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AN INTEGRAL DIGIT DERIVATIVE BASIS FOR CARLITZ PRIME
POWER TORSION EXTENSIONS

by

Andreas Maurischat and Rudolph Perkins

Abstract. —We build on work of Anglès–Pellarin concerning evaluations of the Anderson–Thakur func-
tion and its hyperderivatives at roots of unity.
Let p be a monic irreducible polynomial in A := Fq[θ], the ring of polynomials in the indeterminate θ
over the finite field Fq, let ζ be a root of p in an algebraic closure of Fq, and let K := Fq(θ). For each
positive integer n, let λn be a generator of the A-module of Carlitz pn-torsion. We give a basis for the ring
of integers A[ζ, λn] ⊂ K(ζ, λn) over A[ζ] ⊂ K(ζ) which consists of monomials in the hyperderivatives
of the Anderson–Thakur function ω evaluated at the roots of p, and which, after suitable ordering,
provides an upper triangular, block diagonal representation of the action of Galois. For each n ≥ 2, we
also give an explicit integral element whose Galois orbit provides a field normal basis for the extension
K(ζ, λn)/K(ζ, λ1).

Résumé. — (Une base entière pour les extensions engendrée par les points de torsion de puissance
de polynôme irréductible sur le module de Carlitz.)Nous développons le travail d’Anglès–Pellarin sur
l’évaluation aux racines de l’unité de la fonction d’Anderson–Thakur et de ses hyperdérivées.
Soit p un polynôme irréductible unitaire dans A = Fq[θ], l’anneau des polynômes en l’indéterminée θ
et à coefficients dans le corps fini Fq, soit ζ une racine de p dans une clôture algébrique de Fq, et soit
K = Fq(θ). Pour chaque entier n, soit λn une générateur du A-module des points de pn-torsion du module
de Carlitz. Nous donnons une base pour l’anneau des entiers A[ζ, λn] ⊂ K(ζ, λn) sur A[ζ] ⊂ K(ζ) qui
consiste en les monômes des hyperdérivées de la fonction d’Anderson–Thakur ω évaluée aux racines de p,
et qui, après un ordre convenable, fournit une représentation triangulaire supérieure, diagonale par bloc
de l’action de Galois. Pour chaque n ≥ 2, nous donnons aussi un élément entier dont l’orbite galoisienne
fournit une base normale du corp pour l’extension K(ζ, λn)/K(ζ, λ1).

1. Introduction

1.1. Carlitz torsion extensions. — Let Fq be the finite field with q elements and θ an
indeterminate over this field. The integral extensions of A := Fq[θ] which interest us arise via
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132 An Integral Digit Derivative Basis

the Carlitz module functor which takes as input an A-algebra R and returns the A-module
consisting of the additive group of R with A-action given by mapping X ∈ R to the evaluation
at X of the twisted polynomials determined by the Fq-algebra map

θ 7→ cθ := τ + θ ∈ A{τ},

and where evaluation is defined by τ i(X) := Xqi . For example, θ2 ∈ A acts via

cθ2(X) = cθ(cθ(X)) = Xq2 + (θq + θ)Xq + θ2X.

Let K := Fq(θ). To the Carlitz module one associates an Fq-linear entire power series

expC(X) :=
∑
j≥0

Xqj

Dj
∈ K[[X]],

called the Carlitz exponential, where Dj is the product of all monic polynomials in A of degree
j. This is the unique Fq-linear entire series such that d

dX expC = 1 and

expC(θX) = cθ(expC(X)).

We write π̃A for the kernel of expC which is a free rank one A-submodule of C∞, the com-
pletion of the algebraic closure of K∞ := Fq((1/θ)) equipped with the canonical extension
| · | of the absolute value for which K∞ is complete and normalized so that |θ| = q; we will
make an explicit choice of π̃ just below.
For all a ∈ A, the polynomial ca(X) is separable in X, and adjoining its roots (the so
called Carlitz a-torsion C[a]) to K gives rise to a Carlitz torsion extension K(C[a]). These
extensions are a function field analog of the classical cyclotomic extensions of the rational
integers, and one may consult Rosen’s book [12, Chapter 11] for a thorough summary of their
basic properties which we take for granted in this note.
Throughout we fix a monic irreducible polynomial p ∈ A. We will build on the work of
Anglès–Pellarin [6] focusing on the following Carlitz prime power torsion extensions of K,

Kn := K(C[pn+1]); n ≥ 0,

arising by adjoining the Carlitz pn+1-torsion to K. The ring of integers of Kn will be denoted
by An. In fact, we have An = A[xn], for xn an A-module generator of C[pn+1] (e.g. xn =
expC(π̃/pn+1)). The Galois group Gal(Kn/K) is isomorphic to (A/pn+1A)× via

(1.1) (A/pn+1A)× ∼= Gal(Kn/K), a 7→ σa

given by σa(x) = ca(x) for all x ∈ C[pn+1]. Hence, one has

[Kn : K] = |(A/pn+1A)×| = |p|n+1 − |p|n.

Hence, the degree of the extension Kn/K is highly divisible by the characteristic of K, which
makes the Galois module structure of the rings of integers in these extensions more delicate
than for the cyclotomic extensions of Q, and dealing with this gives rise to many interesting
new phenomena not present in the classical setting.
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A. Maurischat and R. Perkins 133

1.2. Anglès–Pellarin. —One has the now classical analytic description of all Carlitz tor-
sion points in terms of the division values of the Carlitz exponential⋃

a∈A
C[a] = {expC(π̃κ) : κ ∈ K},

thus fulfilling the dream of Kronecker’s youth or the analog of Hilbert’s 12th problem for these
extensions. Remarkably, in a recent discovery by Anglès and Pellarin [6], another separate
analytic description has been given for generators of these same Carlitz torsion extensions,
after allowing for a finite constant extension of K, i.e. one obtained by adjoining an element
algebraic over Fq toK. The meromorphic function appearing in the work of Anglès–Pellarin [6]
arises from the scattering matrix for the Carlitz module, the so-called Anderson–Thakur
function ω.
To describe this function, we let t be another indeterminate over C∞, and we fix an element
λθ ∈ C∞ of Carlitz θ-torsion, so satisfying λq−1

θ = −θ. We let

ω(t) := λθ
∏
j≥0

(1− t

θqj
)−1 ∈ C∞[[t]].

One easily checks that ω converges for |t| < |θ| and generates the free Fq[t]-submodule of
C∞[[t]] consisting of those functions

∑
i≥0 cit

i both satisfying

(1.2)
∑
i≥0

cqi t
i = (t− θ)

∑
i≥0

cit
i

and converging on {t ∈ C∞ : |t| ≤ 1}. Further, by Anderson’s general theory of scattering
matrices (see [3, Proposition 3.3.2] and [4, Section 2.5]), the residue of ω at t = θ gives rise
to a fundamental period of the Carlitz module, which we fix from now on

π̃ := −rest=θ ω = − lim
t→θ

(t− θ)ω(t).

Let ζ be a root of the monic irreducible polynomial p fixed above in the algebraic closure of
Fq inside C∞, Anglès and Pellarin expand the function ω about t = ζ as follows

(1.3) ω(t) =
∑
n≥0

ω(n)(ζ) · (t− ζ)n ∈ C∞[[t− ζ]].

They prove [6, Theorem 3.3] that for all n ≥ 0, one has

K(ω(n)(ζ)) = K(ζ, expC(π̃/pn+1)) = Kn(ζ),

in particular: the elements ω(n)(ζ) are all algebraic over K. The n = 0 case is especially
interesting. Anglès and Pellarin prove [6, Theorem 2.9] that ω(ζ) is ( d

dθp)(ζ)−1 times a basic
Gauss–Thakur sum for the Fq-algebra map on A determined by θ 7→ ζ, which is itself a
positive characteristic valued Dirichlet character.
Now let ζ1 = ζ, ζ2 = ζq, . . . , ζd = ζq

d−1 be all the distinct roots of p; hence, p has degree d in
θ. The connection made by Anglès–Pellarin between ω(ζi) and the basic Gauss–Thakur sums
allows one to conclude that the digit products

(1.4)
{
ω(ζ1)e1ω(ζ2)e2 . . . ω(ζd)ed :

0 ≤ e1, . . . , ed ≤ q − 1,
and ej 6= q − 1, for some j

}
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134 An Integral Digit Derivative Basis

form an integral basis for the extension K(ζ, expC(π̃/p))/K(ζ). Further, the monomial
ω(ζ1)e1ω(ζ2)e2 . . . ω(ζd)ed lies in the isotypic component for the Dirichlet character on A
given by

a 7→ a(ζ1)e1a(ζ2)e2 . . . a(ζd)ed = a(ζ)
∑

eiq
i ;

here we identify the Galois group of K(ζ, expC(π̃/p))/K(ζ) with (A/pA)× as in (1.1).

1.3. New results. —The main result of this paper is the generalization of Anglès–
Pellarin’s ω digit basis (1.4) for K(ζ, expC(π̃/p))/K(ζ) to an ω digit derivative basis for
K(ζ, expC(π̃/pn+1)) over K(ζ).

Theorem. — Let p be a monic irreducible of A all of whose distinct roots are ζ1, . . . , ζd.
The following set provides an integral basis for the extension K(ζ, expC(π̃/pn+1))/ K(ζ):

n∏
j=0

d∏
i=1

ω(j)(ζi)ej,i :
0 ≤ ej,i ≤ q − 1, for all 0 ≤ j ≤ n and 1 ≤ i ≤ d,
and e0,i 6= q − 1, for some 1 ≤ i ≤ d.

 .
Amore detailed statement and proof appears in Theorem 3.15 below. Of course, digit products
come up often in the arithmetic of the Carlitz module, and the results of Conrad [9] were
an inspiration for the statement given above. Our interest in proving the theorem above is
the potential utility in further understanding Taelman’s class and unit modules, generalizing
the work of Anglès–Taelman [8] and in this direction we briefly mention in Section 3.4 some
matrix L-values naturally arising from an identity of Pellarin.
Another goal of this short note is to explicate [6, Section 3.1] wherein the Galois action
on the elements ω(n)(ζ) is briefly discussed. Again, identifying the Galois group of
K(ζ, expC(π̃/pn+1))/K(ζ) with (A/pn+1A)× via

a 7→
(
σa : expC(π̃/pn+1) 7→ expC(π̃a/pn+1)

)
we will show that, for each a ∈ (A/pn+1A)×, we have

σa ∗


ω(n)(ζ)
ω(n−1)(ζ)

...
ω(ζ)

 =


a(ζ) a(1)(ζ) · · · a(n)(ζ)

0 a(ζ) . . . ...
... . . . . . . a(1)(ζ)
0 · · · 0 a(ζ)



ω(n)(ζ)
ω(n−1)(ζ)

...
ω(ζ)

 ;

here σa acts component-wise on the vector, and, as before,

a =
∑
j≥0

a(j)(ζ) · (θ − ζ)j ∈ Fq(ζ)[θ − ζ].

Thus, as one readily shows, the Fq(ζ)-linear subspace ofKn(ζ) generated by ω(ζ), ω(1)(ζ), . . . ,
ω(n)(ζ) provides a faithful representation of

Gal(Kn(ζ)/K(ζ)) = (A/pn+1A)×

over Fq(ζ) of minimal dimension. Further, easy relations coming from the difference
equation (1.2) satisfied by ω will allow us to deduce that for each basis monomial
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A. Maurischat and R. Perkins 135

∏n
j=0

∏d
i=1 ω

(j)(ζi)ej,i , as in the theorem above, we have

(σa − a(ζ)k)m
n∏
j=0

d∏
i=1

ω(j)(ζi)ej,i = 0,

for all a ∈ (A/pn+1A)× and for some sufficiently large m and some k depending on the ej,i
but not on a. In other words, each such monomial lies in a generalized eigenspace for the
character a(ζ)k, again for suitable k easily determined by the ej,i in

∏n
j=0

∏d
i=1 ω

(j)(ζi)ej,i .
Thus the basis of the theorem above, suitably ordered, provides a nice upper-triangular and
block diagonal representation of the Galois action that we expect to be useful in the further
study of the arithmetic of the extensions An/A.
Acknowledgements. — Both authors thank B. Anglès for several interesting remarks and ques-
tions related to this note.

2. Generalities

2.1. Notations: ζ, p, d, F . —Throughout we shall fix ζ in an algebraic closure Facq ⊂ C∞ of
Fq, and we let p ∈ A be its minimal polynomial, and d = deg(p) its degree. We write ζ1 := ζ
and ζi+1 = ζqi , for 1 ≤ i ≤ d − 1; of course, then ζ1, . . . , ζd are all the roots of p. At some
places we will tacitly use the isomorphism A/pA→ Fq(ζ) ⊂ C∞ given by θ 7→ ζ.
Finally, we introduce the notation F for the generator of the Galois group
(2.1) Gal(Fq(ζ)/Fq) = 〈F 〉,
such that F (ζ) = ζq, and we shall abuse notation by writing F for the generator of any
extension L(ζ)/L isomorphic to Fq(ζ)/Fq.
We will write Rn×n for the ring of n × n matrices with coefficients in the ring R. If we
have an action of a group, etc. on R we shall write σ ∗ T = (σTij) for σ in the group and
T = (Tij) ∈ Rn×n.

2.2. The Tate algebra. — In this note, we deal exclusively with the Tate algebra T over
C∞ in one indeterminate t. We recall that

T =

∑
i≥0

cit
i ∈ C∞[[t]] : ci → 0 as i→∞

 .
For elements φ =

∑
cjt

j ∈ T, we define the i-th Anderson twist of φ

φτ
i :=

∑
τ i(cj)tj =

∑
cq
i

j t
j ,

and extend these C∞-linearly to the (non-commutative) twisted polynomial ring C∞{τ}. We
write

φf :=
∑
i≥0

f(ci)ti

for the action of f ∈ C∞{τ} on φ ∈ T.
We also employ the C∞-algebra map D : T→ T[[X]]

φ(t) 7→ φ(t+X) :=
∑
n≥0

φ(n)(t)Xn
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136 An Integral Digit Derivative Basis

given by replacing the variable t in the power series expansion for φ by t+X, expanding each
(t + X)n using the binomial theorem, and rearranging to obtain a power series in X. One
readily checks that the coefficients of this power series in X are again in the Tate algebra. The
function φ(n) is called the n-th hyperderivative of φ. We also note that the maps ·(n) : T→ T,
which arise from the algebra map just defined, are C∞-linear and satisfy the Leibniz rule

(φψ)(n) =
n∑
j=0

φ(j)ψ(n−j),

among other familiar (but suitably modified) calculus rules.
We obtain the following family (in n ≥ 1) of faithful representations of C∞-algebras:

(2.2) ρ[n] : T→ Tn×n, defined by φ 7→


φ φ(1) · · · φ(n−1)

0 φ
. . . ...

... . . . . . . φ(1)

0 · · · 0 φ

 ,
arising from the map D by evaluation of X at the obvious n× n nilpotent matrix.
We have the Fq-algebra embedding

A
( · )t−−→ T; determined by (θ)t = t.

When not mentioning the variable θ we will simply write1 at ∈ T for the image of a ∈ A

under ( · )t. For a ∈ A, we may abuse notation by writing a(n) for a(n)
t , as in the introduction.

Elements of the Tate algebra may be evaluated at z ∈ C∞ such that |z| ≤ 1, and we will
write ρ[n]

z : T→ Cn×n∞ for the C∞-algebra map

(2.3) φ 7→ ρ[n](φ)|t=z.

Clearly, if φ(z) 6= 0, then ρ[n]
z (φ) is invertible.

2.2.1. Evaluation and twisting interact in the following very nice manner. Let p ∈ A, d ≥ 1,
and ζ1, . . . , ζd ∈ Facq , be as above.

Lemma 2.1 (Evaluation at roots of unity and twisting). —

(1) For φ ∈ T, there are unique f0, . . . , fd−1 ∈ C∞ such that for every k = 1, . . . , d, one has

(2.4) φ|t=ζk =
d−1∑
l=0

flζ
l
k.

(2) Let φ =
∑∞
i=0 φit

i ∈ T ⊆ C∞[[t]], and for each j = 0, 1, . . . , qd − 2, write

ζj =:
d−1∑
l=0

aj,lζ
l ∈ Fq[ζ]. 2

1Previous notations for ( · )t have been χt and a 7→ a(t).
2Here we see that the coefficients aj,l are independent of the choice of root ζ of p through the action of the
Frobenius, which fixes Fq.
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The coefficients fl from equation (2.4) are given as

fl =
qd−2∑
j=0

aj,l
∑

i≡j (mod qd−1)
φi.

(3) For all f ∈ C∞{τ}, with φ written as in (2.4) above, we have

φf|t=ζk =
d−1∑
l=0

f(fl)ζ lk.

Proof. — The condition φ(ζk) = φ|t=ζk =
∑d−1
l=0 flζ

l
k for all k = 1, . . . , d is equivalent to

φ(ζ1)
φ(ζ2)
...

φ(ζd)

 =


1 ζ1 ζ2

1 · · · ζd−1
1

1 ζ2 ζ2
2 · · · ζd−1

2
...
1 ζd ζ2

d · · · ζd−1
d



f0
f1
...

fd−1

 .
The square d × d matrix is of Vandermonde type, hence invertible, and we obtain unique
existence of the fk by inverting this matrix.
For the second part, one computes for any k ∈ {1, . . . , d} using ζq

d−1
k = 1 :

φ(ζk) =
∑
i≥0

φiζ
i
k =

qd−2∑
j=0

ζjk
∑

i≡j (mod qd−1)
φi =

d−1∑
l=0

ζ lk

qd−2∑
j=0

aj,l
∑

i≡j (mod qd−1)
φi.

Since the sums
∑qd−2
j=0 aj,l

∑
i≡j (mod qd−1) φi are independent of k, uniqueness of the expression

in (2.4) yields the desired identity.
For proving the third part, let gl ∈ C∞ such that

φf|t=ζk =
d−1∑
l=0

glζ
l
k

for all k = 1, . . . , d. Since, φf =
∑
i≥0 f(φi)ti, and since f is Fq-linear and continuous, we obtain

from part (2):

gl =
qd−2∑
j=0

aj,l
∑

i≡j (mod qd−1)
f(φi) = f

qd−2∑
j=0

aj,l
∑

i≡j (mod qd−1)
φi

 = f(fl). �

2.2.2. We introduce the following common multi-index notation for e = (e1, . . . , ed) and
f = (f1, . . . , fd):

– f ≤ e means fi ≤ ei for all i, and f < e means f ≤ e but not equal.

– Sums f + e and differences f − e are componentwise,

– Binomial coefficients:
(e
f

)
=
∏d
i=1

(ei
fi

)
.

– 0 = (0, . . . , 0) and q − 1 = (q − 1, . . . , q − 1).
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138 An Integral Digit Derivative Basis

Furthermore, with ζ1, . . . , ζd, as above, for φ ∈ T and e = (e1, . . . , ed) we define

φe :=
d∏
i=1

φ(ζi)ei .

We notice that for 0 ≤ e ≤ q − 1 the maps a mod p 7→ aet are the monomial functions
A/pA ∼= Fq(ζ)→ Fq(ζ), a(ζ) 7→ a(ζ)

∑d−1
i=0 eiq

i under the identification of A/pA with Fq(ζ) by
sending θ to ζ. Using Lagrange interpolation for maps Fq(ζ) → R resp. Fq(ζ)× → R into
Fq(ζ)-algebras R, we obtain the following result.

Lemma 2.2. — Let R be an Fq(ζ)-algebra. Any map f : A/pA → R can uniquely be
written as

f(a) =
∑

0≤e≤q−1
cea

e
t

with coefficients ce ∈ R. Similarly, any map f : (A/pA)× → R can uniquely be written as

f(a) =
∑

0≤e<q−1
cea

e
t

with coefficients ce ∈ R. In both cases, the coefficients ce ∈ R can be obtained as an Fq(ζ)-
linear combination of the values of f .

3. Results

3.1. The Anderson–Thakur function ω: twisting and hyperdifferentiation. —We
direct the reader back to the introduction where the Anderson–Thakur function ω was defined
and discussed. From (1.2), it follows that

(3.1) ωca = atω, ∀ a ∈ A.

Now, hyperdifferentiation and twisting commute. Thus, hyperdifferentiating and using the
Leibniz rule, we obtain

(ω(n))ca = (ωca)(n) = (at, a(1)
t , . . . , a

(n)
t ) ·


ω(n)

ω(n−1)

...
ω

 .(3.2)

In fact, one may express (3.2) more compactly with the representation ρ[n+1] of T defined
in (2.2). From (3.1), we obtain

ca ∗ ρ[n+1](ω) = ρ[n+1](ωca) = ρ[n+1](atω) = ρ[n+1](at)ρ[n+1](ω).

Similarly, we obtain the following recursion for n ≥ 1:

(3.3) ω(n)(t)q = (tq − θ)ω(n)(tq) + ω(n−1)(tq).
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A. Maurischat and R. Perkins 139

3.2. Integrality of ω(n)(ζ) and Galois action. — In the first part of the proof of [6,
Theorem 3.3], it is shown that ω(n)(ζ) is an element of Kn(ζ) and that it is integral over A[ζ].
In the next result, we give an independent proof of this fact, and demonstrate one way these
elements are akin to Gauss sums: they are Fq(ζ)-linear combinations of Carlitz torsion.

Proposition 3.1 (Integrality of ω(n)(ζ)). — As above, let ζ ∈ Facq ⊂ C∞ be a root of the
monic irreducible polynomial p ∈ A of degree d. Write

(3.4) ω(n)(ζ) =
d−1∑
i=0

c(n),iζ
i.

as in (2.4). We have c(n),i ∈ C[pn+1], for all i = 0, 1, . . . , d− 1. Hence,

ω(n)(ζ) ∈ An[ζ].

Proof. — From Lemma 2.1 and (3.2) above, for each root ζk of p, we see that
d−1∑
i=0

cpn+1(c(n),i)ζ ik = (ω(n))cpn+1 |t=ζk = 0,

for each k = 1, . . . , d. By uniqueness of the coefficients, we conclude cpn+1(c(n),i) = 0, for all
i = 0, 1, . . . , d− 1. �

For the next result, see also [6, Proposition 3.6].

Corollary 3.2 (Galois action on ω(n)(ζ)). — For each σa ∈ Gal(Kn(ζ)/K(ζ)), we have

σa ∗


ω(n)

ω(n−1)

...
ω


t=ζ

=


at a

(1)
t · · · a

(n)
t

0 at
. . . ...

... . . . . . . a
(1)
t

0 · · · 0 at


t=ζ


ω(n)

ω(n−1)

...
ω


t=ζ

.

This can also be expressed more succinctly in matrix form using ρ[n+1]
ζ defined in (2.3),

σa ∗ ρ[n+1]
ζ (ω) = ρ

[n+1]
ζ (at)ρ[n+1]

ζ (ω), ∀ a ∈ (A/pn+1A)×.

Further,
F (ω(n)(ζ)) = ω(n)(ζq).

Remark 3.3. — Beware that F (ω(n)(ζ)) 6= ω(n)(ζ)q. Indeed, by (3.3), for the latter we
obtain

ω(n)(ζ)q = (ζq − θ)ω(n)(ζq) + ω(n−1)(ζq).
This relation can be seen as motivation for the need to use only exponents up to q − 1 of
ω(n)(ζ) in the digit derivative basis for Kn(ζ)/K(ζ).

Proof of Corollary 3.2. — We have

(3.5) σa(ω(n)(ζ)) =
deg(p)−1∑
i=0

σa(c(n),i)ζi =
deg(p)−1∑
i=0

ca(c(n),i)ζi,
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where the last equality follows since c(n),i ∈ C[pn+1], for all i = 0, 1, . . . ,deg(p) − 1. The
right side of the previous displayed equation is nothing other than (ω(n))ca |t=ζ , and the result
follows by applying (3.2).
The last claim F (ω(n)(ζ)) = ω(n)(ζq) follows since F fixes C[pn+1], and hence all of the
c(n),i. �

3.3. Explicit formulas for the coefficients c(n),i of ω(n)(ζ). —The question of using
Carlitz pn+1-torsion and roots of unity to explicitly write down non-zero elements of Kn(ζ)
generating a subspace such that the Galois group of Kn(ζ)/K(ζ) acts by some power of ρ[n+1]

ζ

leads us to the question to determine the coefficients c(n),i of ω(n)(ζ) in (3.4) explicitly.
The key ingredients for their computation are the identity

(3.6) ω(t) =
∑
m≥0

π̃q
m

Dm(θqm − t) ,

given in [10, Section 4] which relates the function ω to the Carlitz exponential and the
identities for ω(n)(t) obtained by hyperdifferentiating (3.6).
We start with the explicit description of the coefficients of ω(ζ).

Proposition 3.4. — Let p =
∑d
j=0 ajθ

j ∈ A.
The coefficients c(0),i from (3.4) are given by

c(0),i = cq(0),i (expC(π̃/p)) = expC
(
π̃q(0),i/p

)
,

where q(0),i =
∑d
j=i+1 ajθ

j−i−1 ∈ A.
In particular, q(0),d−1 = ad = 1, and c(0),d−1 = expC( π̃p ).

Proof. — By construction, the c(0),i are the coefficients of the polynomial c(0)(T ) ∈ C∞[T ] of
degree < d satisfying c(0)(ζj) = ω(ζj) for all 1 ≤ j ≤ d. By classical Lagrange interpolation,

c(0)(T ) =
d∑
j=1

ω(ζj)
∏
k 6=j

T − ζk
ζj − ζk

=
d∑
j=1

ω(ζj)
p′(ζj)

· p(T )
(T − ζj)

.

Hence by (3.6),

c(0)(T ) =
∑
m≥0

π̃q
m

Dm

d∑
j=1

1
p′(ζj)(θqm − ζj)

p(T )
(T − ζj)

=
∑
m≥0

π̃q
m
q(0)(θq

m
, T )

Dmp(θqm) ,

where

q(0)(θ, T ) :=
d∑
j=1

1
p′(ζj)

p(θ)
(θ − ζj)

p(T )
(T − ζj)

∈ A[T ].

It therefore remains to show that the coefficient q(0),i of T i in q(0)(θ, T ) is of the given form.
As for all k = 1, . . . , d:

q(0)(θ, ζk) = p(θ)
θ − ζk

= p(θ)− p(ζk)
θ − ζk

= p(θ)− p(T )
θ − T

|T=ζk ,

Publications mathématiques de Besançon – 2019/1



A. Maurischat and R. Perkins 141

and q(0)(θ, T ) as well as p(θ)−p(T )
θ−T are polynomials in T of degree < d, we have

q(0)(θ, T ) = p(θ)− p(T )
θ − T

.

Writing p =
∑d
j=0 ajθ

j , we finally get

q(0)(θ, T ) =
∑d
j=0 aj(θj − T j)

θ − T
=

d∑
j=0

aj

j−1∑
i=0

θj−1−iT i

=
d−1∑
i=0

 d∑
j=i+1

ajθ
j−1−i

T i. �

Proposition 3.5. — We have

c(n),i = cq(n),i

(
expC

(
π̃

pn+1

))
= expC

(
π̃q(n),i
pn+1

)
,

where, for each n ≥ 1,

q(n)(θ, T ) :=
d∑
j=1

1
p′(ζj)

p(θ)n+1

(θ − ζj)n+1
p(T )

(T − ζj)
=
∑
j≥0

q(n),jT
j ∈ A[T ]

is the unique polynomial of degree strictly less than d = deg p in T interpolating the map
ζj 7→ p(θ)n+1

(θ−ζj)n+1 .

Proof. — The proof is similar to the case n = 0.
The c(n),i are the coefficients of the unique polynomial c(n)(T ) ∈ C∞[T ] satisfying
degT (c(n)(T )) < d and c(n)(ζj) = ω(n)(ζj), for all 1 ≤ j ≤ d. This gives

c(n)(T ) =
d∑
j=1

ω(n)(ζj)
∏
k 6=j

T − ζk
ζj − ζk

=
d∑
j=1

ω(n)(ζj)
p′(ζj)

p(T )
(T − ζj)

.

By hyperdifferentiating (3.6), one has

ω(n)(t) =
∑
m≥0

π̃q
m

Dm(θqm − t)n+1 ,

and hence, by an analogous computation to the case n = 0 above,

c(n)(T ) =
∑
m≥0

π̃q
m

Dmp(θqm)n+1 q(n)(θq
m
, T ). �

Remark 3.6. — Notice that for all k = 1, . . . , d:

q(n)(θ, ζk) = p(θ)n+1

(θ − ζk)n+1 = (p(θ)− p(ζk))n+1

(θ − ζk)n+1 =
(
p(θ)− p(T )
θ − T

)n+1
|T=ζk .

Hence, q(n)(θ, T ) and
(
p(θ)−p(T )
θ−T

)n+1
have to be congruent modulo p(T ), giving a connection

to the n = 0 case.
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Remark 3.7. — It appears difficult to obtain the Galois action on ω(n)(ζ) =
∑d−1
j=0 c(n),jζ

j

directly from the explicit description of the c(n),j given above. Nevertheless, such an explicit
description of these coefficients can be useful for implementing these objects on the computer.

3.4. Matrix L-values. —Another way to obtain explicit elements using Carlitz pn+1-
torsion and roots of unity so that the Galois action on them is given by some power of
ρ

[n+1]
ζ can be made through the connection between ω and a special L-value discovered by

Pellarin [10, Theorem 1]. Let

L(χt, 1) :=
∑
a∈A

a monic

at
a

=
∏
q∈A

q monic,irred

(
1− qt

q

)−1
∈ T

be the special L-value of Pellarin. In [10], Pellarin proved the following identity of elements
of T:

(3.7) −1
π̃

(t− θ)L(χt, 1)ω(t) = 1,

to which we will apply ρ[n+1].
Applying ρ[n+1] to L(χt, 1) itself, we observe that it respects both the A-harmonic sum and
Euler product. So ρ[n+1](L(χt, 1)) is a kind-of matrix L-value; see [11, Section 2.2.2] where
more general such L-values have already been observed.
Fixing n and ζ, we let

L
[n+1]
ζ := pn+1

π̃
ρ

[n+1]
ζ (L(χt, 1)) ∈ GLn+1(Kn(ζ)).

The explicit entries of π̃
pn+1L

[n+1]
ζ are the elements

L
(j)
ζ :=

∑
a∈A

a monic

a
(j)
t (ζ)
a

,

which in the phraseology of Anderson are a kind-of “twisted A-harmonic series.”

Proposition 3.8 (L-matrix). — All entries of L[n+1]
ζ are integral, except possibly pn+1

π̃
L

(n)
ζ ,

for which one has pn+2

π̃
L

(n)
ζ ∈ An[ζ].

Further, we have

L
[n+1]
ζ = −

∑
06=a∈A/pn+1A

ρ
[n+1]
ζ (at)

1
expC( π̃a

pn+1 )
.

Hence,
σa ∗L[n+1]

ζ = ρ
[n+1]
ζ (at)−1L

[n+1]
ζ , ∀ a ∈ (A/pn+1A)×.

Proof. — Since the hyperderivatives ·(j) are Fq-linear on A, the sum defining L(j)
ζ can be

extended to one over all non-zero elements of A up to a minus sign:

L
(j)
ζ = −

∑
06=a∈A

a
(j)
t (ζ)
a

.
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Now, for each j = 0, 1, . . . , n and a ∈ pn+1A, we have

a
(j)
t (ζ) = 0.

Thus, “collapsing the sum” we obtain

L
(j)
ζ = −

∑
06=a∈A/pn+1A

a
(j)
t (ζ)

∑
b∈A

1
a+ bpn+1

= − π̃

pn+1

∑
06=a∈A/pn+1A

a
(j)
t (ζ)

expC( π̃a
pn+1 )

.

By these calculations, we deduce the desired matrix identity

L
[n+1]
ζ = −

∑
06=a∈A/pn+1A

ρ
[n+1]
ζ (at)

1
expC( π̃a

pn+1 )
.

From the case j = n, we obtain

(3.8) − pj+1

π̃
L

(j)
ζ =

∑
06=a∈A/pj+1A

a(j)(ζ)
expC( π̃a

pj+1 )
∈ Kj(ζ),

demonstrating that these elements lie in successively smaller extensions. Indeed, from (3.8),
we observe that pj+2

π̃
L

(j)
ζ ∈ Aj [ζ], for all j (since p

expC( π̃a
pn+1 )

is always integral), and hence all

entries of L[n+1]
ζ are integral, except possibly the top entry pn+1

π̃
L

(n)
ζ . �

Remark 3.9. — As B. Anglès points out, for applications to understanding Taelman’s class
and unit modules for An, one should consider the family of special values given by

∑
a∈A

a monic

∏n
j=0 a

(j)
t (ζ)ej
a

, 0 ≤ ej ≤ |p| − 2.

Perhaps these may be easily related to Taelman units for An via the observations of [11,
Section 2.2.3] and the formalism of evaluation at characters of [7, Section 9]. We hope to
return to these investigations in a future work.

3.5. Valuations of ω(n)(ζ) at primes above p. —As ζ is a root of p, the prime (p)
splits completely in K(ζ) into the primes (θ− ζi) for i = 1, . . . , d, where as before ζi = ζq

i−1 .
The valuations corresponding to (θ−ζi) will be denoted by vi. As these primes ramify totally
in the extension Kn(ζ)/K(ζ), we will also denote by vi, the Q-valued extension of these
valuations to Kn(ζ).
The following result provides the valuations of the ω(n)(ζ) at these primes. Another demon-
stration of this result can be found in the proof of [6, Theorem 3.3] where this fact is also
stated (cf. [6, Equation (23)]).

Theorem 3.10. — For all n ≥ 0, 1 ≤ i ≤ d and 0 ≤ j ≤ d− 1 we have

vi
(
ω(n)(ζq

j

i )
)

= qj

|p|n(|p| − 1) .
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Proof. — We do this by induction on n, following the lines of [6, Proposition 2.1]. Using the
equation ωτ = (t− θ)ω, and hence ω(ζ)q = (ζq − θ)ω(ζq), one easily obtains that ω(ζq

j

i ) is a
root of the polynomial

X |p|−1 − β(ζq
j

i ) ∈ K(ζ)[X],

where β =
∏d−1
h=0(t− θqh) ∈ T. Since

vi
(
β(ζq

j

i )
)

=
d−1∑
h=0

vi
(
ζq
j

i − θ
qh
)

= qj ,

the Newton polygon of the above equation has exactly one slope, namely qj

|p|−1 . Hence, the

valuation of ω(ζq
j

i ) is the desired one.
Similarly for n > 0, one obtains that ω(n)(ζq

j

i ) is a root of the polynomial

X |p| − β(ζq
j

i )X − ξn(ζq
j

i ) ∈ Kn−1(ζ)[X],

where

ξn(t) =
n∑
l=1

β(l)ω(n−l).

Now, β(1)(ζq
j

i ) =
∑d−1
h=0

∏
h′ 6=h

(
ζq
j

i − θq
h′
)
has valuation 0 and

vi
(
ω(n−1)(ζq

j

i )
)

= qj

|p|n−1(|p| − 1) < vi
(
ω(n−l)(ζq

j

i )
)

for all l ≥ 2 by induction hypothesis. Hence,

vi
(
ξn(ζq

j

i )
)

= vi
(
β(1)(ζq

j

i )ω(n−1)(ζq
j

i )
)

= qj

|p|n−1(|p| − 1) .

Therefore, using again vi
(
β(ζq

j

i )
)

= qj , the Newton polygon has exactly one slope, and this

is 1
|p| ·

qj

|p|n−1(|p|−1) = qj

|p|n(|p|−1) , giving the desired valuation for ω(n)(ζq
j

i ). �

Remark 3.11. — The proof of the previous theorem even shows more than the stated
fact. Indeed, the occurring polynomials for ω(ζq

j

i ) over K(ζ) and for ω(n)(ζq
j

i ) over Kn−1(ζ)
(n ≥ 1) are irreducible, since their Newton polygons have only one slope. Hence they are the
minimal polynomials of these elements.
In particular, one deduces that the monomials ω(n)(ζ)j , with 0 ≤ j ≤ |p| − 2 (respectively,
with 0 ≤ j ≤ |p| − 1), give a field basis for Kn(ζ)/Kn−1(ζ) when n = 0 (resp. when n ≥ 1);
here K−1(ζ) := K(ζ). We will refine this observation in the next section.

Remark 3.12. — We expect, for deg(p) ≥ 2 and n ≥ 1, that there are finite primes other
than those above (θ − ζi)A[ζ] which divide ω(n)(ζi). Consideration of the sum of the readily
computable ∞-adic valuations of ω(n)(ζ) and the (θ − ζi)-adic valuations computed above
should lead to a verification of this claim.
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3.6. An integral basis for the prime power extensions. —We remind the reader of
the multi-index notation introduced in Section 2.2. We move toward our integral basis for
the Carlitz prime power torsion extensions by first proving that it provides a field basis for
these extensions.

Proposition 3.13. —

(1) The elements ωe with 0 ≤ e < q − 1 form a basis of K0(ζ) over K(ζ). Further for all
n > 0, the elements (ω(n))e with 0 ≤ e ≤ q − 1 form a basis of Kn(ζ) over Kn−1(ζ).

(2) Let i ∈ {1, . . . , d}. If any linear combination x :=
∑
e ce · (ω(n))e with ce ∈ Kn−1(ζ)

satisfies vi(x) ≥ 0, then vi(ce) ≥ 0 for all e.

Proof. — By Theorem 3.10, for all n ≥ 0 one has

v1
(
(ω(n))e

)
=

d∑
i=1

ei · v1(ω(n)(ζi)) =
∑d
i=1 eiq

i−1

|p|n(|p| − 1) ,

as ζi = ζq
i−1

1 . For n = 0, we have 0 ≤ e < q − 1, and so these values are all different and lie
between 0 (included) and 1 (excluded). Since the valuation v1 is Z-valued on K(ζ), for every
non-trivial linear combination x :=

∑
e ceω

e with ce ∈ K(ζ), we have

v1(x) = min
e
{v1(ceωe)}.

In particular, x 6= 0. This already shows that the elements ωe are linearly independent over
K(ζ), and since their number coincides with the degree of the extension [K0(ζ) : K(ζ)] =
qd − 1, they form a basis. Furthermore, if v1(x) ≥ 0, this implies v1(ce) ≥ 0 for all e.

For fixed n ≥ 1, we have 0 ≤ e ≤ q − 1, and so the values
∑d

i=1 eiq
i−1

|p|n(|p|−1) are again all different
and lie between 0 (included) and 1

|p|n−1(|p|−1) (excluded). Since the valuation v1 is 1
|p|n−1(|p|−1)Z-

valued on Kn−1(ζ), for every non-trivial linear combination x :=
∑
e ce · (ω(n))e with ce ∈

Kn−1(ζ), we have

v1(x) = min
e
{v1(ce · (ω(n))e)}.

In particular, x 6= 0. This already shows that the elements (ω(n))e are linearly independent
over Kn−1(ζ), and since their number coincides with the degree of the extension [Kn(ζ) :
Kn−1(ζ)] = qd, they form a basis. Furthermore, if v1(x) ≥ 0, this implies v1(ce) ≥ 0 for all e.
By the same argument, we get the second claim also for the other valuations vi. �

Corollary 3.14 (Non-vanishing of torsion coefficients of ω(n)(ζ)). — Let c(n),i be as
defined in (3.4) for ω(n)(ζ), for i = 0, 1, . . . , d− 1. We have

c(n),i ∈ C[pn+1] \ C[pn], ∀ i = 0, 1, . . . , d− 1.

In particular, these coefficients are non-zero for all n ≥ 0 and all i = 0, 1, . . . , d− 1.
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Proof. — From (3.2) and Lemma 2.1, with a = pn, we deduce that
cpn(c(n),0)
cpn(c(n),1)

...
cpn(c(n),d−1)

 =


1 ζ1 ζ2

1 · · · ζd−1
1

1 ζ2 ζ2
2 · · · ζd−1

2
...
1 ζd ζ2

d · · · ζd−1
d


−1

p
(1)
t (ζ1)nω(ζ1)

p
(1)
t (ζ2)nω(ζ2)

...
p

(1)
t (ζd)nω(ζd)

 .
Thus, if cpn(c(n),i) = 0, for some i = 0, 1, . . . , d − 1, we obtain a non-trivial linear A[ζ]-
dependence relation on the elements ω(ζ1), . . . , ω(ζd), but by Proposition 3.13, these latter
elements are linearly independent over K(ζ). This contradiction establishes the result. �

Theorem 3.15 (Integral basis for An[ζ] over A[ζ]). —

(1) The elements ωe with 0 ≤ e < q − 1 form an integral basis of A0[ζ] over A[ζ].

(2) Further, for all n ≥ 1, the elements (ω(n))e with 0 ≤ e ≤ q − 1 form an integral basis
of An[ζ] over An−1[ζ].

(3) Hence, the products
∏n
j=0(ω(j))ej with 0 ≤ e0 < q − 1 and 0 ≤ ej ≤ q − 1, for

j = 1, . . . , n, form an integral basis for An[ζ] over A[ζ].

Proof. — By Proposition 3.1, we already know that the elements (ω(n))e are integral, and
by Proposition 3.13, we know that they form a basis for the field extension Kn(ζ)/Kn−1(ζ)
(resp. K0(ζ)/K(ζ) if n = 0). Hence, it suffices to show for elements ce ∈ Kn−1(ζ) (resp. ce ∈
K(ζ) if n = 0): If x :=

∑
e ce · (ω(n))e ∈ Kn(ζ) is integral, then all ce are integral.

For n = 0, it is well known that ωe form an integral basis as they are Fq(ζ)×-multiples of
Gauss sums; see e.g. [5, Théorème 2.5]. However, we will give another proof here, since parts
of the proof for the elements (ω(n))e will be in the same flavor.
By Corollary 3.2, for all a ∈ (A/pA)× we have σa(ω(ζi)) = at(ζi) · ω(ζi), and hence

σa (ωe) = a et ω
e.

Given ce ∈ K(ζ) such that x :=
∑
e ceω

e ∈ A0[ζ], we therefore have

σa(x) =
∑
e

ceω
ea et ∈ A0[ζ]

for all a ∈ (A/pA)×. By Lemma 2.2, we therefore get ceωe ∈ A0[ζ] for all e. As ωe only has
zeros at the primes above p, this implies that the ce can only have poles at these primes. In
Proposition 3.13, however, we already showed that the ce do not have poles there. Hence,
ce ∈ A[ζ].
Now let n ≥ 1. Any b ∈ A/pA gives rise to a well-defined 1 + pnb ∈ (A/pn+1A)×. Using
Corollary 3.2 and pt(ζi) = 0, we obtain

σ1+pnb(ω(n)(ζi)) = ω(n)(ζi) +
(
p

(1)
t (ζi)

)n
bt(ζi)ω(ζi),

and hence for all 0 ≤ e ≤ q − 1,

σ1+pnb((ω(n))e) =
(
ω(n) +

(
p

(1)
t

)n
btω
)e

(3.9)

=
∑

0≤f≤e

(
e

f

)((
p

(1)
t

)n
btω
)e−f

(ω(n))f .(3.10)
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Now let ce ∈ Kn−1(ζ), such that

x :=
∑
e

ce · (ω(n))e ∈ An[ζ].

For all b ∈ A/pA, we obtain

σ1+pnb(x) =
∑
e

∑
0≤f≤e

ce

(
e

f

)((
p

(1)
t

)n
btω
)e−f

(ω(n))f(3.11)

=
∑

0≤f ,g
f+g≤q−1

cf+g

(
f + g
f

)((
p

(1)
t

)n
ω
)g

(ω(n))fb gt ∈ An[ζ].(3.12)

By Lemma 2.2, we therefore get∑
0≤f≤(q−1)−g

cf+g

(
f + g
f

)((
p

(1)
t

)n
ω
)g

(ω(n))f ∈ An[ζ]

for all g.
Assume that g is such that cf+g ∈ An−1[ζ] for all 0 < f ≤ (q − 1)− g, then we have

cg ·
((
p

(1)
t

)n
ω
)g
∈ An[ζ].

Hence, cg can only have poles at the primes above p. In Proposition 3.13, however, we already
showed that the ce do not have poles there. So cg has to be integral. Starting with g = q − 1
where the assumption is trivially satisfied, this shows inductively that all the coefficients are
integral.
The final claim (3) of the statement follows by induction from claims (1) and (2). �

3.7. Field normal basis. —The degree of the extension K0(ζ)/K(ζ) is prime to the char-
acteristic, and we have an integral basis {ωe : 0 ≤ e < q − 1} with each ωe being a basis
vector for the isotypic component of a character of the Galois group. Hence, a suitable linear
combination of those leads to an integral normal basis of A0[ζ]/A[ζ].
For the extension Kn(ζ)/K0(ζ) the situation is totally different. Here, the degree of the
extension is a power of the characteristic and the primes (θ − ζi) are totally wildly ramified.
Hence, there can be no integral normal basis of the extension Kn(ζ)/K0(ζ). However, by
the normal basis theorem every finite field extension has a normal basis, and we show in the
following that the Galois orbit of our top digit derivative basis element

∏n
k=1(ω(k))q−1 is such

a field normal basis.

Proposition 3.16 (A field normal basis). — Let

ηn :=
n∏
k=1

(ω(k))q−1 ∈ Kn(ζ).

Then the Galois orbit of ηn is a normal basis for the extension Kn(ζ) over K0(ζ).

Proof. — Allover we do an induction on n.
For n = 0, this means η0 = 1 is a normal basis for K0(ζ) over itself which is trivially fulfilled.
Hence, as induction hypothesis we assume that ηn−1 generates a normal basis for Kn−1(ζ)
over K0(ζ).
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As we already know that all the elements
∏n
k=1(ω(k))ek with 0 ≤ ek ≤ q − 1 are a basis of

the extension Kn(ζ) over K0(ζ), we are going to show that they all lie in the K0(ζ)-span of
the Galois-conjugates of ηn = ηn−1 · (ω(n))q−1.

First step. — All ηn−1 · (ω(n))en (0 ≤ en ≤ q − 1) lie in the K0(ζ)-span of the Galois-
conjugates of ηn.
Applying 1 + pnb ∈ (A/pn+1A)× as in the previous proof, we obtain

σ1+pnb

(
ηn−1 · (ω(n))q−1

)
= ηn−1 ·

 ∑
f+e=q−1

(
q − 1
e

)((
p

(1)
t

)n
btω
)f

(ω(n))e


=
∑

f+e=q−1
(−1)|e|ηn−1

((
p

(1)
t

)n
ω
)f

(ω(n))ebtf .

By Lemma 2.2, there are Fq(ζ)-linear combinations of these Galois conjugates being equal to
ηn−1

((
p

(1)
t

)n
ω
)f

(ω(n))e, and hence K0(ζ)-linear combinations being equal to

ηn−1(ω(n))e.

Second step. — By induction on |en| we show that all
∏n
k=1(ω(k))ek lie in the K0(ζ)-span of

the Galois-conjugates of ηn.
The case |en| = 0 (i.e. en = 0) is a consequence of the first step and the assumption the ηn−1
generates a normal basis for Kn−1(ζ) over K0(ζ).
Let V denote the K0(ζ)-space generated by all

∏n−1
k=1(ω(k))ek · (ω(n))f with |f | < |en|. As

induction hypothesis, we assume that V lies inside the K0(ζ)-span of the Galois-conjugates
of ηn.
By the first step, ηn−1 · (ω(n))en is in the Galois-span, and for all a ∈ (1 + pA)/(1 + pn+1A) ⊂
(A/pn+1A)×, we have

σa(ηn−1 · (ω(n))en) = σa(ηn−1) ·
(
ω(n) + a

(1)
t ω(n−1) + · · ·+ a

(n)
t ω

)en

≡ σa(ηn−1) · ω(n)en mod V.

As ηn−1 generates a normal basis, there is some K0(ζ)-linear combinations of the σa(ηn−1) ·
(ω(n))en congruent to

∏n
k=1(ω(k))ek modulo V . Hence,

∏n
k=1(ω(k))ek lies in the K0(ζ)-span of

the Galois-conjugates of ηn. �

Remark 3.17. — Though there can be no integral normal basis of the extensionsAn[ζ]/A[ζ],
when n ≥ 1, due to wild ramification, one may ask a more refined question, following Leopoldt:
Can the extension An[ζ]/A[ζ] be cyclically generated by the maximal order Rn ⊂ K(ζ)[Gn]
such that RnAn[ζ] ⊂ An[ζ], where Gn = Gal(Kn(ζ)/K(ζ))? A. Aiba has given some counter
examples to such questions in this context; see [1, 2].
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