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ELLIPTIC FIBRATIONS OF A CERTAIN K3 SURFACE OF THE
APÉRY–FERMI PENCIL

by

Marie José Bertin and Odile Lecacheux

Abstract. — We explain how to obtain from Kneser–Nishiyama’s method all the elliptic fibrations of the
singular (i.e. of Picard number 20) K3 surface Y10 of discriminant 72 and belonging to the Apéry–Fermi
pencil (Yk). The case of its extremal elliptic fibrations is developped together with Weierstrass equations,
noticing that two of them are obtained by 3-isogeny from extremal fibrations of the K3 surface Y2 of
discriminant 8.

Résumé. — (Fibrations elliptiques d’une certaine surface K3 du pinceau d’Apéry–Fermi) On montre
comment la méthode de Kneser–Nishiyama permet d’obtenir toutes les fibrations elliptiques de la surface
K3 singulière (i.e. de nombre de Picard 20) de discriminant 72, notée Y10, appartenant au pinceau (Yk) de
surfaces K3 d’Apéry–Fermi. Les fibrations elliptiques extrémales sont en outre données avec des équations
de Weierstrass. On remarque que deux d’entre elles sont obtenues par 3-isogénie à partir de fibrations
extrémales de la surface Y2 de discriminant 8.

1. Introduction

The Apéry–Fermi pencil of K3 surfaces (Yk) is obtained by desingularization from the equa-
tion

(Yk) X + 1
X

+ Y + 1
Y

+ Z + 1
Z

= k.

Generically, the K3 surfaces (Yk) have Picard number 19 and for finitely many k the Picard
number increases to 20. Such K3 surfaces with Picard number 20 are called singular. A list
of 8 (resp. 7) singular K3 surfaces for k integer (resp. k pure quadratics) has been computed
by Boyd [8]. This list has been confirmed independently by Schütt who added 2 more k2 pure
quadratics [23]. The 8 singular K3 surfaces Y0, Y2, Y3, Y6, Y10, Y18, Y102, Y198 are cited in [6].
The transcendental lattice T (Y ) of a K3 surface Y , orthogonal complement of its Néron–
Severi lattice NS(Y ) in the unimodular lattice H2(Y,Z) is a birational invariant of the
algebraic surface Y . When Y is singular, the Gram matrix of its transcendental lattice T (Y )
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Surfaces, Elkies r-neighbor Method for Weierstrass Equations.



6 Elliptic Fibrations of a certain K3 surface of the Apéry–Fermi pencil

has rank 2 and by Livné’s modularity theorem the L-series of T (Y ) is modular meaning
there exists a weight 3 modular form f , with complex multiplication by Q(

√
−|det((T (Y ))|),

satisfying L(T (Y ), s) .= L(f, s) where .= means up to a finite number of primes.
In Bertin [1, 2, 3] it was proved that Y2 and Y10 have respective transcendental lattices T (Y2)
and T (Y10) with

T (Y2) =
(

2 0
0 4

)
T (Y10) =

(
6 0
0 12

)
and that their transcendental L-series are the same.
In the Apéry–Fermi pencil only Y2 and Y10 share this last property and we guess a geometric
link between these two K3 surfaces. Notice the relation T (Y10) = T (Y2)[3] similar to the
relation T (K2) = T (Y2)[2], where K2 is the Kummer surface associated to Y2 in the Shioda–
Inose construction and where the link between Y2 and K2 is the existence of 2-isogenies
between elliptic fibrations (see for example [6]).
Thus to understand the link between Y2 and Y10, it was tempting to study Y10 as Bertin and
Lecacheux did for Y2 [5], that is determine all the non isomorphic elliptic fibrations of Y10
together with their Weierstrass equations. However such a study is more tricky.
The difficulty is the application of the Kneser–Nishiyama method to determine all the elliptic
fibrations. Concerning Y2, these fibrations are given by primitive embeddings of a root lattice,
namely A1⊕D5, in the various Niemeier lattices, which are only primitive embeddings in the
root part of Niemeier lattices. This is no longer the case for Y10 since we have to embed the
lattice M = A1 ⊕ A2 ⊕ N with N =

(
−2 0 1
0 −2 1
1 1 −4

)
. Since N is not a root lattice, we have to

consider primitive embeddings into Niemeier lattices and not only in their root part. This fact
added to the facts that M is composed of three irreducible lattices, A1 and A2 embedding
primitively in all the other root lattices, give a huge amount of such embeddings, thus of
elliptic fibrations. This difficulty is explained in Section 3.
Such a situation has been encountered by Braun, Kimura and Watari [9]. For example they
considered the case M = A5⊕ (−4). And even in that simpler case, probably Braun, Kimura
and Watari found so many cases that they restricted to primitive embeddings containing E6,
E7 or E8.
In Section 2, we review some definitions and main known results useful for the paper.
Section 3 is devoted to the determination of elliptic fibrations of Y10 obtained with the help
of the Kneser–Nishiyama’s method.
In [6], Bertin and Lecacheux obtained all elliptic fibrations, called generic, of the Apéry–
Fermi pencil together with a Weierstrass equation. However, a simple computation of their
specializations for k = 10 give only a few elliptic fibrations of positive rank. It is the object
of Section 4.
In particuliar, all the 10 extremal fibrations of Y10 given in Shimada–Zhang [25] are missing.
Following Shimada–Zhang, an extremal fibration of a K3 surface is an elliptic fibration whose
Mordell–Weil group has rank 0.
Hence, in Section 5 we determine the primitive embeddings into Niemeier lattices giving these
extremal fibrations. Their corresponding Weierstrass equations are also exhibited. Most of
them are obtained by the 2 or 3-neighbor method initiated by Elkies [12]. We must notice
however that two of them are obtained by 3-isogeny from extremal fibrations of theK3-surface
Y2, hence revealing the geometric link between Y2 and Y10.
In the last Section 6 we exhibit elliptic fibrations of high rank on the K3 surface Y10.
Publications mathématiques de Besançon – 2022



M.-J. Bertin and O. Lecacheux 7

This famous Apéry–Fermi pencil is identified by Festi and van Straten [13] to be a pencil ofK3
surfaces (Ds) appearing in the 2-loop diagrams in Bhabha scattering. The Bhabha scattering
process is a specific process of Quantum Electrodynamics occuring in the interaction between
an electron and a positron. The complete amplitude for Bhabha scattering appears as a sum
of integrals corresponding to Feynmann diagrams with 1-loop or 2-loops diagrams. In solving
some integrals for the 2-loops diagrams it was asked if a certain surface defined by the equation

z2(1 + xy) = (x+ y)(x+ y − 4xy + xy(x+ y))

is a rational surface. Festi and van Straten [13] proved that it is not a rational surface but a
K3 surface with Picard number 20 and transcendental lattice ( 2 0

0 4 ), hence can be identified
with Y2. Moreover they showed that this surface is a special member of a pencil ofK3 surfaces
(Ds) (namely the singular K3 surface D1) where the generic member has Picard number 19
and transcendental lattice U⊕〈12〉. Thus the pencil (Ds) is the Apéry–Fermi pencil (Yk). The
correspondance is given by the relation k = 2 − 4s. Since Yk and Y−k are the same surface
we observe that D−2 and D3 are the K3 surface Y10 studied in the present paper.
Computations were performed using the computer algebra system MAPLE and the Maple
Library “Elliptic Surface Calculator” written by Kuwata [16].

2. Definitions and results

We recall briefly what is useful for the understanding of the paper.
A rank r lattice is a free Z-module S of rank r together with a symmetric bilinear form b.
A lattice S is called even if x2 := b(x, x) is even for all x from S. For any integer n we denote
by 〈n〉 the lattice Ze where e2 = n.
If e = (e1, . . . , er) is a Z-basis of a lattice S, then the matrix G(e) = (b(ei, ej)) is called
the Gram matrix of S with respect to e. An injective homomorphism of lattices is called an
embedding.
An embedding i : S → S′ is called primitive if S′/i(S) is a free group. A sublattice is a
subgroup equipped with the induced bilinear form. A sublattice S′ of a lattice S is called
primitive if the identity map S′ → S is a primitive embedding. The primitive closure of S
inside S′ is defined by S = {x ∈ S′/mx ∈ S for some positive integer m}. A lattice M is an
overlattice of S if S is a sublattice of M such that the index [M : S] is finite.
By S1 ⊕ S2 we denote the orthogonal sum of two lattices defined in the standard way. We
write Sn for the orthogonal sum of n copies of a lattice S. The orthogonal complement of a
sublattice S of a lattice S′ is denoted (S)⊥S′ and defined by (S)⊥S′ = {x ∈ S′/b(x, y) = 0 for all
y ∈ S}.

2.1. Discriminant forms. — Let L be a non-degenerate lattice. The dual lattice L∗ of L
is defined by

L∗ := Hom(L,Z) = {x ∈ L⊗Q | b(x, y) ∈ Z for all y ∈ L}
and the discriminant group GL by

GL := L∗/L.

This group is finite if and only if L is non-degenerate. In the latter case, its order is equal to
the absolute value of the lattice determinant |det(G(e))| for any basis e of L. A lattice L is
unimodular if GL is trivial.

Publications mathématiques de Besançon – 2022



8 Elliptic Fibrations of a certain K3 surface of the Apéry–Fermi pencil

Let GL be the discriminant group of a non-degenerate lattice L. The bilinear form on L
extends naturally to a Q-valued symmetric bilinear form on L∗ and induces a symmetric
bilinear form

bL : GL ×GL → Q/Z.

If L is even, then bL is the symmetric bilinear form associated to the quadratic form defined by

qL : GL −→ Q/2Z
qL(x+ L) 7−→ x2 + 2Z.

The latter means that qL(na) = n2qL(a) for all n ∈ Z, a ∈ GL and bL(a, a′) = 1
2(qL(a +

a′)− qL(a)− qL(a′)), for all a, a′ ∈ GL, where 1
2 : Q/2Z→ Q/Z is the natural isomorphism.

The pair (GL, bL) (resp. (GL, qL)) is called the discriminant bilinear (resp. quadratic) form
of L.

2.2. Root lattices. — In this section we recall only what is needed for the understanding
of the paper. For proofs and details one can refer to Bourbaki [7] or Martinet [17].
Let L be a negative-definite even lattice. We call e ∈ L a root if qL(e) = −2. Put ∆(L) :=
{e ∈ L/qL(e) = −2}. Then the sublattice of L spanned by ∆(L) is called the root type of L
and is denoted by Lroot.
The lattices An = 〈a1, a2, . . . , an〉 (n ≥ 1), Dl = 〈d1, d2, . . . , dl〉 (l ≥ 4), Ep = 〈e1, e2, . . . , ep〉
(p = 6, 7, 8) defined by the Dynkin diagrams listed below are called the root lattices. All
the vertices aj , dk, el are roots and two vertices vj and vh are joined by a line if and only
if b(vj , vh) = 1. We use Bourbaki’s numbering [7] and in brackets Conway–Sloane defini-
tions [11].
Denote εi the vectors of the canonical basis of Rn with the usual scalar product.
The lattice An can be represented by the set of points in Rn+1 with integer coordinates whose
sum is zero, and the lattice Dl as the set of points of Rl with integer coordinates of even sum.
We can represent E8 in the even coordinate system [11, p. 120] E8 = D+

8 = D8 ∪ (v + D8)
where v = 1

2
∑8
i=1 εi. Then we represent E7 as the orthogonal in E8 of v, and E6 as the

orthogonal of 〈v, w〉 ' A2 in E8 where w = ε1 + ε8.
A coset representative (or glue vector) for L∗ modulo L is labelled [j]L where L denotes An,
Dl or Ep (p = 6, 7, 8) and 0 ≤ j ≤ |GL|.

2.3. Niemeier lattices. —An even unimodular lattice Ni(Lroot) in dimension 24 is called
a Niemeier lattice and is obtained by gluing certain component lattices of Lroot by means of
glue vectors.
If Lroot has components L1,. . . ,Lk, the glue vectors have the form y = [y1, . . . , yk] where each
yi can be regarded as a coset representative (or glue vector) for L∗i modulo Li. These coset
representatives, labelled [0]Li , [1]Li ,. . . [d−1]Li for a component of determinant d = |GLi | are
listed in the previous subsection. In the sequel the indexes are dropped and for example the
glue vector [[0]L1 , [1]L2 , [1]L3 ] will be denoted [011].
The set of glue vectors for Ni(Lroot) forms an additive group called the glue code. The Table 1
below gives generators for the glue code. If a glue vector contains parentheses, this indicates
that all vectors obtained by cyclically shifting the part of the vector inside the parentheses are
also glue vectors. For example, the glue vectors for the Niemeier lattice Ni(D3

8) is described
Publications mathématiques de Besançon – 2022



M.-J. Bertin and O. Lecacheux 9

An, GAn

Set
[1]An = a∗n = − 1

n+1

∑n
j=1(j)aj

then A∗
n = 〈An, [1]An

〉 and
GAn

= A∗
n/An ' Z/(n+ 1)Z.

qAn
([1]An

) = − n
n+1 .

Glue vectors [i]An
= a∗n+1−i

Glue group [i+ j] = [i] + [j]

a1

a2 a3
an

Dl,GDl
.

Set
[1]Dl

= −d∗l−1 =
1
2

(∑l−2
i=1 idi +

1
2 (l − 2)dl +

1
2 ldl−1

)
[2]Dl

= d∗1 =∑l−2
i=1 di +

1
2 (dl−1 + dl)

[3]Dl
= −d∗l−1 + d∗1 =

1
2

(∑l−2
i=1 idi +

1
2 ldl +

1
2 (l − 2)dl−1

)
then D∗

l = 〈Dl, [1]Dl
, [3]Dl

〉,

dl

dl−2 dl−3 d1

dl−1

GDl
= D∗

l /Dl =< [1]Dl
>' Z/4Z if l is odd,

GDl
= D∗

l /Dl =< [1]Dl
, [3]Dl

>' Z/2Z× Z/2Z if l is even.

qDl
([1]Dl

) = − l
4 , qDl

([2]Dl
) = −1, bDl

([1], [2]) = − 1
2 .

E6, GE6

Set
[1]E6

= η6 = e∗6 =
− 1

3 (2e1 + 3e2 + 4e3 + 6e4 + 5e5 + 4e6),
then
E∗

6 = 〈E6, η6〉 and
GE6

= E∗
6/E6 ' Z/3Z

[2]E6
= −[1]E6

.
qE6(η6) = − 4

3 .

e1
e3 e4 e6e5

e2

E7, GE7

Set
[1]E7 = η7 = e∗7 =
− 1

2 (2e1+3e2+4e3+6e4+5e5+4e6+3e7),
then
E∗

7 = 〈E7, η7〉 and
GE7

= E∗
7/E7 ' Z/2Z,

qE7(η7) = − 3
2 .

e1 e3 e4 e7

e2

E8, GE8

E∗
8 = E8.

e1 e3 e4 e8

e2

1

Figure 1. Dynkin diagrams

Publications mathématiques de Besançon – 2022



10 Elliptic Fibrations of a certain K3 surface of the Apéry–Fermi pencil

by [(122)], that is the glue words are spanned by
[122] = [[1], [2], [2]] = [(1/2)8, (071), (071)]
[212] = [[2], [1], [2]] = [(071), (1/2)8, (071)]
[221] = [[2], [2], [1]] = [(071), (071), (1/2)8].

The full glue code for this example contains the eight vectors [000], [122], [212], [221], [033],
[303], [330], [111].

2.4. Elliptic fibrations. —We recall that all the elliptic fibrations of an ellipticK3 surface
with Picard number 20 come from primitive embeddings of a specific rank 6 lattice into a
Niemeier lattice denoted Ni(Lroot).

2.5. Nikulin and Niemeier’s results. —

Lemma 2.1 (Nikulin [20, Proposition 1.4.1]). — Let L be an even lattice. Then, for an
even overlattice M of L, we have a subgroup M/L of GL = L∗/L such that qL is trivial on
M/L. This determines a bijective correspondence between even overlattices of L and subgroups
G of GL such that qL |G= 0.

Lemma 2.2 (Nikulin [20, Proposition 1.6.1]). — Let L be an even unimodular lattice and
T a primitive sublattice. Then we have

GT ' GT⊥ ' L/(T ⊕ T⊥), qT⊥ = −qT .
In particular, |detT | = |detT⊥| = [L : T ⊕ T⊥].

Theorem 2.3 (Nikulin [20, Corollary 1.6.2]). — Let L and M be non-degenerate even
integral lattices such that

GL ' GM , qL = −qM .
Then there exists an unimodular overlattice N of L⊕M such that

(1) the embeddings of L and M in N are primitive

(2) L⊥N = M and M⊥N = L.

Theorem 2.4 (Niemeier [19]). — A negative-definite even unimodular lattice L of rank
24 is determined by its root lattice Lroot up to isometries. There are 24 possibilities for L and
L/Lroot listed in Table 1.

The lattices L defined in Table 1 are called Niemeier lattices.

2.6. The Kneser–Nishiyama’s method. —Recall that a K3 surface may admit more
than one elliptic fibration, but up to isomorphism, there is only a finite number of elliptic
fibrations [28]. To establish a complete classification of the elliptic fibrations on an elliptic
K3 surface, we use Nishiyama’s method based on lattice theoretic ideas [21]. The technique
builds on a converse of Nikulin’s results.
Given a K3 surface X with an elliptic fibration π : X 7→ P1, define the hyperbolic lattice U
generated by the class of a fiber F and the class of the zero section. Every elliptic fibration
on X is associated to a primitive embedding of the lattice U into the Néron–Severi lattice
NS(X) and its orthogonal complement in NS(X) is called the frame Wπ(X) with respect
Publications mathématiques de Besançon – 2022



M.-J. Bertin and O. Lecacheux 11

Table 1. Niemeier lattices

Lroot L/Lroot Generators for the glue code
E3

8 (0) (000)
D16E8 Z/2Z [10]
D10E

2
7 (Z/2Z)2 [110],[301]

A17E7 Z/6Z [31]
D24 Z/2Z [1]
D2

12 (Z/2Z)2 [12],[21]
D3

8 (Z/2Z)3 [(122)]
A15D9 Z/8Z [21]
E4

6 (Z/3Z)2 [1(012)]
A11D7E6 Z/12Z [111]
D4

6 (Z/2)4 [even perms of (0123)]
A2

9D6 Z/2Z⊕ Z/10Z [240],[501],[053]
A2

7D
2
5 Z/4× Z/8 [1112],[1721]

A3
8 Z/3× Z/9 [(114)]

A24 Z/5 [5]
A2

12 Z/13Z [2(11211122212)]
D6

4 (Z/2)6 [111111],[0,(02332)]
A4

5D4 Z/2× (Z/6)2 [2(024)0],[33001],[30302],[30033]
A4

6 (Z/7)2 [1(216)]
A6

4 (Z/5)3 [1(01441)]
A8

3 (Z/4)4 [3(2001011)]
A12

2 (Z/3)6 [2(11211122212)]
A24

1 (Z/2)12 [1(00000101001100110101111)]

to the elliptic fibration π. The trivial lattice T = U ⊕ (Wπ)root verifies (Wπ)root =
∑
v∈w Tv

where w are the points of P1 corresponding to the reducible singular fibers and Tv the lattice
generated by the fiber components except the zero component (see Schütt–Shioda [24]).
Nishiyama aims at embedding the frames of all elliptic fibrations into a negative-definite
lattice, more precisely into a Niemeier lattice of rank 24. For this purpose, he first determines
an even negative-definite lattice M such that

qM = −qNS(X), rank(M) + ρ(X) = 26.

By Theorem 2.3, M ⊕Wπ(X) has a Niemeier lattice as an overlattice for each frame Wπ(X)
of an elliptic fibration on X. Thus one is bound to determine the (inequivalent) primitive
embeddings of M into Niemeier lattices L. To achieve this, it is essential to consider the root
lattices involved. In each case, the orthogonal complement ofM into L gives the corresponding
frame W (X).

Publications mathématiques de Besançon – 2022



12 Elliptic Fibrations of a certain K3 surface of the Apéry–Fermi pencil

2.6.1. The transcendental lattice and argument from Nishiyama paper. —Denote by T (X)
the transcendental lattice of X, i.e. the orthogonal complement of NS(X) in H2(X,Z) with
respect to the cup-product,

T (X) = NS(X)⊥ ⊂ H2(X,Z).
In general, T (X) is an even lattice of rank r = 22− ρ(X) and signature (2, 20− ρ(X)), ρ(X)
being the Picard number of the K3 surface X. Let t = r − 2. By Nikulin’s Theorem [20],
T (X)[−1] admits a primitive embedding into the following indefinite unimodular lattice:

T (X)[−1] ↪→ U t ⊕ E8[−1].
Then define M as the orthogonal complement of T (X)[−1] in U t ⊕E8[−1]. By construction,
M is a negative-definite lattice of rank 2t+ 8− r = r + 4 = 26− ρ(X).
By Lemma 2.2 the discriminant form satisfies

qM = −qT (X)[−1] = qT (X) = −qNS(X).

Hence M takes exactly the shape required for Nishiyama’s technique.

3. Elliptic fibrations of Y10

To prove the primitivity of the embeddings we shall use the following.

Lemma 3.1. — A lattice embedding is primitive if and only if the greatest common divisor
of the maximal minors of the embedding matrix with respect to any choice of basis is 1.

Remark 3.2. — In that case the Smith form of the embedding matrix has only 1 on the
diagonal.

3.1. Kneser–Nishiyama technique applied to Y10. — By the Kneser–Nishiyama
method we can determine elliptic fibrations of Y10. For further details we refer to [4, 5, 15, 21].
In [4, 5, 21] only singular K3 (i.e. of Picard number 20) are considered.
Let us describe how to determine M in the case of the K3 surface Y10.
Let T (Y10) be the transcendental lattice of Y10. The lattice T (Y10) is an even lattice of rank
r = 22− ρ(Y10) = 2 and signature (1, 1). In that case t := r − 2 = 0 and

T (Y10) =
(

6 0
0 12

)
by Bertin’s results [1]. Thus we must determine a primitive embedding of T (Y10)[−1] into
E8[−1]. If u, v denotes a basis of T (Y10)[−1], define

Φ(u) = 2e1 + e3

Φ(v) = 3e2 + 2e1 + 4e3 + 6e4 + 5e5 + 4e6.

By Lemma 3.1, this is a primitive embedding since the greatest common divisor of the max-
imal minors of the embedding matrix is 1.
Then

M = 〈Φ(u),Φ(v)〉⊥E8 = 〈e2, e1 + 3e4, e3, e5, 4e6 + 3e7, e8〉.
With a reduced basis using LLL algorithm [10], we get

M = 〈e3〉 ⊕ 〈e8, x〉 ⊕ 〈e2, e5, y〉
Publications mathématiques de Besançon – 2022



M.-J. Bertin and O. Lecacheux 13

with
x = 2e1 + 3e2 + 4e3 + 6e4 + 5e5 + 4e6 + 3e7 + e8

and
y = e2 + e1 + 2e3 + 3e4 + e5.

Moreover
〈e8, x〉 = A2

and the Gram matrix of N = 〈e2, e5, y〉 is−2 0 1
0 −2 1
1 1 −4


with determinant −12. So we get M = A1 ⊕ A2 ⊕N and all the elliptic fibrations are given
by the primitive embeddings of M into the Niemeier lattices Ni(Lroot).

Remark 3.3. — Since M is not a root lattice, the primitive embeddings of M into a
Niemeier lattice Ni(Lroot) are not necessarily given by the primitive embeddings of M into
its root lattice Lroot. This is the crucial difference with the situation encountered in the
previous papers [4, 5].

3.2. Types of primitive embeddings of N into the Niemeier lattices. —There are
essentially three types of primitive embeddings of N into a Niemeier lattice Ni(Lroot).
(1) The embeddings of N into the root lattices An, Dn and El of Lroot.

(2) The embeddings of N into a direct sum of two root lattices of Lroot, following from the
fact that a vector of norm −4 is the sum of two roots belonging to two different root
lattices.

(3) The embeddings of N into Ni(Lroot).
The type (2) subdivises in two cases denoted as follows:
(2.a) Type (A2, A2). — That means (−4) = (r1, r2) and a root v1 (resp. v2) is in the same
root lattice as r1 (resp. r2) and satisfies r1.v1 = 1 (resp. r2.v2 = 1). Thus in the first root
lattice, the roots r1 and v1 (resp. in the second root lattice r2 and v2) realize a root lattice A2.
For example the rank 1 elliptic fibration with singular fibers of type 6A2A5 is obtained from
an embedding of type (A2, A2) into E4

6 .
Another example of embedding of type (A2, A2) is the rank 7 fibration 2D43A1 obtained with
the following primitive embedding into D6

4: A2 in D4 three times and A1 in D4.
(2.b) Type (A1, A3). — That means (−4) = (r1, r2) and the roots v1 and v2 are in the same
root lattice as r2 and satisfies r2.v1 = 1, r2.v2 = 1 and v1.v2 = 0. Thus in the first root lattice,
the root r1 is viewed as A1 and in the second root lattice, the roots v1, r2, v2 are viewed as
A3. All the fibrations presented in Theorem 6.1, except fibrations (5) and (6) can be obtained
with this type of embedding.
Thus, case (2.a) and (2.b) are reduced to find primitive embeddings of direct sums of root
lattices, that is of A1⊕A2⊕A2⊕A2, two of the A2 being embedded in different root lattices,
in case (2.a) and A1 ⊕ A2 ⊕ A1 ⊕ A3, the two A1 and A3 being embedded in different root
lattices, in case (2.b).
As for type (2) the type (1) can be divided in two cases.
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14 Elliptic Fibrations of a certain K3 surface of the Apéry–Fermi pencil

(1.a). — From a primitive embedding of A2 ⊕ A2 into a root lattice we get a primitive
embedding of N in the same root lattice as follows.
Denoting A(1)

2 = 〈a1, a2〉 and A(2)
2 = 〈b1, b2〉 we can take, for example, one of the four possible

embeddings (−4) = a1 + b1, v1 = a2, v2 = b2.
(1.b). — From a primitive embedding of A3 ⊕ A1 into a root lattice we get a primitive
embedding of N in the same root lattice as follows.
Denoting A3 = 〈a1, a2, a3〉 and A1 = 〈b1〉 with ai.ai = −2, i = 1, 2, 3, a1.a2 = a2.a3 = 1 and
a1.a3 = 0, we get the primitive embedding of N as (−4) = a2 + b1, v1 = a1, v2 = a3.

Remark 3.4. — In an irreducible root lattice, contrary to case (2), the decomposition of a
norm (−4) vector in two orthogonal roots is not unique. Thus the same embedding can be
viewed either of type (A2, A2) or of type (A3, A1) .

The type (3) needs to find representatives of glue vectors with norm −4.
As we can see there is a lot of glue vectors of norm −4, hence added to the other types of
embeddings, provide a huge amount of elliptic fibrations for Y10. We give some examples.
A rank 2 fibration with singular fibers of type 4A1D4D8 follows from an embedding into
Ni(D2

12). The glue code is [1, 2] and realizes a vector v of norm 4, with

[1] = (1/2, . . . , 1/2) [2] = (0, . . . , 0, 1).

The embedding of N , A1 and A2 is given by

N =

 [1] [2]
0 (010, 1,−1)

(02, 1, 02, 1, 06) 0


A1 =

(
(06, 1,−1, 04), 0)

)
A2 =

(
0, (1,−1, 010)

0, (0, 1,−1, 09)

)
.

A rank 1 fibration with singular fibers of type 2A13A5 follows from an embedding into
Ni(A11D7E6). We take the glue vector [6, 2, 0] with [6] = (1/2, 1/2, 1/2, 1/2, 1/2, 1/2,
−1/2, . . . ,−1/2). We embed N , A1 and A2 as

N =

[6] [2] 0
0 (05, 1,−1) 0
0 (05, 1, 1) 0


A1 =

(
0 0 (−1, 1, 06))

)
A2 =

(
0 (1,−1, 05) 0
0 (0, 1,−1, 04) 0

)
.
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A rank 4 fibration with singular fibers of type 3A35A1 follows from an embedding in Ni(A8
3)

using the norm 4 glue vector (3, 2, 0, 0, 1, 0, 1, 1) = (a∗1, a∗2, 0, 0, a∗3, 0, a∗3, a∗3) as

N =

a∗1 a∗2 0 0 a∗2 0 a∗3 a∗3
0 0 0 0 0 0 a3 0
0 0 0 0 0 0 0 a3


A1 =

(
0 0 0 0 a1 0 0 0

)
A2 =

(
a2 0 0 0 0 0 0 0
a3 0 0 0 0 0 0 0

)
.

For computations in case (3) we use Conway and Sloane notations [11]. For the two first types
we use notations and results of Nishiyama [21] expressed in Bourbaki’s notations [7].
We proceed in the following way. Once is found a primitive embedding of N into a Niemeier
lattice (eventually its root lattice), we compute its orthogonal. If the orthogonal contains A1
or A2 or both we test if the previous embedding of N plus A1 (resp. A2) (resp.A1 ⊕ A2) is
primitive to insure the existence of an elliptic fibration of Y10.

3.3. Primitive embeddings into root lattices. —We give only the examples useful for
explaining the Weierstrass equations of the elliptic fibrations given in the paper.
3.3.1. Embedding of N into D5. —

Lemma 3.5. —

(1) The lattice N embeds primitively in D5 by N = 〈d5, d4, d3 + d1〉 and

(N)⊥D5 = 〈d1 + d2, d5 + d4 + 2d3 + d2〉 ' A2.

(2) This defines an embedding of A2 ⊕N in D5, by
N ⊕A2 = 〈d5, d4, d3 + d1〉 ⊕ 〈d1 + d2, d5 + d4 + 2d3 + d2〉

which is not primitive, since N ⊕A2 is a sublattice of index 3 into D5.

Proof. — The first assertion is a simple computation and the second follows from the fact that
the two lattices N ⊕A2 and D5 have the same rank and satisfy the relations det(A2 ⊕N) =
4× 32 and det(D5) = 4. �

3.3.2. Embedding of N ⊕A1 into D5. —The primitive embedding of N ⊕A1 = 〈d5, d4, d3 +
d1, d1 + d2〉 into D5 satisfies

(N ⊕A1)⊥D5 = 〈d1 + 2d2 + 4d3 + 2d5 + 2d4〉 = (−6).
3.3.3. Embeddings into D6. — Exactly as in the case (2) we get essentially two types of
embeddings which are not isomorphic.

Lemma 3.6. —

(a) The following primitive embedding of N into D6 given by
〈d6, d5, d4 + d2〉 ↪→ D6

has its orthogonal in D6 isomorphic to A2 ⊕ (−4).
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16 Elliptic Fibrations of a certain K3 surface of the Apéry–Fermi pencil

The embedding of N ⊕A1 into D6 given by
〈d6, d5, d4 + d2, d3 + d2〉 ↪→ D6

is primitive.

(b) But the primitive embedding of N
〈d6, d4 + d2, d1〉 ↪→ D6

has its orthogonal in D6 isomorphic to A1 ⊕ (−4)⊕ (−6).

Proof. —

(a). — The orthogonal is 〈d6 + d5 + 2d4 + 2d1, d3 − 2d1, d2 + 2d1〉. With LLL, we find

N⊥D6 = 〈d6 + d5 + 2d4 + d3, d3 + d2, d6 + d5 + 2d4 + 2d3 + 2d2 + 2d1〉 = A2 ⊕ (−4).
The matrix of the embedding of N ⊕A1 being

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 1 0

 ,
it follows that this embedding is primitive since we can extract a matrix of dimension 4 and
determinant 1. Its orthogonal is 〈d6 + d5 + 2d4 + 2d3 + 2d2 + 2d1, d3 + 3d2 + d1〉, with Gram
matrix of determinant 24 and no roots.

(b). — In the second case the orthogonal in D6 of the embedding
〈d6, d4 + d2, d1〉 ↪→ D6

is
〈d6 + 3d5 + 2d4,−2d5 + d3, 3d5 + 2d2 + d1〉.

With LLL, we get
〈A1 = d6 + d5 + 2d4 + d3 ⊕ (−4)⊕ (−6)〉.

As previously we can prove that the embedding of N ⊕A1

〈d6, d4 + d2, d1, d6 + d5 + 2d4 + d3〉 ↪→ D6

is primitive. �

Lemma 3.7. — For all n ≥ 7, there exists a primitive embedding of N into Dn, such that
((N)⊥Dn

)root ' A2 ⊕Dn−5.

For n = 6
((N)⊥D6)root ' A2.

Proof. — Suppose first n > 8 and consider the following embedding
N = 〈dn, dn−1, dn−2 + dn−4〉 ↪→ Dn.

The following roots of Dn are orthogonal to N :
d1, d2, . . . , dn−6, x = dn + dn−1 + 2(dn−2 + dn−3 + dn−4 + dn−5) + dn−6.
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These roots satisfy the relations:

dn−6.dn−7 = 1, dn−7.dn−8 = 1, . . . d2.d1 = 1
x.dn−6 = x.dn−8 = · · · = x.d1 = 0

x.dn−7 = 1.

We deduce 〈dn−6, x, dn−7, dn−8, . . . , d1〉 ' Dn−5. Consider also the following roots y and z
of Dn:

y = dn + dn−1 + 2(dn−2 + dn−3) + dn−4, z = −(dn−3 + dn−4).
They satisfy y.z = 1, hence 〈y, z〉 ' A2. They are orthogonal to N , dn−6, x, dn−8, . . . , d1.
Finally (N⊥Dn

)root ' A2 ⊕Dn−5.
Notice, if n = 8, that Dn−5 ' A3.
If n = 7,

(N⊥D7)root ' 〈y, z〉 ⊕ 〈x, d1〉 ' A2 ⊕ 2A1 ' A2 ⊕D2.

If n = 6, a direct computation, see Lemma 3.6 a), gives N⊥D6
' A2 ⊕ (−4) ' A2 ⊕D1. �

Lemma 3.8. —

(1) There is a primitive embedding of N ⊕A1 into D7 with orthogonal A1 ⊕A2.

(2) There is no primitive embedding of N ⊕A2 into D7 with orthogonal A1 ⊕A1.

Proof. —

(1). — Consider the embedding:

N ⊕A1 = 〈d7, d6, d5 + d3, d1〉 ↪→ D7.

Take d = a1d1 + · · ·+a7d7 satisfying nd = λ7d7 +λ6d6 +λ5(d5 +d3)+λ1d1. From the relations
na1 = λ1, a2 = 0, na3 = na5 = λ5, a4 = 0, etc., we find d = a1d1 + a3(d3 + d5) + a6d6 + a7d7,
that is d ∈ N ⊕A1, proving the primitivity of the embedding.
We can also prove the primitivity using Lemma 3.1.
The orthogonal of the embedding is

〈d6 + d7 + 2d5 + 2d4 + 2d3 + 2 d2 + d1〉 ⊕ 〈d4 + d3,−d6 − d7 − 2d5 − 2d4 − d3〉 ' A1 ⊕A2.

(2). — The embedding

N ⊕A2 = 〈d7, d6, d5 + d3, d4 + d3,−d7 − d6 − 2d5 − 2d4 − d3〉 ↪→ D7

is not primitive since its matrix
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 1 0 0
0 0 0 1 1 0 0
−1 −1 −2 −2 −1 0 0


has its extremal minor of determinant 3. �
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3.3.4. Embedding of N into E8. —

Lemma 3.9. —

(1) There is a primitive embedding of N into E8 whose orthogonal in E8 is A2 ⊕A3.

(2) There is a primitive embedding of N ⊕A1 into E8 whose orthogonal in E8 is A3⊕ (−6).

(3) There is a primitive embedding of N ⊕ A1 ⊕ A2 into E8 whose orthogonal in E8 is
(−6)⊕ (−12).

Proof. —

(1). — Embed primitively N in E8 as N = 〈e2, e7, e4 + e6〉, we get

(N)⊥E8 = 〈e1, e2 + 3e3 + 2e4, e5 − 2e3, 2e3 + e6 − e8,−e3 + e7 + 2e8〉.

With LLL algorithm [8] we obtain

(N)⊥E8 = 〈e1, e2 + e3 + 2e4 + e5, 2e1 + 2e2 + 3e3 + 4e4 + 3e5 + 2e6 + e7〉
⊕ 〈−e1 − e2 − 2e3 − 2e4 − e5 − e6 − e7 − e8,

2e1 + 3e2 + 4e3 + 6e4 + 5e5 + 4e6 + 3e7 + 2e8〉

with Gram matrix −2 1 −1
1 −2 0
−1 0 −2

⊕ (−2 1
1 −2

)
.

Thus
(N)⊥E8 = A3 ⊕A2.

(2). — The following embedding

N ⊕A1 = 〈e2, e7, e4 + e6,−e1 − e2 − 2e3 − 2e4 − e5 − e6 − e7 − e8〉 ↪→ E8

has for orthogonal in E8, the lattice A3 ⊕ (−6).

(3). — If moreover we embed A2 into the previous A3 we find (−6) ⊕ (−12) as orthogonal
of N ⊕A1 ⊕A2 into E8. �

3.3.5. Embedding of N ⊕ A1 into E7. —The following primitive embedding of N ⊕ A1 into
E7 given by

〈e1, e3 + e5, e6, e2〉 ↪→ E7

satisfies
((N ⊕A1)⊥E7)root = 〈e7〉 = A1.
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3.3.6. Embeddings of N into E6. —

Lemma 3.10. — There are at least two types of non isomorphic primitive embeddings of
N into E6:

(1) φ0(N) = 〈e1, e1 + e2 + 2e3 + 2e4 + e5, e2 + e3 + 2e4 + 2e5 + 2e6〉, with (φ0(N))⊥E6
=

〈e2, e4, e5〉 ' A3.

(2) φ1(N) = 〈e1, e3 + e5, e6〉, with ((φ1(N))⊥E6
)root ' A2.

Proof. —

(1). — The embedding φ0 is given in Nishiyama [21].

(2). — We get
(φ1(N))⊥A6 = 〈e1 + 2e3 − 2e5 − e6, 3e4 + 4e5 + 2e6, e2〉

= 〈e1 + 2e2 + 2e3 + 2e5 + e6, e2, 3e4 + 4e5 + 2e6〉,
hence the result. �

3.3.7. Fibrations involving embeddings φ0 and φ1. —

(a) The embedding φ0 of N into E6 leads to the rank 0 and 3-torsion fibration 2A2A3A5E6.

(b) With the same embeddings but replacing the embedding φ0 by φ1 we get the rank 1
fibration 3A2 A5 E6.

Remark 3.11. — To illustrate the complexity of the determination of elliptic fibrations
of Y10, notice the following fibrations all with two fibers of type A5 coming from primitive
embeddings into various Niemeier lattices:

– 2A12A5 (r = 6) resulting from an embedding in A4
5D4 (type (A3, A1) into A2

5),

– 2A12A22A5 (r = 2) resulting from an embedding into E4
6 ,

– A12A2A32A5 (r = 0) resulting from an embedding into Ni(A11D7E6).

Besides, we recall a result obtained by Nishiyama [21].

Lemma 3.12. — Up to the action of the Weyl group, the unique primitive embeddings of A1
and A2 in the following root lattices together with their orthogonals are given in the following
list

– A1 = 〈dl〉 ⊂ Dl, l ≥ 4, (A1)⊥Dl
= A1 ⊕Dl−2

– A1 = 〈d4〉 ⊂ D4, (A1)⊥D4
= A⊕3

1

– A1 = 〈e1〉 ⊂ Ep, p = 6, 7, 8
(A1)⊥E6 = A5

(A1)⊥E7 = D6

(A1)⊥E8 = E7
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– A2 = 〈e1, e3〉 ⊂ Ep, p = 6, 7, 8

(A2)⊥E6 = A⊕2
2

(A2)⊥E7 = A5

(A2)⊥E8 = E6

4. Specialized elliptic fibrations of Y10

Bertin and Lecacheux gave in [6] all the elliptic fibrations called generic together with Weier-
strass equations of the K3 surface (Yk) of the Apéry–Fermi pencil. When specializing k to
10 we obtain certain elliptic fibrations of Y10 named specialized fibrations and the process is
called specialization.

Theorem 4.1. — The specialized elliptic fibrations of Y10 have the same singular fibers and
torsion as the generic ones. Their rank is equal to the corresponding generic one plus one,
hence is bounded by 3.
All the embeddings giving such fibrations can be derived from embedding N ⊕ A1 ⊕ A2 into
the root lattices of the Niemeier lattices.

Proof. — We get first the specialized Weierstrass equations of Y10 from the generic ones given
in Bertin–Lecacheux [6, Tables 3 and 4].
Then we deduce the primitive embeddings of N ⊕ A1 ⊕ A2 into the Niemeier lattices giving
the corresponding elliptic fibration in Table 2. Recalling the elliptic fibrations in the generic
case [6, Table 2], we derive some observations.
The specialized fibrations are all obtained by replacing a primitive embedding of D5 in the
generic case by a primitive embedding of A1 ⊕ N in the same corresponding root lattice in
the Y10 case. Moreover the trivial lattices of the elliptic fibrations are the same. Since the
Picard number is 19 in the generic case and 20 for Y10, this explains why the rank of the
specialized Y10 always increases by 1. This is a consequence of the following lemma. �

Lemma 4.2. —

(1) Denote R any root lattice Dn, n ≥ 5, E6, E7 or E8. There is a primitive embedding of
N ⊕A1 into R such that ((N ⊕A1)⊥R)root = ((D5)⊥R)root.

(2) There is a primitive embedding of N⊕A1⊕A2 into E8 such that ((N⊕A1⊕A2)⊥E8
)root =

((A2 ⊕D5)⊥E8
)root = 0.

Proof. —

(1). — If R = Dn, we embed N into Dn as in Lemma 3.7 and A1 into the A2 part of its
orthogonal in Dn. That is precisely if n ≥ 7, the primitive embedding

N ⊕A1 = 〈dn, dn−1, dn−2 + dn−4, dn−3 + dn−4〉 ↪→ Dn.

The following roots of Dn,
dn−6, dn−7, . . . , d1, dn + dn−1 + 2(dn−2 + dn−3 + · · ·+ dn−5) + dn−6

are orthogonal to N⊕A1, and generate Dn−5. If n = 6, take the embedding of Lemma 3.6(a).
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Table 2. The specialized elliptic fibrations of Y10

Lroot L/Lroot type of Fibers Rk Tors.
E3

8 (0)
#1 A2 ⊂ E8 (A1 ⊕N) ⊂ E8 E6A3E8 1 (0)
#2 A2 ⊕ (A1 ⊕N) ⊂ E8 E8E8 2 (0)

D16E8 Z/2Z
#3 A2 ⊂ E8 (A1 ⊕N) ⊂ D16 E6D11 1 (0)
#4 A2 ⊕ (A1 ⊕N) ⊂ E8 D16 2 Z/2Z
#5 (A1 ⊕N) ⊂ E8 A2 ⊂ D16 A3D13 2 (0)
#6 A2 ⊕ (A1 ⊕N) ⊂ D16 E8D8 2 (0)

D10E
2
7 (Z/2Z)2

#7 A2 ⊂ E7 (A1 ⊕N) ⊂ D10 E7A5D5 1 Z/2Z
#8 A2 ⊂ E7 (A1 ⊕N) ⊂ E7 A5A1D10 2 Z/2Z
#9 A2 ⊕ (A1 ⊕N) ⊂ D10 E7E7A1A1 2 Z/2Z
#10 (A1 ⊕N) ⊂ E7 A2 ⊂ D10 A1D7E7 3 (0)

A17E7 Z/6Z
#11 (A1 ⊕N) ⊂ E7 A2 ⊂ A17 A1A14 3 (0)

D24 Z/2Z
#12 A2 ⊕ (A1 ⊕N) ⊂ D24 D16 2 (0)

D2
12 (Z/2Z)2

#13 A2 ⊂ D12 A1 ⊕N ⊂ D12 D9D7 2 (0)
#14 A2 ⊕ (A1 ⊕N) ⊂ D12 D4D12 2 Z/2Z

D3
8 (Z/2Z)3

#15 A2 ⊂ D8 (A1 ⊕N) ⊂ D8 D5A3D8 2 Z/2Z
#16 A2 ⊕ (A1 ⊕N) ⊂ D8 D8D8 2 Z/2Z

A15D9 Z/8Z
#17 A2 ⊕ (A1 ⊕N) ⊂ D9 A15 3 Z/2Z
#18 (A1 ⊕N) ⊂ D9 A2 ⊂ A15 D4A12 2 (0)

E4
6 (Z/3Z)2

#19 A2 ⊂ E6 (A1 ⊕N) ⊂ E6 A2A2E6E6 2 Z/3Z
A11D7E6 Z/12Z

#20 A2 ⊂ E6 (A1 ⊕N) ⊂ D7 A2A2A1A1A11 1 Z/6Z
#21 A2 ⊂ A11 (A1 ⊕N) ⊂ D7 A8A1A1E6 2 (0)
#22 A2 ⊂ A11 (A1 ⊕N) ⊂ E6 A8D7 3 (0)
#23 (A1 ⊕N) ⊂ E6 A2 ⊂ D7 A11D4 3 Z/2Z

D4
6 (Z/2Z)4

#24 A2 ⊂ D6 (A1 ⊕N) ⊂ D6 A3D6D6 3 Z/2Z
A2

9D6 Z/2× Z/10
#25 (A1 ⊕N) ⊂ D6 A2 ⊂ A9 A6A9 3 (0)

A2
7D

2
5 Z/4× Z/8

#26 (A1 ⊕N) ⊂ D5 A2 ⊂ D5 A1A1A7A7 2 Z/4Z
#27 (A1 ⊕N) ⊂ D5 A2 ⊂ A7 D5A4A7 2 (0)
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For example, the rank 0 elliptic fibration #20 in [6, Table 2 (2A12A2A11)] comes from the
following primitive embedding

D5 = 〈d7, d6, d5, d4, d3〉 ↪→ D7,

whose orthogonal into D7 is D2 ' 2A1 by [21, p. 309, 310, 311].
And the rank 1 specialized fibration #20 in Table 2 (2A12A2A11) comes from the following
primitive embedding

N ⊕A1 = 〈d7, d6, d5 + d3, d4 + d3〉 ↪→ D7,

whose orthogonal into D7 is ' 2A1.
If R = E6, we embed N as in Lemma 3.10(2). If R = E7 we embed N ⊕ A1 as in 3.3.5. If
R = E8, we embed N ⊕A1 as in Lemma 3.9(2).

(2). — It follows from the embedding given in Lemma 3.9(3). �

5. The extremal elliptic fibrations of Y10

5.1. Embeddings. — In Bertin–Lecacheux [6] all the generic elliptic fibrations are given
with Weierstrass equations. We observe by computation that all their specializations for
k = 10 give elliptic fibrations of Y10 with a positive rank less than 3 but no extremal fibration.
The list of the extremal elliptic fibrations of Y10 can be found in Shimada–Zhang [25]. We
shall keep Shimada–Zhang numbering and give the corresponding primitive embeddings of
M = N ⊕A2 ⊕A1 into Niemeier lattices in the following theorem.

Theorem 5.1. — The extremal elliptic fibrations of Y10 come from primitive embeddings of
M = N ⊕A2 ⊕A1 into the following Niemeier lattices with Lroot

E3
8 , D16E8, D10E

2
7 , E

4
6 , A11D7E6.

Eight of them, namely fibrations number 80, 153, 200, 224, 252, 262, 292, 302 are obtained
from primitive embeddings of N into a root lattice while the three remaining come from an
embedding of N into Ni(D16E8), namely number 87 and 241 or into Ni(A11D7E6), namely
number 8. They are listed below with their Mordell–Weil groups:

Number Singular fibers Torsion from
292 A2 +A3 + E6 + E7 (0) E3

8
302 A2 +A3 +A5 + E8 (0) E3

8
87 A1 +A1 +A5 +A11 Z/(2) Ni(D16E8)
241 A1 +A11 + E6 (0) Ni(D16E8)
200 A2 +A5 +D11 (0) D16E8
252 A1 +A2 +D9 + E6 (0) D16E8
153 A2 +A5 +D5 +D6 Z/(2) D10E

2
7

262 A1 +A2 +A3 +A5 + E7 Z/(2) D10E
2
7

224 A2 +A2 +A3 +A5 + E6 Z/(3) E4
6

80 A1 +A2 +A2 +A2 +A11 Z/(3) A11D7E6
8 A1 +A2 +A2 +A3 +A5 +A5 Z/(6) Ni(A11D7E6)
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Proof. —

Fibration 292 (A2A3E6E7). — Embed primitively N into E(1)
8 as in Lemma 3.9(1), A1 into

E
(2)
8 and A2 into E(3)

8 as in Lemma 3.12. Since for these embeddings, det(N ⊕A1 ⊕A2)⊥
E3

8
=

det(A2 ⊕A3 ⊕ E6 ⊕ E7) = 72, the Mordell–Weil group is equal to (0).

Fibration 302 (A2A3A5E8). — Embed primitively N into E(1)
8 as in Lemma 3.9(1), and A1⊕

A2 into E(2)
8 as in Nishiyama [21, p. 332]. Since there is a fiber of type E8, the Mordell–Weil

group is equal to (0).

Fibrations 87 and 241. — They follow from a primitive embedding of N into Ni(D16E8)
given in the lemma below.

Lemma 5.2. — There is a primitive embedding of N into Ni(D16E8) whose root part of
its orthogonal in D16 contains A11 ⊕ 2A1.

Proof of Lemma 5.2. — The glue code of Ni(D16E8) is generated by ([1], 0) cf. Table 1. The
norm −4 vector v = ([3], 0) and the norm −2 vectors v1 = (d15, 0), v2 = (d1, 0) define a
primitive embedding of N into Ni(D16E8). Indeed, [3] = −d∗15 + d∗1. The primitivity follows
from the fact that in the basis [3], d1, di, 3 ≤ i ≤ 16 of D∗16 the matrix of the embedding
has for maximal minor the matrix identity. Moreover (〈−d∗15 + d∗1, d15, d1〉⊥D16

)root contains
〈d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13〉 ⊕ 〈d16〉 ⊕ 〈d16 + d15 + 2d14 + · · ·+ 2d2 + d1〉 = A11 ⊕
A1 ⊕A1. �

Fibration 87 (2A1A5A11). — It is obtained from the embedding of N as in the previous
lemma and A1⊕A2 into E8 as in Nishiyama [21, p. 332]. Since for these embeddings, det(N⊕
A1 ⊕ A2)⊥E8⊕D16

= det(A1 ⊕ A1 ⊕ A11 ⊕ A5) = 72 × 4, the Mordell–Weil group is equal to
Z/(2).

Fibration 241 (A1A11E6). — The lattice N being embedded as in Lemma 5.2, we embed
A1 = d16 in D16 and A2 in E8 as in Lemma 3.12.
Since for these embeddings, det(N⊕A1⊕A2)⊥E8⊕D16

= det(A1⊕A11⊕E6) = 72, the Mordell–
Weil group is equal to (0).

Fibration 200 (A2A5D11). — We embed N into D16 as in Lemma 3.7 and A1 ⊕ A2 into E8
as in Nishiyama [21, p. 332].
Since for these embeddings, det(N ⊕A1⊕A2)⊥E8⊕D16

= detA2⊕A5⊕D11 = 72, the Mordell–
Weil group is equal to (0).

Fibration 252 (A1A2D9E6). — We embedN⊕A1 intoD16 as 〈d16, d15, d14+d12, d10〉. A direct
computation gives the orthogonal A1⊕D9⊕A2. We complete by embedding A2 into E8 with
orthogonal E6 as in Lemma 3.12. Since for these embeddings, det(N ⊕ A1 ⊕ A2)⊥E8⊕D16

=
det(A1 ⊕A2 ⊕D9 ⊕ E6) = 72, the Mordell–Weil group is equal to (0).

Fibration 153 (A2A5D5D6). — We embed N in D10 as in Lemma 3.7, A1 in E(1)
7 and A2 in

E
(2)
7 as in Lemma 3.12. Since for these embeddings, det(N ⊕ A1 ⊕ A2)⊥

E2
7⊕D10

= det(A2 ⊕
A5 ⊕D5 ⊕D6) = 4× 72, the Mordell–Weil group is equal to Z/(2).
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Fibration 262 (A1A2A3A5E7). — We embed N⊕A1 in D10 as 〈d10, d9, d8 +d6, d4〉 and A2 in
E

(1)
7 . Since for these embeddings, det(N ⊕A1⊕A2)⊥E8⊕D16

= det(A1⊕A2⊕A3⊕A5⊕E7) =
4× 72, the Mordell–Weil group is equal to Z/(2).

Fibration 224 (2A2A3A5E6). — We embed N into E(1)
6 as in Lemma 3.10(1), A1 into E(2)

6 ,
A2 into E(3)

6 as in Lemma 3.12.
Since for these embeddings, det(N ⊕ A1 ⊕ A2)⊥

E4
6

= det(A2 ⊕ A2 ⊕ A3 ⊕ A5 ⊕ E6) = 9× 72,
the Mordell–Weil group is equal to Z/(3).

Fibration 80 (A13A2A11). — We embed N ⊕A1 into D7 as in Lemma 3.8(1) and A2 into E6
as in Lemma 3.12. Since for these embeddings, det(N ⊕A1⊕A2)⊥A11⊕E6⊕D7

= det(A1⊕A3
2⊕

A11) = 9× 72, the Mordell–Weil group is equal to Z/(3).

Fibration 8 (A12A2A32A5). — This fibration is obtained from a primitive embedding of N⊕
A2 ⊕A1 into Ni(A11 ⊕D7 ⊕ E6) giving the rank 0 elliptic fibration A12A2A32A5.
The glue code of Ni(A11D7E6) is generated by the class of the glue vector g = [[1], [1], [1]].
In the class of 6g = [[6], [2], 0], take the vector

v = (((1/2)6, (−1/2)6), (06, 1), 0) = (a∗6, d∗1, 0)
of norm −4 and the vectors

v1 = (0, d1, 0)
v2 = (0, (0, 0, 0, 0, 0,−1,−1), 0)

of norm −2. These vectors realize a primitive embedding of N into Ni(A11D7E7) whose
root part of its orthogonal in Ni(A11D7E7) is 2A5 ⊕D5 ⊕ E6 with D5 = 〈d7, d6, d5, d4, d3〉.
Moreover, we embed A1 = 〈d7〉 into D5 and A2 into E6 as in Lemma 3.12. We get
det(A12A2A32A5) = 72× 62. From Shimada–Zhang [25], an extremal fibration with singular
fibers of type A12A2A32A5 is the fibration 8 with 6-torsion. �

5.2. Weierstrass equations of the extremal fibrations of Y10. —Recall first some
facts. Classified by Néron [18] and Kodaira [14] the singular fibers are union of irreductible
components with multiplicities, each component being a smooth rational curve with self-
intersection −2. Their Kodaira types are the following:

– two infinite series In(n > 1) and I∗n(n ≥ 0)

– five types III , IV , II ∗, III ∗, IV ∗.

The dual graph of these components (a vertex for each component, an edge for each intersec-
tion point of two components) is an extended Dynkin diagram of type Ãn, D̃l, Ẽp. Deleting
the zero component (i.e. the component meeting the zero section) gives the Dynkin diagram
graph An,Dl, Ep. We draw the most useful diagrams, with the multiplicity of the components,
the zero component being represented by a circle (Figure 2).
First we will use the following proposition ([22, p. 559-560] or [24, Proposition 12.10]).

Proposition 5.3. — Let S be a K3 surface and D an effective divisor on S that has the
same type as a singular fiber of an elliptic fibration. Then S admits a unique elliptic fibration
with D as a singular fiber. Moreover, any irreducible curve C on S with D.C = 1 induces a
section of the elliptic fibration.
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1 1 1 1

1

Ãn(In+1)

1 2 2 1

1 1

D̃l(I
∗
l−4)

1 2 3 2 1

2

1

Ẽ6(IV
∗)

1 2 3 4 3 2 1

2

Ẽ7(III
∗)

2 4 6 5 4 3 2 1

3

Ẽ8(II
∗)

1

Figure 2. Extended Dynkin diagrams

If S is a K3 surface, an elliptic fibration f : S → P1 with a section O defines a non constant
function t, with t = f(z) for z ∈ S; the function t, called the elliptic parameter is unique (up
to an homographic transformation). Then the generic fiber F/k(t) has a Weierstrass equation.

y2 + a1 (t) yx+ a3 (t) y = x3 + a2 (t)x2 + a4 (t)x+ a6 (t)

with ai ∈ k [t] of degree at most 2i.
An effective divisor as defined in Proposition 5.3 is called an elliptic divisor.
5.2.1. From a fibration to another. —The method is explained in [12], [15], [29] or [24, §6].
Let S be a K3 surface and f : S → P1 be an elliptic fibration of elliptic parameter t and D
the class of the fiber. Given another effective divisor D′ satisfying D′2 = 0, we want to write
a Weierstrass equation for this new elliptic fibration.
If D ·D′ = r we say these elliptic fibrations are r-neighbor. We decompose D′ = D′h+G with
D′h horizontal and Gmade of components θti,n of singular fibers of f at ti; thenD·D′ = D·D′h.
In the case D′h = 2O (resp. 3O) we are looking for a new elliptic parameter m such that the
singular fiber D′ is obtained form equal to∞. This implies thatm = a (t) +b (t)x (resp. a (t)
+b (t)x+ c (t) y) with a (t) , b (t) , c (t) ∈ k(t) [15]. If P is a section for the first fibration and
D′h = O+P then a new elliptic parameter has the shape a (t) +ub (t) where u = y−y(−P )

x−x(P ) . To
determine the elements a, b, c we need to look at the order of vanishing along the components
θti,n of the corresponding singular fiber belonging to G. Finally we complete the calculation
using the equations of these components cf. [29, §5] and Tate Algorithm [26, IV §9]. An
example is given in the next paragraph, with the Fibration 292.
The computation is easier if we know two elliptic divisorsD1 andD2 of the same new fibration
that is satisfying D1 ·D2 = 0. Since D1 and D2 represent the same element in the Néron Severi
group, writing Di = Dh,i +Gi, 1 ≤ i ≤ 2, then the classes of Dh,1 and Dh,2 are equal in the
quotient NS (S) /T where T is the trivial lattice. Using the isomorphism between NS(S)/T
and the Mordell–Weil lattice E(k(t)), it follows that Dh,1 −Dh,2 is the divisor of a function
u0 on the generic fiber of f. A parameter of the new fibration can be taken as the function
u = u0

∏
ti∈w(t − ti)ai where ai ∈ Z, and w is a set of reducible fibers. An example is given

in Remark 5.7.
Once we get a new elliptic parameter we have to compute a Weierstrass equation using
birational transformations. We can eliminate one variable in function of the new parameter.
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Most of time we obtain an equation of bidegree 2 in the other variables. Blowing up the
singular points we then get a Weierstrass equation. In case of a cubic equation with a rational
point, we can use [27, p. 23] or a software program (Maple [16]).

Notation 5.4. — All these new Weierstrass equations are always written in the final form
with variables X,Y and parameter t, even if along the process from the initial fibration to
the new one we must use several different notations.
The singular fibers of type In, Dm, IV ∗, . . . at t = t1, . . . , tm or at roots of a polynomial p(t)
of degree m are denoted mIn(t1, . . . , tm) or mIn(p(t)). The zero component of a reducible
fiber is the component intersecting the zero section and is denoted θ0 or θt0,0. The other
components denoted θt0,i satisfy the property θt0,i · θt0,i+1 = 1.

Recall the following computations. Let Yk be the surface defined by the Laurent polynomial

X + 1
X

+ Y + 1
Y

+ Z + 1
Z

= k.

Considering the elliptic fibration defined with the elliptic parameter t = X + Y + Z − k
2 , we

obtain a Weierstrass equation with the transformation

X = y − x2

y
(
k
2 − t

) , Y = y + x

x
(
k
2 − t

) , Z = −X − Y + t+ k

2
of inverse on Yk

x = −(Z + Y ) (Z +X)
Z2 , y = −Y (Z + Y ) (Z +X)2

XZ3 , t = X + Y + Z − k

2 .

Hence we get the elliptic fibration

E#20 : y2 +
(
t2 + 3− k2

4

)
yx+

(
t2 + 1− k2

4

)
y = x3

I12(∞), 2I3

(
t2 + 1− k2

4

)
, 2I2

(
±k2

)
, 2I1

(
t2 + 9− k2

4

)
.

The generic rank is 0, the point (−1, 1) is of order 2, and (0, 0) of order 3.
For k = 10 this equation becomes

y2 +
(
t2 − 22

)
yx+

(
t2 − 24

)
y = x3,

with rank 1 and a generator of the Mordell–Weil group

P =
(
−1− 1

432 t
2
(
t2 − 9

)2
,
−1

15552 i
√

3
(
t2 + i

√
3t− 12

)3 (
t+ i
√

3
)3
)

=
(
− 1

432
(
t2 + 3

) (
t4 − 21t2 + 144

)
,
−1

15552 i
√

3
(
t2 + i

√
3t− 12

)3 (
t+ i
√

3
)3
)
.

Remark 5.5. — The result T (Y10) = T (Y2)[3], already known in [2, 3], can be recovered
from this fibration, computing the discriminant group of the Néron–Severi lattice.

Fibration 80. — From the Weierstrass equation E#20, using the elliptic parameter n,

i
√

3n = 1
(t+ 5)

y − yP
x− xP

−

(
11− 3i

√
3
)

(t+ 5) − i
√

3
36

(
t− 6 + 3i

√
3
) (
t+ 6 + 3i

√
3
)

t+ 5
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we obtain the Weierstrass equation En of the elliptic fibration 80 of rank 0 with 3-torsion.

En : Y 2 +
(
9t2 + 6t− 9

)
Y X + 9t4

(
3t2 + 6t− 5

)
Y = X3

with singular fibers I3(∞), I12(0), 2I3(3t2 + 6t− 5), I2
(3

5
)
, I1

(
−3

4
)
.

Fibration 262. — From the previous Weierstrass equation En of fibration 80 and with the
parameter u = X

t4 we obtain

Eu : Y 2 − 2 (t+ 9)Y X = X3 + 9 (t+ 3) (t+ 5)X2 − t3 (t+ 5)2X

III ∗(∞), I6(0), I4 (−5) , I3 (−9) , I2 (−4)
with rank 0 and a 2-torsion section (0, 0).

Remark 5.6. — This fibration can also be obtained from En with the parameter u1 =
Y

X(3t2+6t−5) ; the singular fiber I6 is for u1 =∞ and III ∗ for u1 = 0.

Fibration 292. — We start from the previous Weierstrass equation of Eu of the fibration 262.
With the fibers I6 at t = 0 and I2 at t = −4 we construct an elliptic divisor D of type IV ∗

D = θ−4,1 + 2O + 3θ0,0 + 2θ0,5 + θ0,4 + 2θ0,1 + θ0,2.

We put at (0, 0) all the singular points for t = 0 and t = −4. For t = 0 there is no change but
for t = −4 the singular point is at X = −8, Y = −40. Using the Chinese remainder theorem
we make the translation

X = −8 + (t+ 4)
(

2− t

2 + 1
8 t

2
)

+ x i.e. X = t3

8 + x

Y = −40 + (t+ 4)
(

10− 5
2 t+ 5

8 t
2
)

+ y i.e. Y = 5
8 t

3 + y.

This gives the Weierstrass equation

y2 − (2t+ 18) yx− 1
4 t

3 (t+ 4) y = x3 +
(3

8 t
3 + 9t2 + 72t+ 135

)
x2

+ 1
64 t

3 (3t+ 20) (t+ 4) (t+ 16)x+ 1
512 t

7 (t+ 4)2 .

At t = 0 the components θ0,5 and θ0,1 are defined by x = tx1, y = ty1 and the two lines
y2

1 − 18x1y1− 135x2
1 = 0. The components θ0,2 and θ0,4 are defined by x = t2x2, y = t2y2 and

y2
2 − 18x2y2 − 135x2

2 = 0.

At t = −4, the zero component is defined by x 6= 0 mod (t + 4). So if w = 8x
t3(t+4) = X− t3

8
t3(t+4)

we obtain the parameter of an elliptic fibration with D at w = ∞. It follows a Weierstrass
equation

Ew : Y 2 = X3 + 2t2 (3t+ 5)X2 + t3 (12t+ 1) (t− 1)2X + 8t5 (t− 1)4

with singular fibers IV ∗(∞), III ∗(0), I4(1), I3
(
− 1

27
)
.

Fibration 252. — From fibration 262 with the Weierstrass equation Eu and the parameter
X
t3 we obtain

Et : Y 2 = X3 + t (10t− 1)X2 + 10t4 (9t− 1)X + t7 (216t− 25)

with singular fibers IV ∗(∞), I∗5 (0), I3
( 4

27
)
, I2

(1
8
)
.
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Fibration 302. — We start from the equation Eu of fibration 262 and parameter r = X−2t
2(t+4)

and obtain the Weierstrass equation

Y 2 = X3 +
(
−14t2 + 63

2 t+ 27
2

)
X2 + 14t3 (3t− 19)X − 2t6 (t− 7)

with singular fibers II∗(∞), I6(0), I4(−5), I3(9), I1
(−7

27
)
.

Fibration 200. — We start with the previous fibration 302, do the translation X = 250 −
175
2 (t+ 5) +X1 and obtain the new Weierstrass equation

Er : Y 2 = X3
1 +A (t)X2

1 +B (t) (t+ 5)2X1 + C (t) (t+ 5)4

where A,B,C are polynomials with respective degrees 2, 2, 3. Then the new parameter s =
X1

(t+5)2 gives the fibration 200. A Weierstrass equation is obtained with s = 15
2 + t

Es : Y 2 = X3 + (t3 + 17
2 t

2 + 3
4 t+ 27

8 )X2 − t (10t+ 9) (2t− 3)X + 2t2 (27 + 50t)

with singular fibers I∗7 (∞), I6(0), I3
(−9

4
)
, 2I1(4t2 + 44t− 7).

Fibration 153. — From fibration 252 we take the parameter j = − X+4t3
t2(8t−1) and obtain the

fibration 153 with Weierstrass equation

Y 2 = X3 + t
(
t2 + 10t− 2

)
X2 + t2 (2t+ 1)3X

and singular fibers I∗2 (∞), I∗1 (0), I6
(1

2
)
, I3(4).

Fibrations 8 and 224. — We consider the two elliptic fibrations of rank 0 of Y2 [5] with
Weierstrass equations

Ew : Y 2 −
(
t2 + 2

)
Y X − t2Y = X3

Ej : Y 2 − t (t+ 4)Y X + t2Y = X3.

In these two cases the section (0, 0) is a 3-torsion section.
The two curves Hw and Hj respectively 3-isogenous to Ew and Ej have the following Weier-
strass equations and singular fibers

Fibration 8 Hw : Y 2 + 3(t2 + 2)Y X +
(
t2 + 8

)
(t− 1)2 (t+ 1)2 Y = X3

2I6 (1,−1) , I4(∞), 2I3
(
t2 + 8

)
, I2(0).

Fibration 224 Hj : Y 2 + 3t (t+ 4)Y X + t2
(
t2 + 10t+ 27

)
(t+ 1)2 Y = X3

VI ∗(0), I6 (−1) , 2I3
(
t2 + 10t+ 27

)
, I4(∞).

The elliptic fibration Hw is an elliptic fibration of an extremal K3 surface with 6-torsion and
singular fibers of type I2, 2I3, I4, 2I6 (A1, 2A2, A3, 2A5) hence with discriminant 72. Refering
to Shimada–Zhang [25, Table 2, entry 8], we can identify Hw as an elliptic fibration of a K3
surface with transcendental lattice [6 0 12] (Shimada–Zhang notation), hence as a fibration
of Y10 Fibration 8.
Similarly Hj is an elliptic fibration of an extremal K3 surface with 3-torsion, singular fibers
of type 2I3, I4, I6, IV

∗ (2A2, A3, A5, E6) and discriminat 72. Refering to Shimada–Zhang [25,
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Table 2, entry 224], we can identify Hj as an elliptic fibration of a K3 surface with tran-
scendental lattice [6 0 12] (Shimada–Zhang notation), hence as a fibration of Y10 Fibration
224.

Remark 5.7. — The previous results can also be obtained in the following manner:
From a fibration with 3 singular fibers of type In1 , In2 , In3 , ni ≥ 3, at respectively t1, t2, t3
we can obtain by 3-neighbour method a fibration with a fiber of type IV ∗ considering the
divisor D1 = 3O + 2

∑
θti,0 +

∑
θti,1, where θti,j are components of Ini with O · θti,0 = 1,

θti,0 · θti,1 = 1.
For the fibration Hw we choose the 3 fibers I6(1), I3

(
t2 + 8

)
. With the fibers I6 (−1) , I4(∞)

and two torsion sections we can consider a divisor D2 of type I∗5 verifying D2 ·D1 = 0, namely

D2 = θ∞,3 + θ∞,1 + 2θ∞,2 + 2ω6 + 2
4∑
i=1

θ−1,i + θ−1,5 + ω3.

Then (D2 −D1)h = 2ω6 +ω3−3O. The two torsion sections ωi are on the line Y +
(
8 + t2

)
X.

So with the parameter m = Y+(8+t2)X
(t−1)2(t2+8)2 we obtain a new fibration which is fibration 252,

and we recover the previous result: Hw is a fibration of Y10.
For the fibration Hj we choose the 3 fibers I6(−1), I3(t2 + 10t+ 27). With the fibers IV ∗(0),
I4(∞) and a 3-torsion section ω3 we can construct a divisor D2 of type II ∗, namely

D2 = θ∞,1 + 2θ∞,2 + 3ω3 + 4θ0,0 + 5θ0,1 + 6θ0,2 + 3θ0,3 + 4θ̃0,3 + 2θ̃0,2.

Since (D2 −D1)h = 3ω3 − 3O we have as a parameter m = Y
(t+1)2(t2+10t+27)2 . Then we can

show that the new fibration is obtained by the specialisation of #1 of Table 2 so Hj is a
fibration of Y10.

Fibration 87. — We consider the Weierstrass equation

Y 2 = x3 +
(
−wt4 − bt3 − ct2 − et+ h

)
x2 +

(
−rt2 − tm− a

)
x

with singular fibers I12(∞), 2I2
((
rt2 + tm+ a

))
, 8I1 (P (t)) . The polynomial P (t) is of de-

gree 8 depending of w, b, c, e, h . . . We choose these coefficients in such a way to get a singular
fiber of type I6 at t = 0, that is the i−coefficient of P equal to 0 for i from 0 to 5. There
is only two solutions, one of them is the fibration 7 − w of Y2, the other corresponds to the
Weierstrass equation

E : Y 2 = X3 − (9t4 + 9t3 + 6t2 − 6t+ 4)X2 + (+21t2 − 12t+ 4)X.

The discriminant of the transcendental lattice of the surface with this elliptic fibration is 72
or 8. The second case occurs if there is a 3-torsion section and therefore this is an elliptic
fibration of Y2. But, using the equation of E and the parameter m = Y

3Xt2 , with the change
X = 2 − 3t + t2W , we obtain an equation in W and t of bidegree 2, then another elliptic
fibration with a Weierstrass equation

Y 2 + 3Y X − 9
(
t2 + 1

)2
Y = X

(
X2 − 6

(
t2 + 1

)
X − 9

(
2t2 − 1

) (
t2 + 1

)2
)

and singular fibers I∗0 (∞), 2I6 (±I), I2(0), 4I1.
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Since the rank is 3, this elliptic fibration cannot come from Y2, so the discriminant of the
transcendental lattice is 72. From the singular fibers and results of Shimada–Zhang [25], this
fibration comes from Y10 and is fibration 87.

Remark 5.8. — We can also start from E and with the parameter m = 3X−(2−3t+3t2)
t3

construct another elliptic fibration with Weierstrass equation

F : Y 2 = X3 −
(
3t4 − 18t3 + 15t2 + 27t+ 9

)
X2

+ 3t4
(
t2 − 3t− 2

) (
t2 − 9t+ 21

)
X − t8

(
t2 − 9t+ 21

)2

and singular fibers IV ∗(∞), I10(0), 2I2
(
t2 − 9t+ 21

)
, 2I1.

From F and the parameter m = X
t4 we have another elliptic fibration with Weierstrass equa-

tion

Y 2 + 18(2− t)XY + 486t2(t+ 2)Y

= X3 + 6
(
7t2 + 76t− 56

)
X2 + 9t2 (t+ 8) (64t2 + 241t− 224)X

and singular fibers IV ∗(1), III ∗(∞), I4(0), I2(−7), I1
( 13

256
)
. This elliptic fibration can also be

obtained from fibration 262 with the previous Weierstrass equation and parameter X
t3(t+9) −

4
27

1
t+9 .

Fibration 241. — We start with a general equation
Y 2 = X3 + p (t) t2X2 + q (t) t3X + r (t) t4

where p, q, r are general polynomials of degree 2. So there is a singular fiber at t = 0 of type
IV ∗. We choose the coefficients of p, q, r in such a way to get a singular fiber of type I12 at
t =∞ and I2 at t = −1. Hence we find an extremal fibration with Weierstrass equation

Y 2 = X3 + 2
(
128t2 + 8

(
11 + i

√
3
)
t+

(
17− i

√
3
))
t2X2

+ 1
3
(
−3 + i

√
3
) (

384t2 + 8
(
30 + 4i

√
3
)
t+ 33− i

√
3
)
t3X

− 2
(
−1 + i

√
3
) (

48t2 +
(
27 + 5i

√
3
)
t+ 2

)
t4.

An extremal fibration of discriminant 72 comes from a fibration of Y10 without torsion or a
fibration of Y2 with a 3-torsion section. To conclude, we use a 2-neighbor fibration. From the
previous Weierstrass equation we have the following fibration with parameter X

t and singular
fibers 2I6 (0, t1) , IV ∗(∞), I2, 2I1. After scaling, a Weierstrass equation of the fibration take
the following shape

Y 2 = X3 − 1
73
(
−17 + i

√
3
) (

146t2 +
(
−145 + 43i

√
3
)
t+ 20− 16i

√
3
)
X2

+ 1
31
(
11 + i

√
3
) (

4t− 3 + i
√

3
) (

124t− 85 + 19i
√

3
)
t3X + 16

(
4t− 3 + i

√
3
)2
t6.

We have the section P =
(
0, 4t3

(
4t − 3 + i

√
3
))
. Computing the height of P gives the

discriminant of the transcendental lattice equal to 72 if P 6= 3S generates the Mordell–Weil
group. If P = 3S, then the discriminant of the transcendental lattice should be equal to 8
and this fibration should be a fibration of Y2, which is impossible since not in the list of
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all the elliptic fibrations of Y2 [5]. So this is a fibration of Y10 since it is the only one in
Shimada–Zhang’s table [25].

6. Fibrations of high rank and their corresponding embeddings

A great difference between Y2 and Y10 is revealed in the following theorem.

Theorem 6.1. — Contrary to Y2 whose fibrations have rank ≤ 2, the K3-surface Y10 has
elliptic fibrations of high rank, meaning a rank greater than the rank 3 of some specialized
fibrations. We exhibit, in the proof below, examples of fibrations of rank 4, 5, 6 and 7 together
with their singular fibers and possible primitive embeddings.

Proof. — The elliptic fibration 262 of rank 0 has the following Weierstrass equation

Y 2 = X3 +
(
10t2 + 90t+ 216

)
X2 − t3 (t+ 5)2X.

Taking as new parameter m = Y
X(t+4) we obtain the rank 1 fibration

Em : Y 2 = X3 +
(1

4 t
4 − 5t2 + 27

)
X2 +

(
t2 − 9

) (
2t2 − 27

)
X +

(
2t2 − 27

)2

with singular fibers I10(∞), IV (0), 2I3(2t2 − 27), 2I2(±4) and an infinite order point P0.
Consider the 6 points Pi = (Xi, Yi).

P0 =
(

27− 2t2,−1
2
(
t2 − 16

) (
2t2 − 27

))
P = 2P0 =

(
0, 2t2 − 27

)
P1 = 3P0 =

(
−5, 16− t2

2

)

P2 = 4P0 =
(

2t2 − 27
4 ,−1

8
(
t2 − 1

) (
2t2 − 27

))

P3 = 5P0 =
(−1

25
(
2t2 − 27

) (
t2 − 7

)
,

1
250

(
t2 − 16

) (
6t2 − 1

) (
2t2 − 27

))
P4 = 6P0 =

(
8
(
t2 − 1

)
, 4t4 + 22t2 − 1

)
We use the two singular fibers I10(∞) and IV (0), the zero section and a section −Pi to
obtain a new fibration with a singular fiber of type Ip. The elliptic parameters will be of the
shape mi = Y−YPi

(X−XPi)t
+ (ait

2+bi)
t . Suppose first that Pi does not cut the zero component θ∞,0

of the singular fiber I10(∞). The coefficients ai, bi are then determined by the two following
conditions: let θ∞,1, θ∞,9 the two components then Y −aiX will define one of the components
θ∞,1 or θ∞,9 and this gives ai = ±1

2 . The second condition is: the singular point for t = 0 will
be on the line Y − YPi + bi (X −XPi) . Only P3 = 5P0 intersects θ∞,0, the singular point at
t =∞ is on the line Y − YPi + aii (X −XPi) and defines the coefficient a3.
For each example we give in the first column of the following table the elliptic parameter
where Pi (ai, bi) means mi given by the previous formula. In the second column we give a
Weierstrass equation and just below the singular fibers with their types. Notice that on this
equation appears the x coordinate of some sections with y = 0. In the third column is the
rank and torsion with pattern r|tor.
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Also included in this table are possible embeddings in Niemeier lattices with the following
form: in the first column the Niemeier root lattice or the Niemeier lattice if we need glue
vectors. In the second column is explicited the embeddings of N,A1, A2 . Also in the second
column at the end of the second line are the roots of orthogonal of the embeddings, for
example if the Niemeier root lattice is A15D9 and the roots of the orthogonal is A112A1
the notation A11 (2A1) means that A11 is in A15 and (2A1) in D9. In the third column are
indications for the previous computations: here α refers to [21, p. 308, 310, 322], δ refers
to [21, p. 309, 311, 323],η refers to [21, p. 326, 327] and ∗ to Lemmas 3.7 or 3.8, a sign −
meaning that it is obvious for the corresponding factors.

Param
Niemeier
lattice

Weierstrass Equations
Singular fibers
Embeddings

Rk | Tor

(1)
P0
(1

2 , 6
)

A15D9

y2 − 2t
(
7 + 6t2

)
yx− 72t

(
21 + t2

)
y

=
(
x2 + 432

(
t2 + 8

)) (
x−

(
36t6 + 87t4 + 223t2 + 87

))
I12(∞), 2I2(6t2 − 49), 8I1 A11 (2A1)

N =


v = (a1, d7)
v1 = (0, d9)
v2 = (0, d6)

 A2 =

(0, d1)
(0, d2)

 A1 = ((a3, 0))

5|0
(αδ)

(2)
P
(1

2 , 3
)

A11D7E6

y2 −
(
t2 + 8

)
yx− t2

(
3t2 + 11

)
y =

(
x2 + 12t2

) (
x− 4 + 3t2

)
I10(∞), 5I2

(
0,±3, 3t2 − 32

)
, 4I1 A9 (3A1) (2A1)

N =


[c]cv = (0, d7, e4)
v1 = (0, 0, e2)
v2 = (0, 0, e5)

 A2 =

(0, d1, 0)
(0, d2, 0)

 A1 = (a1, 0, 0)

4|0
(αδη)

(3)
P1
(1

2 ,−2
)

A11D7E6

y2 −
(
3 + t2

)
yx+ 3t2y = (x+ 1)

(
x2 + 4t2x+ 4t4 + 27t2

)
I10(∞), 2I3

(
2t2 − 3

)
, I2(0), 6I1 A9A1 (2A2)

N =


v = (a1, d5, 0)
v1 = (0, d7, 0)
v2 = (0, d4, 0)

 A2 =

(0, 0, e1)
(0, 0, e3)

 A1 = (0, d1, 0)

4|0
(αδδ)

(4)
P2
(1

2 ,
3
2
)

A4
5D4

y2 − (3 + 2t2)yx− t2(3t2 − 1)y = (x+ t2)(x2 + 12t2)
2I6(∞, 0), 4I2(±1, 3t2 − 2), 4I1 A5A50A1 (3A1)

N =


[c]cv = (0, 0, 0, a2, d4)
v1 = (0, 0, 0, a1, 0)
v2 = (0, 0, 0, a3, 0)

 A2 =

(0, 0, a1, 0, 0)
(0, 0, a2, 0, 0)


A1 = (0, 0, a5, 0, 0)

4|0
(−ααδ)
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Param
Niemeier
lattice

Weierstrass Equations
Singular fibers
Embeddings

Rk | Tor

(5)
P3
( 3

10 ,
6
5
)

Ni(A2
9D6)

y2 − (3t2 + 1)yx− t2(6t2 − 5)y = (x+ 4t4 − 2t2)(x2 + 3t2)
I4(∞), I8(0), 2I2(6t2 − 1), 8I1 (A7A1)A3A1

N =


v = (a∗8, a∗6, 0)

v1 = (0, a5 + a6, 0)
v2 = (0, a6 + a7 + a8, 0)

 A2 =

(0, 0, d1)
(0, 0, d2)


A1 = (0, 0, d6)

6|0
(−− δ)

(6)
P4(1

2 , 1)
A11D7E6

y2 = x3 + (t4 − 44t2 + 472)x2 − 16(t2 − 25)x
I12(∞), 2I3(t2 − 24), 2I2(±5), 2I1 A11(2A1A2)A2

N =


v = (0, d5 + d3, 0)
v1 = (0, d6, 0)
v2 = (0, d7, 0)

 A2 =

(0, 0, e1)
(0, 0, e3)


A1 = (0, 0, e2)

1|6
(− ∗ η)

(7)
P0(−1

2 , 6)
A4

5D4

y2 + (1 + t2)yx− t2(6t2 + 7)y = (x− 4t2)(x2 + 3t2)
2I6(∞, 0), 2I2(3t2 − 2), 8I1 A5A5A1A10

N =


v = (0, 0, a1, a2, 0)
v1 = (0, 0, 0, a1, 0)
v2 = (0, 0, 0, a3, 0)

 A2 =

(0, 0, 0, 0, d4)
(0, 0, 0, 0, d2)


A1 = (0, 0, a3, 0, 0)

6|0
(−ααδ)

(8)
P (−1

2 , 3)
A2

7D
2
5

y2 + (t2 + 2)yx− t2(3t2 + 11)y = (x− 3t2)(x2 + 12t2)
I8(∞), I4(0), 4I2(±1, 6t2 − 1), 4I1 A7A3(2A1)(2A1)

N =


v = (0, a1, d3, 0)
v1 = (0, 0, d5, 0)
v2 = (0, 0, d4, 0)

 A2 =

(0, 0, 0, d5)
(0, 0, 0, d3)


A1 = (0, a3, 0, 0)

4|2
(−αδδ)

(9)
P1(−1

2 ,−2)
A11D7E6

y2 + (t2 + 7)yx+ t2(9 + 2t2)y = (x+ 2t2)(x2 + 27t2)
I8(∞), I4(0), 2I3(t2 − 6), 6I1 A7A3(2A2)

N =


v = (a1, d5, 0)
v1 = (0, d7, 0)
v2 = (0, d4, 0)

 A2 =

(0, 0, e1)
(0, 0, e3)

 A1 = (a3, 0, 0)

4|0
(αδη)
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Param
Niemeier
lattice

Weierstrass Equations
Singular fibers
Embeddings

Rk | Tor

(10)
P2(−1

2 ,
3
2)

A11D7E6

y2 = x3 − (3t4 + 48t2 − 264)x2 − (864t2 − 3600)x
I12(∞), 4I2(±2, 6t2 − 25), 4I1 A11(3A1)A1

N =


v = (0, d1, e3)
v1 = (0, 0, e1)
v2 = (0, 0, e4)

 A2 =

(0, d7, 0)
(0, d5, 0)


A1 = (0, 0, e6)

3|2
(−δη)

(11)
P4(−1

2 , 1)
E4

6

y2 + (t2 − 4)yx− t2(t2 − 63)y = (x− 9t2)(x2 + 108t2)
2I6(∞, 0), 2I3(2t2 − 3), 2I2(±1), 2I1 A5(2A1)A5(2A2)

N =


v = (e1, e3, 0, 0)
v1 = (0, e1, 0, 0)
v2 = (0, e4, 0, 0)

 A2 =

(0, 0, 0, e1)
(0, 0, 0, e3)


A1 = (0, 0, e1, 0)

2|3
(ηδηη)

Finally the rank 7 elliptic fibration has a Weierstrass equation denoted Et
Et Y 2 = X3 − 5t2X2 + t3(t3 + 1)2,

and singular fibers 2I∗0 (0,∞), 3I2(t3 + 1), 6I1. It is obtained in the following way: since
T (Y10) = T (Y2)[3] the base change h = t3 of the fibration 13 − h of Y2 [5] gives a fibration
of Y10. We can take as possible primitive embedding, an embedding of type (A2, A2) into D6

4
(see Section 3.2). �

Remark 6.2. — All the previous embeddings are of type (2.b) (A1, A3), except embedding
(5) which uses a glue vector of the corresponding Niemeier lattice and embedding (6) which
uses embedding 3.7.
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