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SIGN CHOICES IN THE AGM FOR GENUS TWO THETA
CONSTANTS

by

Jean Kieffer

Abstract. — Existing algorithms to compute genus 2 theta constants in quasi-linear time use Borchardt
sequences, an analogue of the arithmetic-geometric mean for four complex numbers. In this paper, we
show that these Borchardt sequences are only given by good choices of square roots, as in the genus 1
case. This removes the sign indeterminacies when computing genus 2 theta constants without relying on
numerical integration.

Résumé. — (Choix de signes dans l’AGM pour les thêta constantes en genre deux) Les algorithmes
existants pour le calcul de thêta-constantes en genre 2 en temps quasilinéaire utilisent des suites de
Borchardt, un analogue de la moyenne arithmético-géométrique pour quatre nombres complexes. Dans
cet article, nous montrons que ces suites de Borchardt sont constituées uniquement de bons choix de
signes, comme c’est le cas en genre 1. Ce résultat permet de lever les indéterminations de signes lors du
calcul de thêta-constantes en genre 2 sans recours à l’intégration numérique.

1. Introduction

Denote by Hg the Siegel half space for principally polarized abelian varieties of dimension g,
consisting of all matrices τ ∈Mg(C) such that τ is symmetric and Im(τ) is positive definite;
for instance, H1 is the usual upper half plane. The theta constants are the holomorphic
functions on Hg defined by

(1) θa,b(τ) =
∑
m∈Zg

exp
(
iπ

((
m+ a

2

)t
τ

(
m+ a

2

)
+
(
m+ a

2

)t
b

))
,

where a and b run through {0, 1}g (by convention, vectors in formula (1) are written verti-
cally). Theta constants have a fundamental importance in the theory of Siegel modular forms,
as every scalar-valued Siegel modular function of any weight on Hg has an expression in terms
of quotients of theta constants [15, Thm. 9 p. 222]. Moreover, for 1 ≤ g ≤ 3, the stronger
result that every Siegel modular form is a polynomial in the theta constants holds [9, 13, 14].
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38 Sign choices in the AGM for genus two theta constants

In numerical algorithms manipulating modular forms, the following operations are therefore
very common: first, given (quotients of) theta constants at a given τ ∈ Hg, compute τ ;
second, given τ ∈ Hg, compute the theta constants θa,b(τ). For instance, these operations
are important building blocks in algorithms computing modular polynomials [7, 20, 21] or
Hilbert class polynomials [6, 8, 25] via complex approximations.
The arithmetic-geometric mean (AGM) [1, 2, 3, 16] gives an algorithm to find τ given its
theta constants. This algorithm is quasi-linear in terms of the required precision. In order to
compute theta constants in quasi-linear time as well, a well-studied strategy is to combine
the AGM with Newton iterations. This strategy was first described in [5] in the genus 1
case, in [4] in the genus 2 case, and later extended to theta functions, in opposition to theta
constants, in [18, 19]. These references also outline extensions to higher genus.

The genus 1 case. — Let us detail the genus 1 case to convey the general idea. After
reducing the argument τ ∈ H1 using Gauss’s algorithm [25, §6.1], we can assume that τ
belongs to the classical fundamental domain under the action of SL2(Z), denoted by F1.
First assume that theta quotients at τ ∈ F1 are given. Then the sequence

B(τ) =
(
θ2

0,0(2nτ)
θ2

0,0(τ)
,
θ2

0,1(2nτ)
θ2

0,0(τ)

)
n≥0

is an AGM sequence, meaning that each term is obtained from the previous one by means of
the transformation

(x, y) 7→
(
x+ y

2 ,
√
x
√
y

)
for some choice of the square roots. This is a consequence of the duplication formula [23,
p. 221], the correct square roots being the theta quotients themselves. In the algorithm, the
sign ambiguity is easily removed using the fact that

√
x and √y should lie in a common open

quarter plane [5, Thm. 2]: we say that the sequence B(τ) is given by good sign choices. It
converges quadratically to 1/θ2

0,0(τ), as the series expansion (1) shows.
It turns out that the sequence B(−1/τ) is also an AGM sequence with good sign choices [5,
Prop. 7]. Its first term can be computed from theta quotients at τ using the transformation
formulas for theta constants under SL2(Z). The limit of B(−1/τ) is 1/θ2

0,0(−1/τ). Finally,
we can recover τ using the formula

(2) θ2
0,0

(−1
τ

)
= −iτθ2

0,0(τ).

Since AGM sequences with good sign choices converge quadratically, this gives an algorithm
to invert theta functions on F1 with quasi-linear complexity in the output precision, at
least for fixed τ . This method was already known to Gauss [10, X.1, pp. 184–206], and we
recommend [3, §3C] for a historical exposition of Gauss’s works on the AGM and elliptic
functions.
In order to compute theta functions at a given τ ∈ F1, the most efficient known method is
to build a Newton scheme [5], using the AGM method to invert theta constants. This yields
a quasi-linear algorithm to compute genus 1 theta constants, whose complexity can be made
uniform in τ ∈ F1 [5, Thm. 5].
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The genus 2 case. —A similar strategy can be applied to theta functions in genus 2, using
Borchardt sequences, a generalization of AGM sequences for four complex numbers [1, 2, 16].
Let us refer to Section 2 for the definition of Borchardt sequences, the numbering of genus 2
theta constants, and the definition of the matrices γk ∈ Sp4(Z) for 0 ≤ k ≤ 3. The Borchardt
sequences we consider are the sequences B(γkτ) for 0 ≤ k ≤ 3, where

B(τ) =
(
θ2

0(2nτ)
θ2

0(τ)
,
θ2

1(2nτ)
θ2

0(τ)
,
θ2

2(2nτ)
θ2

0(τ)
,
θ2

3(2nτ)
θ2

0(τ)

)
n≥0

for every τ ∈ H2. Their first terms are given by different combinations of theta quotients
at τ (see Corollary 3.3). It is known that for a given τ , all but a finite number of sign choices
in these Borchardt sequences are good, and the other sign choices can be determined using
certified computations of hyperelliptic integrals at relatively low precision: see the discussion
before Prop. 3.3 in [19], and [22] for an algorithm that provides this input. However, the
required precision and the cost of the numerical integration algorithms depend heavily on τ .
Actually, when τ belongs to the usual fundamental domain F2 under the action of Sp4(Z),
practical experiments suggest that all sign choices are good in the genus 2 algorithm as
well [4, Conj. 9.1], [8, Conj. 9]. The goal of this paper is to prove this fact. More precisely,
we define in Section 2 a subset F ′ ⊂ H2 containing F2, and prove the following result.

Theorem 1.1. — For every τ ∈ F ′, every 0 ≤ k ≤ 3 and every n ≥ 0, the theta constants

θj(2nγkτ) for 0 ≤ j ≤ 3

are contained in a common open quarter plane.

Dupont [4, Prop. 9.1] proved this result in the particular case of γ0 = I4.
As a consequence, we can invert genus 2 theta constants in quasi-linear time by using only
Borchardt sequences with good sign choices. On the practical side, this result reduces the
effort needed to invert genus 2 theta constants with controlled precision losses; see for in-
stance [4, §7.4.2] for an analysis of precision losses when computing limits of Borchardt
sequences. On the theoretical side, we hope that our result can be a first step towards remov-
ing other heuristic assumptions when computing genus 2 theta constants (in particular, the
assumption [4, §10.2] that the function used in the Newton scheme is analytic with invertible
Jacobian), and obtaining algorithms with uniform complexity in τ ∈ F2.
This document is organized as follows. In Section 2, we introduce our notational conventions.
In Section 3, we use the action of the symplectic group to bring the matrices 2nγkτ ∈ H2
closer to the cusp at infinity: this is critical to obtain accurate information from the series
expansion (1). We give estimates on genus 2 theta constants in Section 4, and we finish the
proof of the main theorem in Section 5.

Acknowledgement. —The author would like to thank Aurel Page and the anonymous
referees for their careful reading and helpful suggestions to improve the exposition. The work
reported here was carried out as part of the author’s poctdoctoral thesis at the University of
Bordeaux, France.
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40 Sign choices in the AGM for genus two theta constants

2. Theta constants and Borchardt sequences

We define a Borchardt sequence to be a sequence of complex numbers

(s(n)
b )b∈(Z/2Z)2, n≥0

with the following property: for every n ≥ 0, there exist t(n)
b for b ∈ (Z/2Z)2 such that t(n)

b is
a square root of s(n)

b , and

s
(n+1)
b = 1

4
∑

b1+b2=b
t
(n)
b1
t
(n)
b2

for each b ∈ (Z/2Z)2.

The duplication formula [23, p. 221] states that for every τ ∈ H2, the sequence

B(τ) =
(
θ2

0,b(2nτ)
)
b∈{0,1}2, n≥0

is a Borchardt sequence; the choice of square roots at each step is given by the theta con-
stants θ0,b(2nτ) themselves. By the series expansion (1), we have

θ0,b(2nτ) =
∑
m∈Z2

exp
(
−2nπmt Im(τ)m

)
exp

(
iπ
(
2nmt Re(τ)m+mtb

))
.

When n tends to infinity, all the terms except m = 0 converge rapidly to zero, because Im(τ)
is positive definite. Therefore the Borchardt sequence B(τ) converges to (1, 1, 1, 1).
We say that a set of complex numbers is in good position when it is included in an open
quarter plane seen from the origin, i.e. a set of the form

{r exp(i(α0 + α)) | r > 0 and 0 < α < π/2}

for some α0 ∈ R. The property of being in good position is invariant by nonzero complex
scaling. A Borchardt sequence is given by good sign choices if for every n ≥ 0, the complex
numbers t(n)

b for b ∈ (Z/2Z)2 are in good position.
Let us now detail the algorithm to recover τ ∈ H2 from its theta quotients. We first introduce
the matrices γk ∈ Sp4(Z) alluded to in the introduction. Let

S1 =
(

1 0
0 0

)
, S2 =

(
0 0
0 1

)
, S3 =

(
0 1
1 0

)
,

and define the matrix γk ∈ Sp4(Z) for 0 ≤ k ≤ 3 by

γ0 = I4, and γk =
(
−I2 −Sk
Sk −I + S2

k

)
for 1 ≤ k ≤ 3.

For convenience, we also introduce a numbering of theta constants [4, §6.2]:

θ(a0,a1),(b0,b1) =: θj where j = b0 + 2b1 + 4a0 + 8a1 ∈ [[0, 15]].

Assuming that the choices of square roots in the sequences B(γkτ) can be determined, we
can compute τ ∈ F2 from its theta quotients as follows.
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Algorithm 2.1 ([4, §9.2.3]). —
Input: The projective vector of squares of theta constants θ2

j (τ) for j∈ [[0,15]], for some τ ∈H2.
Output: The matrix τ .

1. For each 0 ≤ k ≤ 3, compute the first term of the sequence B(γkτ)/θ2
0(γkτ) using the

transformation formulas for theta constants under Sp4(Z) (see Igusa [15, Thm. 2 p. 175
and Cor. p. 176], or Corollary 3.3);

2. For each 0 ≤ k ≤ 3, compute 1/θ2
0(γkτ) as the limit of the Borchardt sequence

B(γkτ)/θ2
0(γkτ);

3. Use the input and the newly computed θ2
0(γ0τ) = θ2

0(τ) to compute all squares of theta
constants at τ ;

4. Recover τ = ( z1 z3
z3 z2 ) using the relations given in [4, §6.3.1]:

θ2
0(γ1τ) = −iz1θ

2
4(τ), θ2

0(γ2τ) = −iz2θ
2
8(τ), θ2

0(γ3τ) = −det(τ)θ2
0(τ).

In the sequel, we use the following notational conventions. For τ ∈ H2, we write

τ =
(
z1(τ) z3(τ)
z3(τ) z2(τ)

)
and

{
xj(τ) = Re zj(τ)
yj(τ) = Im zj(τ)

for 1 ≤ j ≤ 3.

For 1 ≤ j ≤ 3, we also write

qj(τ) = exp(−πyj(τ)).

We denote by λ1(τ) the smallest eigenvalue of Im(τ), and define

r(τ) = min
{
λ1(τ), y1(τ)

2 ,
y2(τ)

2

}
.

We often omit the argument τ to ease notation. We define F ′ to be the set of all τ ∈ H2 such
that the following conditions are satisfied:

(3)

|xj(τ)| ≤ 1
2 for each 1 ≤ j ≤ 3,

2 |y3(τ)| ≤ y1(τ) ≤ y2(τ),

y1(τ) ≥
√

3
2 ,

|zj(τ)| ≥ 1 for j ∈ {1, 2}.

The domain F ′ contains the classical fundamental domain F2 for the action of Sp4(Z)
on H2 [17, Prop. 3 p. 33]. Assumptions similar to (3) are usual when giving analytic es-
timates on theta constants: for instance, the domain B in [25] is defined by the first three
inequalities of (3).
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42 Sign choices in the AGM for genus two theta constants

Finally, for each τ ∈ H2, we write

(4)

ξ4,6(τ) = 2 exp
(
iπ
z1(τ)

4

)
,

ξ8,9(τ) = 2 exp
(
iπ
z2(τ)

4

)
,

ξ0(τ) = 1 + 2 exp(iπz1(τ)) + 2 exp(iπz2(τ)),
ξ0,2(τ) = 1 + 2 exp(iπz1(τ)),
ξ0,1(τ) = 1 + 2 exp(iπz2(τ)), and

ξ12(τ) = exp
(
iπ
z1(τ) + z2(τ)

4

)(
exp

(
iπ
z3(τ)

2

)
+ exp

(
−iπ z3(τ)

2

))
.

These complex numbers correspond to the first term(s) of the series defining theta constants
at τ . For instance, ξ4,6(τ) approximates both θ4(τ) and θ6(τ). We will recall the definitions (4)
before using them in the computations of Section 4.

3. Other expressions for theta constants at 2nγkτ

For every n ≥ 0, we define

η
(n)
1 =


0 0 −1 0
0 1 0 0
1 0 2n 0
0 0 0 1

 , η
(n)
2 =


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 2n

 ,

η
(n)
3 =


0 0 0 −1
0 0 −1 0
0 1 2n 0
1 0 0 2n

 , and η
(n)
4 =


0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 η(n)
3 .

Lemma 3.1. — Let n ≥ 0.

1. For every 1 ≤ k ≤ 4, the matrix η(n)
k belongs to Sp4(Z).

2. For every τ = ( z1 z3
z3 z2 ) ∈ H2, we have

(5)

τ
(n)
1 := η

(n)
1 (2nγ1τ) =

(
2−nz1 z3
z3 2nz2

)
,

τ
(n)
2 := η

(n)
2 (2nγ2τ) =

(
2nz1 z3
z3 2−nz2

)
,

τ
(n)
3 := η

(n)
3 (2nγ3τ) = 2−nτ, and

τ
(n)
4 := η

(n)
4 (2nγ3τ) =

(
−2n/z1 −z3/z1
−z3/z1 2−n(z2 − z2

3/z1)

)
.
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Proof. —

1. — The lines of each η(n)
k define a symplectic basis of Z4.

2. — The action of Sp4(Z) on H2 extends to an action of the larger group

GSp4(Q) =
{
γ ∈ GL4(Q)

∣∣∣∣ ∃ µ ∈ Q×, γt
(

0 I2
−I2 0

)
γ = µ

(
0 I2
−I2 0

)}
.

The matrix 2nγkτ is the image of τ under(
−2nI2 −2nSk
Sk −I + S2

i

)
∈ GSp4(Q).

When we multiply this matrix by η(n)
k on the left, we obtain

Diag(−1,−2n,−2n,−1) for k = 1,
Diag(−2n,−1,−1,−2n) for k = 2, and
Diag(−1,−1,−2n,−2n) for k = 3. �

We recall the transformation formulas for theta constants in genus 2. For a square matrix m,
we denote by m0 the column vector containing the diagonal of m.

Proposition 3.2 ([15, Thm. 2 p. 175 and Cor. p. 176]). — Let a, b ∈ {0, 1}2, and let

γ =
(
A B
C D

)
∈ Sp4(Z).

Define (
α
β

)
= γt

(
a− (CDt)0
b− (ABt)0

)
.

Then, for every τ ∈ H2, we have

θa,b(γτ) = κ(γ) ζε(γ,a,b)8 det(Cτ +D)1/2 θa′,b′(τ)
where

ζ8 = eiπ/4,

(
a′

b′

)
=
(
α
β

)
mod 2,

ε(γ, a, b) = 2(Bα)t(Cβ)− (Dα)t(Bα)− (Cβ)t(Aβ) + 2((ABt)0)t(Dα− Cβ),
and κ(γ) is an eighth root of unity depending only on γ, with a sign ambiguity coming from
the choice of a holomorphic square root of det(Cτ +D).

Corollary 3.3. — For every τ ∈ H2, we have the following equalities of projective tuples:

(θj(2nγ1τ))0≤j≤3 =
{

(θ4(τ) : θ0(τ) : θ6(τ) : θ2(τ)) if n = 0,
(θ0(τ (n)

1 ) : θ4(τ (n)
1 ) : θ2(τ (n)

1 ) : θ6(τ (n)
1 )) if n ≥ 1,

(θj(2nγ2τ))0≤j≤3 =
{

(θ8(τ) : θ9(τ) : θ0(τ) : θ1(τ)) if n = 0,
(θ0(τ (n)

2 ) : θ1(τ (n)
2 ) : θ8(τ (n)

2 ) : θ9(τ (n)
2 )) if n ≥ 1,

(θj(2nγ3τ))0≤j≤3 = (θ0(τ (n)
3 ) : θ8(τ (n)

3 ) : θ4(τ (n)
3 ) : θ12(τ (n)

3 )) for every n ≥ 0,

(θj(2nγ3τ))0≤j≤3 = (θ0(τ (n)
4 ) : θ8(τ (n)

4 ) : θ1(τ (n)
4 ) : θ9(τ (n)

4 )) for every n ≥ 0,
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44 Sign choices in the AGM for genus two theta constants

where the τ (n)
j are defined as in (5).

Proof. — Apply Proposition 3.2 to the matrices η(n)
i . �

When τ ∈ F ′, the real and imaginary parts of τ (n)
k for 1 ≤ k ≤ 3 are easy to study: for

instance, from the second inequality in (3) we always have

y3(τ (n)
k )2 ≤ 1

4y1(τ (n)
k )y2(τ (n)

k ).

Such estimates are less obvious for the matrices τ (n)
4 .

Lemma 3.4. — Let τ ∈ F ′. Then, for every n ≥ 0, we have∣∣y3(τ (n)
4 )

∣∣ ≤ 3
2n+2 y1(τ (n)

4 ),

y3(τ (n)
4 )2 ≤ 3

7y1(τ (n)
4 )y2(τ (n)

4 ), and∣∣x2(τ (n)
4 )

∣∣ ≤ 9
2n+3 .

Proof. — Write z1 for z1(τ), etc. We have

y3(τ (n)
4 ) = Im(−z3/z1) = 1

|z1|2
(x3y1 − y3x1),

so ∣∣y3(τ (n)
4 )

∣∣ ≤ 3y1

4 |z1|2
= 3

2n+2 y1(τ (n)
4 ),

since y1(τ (n)
4 ) = 2ny1/ |z1|2 by (5). For the second inequality, we have

Im(τ (n)
4 ) =

(
2−nz1 −2−nz3

0 1

)−t
(2−n Im τ)

(
2−nz1 −2−nz3

0 1

)−1

so
det Im(τ (n)

4 ) = 1
|z1|2

det Im τ.

Moreover det Im τ ≥ 3
4y

2
1, so

y3(τ (n)
4 )2

y1(τ (n)
4 )y2(τ (n)

4 )
≤ y3(τ (n)

4 )2

y3(τ (n)
4 )2 + 3y2

1
4|z1|2

≤ 1
1 + 4

3 |z1|2
≤ 3

7 .

For the last inequality, we compute

2nx2(τ (n)
4 ) = x2 −

1
|z1|2

((x2
3 − y2

3)x1 + 2x3y3y1)

and ∣∣∣∣ 1
|z1|2

(x2
3 − y2

3)x1

∣∣∣∣ ≤ 1
2 max

{
x2

3,
y2

3
|z1|2

}
≤ 1

8 ,

so ∣∣2nx2(τ (n)
4 )

∣∣ ≤ 1
2 + 1

8 + 1
2 = 9

8 . �
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4. Bounds on theta constants

Typically, when τ ∈ H2 is close enough to the cusp at infinity (more precisely when Im z1(τ),
Im z2(τ), and det Im(τ) are large), useful information on theta constants at τ can be obtained
from the series expansion (1). Our computations are similar in spirit to those found in [17,
pp. 116–117], [4, §6.2], [11, §5.1]. All our estimates are based on the following key lemma.

Lemma 4.1. — Let f : N→ R be a strictly increasing function, and assume that f(k+ 2)−
f(k + 1) ≥ f(k + 1)− f(k) for every k ≥ 0. Let 0 < q < 1. Then

∞∑
k=0

qf(k) ≤ qf(0)

1− qf(1)−f(0) .

Proof. — Use that f(k) ≥ f(0) + k(f(1)− f(0)) for all k. �

Lemma 4.2. — Let k ≥ 1, and let τ ∈ H2 such that

y3(τ)2 ≤ 1
4y1(τ)y2(τ) and k |y3(τ)| ≤ y2(τ).

Define

ξ4,6(τ) = 2 exp
(
iπ
z1(τ)

4

)
and

ρ
(k)
4,6(q1, q2) = q2

1
1− q4

1
+ q

1− 1
k

2

1− q3− 1
k

2

+ q
1+ 1

k
2

1− q3+ 1
k

2

+ q
7/8
1 q

1/2
2

(1− q3/2
2 )(1− q2

1)
+ q

25/8
1 q

3/2
2

(1− q9/2
2 )(1− q6

1)
.

Then for j ∈ {4, 6}, we have ∣∣∣∣∣ θj(τ)
ξ4,6(τ) − 1

∣∣∣∣∣ ≤ ρ(k)
4,6
(
q1(τ), q2(τ)

)
.

Proof. — Write u =
(

1/2
0

)
. Using the definition, we obtain∣∣∣∣∣ θj(τ)

ξ4,6(τ) − 1
∣∣∣∣∣ ≤ 1

2 q
−1/4
1

∑
m∈Z2

m6=( 0
0 ),
(−1

0
) exp

(
−π(m+ u)t Im(τ)(m+ u)

)
.

We split this sum in two parts, according to whether the second coordinate of m is zero or
not. The first part gives

q
−1/4
1

∑
m∈N+ 3

2

qm
2

1 ≤ q−1/4
1

q
9/4
1

1− q4
1

= q2
1

1− q4
1

by Lemma 4.1. The second part is

q
−1/4
1

∑
m1∈N+ 1

2

∑
m2≥1

q
m2

1
1 q

m2
2

2 · 2 cosh(2πy3m1m2).
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46 Sign choices in the AGM for genus two theta constants

We use the fact that for every (m1,m2) ∈ R2
+,∣∣2y3m1m2

∣∣ ≤ y1
2 m

2
1 + y2

2 m
2
2.

When m1 = 1/2, we use the following bound instead:∣∣2y3m1m2
∣∣ = |y3m2| ≤

y2m2
k

.

Therefore the total contribution of the second part is bounded by

q
−1/4
1

∑
m2≥1

q
1/4
1 q

m2
2

2 · 2 cosh
(
π
y2
k
m2

)

+ q
−1/4
1

∑
m1∈N+ 3

2

∑
m2≥1

q
m2

1
1 q

m2
2

2 · 2 cosh
(
π

(
y1
2 m

2
1 + y2

2 m
2
2

))

≤ q
1− 1

k
2

1− q3− 1
k

2

+ q
1+ 1

k
2

1− q3+ 1
k

2

+ q
7/8
1 q

1/2
2

(1− q3/2
2 )(1− q2

1)
+ q

25/8
1 q

3/2
2

(1− q9/2
2 )(1− q6

1)

by other applications of Lemma 4.1. �

Lemma 4.3. — Let k ≥ 1, and let τ ∈ H2 such that

y3(τ)2 ≤ 1
4y1(τ)y2(τ) and k |y3(τ)| ≤ y1(τ).

Define

ξ8,9(τ) = 2 exp
(
iπ
z2(τ)

4
)
,

and

ρ
(k)
8,9(q1, q2) = q2

2
1− q4

2
+ q

1− 1
k

1

1− q3− 1
k

1

+ q
1+ 1

k
1

1− q3+ 1
k

1

+ q
7/8
2 q

1/2
1

(1− q3/2
1 )(1− q2

2)
+ q

25/8
2 q

3/2
1

(1− q9/2
1 )(1− q6

2)
.

Then for j ∈ {8, 9}, we have ∣∣∣∣∣ θj(τ)
ξ8,9(τ) − 1

∣∣∣∣∣ ≤ ρ(k)
8,9
(
q1(τ), q2(τ)

)
.

Proof. — We proceed in a similar fashion as in the proof of Lemma 4.2 by switching the roles
of q1 and q2. �

Lemma 4.4. — Let τ ∈ H2 such that

y3(τ)2 ≤ 1
4y1(τ)y2(τ).
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Define

ξ0(τ) = 1 + 2 exp(iπz1(τ)) + 2 exp(iπz2(τ)),
ξ0,2(τ) = 1 + 2 exp(iπz1(τ)),
ξ0,1(τ) = 1 + 2 exp(iπz2(τ)),

and

ρ0(q1, q2) = 2q4
1

1− q5
1

+ 2q4
2

1− q5
2

+ 2q1/2
1 q

1/2
2

(1− q3/2
1 )(1− q3/2

2 )
+ 2q3/2

1 q
3/2
2

(1− q9/2
1 )(1− q9/2

2 )
.

Then we have

|θ0(τ)− ξ0(τ)| ≤ ρ0(q1(τ), q2(τ)),
|θj(τ)− ξ0,2(τ)| ≤ ρ0(q1(τ), q2(τ)) + 2q2(τ) for j ∈ {0, 2},
|θj(τ)− ξ0,1(τ)| ≤ ρ0(q1(τ), q2(τ)) + 2q1(τ) for j ∈ {0, 1}, and

|θj(τ)− 1| ≤ ρ0(q1(τ), q2(τ)) + 2q1(τ) + 2q2(τ) for 0 ≤ j ≤ 3.

Proof. — We proceed again in a similar fashion as in the proof of Lemma 4.2. The terms
of ρ0(q1, q2) are obtained by considering the following subsets of indices m ∈ Z2:

{(m1
0 ) | |m1| ≥ 2}, {

( 0
m2

)
| |m2| ≥ 2},

and
{(m1

m2 ) | |m1| ≥ 1, |m2| ≥ 1}. �

Lemma 4.5. — Let τ ∈ H2 such that

|x3(τ)| ≤ 1
2 and 2 |y3(τ)| ≤ min{y1(τ), y2(τ)}.

Write

ξ12(τ) = exp
(
iπ
z1(τ) + z2(τ)

4

)(
exp

(
iπ
z3(τ)

2

)
+ exp

(
−iπ z3(τ)

2

))
,

and

ρ12(q1, q2) = q
3/2
1

1− q7/2
1

+ q
5/2
1

1− q9/2
1

+ q
3/2
2

1− q7/2
2

+ q
5/2
2

1− q9/2
2

+ q
7/8
1 q

7/8
2

(1− q2
1)(1− q2

2)
+ q

25/8
1 q

25/8
2

(1− q6
1)(1− q6

2)
.

Then we have ∣∣∣∣θ12(τ)
ξ12(τ) − 1

∣∣∣∣ ≤ ρ12
(
q1(τ), q2(τ)

)
.

Proof. — By (1), we have

θ12(τ) = 2
∑

m1∈N+ 1
2

∑
m2∈N+ 1

2

exp
(
iπ(m2

1z1 +m2
2z2)

)
·
(
exp(2πim1m2z3) + exp(−2πim1m2z3)

)
.
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We leave the term corresponding to (m1,m2) = (1
2 ,

1
2) aside, and write∣∣∣∣ θ12(τ)

2 exp(iπ(z1 + z2)/4) − (exp(iπz3/2) + exp(−iπz3/2))
∣∣∣∣

≤
∑

(m1,m2)∈(N+ 1
2 )2

(m1,m2)6=( 1
2 ,

1
2 )

q
m2

1−
1
4

1 q
m2

2−
1
4

2 · 2 cosh(2πm1m2y3).

Since |x3| ≤ 1
2 , the absolute value of the argument of exp(iπz3/2) is at most π/4. Therefore,∣∣exp(iπz3/2) + exp(−iπz3/2)

∣∣ ≥ exp(π |y3| /2).

We obtain ∣∣∣∣θ12(τ)
ξ12(τ) − 1

∣∣∣∣ ≤ ∑
(m1,m2)∈(N+ 1

2 )2

(m1,m2)6=( 1
2 ,

1
2 )

q
m2

1−
1
4

1 q
m2

2−
1
4

2 · 2 cosh
(
2π(m1m2 − 1

4)y3
)
.

We separate the terms corresponding to m2 = 1
2 . Since 2 |y3| ≤ y1, their contribution is

bounded by

∑
m1∈N+ 3

2

(
q
m2

1−
1
2m1

1 + q
m2

1+ 1
2m1− 1

2
1

)
≤ q

3/2
1

1− q7/2
1

+ q
5/2
1

1− q9/2
1

.

Similarly, the contribution from the terms with m1 = 1/2 is bounded by

q
3/2
2

1− q7/2
2

+ q
5/2
2

1− q9/2
2

.

For the remaining terms, we use the majoration∣∣2π(m1m2 − 1
4)y3

∣∣ ≤ ∣∣2πm1m2y3
∣∣ ≤ π |y3| (m2

1 +m2
2) ≤ π

2 (m2
1y1 +m2

2y2).

Thus, the rest of the sum is bounded by∑
m1,m2∈N+ 3

2

q
m2

1−
1
4

1 q
m2

2−
1
4

2 · 2 cosh
(
π

2 (m2
1y1 +m2

2y2)
)

≤
∑

m1,m2∈N+ 3
2

(
q

1
2m

2
1−

1
4

1 q
1
2m

2
2−

1
4

2 + q
3
2m

2
1−

1
4

1 q
3
2m

2
2−

1
4

2

)

≤ q
7/8
1 q

7/8
2

(1− q2
1)(1− q2

2)
+ q

25/8
1 q

25/8
2

(1− q6
1)(1− q6

2)
. �

We give another version of these estimates that we will use for τ (n)
4 .

Lemma 4.6. — Let k ≥ 2, and let τ ∈ H2 such that

y3(τ)2 ≤ 3
7 y1(τ)y2(τ) and k |y3(τ)| ≤ y1(τ).
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Let α =
√

3/7. Define

ρ
′(k)
0,1 (q1, q2) = 2q4

2
1− q5

2
+ 2q1

1− q3
1

+ 2q1− 2
k

1 q2

1− q3− 2
k

1

+ 2q1+ 2
k

1 q2

1− q3+ 2
k

1

+ 2q1−α
1 q

4(1−α)
2

(1− q3(1−α)
1 )(1− q5(1−α)

2 )
+ 2q1+α

1 q
4(1+α)
2

(1− q3(1+α)
1 )(1− q5(1+α)

2 )

and

ρ
′(k)
8,9 (q1, q2) = q2

2
1− q4

2
+ q

1− 1
k

1

1− q3− 1
k

1

+ q
1+ 1

k
1

1− q3+ 1
k

1

+ q
2− 9

4α
2 q1−α

1

(1− q4(1−α)
2 )(1− q3(1−α)

1 )
+ q

2+ 9
4α

2 q1+α
1

(1− q4(1+α)
2 )(1− q3(1+α)

1 )
.

Then we have

|θj(τ)− ξ0,1(τ)| ≤ ρ′0,1(τ) for j ∈ {0, 1}

and ∣∣∣∣∣ θj(τ)
ξ8,9(τ) − 1

∣∣∣∣∣ ≤ ρ′8,9(τ) for j ∈ {8, 9}.

Proof. — We bound the cross-product terms as follows:∣∣2y3m1m2
∣∣ ≤ αy1m

2
1 + αy2m

2
2,∣∣2y3m1m2

∣∣ ≤ 1
k
y1m1 if m2 = 1

2 , and∣∣2y3m1m2
∣∣ ≤ 2

k
y1m1 if m2 = 1.

For j ∈ {0, 1}, we separate the terms with |m2| ≤ 1 or m1 = 0, and obtain

|θj(τ)− ξ0,1(τ)| ≤ 2
∑
m2≥2

q
m2

2
2 + 2

∑
m1≥1

q
m2

1
1 + 2

∑
m2≥1

q2(qm
2
1−

2
k
m1

1 + q
m2

1+ 2
k
m1

1 )

+ 2
∑
m1≥1

∑
m2≥2

q
m2

1
1 q

m2
2

2 · 2 cosh
(
α(y1m

2
1 + y2m

2
2)
)

≤ 2q4
2

1− q5
2

+ 2q1
1− q3

1
+ 2q1− 2

k
1 q2

1− q3− 2
k

1

+ 2q1+ 2
k

1 q2

1− q3+ 2
k

1

+ 2q1−α
1 q

4(1−α)
2

(1− q3(1−α)
1 )(1− q5(1−α)

2 )
+ 2q1+α

1 q
4(1+α)
2

(1− q3(1+α)
1 )(1− q5(1+α)

2 )
.
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For j ∈ {8, 9}, we separate the terms with |m2| = 1
2 or m1 = 0. We obtain∣∣∣∣∣ θj(τ)

ξ8,9(τ) − 1
∣∣∣∣∣ ≤ q−1/4

2
∑

m2∈N+ 3
2

q
m2

2
2 +

∑
m1≥1

(
q
m2

1−
1
k
m1

1 + q
m2

1+ 1
k
m1

1

)

+ q
−1/4
2

∑
m2∈N+ 3

2

∑
m1≥1

q
m2

2
2 q

m2
2

1 · 2 cosh
(
α(y1m

2
1 + y2m

2
2)
)

≤ q2
2

1− q4
2

+ q
1− 1

k
1

1− q3− 1
k

1

+ q
1+ 1

k
1

1− q3+ 1
k

1

+ q
2− 9

4α
2 q1−α

1

(1− q4(1−α)
2 (1− q3(1−α)

1 )
+ q

2+ 9
4α

2 q1+α
1

(1− q4(1+α)
2 )(1− q3(1+α)

1 )
. �

Finally, when n is large, we will show that the theta constants θj(2nγkτ) for 0 ≤ j ≤ 3 are
in good position using the following lemma. Recall the definition of r(τ) and λ1(τ) from Sec-
tion 2.

Lemma 4.7. — Let τ ∈ H2.

1. If r(τ) ≥ 0.4, then the θj(τ) for 0 ≤ j ≤ 3 are in good position.

2. If λ1(τ) ≥ 0.6, then the θj(τ) for 0 ≤ j ≤ 3 are in good position.

Proof. —

1. — Write
q = exp(−πr(τ)).

For 0 ≤ j ≤ 3, we have

(6)

|θj(τ)− 1| ≤ 4q2 +
∑

n∈Z2, ‖n‖2≥2

exp(−πλ1(τ) ‖n‖2)

≤ 8q2 + 4q4 + 8q5 + 4q8 + 4 1 + q

(1− q)2 q
9.

In this inequality, the first term 4q2 comes from the four vectors n ∈ Z2 with ‖n‖ = 1.
Then we separate the terms n = ( n1

n2 ) such that |n1| ≥ 3 and |n2| ≥ 3; this accounts for the
term 4q9(1 + q)/(1 − q)2, as in the proof of [4, Prop. 6.1]. We leave the remaining terms as
they are.
If q ≤ 0.287, then the quantity on the right hand side of (6) is less than

√
2/2, and the θj(τ)

are contained in a disk which is itself contained in a quarter plane. We have q ≤ 0.287 when
r(τ) ≥ 0.4.

2. — Write
q = exp(−πλ1(τ)).

Then for 0 ≤ j ≤ 3, we have

|θj(τ)− 1| ≤ 4q + 4q2 + 4q4 + 8q5 + 4q8 + 4 1 + q

(1− q)2 q
9.

This quantity is less than
√

2/2 when λ1(τ) ≥ 0.6. �
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We conclude this section with lower bounds on r or λ1 at γkτ for τ ∈ F ′ and 1 ≤ k ≤ 3.

Lemma 4.8. — For every τ ∈ F ′, we have

r(γ1τ) ≥ 9 y1(τ)
34 |z1(τ)|2

, r(γ2τ) ≥ 9 y2(τ)
34 |z2(τ)|2

, and λ1(γ3τ) ≥ 9
44 y2(τ) .

Proof. — We have

Im(γ1τ) =
(
z1 z3
0 −1

)−t
Im(τ)

(
z1 z3
0 −1

)−1
= 1
|z1|2

(
y1 α
α β

)
with α = y1x3 − y3x1, so |α| ≤ 3

4y1. Moreover,

det Im(γ1τ) = 1
|z1|2

det Im(τ)

and det Im(τ) ≥ 9/16, so

β ≤ |z1|2

y1
det Im(τ) + 9

16y1 and β ≥ |z1|2

y1
det Im(τ) ≥ 9

16y1.

Therefore,

λ1(γ1τ) ≥ det Im(γ1τ)
Tr Im(γ1τ) ≥

y1

|z1|2
1

1 + 25
16

y2
1

|z1|2 det Im(τ)

≥ 9y1

34 |z1|2
.

We did not use the property that y1 ≤ y2, so the same proof works for γ2τ . Finally, we
consider γ3τ . We have

Im(γ3τ) = 1
|det τ |2

(
β1 α
α β2

)
with

β1 = y1 |z3|2 + y2 |z1|2 − y3(z1z3 + z3z1),
β2 = y1 |z2|2 + y2 |z3|2 − y3(z2z3 + z3z2).

We compute

|det τ |2 Tr Im(γ3τ) = β1 + β2 ≤ y1y
2
2 + y2

1y2 + 1
2(y1 + y2 + |y3|) ≤

11
3 y1y

2
2

because y1y2 ≥ 3/4. Therefore,

λ1(γ3τ) ≥ 3 det Im(τ)
11y1y2

2
≥ 9

44y2
. �

5. Proof of the main theorem

In this final section, we prove Theorem 1.1 by separating different cases according to the
value of n. If n is large enough, then Lemmas 4.7 and 4.8 are enough to conclude; if n is
smaller, then we apply the theta transformation formula (Proposition 3.2) and the bounds
on other theta constants given in Section 4.
In the proofs, we use numerical calculations, typically in order to show that a given angle α(q)
is smaller than π/2 for certain values of q. Such calculations are easily certified using interval
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arithmetic, since the functions α(q) we consider are simple: they are either increasing or
convex functions of q.
In order to help the reader visualize the estimates, we created pictures using GeoGebra [12].

Proposition 5.1. — Let τ ∈ F ′. Then for every n ≥ 0, the theta constants θj(2nτ) for
0 ≤ j ≤ 3 are in good position.

Proof. — For every n ≥ 0, we have

r(2nτ) = 2nr(τ) ≥
√

3/4 ≥ 0.4,

so the result follows from Lemma 4.7. �

Lemma 5.2. — Let τ ∈ F ′.

1. For every n ≥ 0 such that 2n ≤ 8.77y1(τ), the theta constants θj(τ (n)
1 ) for j ∈ {0, 2, 4, 6}

are in good position.

2. For every n ≥ 0 such that 2n ≤ 8.77y2(τ), the theta constants θj(τ (n)
2 ) for j ∈ {0, 1, 8, 9}

are in good position.

Proof. — We only prove the first statement, the second one being symmetric. We separate
three cases: n = 0, n = 1, and n ≥ 2.

Case 1: n = 0. — Then τ (n)
1 = τ . By [24, Prop. 7.7], we have

|θj(τ)− 1| ≤ 0.405 for j ∈ {0, 1, 2, 3}, and∣∣∣∣∣ θj(τ)
ξ4,6(τ) − 1

∣∣∣∣∣ ≤ 0.348 for j ∈ {4, 6}.

The absolure value of the argument of ξ4,6(τ) is at most π/8. Therefore the angle between
any two θj(τ) for j ∈ {0, 1, 2, 3, 4, 6} is at most

π

8 + arcsin(0.348) + arcsin(0.405) < π

2 .

Case 2: n = 1. — We study the relative positions of ξ0,2 and ξ4,6 at τ (1)
1 . As |2−nx1(τ)| ≤ 1/4,

the absolute value of the argument of ξ4,6(τ (1)
1 ) is bounded above by π/16. Moreover,∣∣ξ0,2(τ (1)

1 )
∣∣ ≥ 1,

∣∣arg(ξ0,2(τ (1)
1 ))

∣∣ ≤ arctan
( 2q1 sin(π/4)

1 + 2q1 cos(π/4)

)
,

and the arguments of ξ0,2 and ξ4,6 have the same sign. Therefore the angle between any two
θj(τ (1)

1 ) for j ∈ {0, 2, 4, 6} is at most

max
{
π

16 , arctan
( 2q1 sin(π/4)

1 + 2q1 cos(π/4)

)}
+ arcsin ρ(4)

4,6(q1, q2) + arcsin(ρ0(q1, q2) + 2q2)

by Lemmas 4.2 and 4.4. This quantity is less than π/2 because

q2(τ (1)
1 ) ≤ exp(−π

√
3) and q1(τ (1)

1 ) ≤ exp(−π
√

3/8).
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Case 3: n ≥ 2. — We proceed as in Case 2, but we now have

q2(τ (n)
1 ) ≤ exp(−2π

√
3), 8

∣∣y3(τ (n)
1 )

∣∣ ≤ y2(τ (n)
1 ), and

∣∣x1(τ (n)
1 )

∣∣ ≤ 1
8 .

Therefore the angle between the θj(τ (n)
1 ) for j ∈ {0, 2, 4, 6} is bounded by

(7) max
{
π

32 , arctan
( 2q1 sin(π/8)

1 + 2q1 cos(π/8)

)}
+ arcsin

(
ρ0(q1, exp(−2π

√
3)) + 2 exp(−2π

√
3)
)

+ arcsin ρ(8)
4,6
(
q1, exp(−2π

√
3)
)
.

This angle remains less that π/2 when q1(τ (n)
1 ) ≤ 0.699. The latter inequality holds true

whenever 2n ≥ 8.77y1(τ). �

The geometric situation in Case 3 of Lemma 5.2 can be represented as follows.

In this picture, we take q1 = 0.699, and represent two complex numbers ξ0,2 and ξ4,6 with
modulus one, separated by an angle of

max
{ π

32 , arctan
( 2q1 sin(π/8)

1 + 2q1 cos(π/8)
)}
' 0.22.

Then we draw disks centered in ξ0,2 and ξ4,6 with radii ρ0(q1, exp(−2π
√

3)) and
ρ

(8)
4,6(q1, exp(−2

√
3)) respectively. Finally we represent the smallest angular sector seen from

the origin containing these two disks. The green angle is equal to the quantity (7), and is
indeed smaller than π/2.

Proposition 5.3. — Let τ ∈ F ′.

1. For every n ≥ 0, the theta constants (θj(2nγ1τ))0≤j≤3 are in good position.

2. For every n ≥ 0, the theta constants (θj(2nγ2τ))0≤j≤3 are in good position.

Proof. — By Lemma 4.8, we have

r(γ1τ) ≥ 9 y1

34 |z1|2
≥ 9 y1

34(1/4 + y2
1)
≥ 0.205
y1(τ)
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because y1(τ) ≥
√

3/2. By Lemma 4.7, the θj(2nγ1τ) for 0 ≤ j ≤ 3 are in good position when
2nr(γ1τ) ≥ 0.4. This is the case when 2n ≥ 1.96y1. On the other hand, Lemma 5.2 applies
when 2n ≤ 8.77y1. The second statement is proved in the same way. �

Lemma 5.4. — Let τ ∈ F ′. Then, for every n ≥ 0 such that 2n ≤ 1.66y1, the theta constants
θj(τ (n)

3 ) for j ∈ {0, 4, 8, 12} are in good position.

Proof. — Write q = q1(τ (n)
3 ) for short. We separate two cases: n ≥ 1, and n = 0.

Case 1: n ≥ 1. — In this case, we have∣∣xj(τ (n)
3 )

∣∣ ≤ 1/4 for each 1 ≤ j ≤ 3.

Therefore, given the expressions of ξ0, ξ4,6, ξ8,9 and ξ12 (see (4)), and by Lemmas 4.2 to 4.5,

– The angle between θ4(τ (n)
3 ) and θ8(τ (n)

3 ) is bounded by
π

8 + 2 arcsin ρ(2)
4,6(q, q).

– The angle between θ4(τ (n)
3 ) (or θ8) and θ0(τ (n)

3 ) is bounded by
π

16 + arcsin ρ(2)
4,6(q, q) + 2q sin(π/4) + arcsin ρ0(q, q).

– The angle between θ12(τ (n)
3 ) and θ4(τ (n)

3 ) (or θ8) is bounded by
3π
16 + arcsin ρ12(q, q) + arcsin ρ(2)

4,6(q, q).

– The angle between θ12(τ (n)
3 ) and θ0(τ (n)

3 ) is bounded by
π

4 + arcsin ρ12(q, q) + arcsin ρ0(q, q).

All these quantities remain less than π/2 when q ≤ 0.151. This is the case when 2n ≤ 1.66y1.

Case 2: n = 0. — In this case, we have q ≤ exp(−π
√

3/2). Therefore,

– The angle between θ4 and θ8 is bounded by
π

4 + 2 arcsin ρ(2)
4,6(q, q) < π

2 .

– The angle between θ4 (or θ8) and θ0 is bounded by
π

8 + arcsin ρ(2)
4,6(q, q) + arcsin(ρ0(q, q) + 4q) < π

2 .

– The angle between θ12 and θ4 (or θ8) is bounded by
3π
8 + arcsin ρ12(q, q) + arcsin ρ(2)

4,6(q, q) < π

2 .
Publications mathématiques de Besançon – 2022



Jean Kieffer 55

These estimations can be represented as follows, with similar conventions as in the picture
after Lemma 5.2:

We finally study the angle between θ12 and θ0. The argument of ξ12(τ) is x1/4 + x2/4 + β
with β = arg(exp(iπz3/2) + exp(−iπz3/2)). Up to conjugating, we may assume that y3 ≥ 0
and x3 ≥ 0. Then

exp(iπz3/2) + exp(−iπz3/2) = exp(−iπz3/2)(1 + exp(iπz3))
so

β + πx3
2 ≥ arctan

(
q3 sin(πx3)

1 + q3

)
≥ arctan

( 2x3q3
1 + q3

)
.

In general, we have

|β| ≤ π

4 − arctan
(

q1/2

1 + q1/2

)
.

On the other hand,
1 ≤ Re(ξ0(τ)) ≤ 1 + 4q, Im(ξ0(τ)) = 2q1 sin(πx1) + 2q2 sin(πx2).

We discuss two cases according to the signs of x1 and x2:

– If x1 and x2 have opposite signs, then the angle between θ12 and θ0 is at most
3π
8 + arctan(2q) + arcsin ρ12(q, q) + arcsin ρ0(q, q).

– If x1 and x2 have the same sign, say positive, then
x1 + x2

4 − arg ξ0(τ) ≤ x1 + x2
4 .

Therefore the angle between θ12 and θ0 is at most
π

2 − arctan
(

q1/2

1 + q1/2

)
+ arcsin ρ12(q, q) + arcsin ρ0(q, q).

This function of q is not increasing, but it is convex.

A numerical investigation shows that both quantities remain less than π/2 when
q ≤ exp(

√
3/2). �
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Lemma 5.5. — Let τ ∈ F ′, and let n0 ∈ N such that 2n0 > 1.66y1. Then, for every n ≥ n0
such that 2n ≤ 4.2y2(τ), the theta constants θj(τ (n)

4 ) for j ∈ {0, 1, 8, 9} are in good position.

Proof. — By assumption, we have y1(τ (n)
4 ) ≥ 3

4 · 1.66 ≥ 1.24, so q1(τ (n)
4 ) ≤ 0.021. Moreover

we must have n ≥ 1, so by Lemma 3.4,
∣∣x2(τ (n)

4 )
∣∣ ≤ 9/16, and

∣∣y3(τ (n)
4 )

∣∣ ≤ 3
8y1(τ (n)

4 ).

Therefore, we can apply Lemma 4.6 with k = 8/3: we have∣∣θj(τ (n)
4 )− ξ0,1(τ (n)

4 )
∣∣ ≤ ρ′(8/3)

0,1 (0.021, q2(τn4 )) for j ∈ {0, 1},∣∣∣∣∣ θj(τ
(n)
4 )

ξ8,9(τ (n)
4 )
− 1

∣∣∣∣∣ ≤ ρ′(8/3)
8,9 (0.021, q2(τ (n)

4 ) for j ∈ {8, 9}.

Let us investigate the difference between the arguments of ξ8,9(τ (n)
4 ) and ξ0,1(τ (n)

4 ). Both have
the sign of x2(τ (n)

4 ), which we may assume to be positive. If the argument of ξ8,9 is the largest,
then the difference is bounded by

arg ξ8,9(τ (n)
4 ) ≤ 9π

64 .

If the argument of ξ0,1 is the largest, we distinguish two cases. If x2(τ (n)
4 ) ≥ 3π

8 , then

arg ξ0,1(τ (n)
4 )− arg ξ8,9(τ (n)

4 ) ≤ arctan
( 2q2

1 + 2q2 cos(9π/16)

)
− 3π

32 .

On the other hand, if x2(τ) ≤ 3π/8, then

arg ξ0,1(τ (n)
4 )− arg ξ8,9(τ (n)

4 ) ≤ arg ξ0,1(τ (n)
4 ) ≤ arctan

( 2q2 sin(3π/8)
1 + 2q2 cos(3π/8)

)

Note that
∣∣ξ0,1(τ (n)

4 )
∣∣ is always greater than cos(π/16). Therefore the angle between the

θj(τ (n)
4 ) for j ∈ {0, 1, 8, 9} is at most

max
{9π

64 , arctan
( 2q2

1 + 2q2 cos(9π/16)

)
− 3π

32 , arctan
( 2q2 sin(3π/8)

1 + 2q2 cos(3π/8)

)}

+ arcsin ρ′(8/3)
8,9 (0.021, q2) + arcsin

ρ
′(8/3)
0,1 (0.021, q2)

cos(π/16) .

This quantity is less than π/2 when q2(τ (n)
4 ) ≤ 0.38. Since y2(τ (n)

4 ) ≥ 3
2n+2 y2(τ) by Lemma 3.4,

this is the case when 2n ≤ 2.43y2(τ).
On the other hand, if 2n > 2.43y2(τ), then we must have n ≥ 2. Moreover,

y1(τ (n)
4 ) > 2.43y1(τ)y2(τ)

|z1(τ)2|
> 1.82,
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so q1(τ (n)
4 ) < 0.0033. Then, the angle bound improves to

max
{ 9π

128 , arctan
( 2q2 sin(9π/32)

1 + 2q2 cos(9π/32)

)}
+ arcsin ρ′(16/3)

8,9 (0.0033, q2) + arcsin ρ′(16/3)
0,1 (0.0033, q2).

This quantity is less than π/2 when q2(τ (n)
4 ) ≤ 0.571, and the latter inequality holds when

2n ≤ 4.2y2(τ). �

Proposition 5.6. — Let τ ∈ F ′. Then, for every n ≥ 0, the theta constants θj(2nγ3τ) for
0 ≤ j ≤ 3 are in good position.

Proof. — By Lemma 4.8, we have

λ1(γ3τ) ≥ 9
44y2(τ) .

Therefore, by Lemma 4.7, the theta constants are in good position as soon as

2n 9
44y2(τ) ≥ 0.6, or 2n ≥ 2.94y2(τ).

When n is smaller, we use the transformation formulas from Corollary 3.3. Lemma 5.4 applies
when 2n ≤ 1.66y1(τ), and Lemma 5.5 applies when 1.66y1(τ) < 2n ≤ 4.2y2(τ). �

Propositions 5.1, 5.3 and 5.6 together imply Theorem 1.1.
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