as are all future ones), while δp is defined as the codimension of
the image EN(Qp) of the local norm map E(Q(

√
d)p)→ E(Qp), that is, δp

(
E,Q(

√
d)/Q

)
=

dimF2

(
E(Qp)/EN(Qp)

)
. For our result, we need only discuss the parity of the δp. We write

∆E for the discriminant of E, which we assume is given as a minimal model.

Table 9. Computation of the parity of δp
(
E,Q(

√
d)/Q

)
p Qp(

√
d)/Qp E at p δp ≡ where

finite trivial any 0 = (∆E , d)p = (p∆E , d)p obvious
finite unramified good 0 = (∆E , d)p Mazur
finite unramified split (p∆E , d)p = (∆E , d)p + 1 Prop 1
finite ramified split (∆E , d)p + 1 Prop 1
finite unramified nonsplit (p∆E , d)p = (∆E , d)p + 1 Prop 2a
finite ramified nonsplit (∆E , d)p Prop 2b
odd ramified good (∆E , d)p Prop 3
2 ramified supersingular (∆E , d)p Prop 4
2 ramified ordinary (∆E , d)p Prop 5
∞ (−∆E , d)p Prop 6

We sum up Kramer’s work in Table 9. From it, one can read off (from the fourth column)
the parity of δp

(
E,Q(

√
d)/Q

)
for a semistable elliptic curve E/Q at any place p (including

2 and ∞, and those that divide d or NE). The first line simply records the case when d is a
square in Qp, with the convention then that δp = 0. The results from Propositions 1 and 2
refer to the cases of multiplicative reduction.
Adding up the results, we can use the reciprocity law

∑
p(∆E , d)p = 0 to simplify. First

we might note that when gcd(d, 2∆E) = 1 the lines with ramified primes for multiplicative
reduction do not occur, so Kramer’s work implies that when twisting a semistable curve E
by an odd squarefree d coprime to NE we have∑

p

δp
(
E,Q(

√
d)/Q

)
= (−1, d)∞ +

∑
p|∆E

χd(p)=−1

1 = (−1, d)∞ +
∑
p|NE

(p, d)p.

When d is a fundamental discriminant this says (−1)
∑

p
δp = (d|−NE), so indeed matches

with the previous formulation for root numbers.
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13.2.2. Kramer’s hope of resolving the case of additive reduction in the future does not seem
to have come to fruition. However, we can still show enough of the necessary results for
our purposes, in particular, that we have equi-distribution of the parity of s(K̃ε,L) over the
possibilities for K̃ε[0].
We recall that we assume we are twisting by odd squarefree d coprime to NE .
From the above reformulation of Mazur and Rubin we have

s(Ed)− s(E) ≡
∑
p

δp
(
E,Q(

√
d)/Q

)
.

Splitting the primes/places into three types: infinite, bad for E, and good for E, this becomes

s(Ed)− s(E) ≡ (−∆E , d)∞ +
∑
p|NE

δp
(
E,Q(

√
d)/Q

)
+

∑
p-∞NE

δp
(
E,Q(

√
d)/Q

)
.

Then we use that δp
(
E,Q(

√
d)/Q

)
≡ (∆E , d)p for good primes, so that

s(Ed)− s(E) ≡ (−∆E , d)∞ +
∑
p|NE

δp
(
E,Q(

√
d)/Q

)
+

∑
p-∞NE

(∆E , d)p.

Applying the reciprocity law of
∑
p(∆E , d)p = 0 then gives

s(Ed)− s(E) ≡ (−1, d)∞ +
∑
p|NE

δp
(
E,Q(

√
d)/Q

)
+
∑
p|NE

(∆E , d)p.

Since d is odd and coprime to NE , the summands in both the second and third sums are
determined by whether d is a square mod p (or its class in Q?

2/(Q?
2)2 for p = 2), and so are

determined by K̃[0]. Meanwhile, the (−1, d)∞-term is independent of the p-adic conditions
from the p|NE . Since (−1, d)∞ itself is equi-distributed with respect to d, the entire right-
hand expression is also. In other words, for any choice of K̃[0], the 2-Selmer rank parities of
K̃+[0] and K̃op

− [0] will differ.58 (One reason to include this exercise is to emphasize how the
prime at infinity enforces the parity split; compare [24, Corollary 7.10] of Klagsbrun, Mazur,
and Rubin, who compute the general disparity of 2-Selmer ranks for quadratic twists).
This then shows the desired parity equi-distribution. (Our argument did not use the presence
of full 2-torsion).

13.3. Next we show a variant of Heilbronn’s bilinear estimate (Lemma 3.2). We want to
show that if {αm} and {βn} are sequences of complex numbers bounded by 1 and sup-
ported on odd squarefree integers m and n with M ≤ m ≤ 2M and N ≤ n ≤ 2N , then∑
m

∑
n αmβn(m|n)�MN/min(M,N)1/9.

By dividing m and n into congruence classes mod 8 we can replace (m|n) by (n|m) with a
fixed sign, and thus by symmetry we can assume that N ≤M .

58Note that this is not the same as twisting by −1 (which need not flip the parity). For instance, for the
congruent number curve, we have that the d ≡ 1, 3 (8) classes retain the parity for d > 0, while these same
d ≡ 1, 3 (8) classes flip the parity for d < 0.
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13.3.1. Almost every author seems to have their own version of this type of result. The history
is a bit eclectic, as Heilbronn’s original argument is one paragraph long, using Cauchy’s
inequality and partial character sum estimates (of Pólya and Vinogradov); then, various
authors gave more weighty ratiocination to the methods (sometimes to debatable avail in the
end result) such as the partial character sum estimate of Burgess or the large sieve; later,
it was realized that one can actually dispense with partial character sum estimates (using
periodicity instead) and still obtain an adequate result (via Hölder’s inequality rather than
Cauchy’s).
Heilbronn [20] originally considered

∑
p

∑
q(p|q) with both variables prime and of size X, and

saved X1/4 over the trivial estimate via using Cauchy’s inequality twice and the estimate of
Pólya and Vinogradov for partial character sums. It is fairly routine to modify this to include
weights αp and βq, and allow the variables to run over dyadic intervals of different sizes.
Gerth and Graham [13, Theorems 4 & 3] essentially give the “obvious” generalization of Heil-
bronn’s result to sequences supported on the squarefree59 integers, using Cauchy’s inequality
twice and the estimate of Pólya and Vinogradov.
Heath-Brown’s version in [17, Lemma 4] desires ~α, ~β to be supported on odd squarefree inte-
gers rather than primes, and thus the second application of Cauchy’s inequality would induce
a divisor function – he instead applies the estimate of Burgess after only one application, so
saves only (1/16− ε) instead of 1/4 in the exponent.
In a later paper [19, Corollary 4], whose main topic is such estimates, Heath-Brown gives a
version (for odd60 integers) that saves a larger power (1/2 instead of 1/4) of the parameter N ,
but also has an extra (MN)ε included. I don’t think this is a “large sieve” per se, and indeed
he terms it a mean-value estimate.61 The interposition of (MN)ε here can cause difficulties
when M and N are on much different scales, and unlike other occurrences of this, I don’t
think this is just a shorthand for a divisor function (which can be bounded by a log-power
on average) in his estimate.
Smith (Proposition 6.6) has the support be on primes, and adapts a result of Jutila [22,
Lemma 3]; he terms this a form of the large sieve, though I don’t think this is the best
description.62
Kane’s Lemma 15 also has the support be on primes, though he gives his own derivation which
relies on a multiplicative large sieve estimate (in Lemma 14) instead of either the bound of
Pólya and Vinogradov or of Burgess.63

59They don’t state this requirement, but in the proof of Theorem 3 they use that n 6= r (rather than that nr
is non-square) to be able to apply the estimate of Pólya and Vinogradov.
60Without such a requirement, at least on the lower entry in (m|n), one must contend with non-periodicity
when m is an odd nonfundamental discriminant; for instance, (3|n) is not periodic since (3|2k) = −(3|7 ·2k) =
−(3|2k + 3 · 2k+1) for all k.
61If I were pressed to make a distinction, a sum over all characters for moduli up to Q would be a large
sieve, whilst a sum over only the real characters would not – though below both Kane [23] and Fouvry and
Klüners [8] bound the latter by the former (trivially by inclusion), which seems to me to be a rather artificial
usage of the large sieve in this context.
62Jutila’s Lemma 3 is deduced from the prior Lemma 2, which he mis-cites as being from his [2] instead
of his [3], but in any event it seems to be a mean value theorem for real character sums rather than a large
sieve (see his Introduction).
63With his Lemma 14 he mentions the similarity to Lemma 4 of [18] – I suspect he means Lemma 4 of [17]
(which is Lemma 3 in [18]), and in any case his comment would seem more apropos adjoining his Lemma 15.
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Fouvry and Klüners [8, Lemmata 14 & 15] has the support on odd squarefree integers; they
give two slightly different versions, the first of which comes directly from Heath-Brown’s later
version [19], and the second of which (to save (MN)ε) is given as a consequence of the large
sieve (again this is perhaps overly high-powered).
Their version in [9, Section 6] is over Z[

√
−1], but they note in general that one needs nothing

more than reciprocity (for symmetry in the variables), bi-multiplicativity, and some sort of
cancellation in character sums (indeed, they merely use the trivial bound from periodicity).
They save (1/8 − ε) in the exponent, with a clean 1/8 when the support is on the primes.
This is essentially the argument that I’ve chosen to present; as they note, it appears in a
different guise in various other works (most notably, Friedlander and Iwaniec [11, Section 21]
gave such a version over Z[

√
−1]; also, Koymans and Milovic [27, Section 3.4, Section 5] have

a result for general number fields).
13.3.2. We use the m ∼M notation to indicate a dyadic interval and thus write

S(~α, ~β) =
∑
m∼M

∑
n∼N

αmβn(m|n)

In many instances it is natural to have the coefficients bounded by a divisor function (rather
than by 1), and we write τl for the l-fold divisor function, with l ≥ 1.
First we show a result that is useful when one variable significantly exceeds the other, for
instance N �ε

√
M/M ε.

Lemma 13.2. — Suppose that |αm| ≤ τa(m) and |βn| ≤ τb(n) are sequences supported on
odd integers in [M, 2M ] and [N, 2N ]. Then∣∣S(~α, ~β)

∣∣2 �
a,b

(MN)2
( 1
N

+ N2

M

)
(logMN)a2+2b2+2b.

Proof. — By Cauchy’s inequality and expanding the square we have

∣∣S(~α, ~β)
∣∣2 =

∣∣∣∣∣ ∑
m∼M

αm
∑
n∼N

βn(m|n)
∣∣∣∣∣
2

≤
∑
m∼M

|αm|2 ·
∑
m∼M

∣∣∣∣∣∑
n∼N

βn(m|n)
∣∣∣∣∣
2

≤
∑
m�M

τa(m)2 ·
∑
n1∼N

τb(n1)
∑
n2∼N

τb(n2)
∣∣∣∣∣ ∑
m∼M

(m|n1n2)
∣∣∣∣∣.

When n1n2 is square the inner m-sum is � M , and else it is bounded as � n1n2. Writing
u2 = n1n2 and recalling

∑
u≤X τl(u)j �j,l X(logX)lj−1, this gives

∣∣S(~α, ~β)
∣∣2 �

a,b
M(logM)a2−1 ·

(
M

∑
u�N

τ2b(u2) +N2 ·N2(logN)2(b−1)
)

�
a,b
M2N2 ·

(
(logN)2b2+b−1

N
+ N2

M
(logN)2(b−1)

)
· (logM)a2−1.

where we used τ2b(u2) ≤ τ(2b+1
2 )(u) = τb(2b+1)(u). �

The above is not quite symmetrical in the variables. In many circumstances we can induce
symmetry by fixing the sign of (m|n)(n|m) by restricting m and n to suitable arithmetic
progressions. However, this again is somewhat unneeded.
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130 Distribution of the 2-Selmer rank under twisting

Lemma 13.3. — Suppose that |αm| ≤ τa(m) and |βn| ≤ τb(n) are sequences supported on
odd integers in [M, 2M ] and [N, 2N ]. Then∣∣S(~α, ~β)

∣∣2 �
a,b

(MN)2
( 1
M

+ M2

N

)
(logMN)b2+2a2+2a.

Proof. — This is the same proof, except we expand out them-variable by Cauchy’s inequality,
and use the periodicity of (m1m2|n) when m1m2 is non-square. �

Now we show the main result.

Proposition 13.4. — Suppose that |αm| ≤ τc(m) and |βn| ≤ τc(n) are sequences supported
on odd integers in [M, 2M ] and [N, 2N ]. Then∣∣S(~α, ~β)

∣∣ �
c

MN

min(M,N)1/9 .

Proof. — First we assume N ≤M . We apply Hölder’s inequality to S(~α, ~β) and get

∣∣S(~α, ~β)
∣∣4 ≤ (∑

n∼N
|βn|4

)3(∑
n∼N

∣∣∣∣∣ ∑
m∼M

αm(m|n)
∣∣∣∣∣
4)
�
(
N(logN)c4−1

)3
·
∣∣S(~α′, ~β′)

∣∣
where α′u is the sum of αm1αm2αm3αm4 over representations u = m1m2m3m4, and thus
|α′u| ≤ τ4c(u), while β′n is 1 on [N, 2N ]. Then we split up the interval [M4, 16M4] into 4
dyadic intervals and apply Lemma 13.2 to get

∣∣S(~α′, ~β′)
∣∣2 �

c
(M4N)2

(
1
N

+ N2

M4

)
(logMN)20c2

,

so that ∣∣S(~α, ~β)
∣∣ �
c
MN

(
1

N1/8 + N1/4
√
M

)
(logMN)4c4

,

and then using N ≤M gives the stated result.
The argument when M ≤ N is similar, except we apply Hölder’s inequality to n and use
Lemma 13.3. �
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