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LOCAL HEIGHTS OF TORIC VARIETIES OVER
NON-ARCHIMEDEAN FIELDS

by

Walter Gubler and Julius Hertel

Abstract. — We generalize results about local heights previously proved in the case of discrete
absolute values to arbitrary non-archimedean absolute values. First, this is done for the induc-
tion formula of Chambert-Loir and Thuillier. Then we prove the formula of Burgos–Philippon–
Sombra for the toric local height of a proper normal toric variety in this more general setting.
We apply the corresponding formula for Moriwaki’s global heights over a finitely generated field
to a fibration which is generically toric. We illustrate the last result in a natural example where
non-discrete non-archimedean absolute values really matter.

Résumé. — (Hauteurs locales des variétés toriques sur un corps ultramétrique complet) Nous
généralisons des résultats concernant les hauteurs locales prouvés précédemment pour une valua-
tion discrète au cas d’une valeur absolue ultramétrique quelconque. Nous traitons tout d’abord
le case de la formule de récurrence de Chambert-Loir et Thuillier. Ensuite nous généralisons la
formule de Burgos–Philippon–Sombra pour la hauteur locale torique d’une variété torique nor-
male propre. Nous appliquons la formule correspondante de Moriwaki pour les hauteurs globales
sur un corps de type fini au cas d’une fibration qui est génériquement torique. Nous illustrons ce
dernier résultat par un exemple naturel où des valuations non discrètes jouent un rôle important.

Introduction

The height of an algebraic point of a proper variety X over a number field F measures the
arithmetic complexity of its coordinates. It is a tool to control the number and distribution
of these points which is essential for proving finiteness results in diophantine geometry like
the theorems of Mordell–Weil and Faltings (see, for example, [5]). More generally, there is a
height of (sub-)varieties which might be seen as an arithmetic analogue of the degree used in
algebraic geometry. In [18], Faltings made this precise writing the height of X with respect
to a hermitian line bunde L as an arithmetic degree using the arithmetic intersection theory
of Gillet–Soulé [21].

2010 Mathematics Subject Classification. — 14M25, 14G40, 14G22.
Key words and phrases. — Toric geometry, local heights, berkovich spaces, Chambert-Loir measure, heights
of varieties over finitely generated fields.



6 Local Heights of Toric Varieties over Non-archimedean Fields

In the adelic language introduced by Zhang [44], a hermitian line bundle can be seen as a
line bundle L over X endowed with a smooth metric at every archimedean place and with
a metric induced by a global model of the line bundle for every non-archimedean place of
F . This flexible point of view allows to consider more generally semipositive (continuous)
metrics which are obtained from uniform limits of semipositive hermitian metrics or even
DSP metrics which are differences of these semipositive continuous metrics. A remarkable
application of Zhang’s heights is his proof of the Bogomolov conjecture for abelian varieties
over a number field in [45].
Following Weil and Néron, it is more convenient to define the height as a sum of local
heights. Here, “local” means that we consider the contribution of a fixed place and work over
the corresponding completion. Local heights of subvarieties can be studied for any field with
a given absolute value which was systematically done in [24, 25, 27]. By base change, we
may assume that our base field is an algebraically closed field K endowed with a non-trivial
complete absolute value. The local height λ(L0,s0),...,(Ln,sn)(X) of the n-dimensional proper
variety X over K with respect to DSP-metrized line bundle L0, . . . , Ln depends also on the
choice of non-zero meromorphic sections sj of Lj for j = 1, . . . , n and is a well-defined real
number under the assumption that

|div(s0)| ∩ · · · ∩ |div(sn)| = ∅ .(0.1)

In [14], Chambert-Loir introduced a measure c1(L1)∧· · ·∧c1(Ln) on the analytification Xan.
It plays an important role for equidistribution theorems. For details about the theory of local
heights and Chambert-Loir measures, we refer to Section 1.
The main result in Section 1 is the following induction formula which generalizes a result of
Chambert-Loir and Thuillier [15, Thm. 4.1].

Theorem I (Induction formula). — Under the hypotheses above, the function log ‖s0‖ is
integrable with respect to c1(L1) ∧ · · · ∧ c1(Ln) and we have

λ(L0,s0),...,(Ln,sn)(X) = λ(L1,s1),...,(Ln,sn)(cyc(s0))−
∫
Xan

log ‖s0‖ c1(L1) ∧ · · · ∧ c1(Ln)

where cyc(s0) is the Weil divisor associated to s0.

In fact, we will show in Theorem 1.4.3 a more general result involving pseudo-divisors.
Chambert-Loir and Thuillier proved the formula under the additional assumptions that K
is a completion of a number field and s0, . . . , sn are global sections such that their Cartier
divisors intersect properly. The heart of the proof is an approximation theorem saying that
log ‖s0‖ can be approximated by suitable functions log ‖1‖n, where ‖ · ‖n are formal metrics
on the trivial bundle OX . To show this over any non-archimedean field K, we use techniques
from analytic and formal geometry.
In Section 2, we deal with local heights of toric varieties. Toric varieties are a special class
of varieties that have a nice description through combinatorial data from convex geometry.
So they are well-suited for testing conjectures and for computations in algebraic geometry.
Let K be any field, then a complete fan Σ of strongly convex rational polyhedral cones
in a vector space NR ' Rn corresponds to a proper toric variety XΣ over K with torus
T ' SpecK[x±1

1 , . . . , x±1
n ]. The torus T acts on XΣ and hence every toric object should have

a certain invariance property with respect to this action in order to describe it in terms of
convex geometry. We recall the classical theory of toric varieties in Section 2.1.
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Walter Gubler and Julius Hertel 7

A support function on Σ, i.e. a concave function Ψ: NR → R which is linear on each cone of
Σ and has integral slopes, corresponds to a base-point-free toric line bundle L on XΣ together
with a toric section s. Moreover, one can associate to Ψ a polytope ∆Ψ = {m ∈MR | m ≥ Ψ}
in the dual space MR of NR. Then a famous result in classical toric geometry is the degree
formula:

degL(XΣ) = n! volM (∆Ψ),
where volM is the Haar measure onMR such that the underlying latticeM ' Zn has covolume
one. As mentioned above, the arithmetic analogue of the degree of a variety with respect
to a line bundle is the height of a variety. Burgos, Philippon and Sombra proved in the
monograph [11] a similar formula for the toric local height. In the non-archimedean case, they
assume that the valuation is discrete. It is the goal of Section 1 to remove this hypothesis.
The problem is that the valuation ring is not noetherian and hence the usual methods from
algebraic geometry do not apply.
Let K be a field endowed with a non-trivial non-archimedean complete absolute value and
value group Γ as a subgroup of R. Let XΣ be the proper toric variety over K associated to
the complete fan Σ and let L be a toric line bundle on XΣ together with any toric section s.
Let Ψ be the corresponding support function and let ∆Ψ be the dual polytope. In Section 2.2,
we recall the theory of toric schemes over the valuation ring K◦ given in [32]. In particular,
a strongly convex Γ-rational polyhedral complex Π induces a normal toric scheme XΠ over
K◦. Assuming that the recession cones in Π give the fan Σ, the toric scheme XΠ is a K◦-
model of XΣ. Generalizing the program from [11], we describe toric Cartier divisors on XΠ in
terms of piecewise affine functions on Π (see Section 2.3). To describe local heights, we may
additionally assume that K is algebraically closed. A continuous metric ‖ · ‖ on L is toric if
the function p 7→ ‖s(p)‖ is invariant under the action of the formal torus in T an. We will give
the following classification of toric metrics:

Theorem II. — Let Ψ be a support function on Σ. Then there is a bijective correspondence
between the sets of

(i) semipositive toric metrics on L;

(ii) concave functions ψ on NR such that the function |ψ −Ψ| is bounded;

(iii) continuous concave functions ϑ on ∆Ψ.

For the first bijection, one associates to the toric metric ‖ · ‖ the function ψ on NR given by
ψ(u) = log ‖s ◦ trop−1(u)‖, where trop: NR → T an is the tropicalization map from tropical
geometry (see 2.4.5). The second bijection is given by the Legendre–Fenchel dual from convex
analysis (see A.7).
This theorem was proven by Burgos, Philippon and Sombra in [11] if the absolute value on K
is discrete or archimedean. We will prove our generalization in Theorem 2.5.8. Essential for
the proof are characterizations of semipositive formal metrics developed in [33] and some new
results for strictly semistable formal schemes shown in Appendix B. Note that the concave
function ψ = Ψ defines a canonical metric on L which will be used later.
In Theorem 2.5.10, we will show that the measure c1(L)∧n, induced by a semipositive toric
metrized line bundle L = (L, ‖ · ‖) on the n-dimensional proper toric variety XΣ, satisfies the
following formula

trop∗
(
c1(L)∧n

)
= n!MM (ψ) ,
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8 Local Heights of Toric Varieties over Non-archimedean Fields

where ψ is the concave function given by ‖ · ‖ andMM (ψ) is the Monge–Ampère measure of
ψ (see A.17).
Now all ingredients from the program in [11] are generalized to show the formula for the local
toric height. Let XΣ be an n-dimensional projective toric variety over K and L a semipositive
toric metrized line bundle. Denote by Lcan the same line bundle equipped with the canonical
metric. The toric local height of XΣ with respect to L is defined as

λtor
L

(XΣ) = λ(L,s0),...,(L,sn)(XΣ)− λ(Lcan
,s0),...,(Lcan

,sn)(XΣ) ,

where s0, . . . , sn are any invertible meromorphic sections of L satisfying the intersection
condition (0.1).

Theorem III. — Using the above notation, we have

λtor
L

(XΣ) = (n+ 1)!
∫

∆Ψ
ϑ dvolM ,

where ϑ : ∆Ψ → R is the concave function associated to (L, s) given by Theorem II.

A slightly more general version for a proper toric variety XΣ will be shown in Theorem 2.6.6.
The proof is analogous to [11]. It is based on induction relative to n and uses the induction
formula (Theorem I) in an essential way.
In Section 3, we return to global heights. In [24], the notion of an M -field was introduced to
capture all situations where global heights occur. This is a field K together with a measure
space (M,µ) of absolute values on K. The standard examples are number fields and function
fields, but the notion of M -field may be also used to study the characteristic function in
Nevanlinna theory which is an analogue of a global height according to Osgood and Vojta.
Let us consider a projective n-dimensional variety X over anM -field K satisfying the product
formula and a line bundle L on X. For v ∈ M , we write Xv and Lv for the base change to
the completion Cv of the algebraic closure of K. A DSP M -metric on L is a family of DSP
metrics ‖ · ‖v on Lv, v ∈M . Write L = (L, (‖ · ‖v)v) and Lv = (Lv, ‖ · ‖v) for each v ∈M . We
consider now DSP M -metrized line bundles L0, . . . , Ln on X assuming that the local heights

M −→ R, v 7−→ λ(L0,v ,s0),...,(Ln,v ,sn)(Xv)

are µ-integrable for any choice of non-zero meromorphic sections s0, . . . , sn of L which satisfy
condition (0.1). Then the (global) height of X is defined as

hL0,...,Ln
(X) =

∫
M
λ(L0,v ,s0),...,(Ln,v ,sn)(Xv) dµ(v) .

By the product formula, this definition is independent of the choice of sections. Using integra-
tion over all places, we give in Theorem 3.1.13 a global version of the induction formula. In
Section 3.1, the theory of global height is presented more generally for proper varieties over
an M -field. In the classical case of number fields or function fields, the above integrability
condition is always satisfied if the metrized line bundles are quasi-algebraic. The latter means
for L that up to finitely many places v ∈M , the metrics ‖ · ‖v are induced by a global model
of L. In Theorem 3.1.13, we give the induction formula for global heights.
In [40], Moriwaki defined the global height of a variety over a finitely generated field K over
Q as an arithmetic intersection number and generalized the Bogomolov conjecture to such
fields. As observed in [27, Ex. 11.22], this finitely generated extension has a M-field structure
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Walter Gubler and Julius Hertel 9

for a natural set of places M related to the normal variety B with K = Q(B). Burgos–
Philippon–Sombra proved in [12, Thm. 2.4] that the height of Moriwaki can be written as an
integral of local heights over M. In Section 3, we will generalize their result as follows.
Let B be a b-dimensional normal projective variety over a global field F . We denote by K
the function field of B which is a finitely generated extension of F . We define

M :=B(1) t
⊔

v∈MF

Bgen
v ,

where B(1) is the set of discrete absolute values corresponding to the orders in the prime
divisors of B and where Bgen

v is the set of absolute values induced by evaluating at generic
points of the analytification of B with respect to the place v of F . Note that the elements in
Bgen
v may lead to non-discrete valuations.

Choosing quasi-algebraic metrized line bundles H1, . . . ,Hb on B, we can equip K with a
natural structure (M, µ) of an M-field satisfying the product formula. Here, we assume that
the line bundles Hj are all nef which means that all the metrics are semipositive and that
the height of every algebraic point of B is non-negative. The measure µ on M is given by the
counting measure on B(1) and by µ(v) c1(H1, ‖ · ‖v) ∧ · · · ∧ c1(Hb, ‖ · ‖v) on Bgen

v where µ(v)
is the weight of the product formula for F in v. For more details, we refer to Section 3.2.
Let π : X → B be a dominant morphism of projective varieties over F of relative dimension
n and denote by X the generic fiber of π. Let L0, . . . ,Ln be semipositive quasi-algebraic line
bundles on X and choose any invertible meromorphic sections s0, . . . , sn of L0, . . . ,Ln respec-
tively, which satisfy (0.1). These line bundles induce M-metrized line bundles L0, . . . , Ln on
X. We prove in Theorem 3.2.6:

Theorem IV. — The function M → R, w 7→ λ(L0,w,s0),...,(Ln,w,sn)(X), is µ-integrable and
we have

hπ∗H1,...,π∗Hb,L0,...,Ln(X ) =
∫
M
λ(L0,w,s0),...,(Ln,w,sn)(X) dµ(w) .

We will prove a more general version of this result in Theorem 3.2.6 where we also allow
proper varieties. Burgos–Philippon–Sombra have shown this formula in the case when F = Q
and the varieties X , B and the occurring metrized line bundles are induced by models.
Then the measure µ has support in the subset of M given by the archimedean and discrete
absolute values. The main difficulty in their proof appears at the archimedean place, where
well-known techniques from analysis as Ehresmann’s fibration theorem are used. In our proof,
the archimedean part and the part on B(1) follow from their arguments, but the contribution
of Bgen

v for non-archimedean v is much more complicated as the support of µ can also contain
non-discrete absolute values.
In Section 3.3, we will give the following application of the formula in Theorem III. This
was suggested to us by José Burgos Gil. In the setting of Theorem IV, let π : X → B be a
dominant morphism of projective varieties over a global field F such that its generic fiber
X is an n-dimensional normal toric variety over the function field K = F (B). This field
is equipped with the M-field structure induced by the metrized line bundles H1, . . . ,Hb.
Assume that L0 = · · · = Ln = L and that the induced semipositive M-metrized line bundle
L is toric. Let s be any toric section of L and Ψ the associated support function. Then L
defines, for each w ∈M, a concave function ϑw : ∆Ψ → R. Combining Theorems III and IV,
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10 Local Heights of Toric Varieties over Non-archimedean Fields

we will obtain in Corollary 3.3.4 the formula

hπ∗H1,...,π∗Hb,L,...,L(X ) = (n+ 1)!
∫
M

∫
∆Ψ

ϑw(x) dvol(x) dµ(w) .

By means of this formula we can compute the height of a non-toric variety coming from a
fibration with toric generic fiber. It generalizes Corollary 3.1 in [12] where the global field is
Q and the metrized line bundles are induced by models over Z and hence only archimedean
and discrete non-archimedean places occur.
In Section 3.4, we will illustrate the formula in a special case with B an elliptic curve over
the global field F . Then the canonical metric on an ample line bundle H = H1 of B leads to
a natural example where non-discrete non-archimedean absolute values really matter.

Acknowledgements. —This is an extended version of the second author’s thesis. We are
very grateful to José Burgos Gil for suggesting us the application in Section 3.3 and for
his comments. We thank Jascha Smacka for proofreading and the referee for his helpful
comments. This research was supported by the DFG grant: SFB 1085 “Higher invariants”.

Terminology. — For the inclusion A ⊂ B of sets, A may be equal to B. The complement
is denoted by B \ A. A disjoint union is denoted by A t B. A measure is a signed measure,
i.e. it is not necessarily a positive measure.
The set N of natural numbers contains zero. All occuring rings and algebras are commutative
with unity. For a ring R, the group of units is denoted by R×.
A variety over a field k is an irreducible and reduced scheme which is separated and of finite
type over k. The function field of a variety X over k is denoted by k(X). For a proper scheme
Y over a field, we denote by Y (n) the set of subvarieties of codimension n. A prime cycle on
Y is just a closed subvariety of Y .
By a line bundle we mean a locally free sheaf of rank one. For an invertible meromorphic
section s of a line bundle, we denote by div(s) the associated Cartier divisor and by cyc(s)
the associated Weil divisor. The support of div(s) is denoted by |div(s)|.
A non-archimedean field is a field K which is complete with respect to a non-trivial non-
archimedean absolute value | · |. Its valuation ring is denoted by K◦ with valuation val :=
− log | · |, value group Γ := val(K×) and residue field K̃ :=K◦/K◦◦, where K◦◦ is the maximal
ideal of K◦.
For the notations used from convex geometry, we refer to Appendix A.

1. Local heights

In this section, we recall foundational notions and results for this work. In the first subsection,
we collect results about Berkovich spaces and admissible formal schemes in the sense of
Raynaud. In the next subsection, we will introduce formal and algebraic models of proper
algebraic varieties and their line bundles. The associated formal and algebraic metrics in
the sense of Zhang lead to local heights and Chambert-Loir measures. This is generalized
in Section 1.3 to semipositive continuous metrics on line bundles. The new results in this
section are in Section 1.4 where the induction formula for local heights of Chambert-Loir and
Thuillier is generalized to arbitrary non-archimedean fields.
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Walter Gubler and Julius Hertel 11

1.1. Analytic and formal geometry. — Let K be a non-archimedean field, i.e. a field
which is complete with respect to a non-trivial non-archimedean absolute value | · |. Its val-
uation ring is denoted by K◦, the associated maximal ideal by K◦◦ and the residue field by
K̃ = K◦/K◦◦.
In this subsection we recall some facts about the (Berkovich) analytification of a scheme X
of finite type over K and of an admissible formal K◦-scheme X in the sense of Raynaud.

1.1.1. — The Tate algebra K〈x1, . . . , xn〉 consists of the formal power series f =
∑
ν aνx

ν

in K[[x1, . . . , xn]] such that |aν | → 0 as |ν| → ∞. This K-algebra is the completion of
K[x1, . . . , xn] with respect to the Gauß norm ‖f‖ = maxν |aν |.
A K-affinoid algebra is a K-algebra A which is isomorphic to K〈x1, . . . , xn〉/I for an ideal I.
We may use the quotient norm from K〈x1, . . . , xn〉 to define a K-Banach algebra (A, ‖ · ‖).
The presentation and hence the induced norm of an affinoid algebra is not unique but two
norms on A are equivalent and thus they define the same concept of boundedness.

1.1.2. — The Berkovich spectrum M (A) of a K-affinoid algebra A is defined as the set of
multiplicative seminorms p on A satisfying p(f) ≤ ‖f‖ for all f ∈ A. It only depends on
the algebraic structure on A. As above we endow it with the coarsest topology such that the
maps p 7→ p(f) are continuous for all f ∈ A and we obtain a nonempty compact space.

Roughly speaking, a Berkovich analytic space is given by an atlas of affinoid Berkovich spec-
tra. For the precise definition, we refer to [2]. Note that we here only consider analytic spaces
which are called strict in [2]. We need mainly the following construction related to algebraic
schemes:

1.1.3. — First let X = Spec(A) be affine. The analytification Xan is the set of multiplicative
seminorms on A extending the absolute value | · | on K. We endow it with the coarsest
topology such that the functions Xan → R, p 7→ p(f) are continuous for every f ∈ A. The
sheaf of analytic functions OXan on Xan gives Xan the structure of a Berkovich analytic space
(see [1, §3.4] and [11, §1.2]).

1.1.4. — For any scheme X of finite type over K we define the analytification Xan as a
Berkovich analytic space by gluing the affine analytic spaces obtained from an open affine
cover of X. For a morphism ϕ : X → Y of schemes of finite type over K we have a canonical
map ϕan : Xan → Y an defined by ϕan(p) := p ◦ ϕ] on suitable affine open subsets.
The analytification functor preserves many properties of schemes and their morphisms. An
analytic space Xan is Hausdorff (resp. compact) if and only if X is separated (resp. proper).
For more details, we refer to [1, §3.4].

The analytification of a formal scheme is more difficult because at first we need arbitrary
analytic spaces.

1.1.5. — We call a K◦-algebra A admissible if it is isomorphic to K◦ 〈x1, . . . , xn〉 /I for
an ideal I and A has no K◦-torsion (or equivalently A is K◦-flat). If A is admissible, then
I is finitely generated. A formal scheme X over K◦ is called admissible if there is a locally
finite covering of open subsets isomorphic to formal affine schemes Spf(A) for admissible
K◦-algebras A.
Then the generic fiber Xan of X is the analytic space locally defined by the Berkovich spectrum
of the K-affinoid algebra A = A ⊗K◦ K. Moreover we define the special fiber X̃ of X as the
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12 Local Heights of Toric Varieties over Non-archimedean Fields

K̃-scheme locally given by Spec(A/K◦◦A), i.e. X̃ is a scheme of locally finite type over K̃
with the same topological space as X and the structure sheaf O

X̃
:=OX ⊗K◦ K̃.

There is a reduction map red : Xan → X̃ assigning each seminorm p in a neighborhood
M (A ⊗K◦ K) to the prime ideal {a ∈ A | p(a ⊗ 1) < 1}/K◦◦A. This map is surjective and
anti-continuous. If X̃ is reduced, then red coincides with the reduction map in [1, 2.4]. In this
case, for every irreducible component V of X̃, there is a unique point ξV ∈ Xan such that
red(ξV ) is the generic point of V (see [1, Prop. 2.4.4]).

1.1.6. — Assume that K is algebraically closed and let X = Spf(A) be an admissible formal
affine scheme over K◦ with reduced generic fiber Xan, but not necessarily with reduced special
fiber. Let A = A⊗K◦K be the associated K-affinoid algebra and let A◦ be the K◦-subalgebra
of power bounded elements in A. Then X′ := Spf(A◦) is an admissible formal scheme over K◦
with X′ an = Xan and with reduced special fiber X̃′. The identity on the generic fiber extends
to a canonical morphism X′ → X whose restriction to the special fibers is finite and surjective.
By gluing, these assertions also hold for non-necessarily affine formal schemes. For details,
we refer to [25, Prop. 1.11 and 8.1].

1.1.7. — Let X be a flat scheme of finite type overK◦ with generic fiberX and π some non-
zero element in K◦◦. Locally we can replace the coordinate ring A by the π-adic completion
of A and get an admissible formal scheme X̂ over K◦ with special fiber equal to the special
fiber X̃ of X . The generic fiber X̂ an, denoted by X◦, is an analytic subdomain of Xan

locally given by
{p ∈ (SpecA⊗K◦ K)an | p(a) ≤ 1 ∀ a ∈ A}.

If X is proper over K◦, then X◦ = Xan and the reduction map is defined on the whole of
Xan. If X̃ is reduced, then each maximal point of X̃ has a unique inverse image in X◦. We
refer to [32, 4.9–4.13] for details.
If K is algebraically closed and X is reduced, then the construction in 1.1.6 gives us a formal
admissible scheme X over K◦ with generic fiber Xan = X◦ and with reduced special fiber X̃
such that the canonical morphism X̃→ X̃ is finite and surjective.

1.2. Metrics, local heights and measures. — From now on, we assume that the non-
archimedean field K is algebraically closed. This is no serious restriction because we can
always perform base change to the completion of the algebraic closure of any non-archimedean
field and local heights and measures do not depend on the choice of the base field.
Let X be a reduced proper scheme over K and L a line bundle on X. This defines a line
bundle Lan on the compact space Xan.
In this subsection, we introduce algebraic (resp. formal) models of X and L and their associ-
ated algebraic (resp. formal) metrics on Lan. After introducing metrized pseudo-divisors, we
can study local heights of subvarieties and Chambert-Loir measures.

Definition 1.2.1. — A metric ‖ · ‖ on L is the datum, for any section s of Lan on a open
subset U ⊆ Xan, of a continuous function ‖s( · )‖ : U → R≥0 such that

(i) it is compatible with the restriction to smaller open subsets;

(ii) for all p ∈ U , ‖s(p)‖ = 0 if and only if s(p) = 0;
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(iii) for any λ ∈ OXan(U) and for all p ∈ U , ‖(λs)(p)‖ = |λ(p)| · ‖s(p)‖.

On the set of metrics on L we define the distance function
d(‖ · ‖, ‖ · ‖′) := sup

p∈Xan

∣∣log(‖sp(p)‖/‖sp(p)‖′)
∣∣ ,

where sp is any local section of Lan not vanishing at p. Clearly, this definition is independent
of the choices of the sp. The pair L :=(L, ‖ · ‖) is called a metrized line bundle. Operations
on line bundles like tensor product, dual and pullback extend to metrized line bundles.

Definition 1.2.2. — A formal (K◦-)model of X is an admissible formal scheme X over
K◦ with a fixed isomorphism Xan ' Xan. Note that we identify Xan with Xan via this
isomorphism.
A formal (K◦-)model of (X,L) is a triple (X,L, e) consisting of a formal model X of X, a line
bundle L on X and an integer e ≥ 1, together with an isomorphism Lan ' (L⊗e)an. When
e = 1, we write (X,L) instead of (X,L, 1).

Definition 1.2.3. — To a formal K◦-model (X,L, e) of (X,L) we associate a metric ‖ · ‖
on L in the following way: If U is a formal trivialization of L and if s is a section of Lan on
Uan such that s⊗e corresponds to λ ∈ OXan(Uan) with respect to this trivialization, then

‖s(p)‖ = |λ(p)|1/e

for all p ∈ Uan. A metric on L obtained in this way is called a Q-formal metric and, if e = 1,
a formal metric
Such a Q-formal metric is said to be semipositive if the reduction L̃ of L on the special fiber
X̃ is nef, i.e. we have deg

L̃
(C) ≥ 0 for every closed integral curve C in X̃.

1.2.4. — The dual, the tensor product and the pullback of (Q-)formal metrics are again
(Q-)formal metrics. Furthermore, the tensor product and the pullback of semipositive
Q-formal metrics are semipositive.

1.2.5. — Every line bundle L on X has a formal K◦-model (X,L) and hence a formal
metric ‖ · ‖. For proofs of this and the following statements we refer to [25, §7]. Since K is
algebraically closed and X is reduced, we may always assume that X has reduced special fiber
(see 1.1.6). Then the formal metric determines the K◦-model L on X up to isomorphisms,
more precisely we have canonically

L(U) ∼= {s ∈ Lan(Uan) | ‖s(p)‖ ≤ 1 ∀ p ∈ Uan}(1.1)
for each formal open subset U of X.

Definition 1.2.6. — An algebraic K◦-model X of X is a flat and proper scheme over
K◦ together with an isomorphism of the generic fiber of X onto X. An algebraic K◦-model
(X ,L , e) of (X,L) consists of a line bundle L on an algebraic K◦-model X of X and a
fixed isomorphism L |X ∼= Le.
As in Definition 1.2.3, an algebraic model (X ,L , e) of (X,L) induces a metric ‖ · ‖ on L,
called algebraic metric. Such a metric is said to be semipositive if, for every closed integral
curve C in the special fiber X̃ , we have degL (C) ≥ 0.

The following result of Gubler and Künnemann [33, Cor. 5.12] shows that, on algebraic
varieties, it is always possible to work with algebraic in place of Q-formal metrics.
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14 Local Heights of Toric Varieties over Non-archimedean Fields

Proposition 1.2.7. — Let L be a line bundle on a proper variety X over K and let ‖ · ‖
be a metric on L. Then, ‖ · ‖ is Q-formal if and only if ‖ · ‖ is algebraic.

1.2.8. — A metrized pseudo-divisor D̂ on X is a triple D̂ :=(L, Y, s) where L is a metrized
line bundle, Y is a closed subset of X and s is a nowhere vanishing section of L on X \ Y .
Then (O(D), |D|, sD) :=(L, Y, s) is a pseudo-divisor in the sense of [20, 2.2]. In contrast to
Cartier divisors, we can always define the pullback of a metrized pseudo-divisor D̂ on X by
a proper morphism ϕ : X ′ → X, namely

ϕ∗D̂ :=(ϕ∗O(D), ϕ−1|D|, ϕ∗sD) .

Example 1.2.9. — Let L be a metrized line bundle on X and s an invertible meromorphic
section of L, i.e. there is an open dense subset U of X such that s restricts to a non-vanishing
section of L on U . Then the pair (L, s) determines a pseudo-divisor

d̂iv(s) :=
(
L, |div(s)|, s|X\| div(s)|

)
,

where |div(s)| is the support of the Cartier divisor div(s).
Every real-valued continuous function ϕ on Xan defines a metric on the trivial line bundle OX
given by ‖1‖ = e−ϕ. We denote this metrized line bundle by O(ϕ). Then we get a metrized
pseudo-divisor Ô(ϕ) :=(O(ϕ), ∅, 1).

1.2.10. — Let D̂0, . . . , D̂t be metrized pseudo-divisors with Q-formal metrics and let Z be
a t-dimensional cycle on X with

|D0| ∩ · · · ∩ |Dt| ∩ |Z| = ∅ .(1.2)

Note that condition (1.2) is much weaker than the usual assumption that D̂0, . . . , D̂t intersect
properly on Z, that is, for all I ⊆ {0, . . . , t}, each irreducible component of Z ∩

⋂
i∈I |Di| has

dimension t− |I|.
For Q-formal metrized pseudo-divisors there is a refined intersection product with cycles on
X developed in [25, §8] and [27, §5]. By means of this product, one can define the local height
λD̂0,...,D̂t

(Z) as the real intersection number of D̂0, . . . , D̂t and Z on a joint formal K◦-model.
For details, we refer to [25, §9] and [27, §9]. If K◦ is a discrete valuation ring with value group
Γ = Z and all the K◦-models are algebraic, then we can use the usual intersection product.

Proposition 1.2.11. — The local height λ(Z) :=λD̂0,...,D̂t
(Z) is characterized by the fol-

lowing properties:

(i) It is multilinear and symmetric in D̂0, . . . , D̂t and linear in Z.

(ii) For a proper morphism ϕ : X ′ → X and a t-dimensional cycle Z ′ on X ′ satisfying
|D0| ∩ · · · ∩ |Dt| ∩ |ϕ(Z ′)| = ∅, we have

λϕ∗D̂0,...,ϕ∗D̂t
(Z ′) = λD̂0,...,D̂t

(ϕ∗Z ′) .

(iii) Let λ′(Z) be the local height obtained by replacing the metric ‖ · ‖ of D̂0 by another
Q-formal metric ‖ · ‖′. If the Q-formal metrics of D̂1, . . . , D̂t are semipositive and if Z
is effective, then

|λ(Z)− λ′(Z)| ≤ d(‖ · ‖, ‖ · ‖′) · degO(D1),...,O(Dt)(Z)m.(1.3)
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Proof. — The properties (i) and (ii) follow from [27, Thm. 10.6] and the last property follows
from the metric change formula in [27, Rem. 9.5]. �

1.2.12. — If X is an algebraic K◦-model of X, then there is a K◦-model Y of X with
reduced special fiber and a proper K◦-morphism Y → X which is the identity on X. This
follows from [9, Thm. 2.1′].
Moreover, let L, L′ be algebraic metrized line bundles on X induced by algebraic K◦-models
(X ,L , e) and (X ′,L ′, e′) respectively. Taking the closure X ′′ of X in X ×K◦ X ′ and
pulling back L , L ′ to X ′′, we obtain models inducing the same metrics on L and L′ but
living on the same model X ′′.
Hence, we can always assume that L and L ′ live on a common model with reduced special
fiber. The same holds for formal models, see 1.1.6.

For global heights and archimedean local heights of subvarieties there is an induction for-
mula which can be taken as definition for the heights (see [10, (3.2.2)] and [27, Prop. 3.5]).
A. Chambert-Loir has introduced a measure onXan such that an analogous induction formula
holds for non-archimedean local heights (cf. [14, 2.3]).

Definition 1.2.13. — Let Li, i = 1, . . . , d be Q-formal metrized line bundles on the reduced
proper scheme X over K of dimension d. By 1.2.12, there is a formal K◦-model X of X with
reduced special fiber and, for each i, a formal K◦-model (X,Li, ei) of (X,Li) inducing the
metric of Li. We denote by X̃(0) the set of irreducible components of the special fiber X̃. Then
we define a discrete (signed) measure on Xan by

c1(L1) ∧ · · · ∧ c1(Ld) = 1
e1 . . . ed

∑
V ∈X̃(0)

deg
L̃1,...,L̃d

(V ) · δξV ,

where δξV is the Dirac measure in the unique point ξV ∈ Xan such that red(ξV ) is the generic
point of V (see 1.1.5).
More generally, let Y be a t-dimensional subvariety of X, then we define

c1(L1) ∧ · · · ∧ c1(Lt) ∧ δY = i∗
(
c1(L1|Y ) ∧ · · · ∧ c1(Lt|Y )

)
,

where i :Y an → Xan is the induced immersion. We also write c1(L1) . . . c1(Lt)δY . This measure
extends by linearity to t-dimensional cycles.

1.2.14. — This measure is multilinear and symmetric in metrized line bundles. Moreover,
the total mass of c1(L1)∧· · ·∧c1(Lt)∧δY equals the degree degL1,...,Lt(Y ), and it is a positive
measure if the metrics of the Li are semipositive.

Proposition 1.2.15 (Induction formula). — Let D̂0, . . . , D̂t be Q-formal metrized
pseudo-divisors and let Z be a t-dimensional prime cycle with |D0| ∩ · · · ∩ |Dt| ∩ |Z| = ∅.
If |Z| * |Dt|, then let sDt,Z := sDt |Z , otherwise we choose any non-zero meromorphic section
sDt,Z of O(Dt)|Z . Let Y be the Weil divisor of sDt,Z considered as a cycle on X. Then we
have

λD̂0,...,D̂t
(Z) = λD̂0,...,D̂t−1

(Y )−
∫
Xan

log ‖sDt,Z‖ · c1(O(D0)) ∧ · · · ∧ c1(O(Dt−1)) ∧ δZ .

Proof. — This follows from [27, Rem. 9.5] and Definition 1.2.13. �
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16 Local Heights of Toric Varieties over Non-archimedean Fields

Remark 1.2.16. — If |Z| ⊆ |Dt|, one might wonder why the left hand side depends on
the metrized pseudo-divisor D̂t, which does not play a role on the right hand side, where
however an arbitrarily chosen meromorphic section of O(Dt)|Z occurs. This is closely related
to the refined intersection products of pseudo-divisors on formal K◦-models given in [27, §5]
and the dependence of the choice of the meromorphic section fizzles out by the condition
|D0| ∩ · · · ∩ |Dt−1| ∩ |Z| = ∅.

1.3. Semipositivity. — It would be nice if we could extend local heights to all continuous
metrics. Although the Q-formal metrics are dense in the space of continuous metrics, this
is not possible because the continuity property (1.3) in Proposition 1.2.11 only holds for
semipositiveQ-formal metrics. Following Zhang, we extend the theory of local heights to limits
of semipositiveQ-formal metrics which is important for canonical metrics and equidistribution
theorems.
Let X be a proper variety over an algebraically closed non-archimedean field K.

Definition 1.3.1. — Let L = (L, ‖ · ‖) be a metrized line bundle on X. The metric ‖ · ‖ is
called semipositive if there exists a sequence (‖ · ‖n)n∈N of semipositive Q-formal metrics on
L such that

lim
n→∞

d(‖ · ‖n, ‖ · ‖) = 0 .

In this case we say that L = (L, ‖ · ‖) is a semipositive (metrized) line bundle. The metric
is said to be DSP (for “difference of semipositive”) if there are semipositive metrized line
bundles M , N on X such that L = M ⊗N−1. Then L is called a DSP (metrized) line bundle
as well.

Remark 1.3.2. — If ‖ · ‖ is a Q-formal metric, then [33, Prop. 7.2] says that ‖ · ‖ is
semipositive in the sense of Definition 1.2.3 if and only if ‖ · ‖ is semipositive as defined in
Definition 1.3.1. So there is no ambiguity in the use of the term semipositive metric. This
answers the question raised in [11, Rem. 1.4.2].

1.3.3. — The tensor product and the pullback (with respect to a proper morphism) of
semipositive metrics are again semipositive. The tensor product, the dual and the pullback
of DSP metrics are also DSP.

1.3.4. — By means of Proposition 1.2.11, we can easily extend the local heights to DSP
metrics. Concretely, let Y be a t-dimensional prime cycle and D̂i = (Li, ‖ · ‖i, |Di|, si), i =
0, . . . , t, a collection of semipositive metrized pseudo-divisors onX with |D0|∩· · ·∩|Dt|∩Y = ∅.
By Definition 1.3.1, there is, for each i, an associated sequence of semipositive Q-formal
metrics ‖ ·‖i,n on Li such that d(‖ ·‖i,n, ‖ ·‖i)→ 0 for n→∞. Then we define the local height
of Y with respect to D̂0, . . . , D̂t as

λD̂0,...,D̂t
(Y ) := lim

n→∞
λ(L0,‖·‖0,n,|D0|,s0),...,(Lt,‖·‖t,n,|Dt|,st)(Y ) .(1.4)

This does not depend on the choice of the approximating semipositive formal metrics and
extends to cylces. For details, see [24, §1] or [26, Thm. 5.1.8].
Let Z be a t-dimensional cycle of X and (Li, si), i = 0, . . . , t, DSP metrized line bundles
on X with invertible meromorphic sections such that |div(s0)| ∩ · · · ∩ |div(st)| ∩ |Z| = ∅. By
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Example 1.2.9, we obtain DSP metrized pseudo-divisors d̂iv(si), i = 0, . . . , t. Then, we denote
the local height by

λ(L0,s0),...,(Lt,st)(Z) :=λd̂iv(s0),...,d̂iv(st)
(Z) .(1.5)

Proposition 1.3.5. — Let Z be a t-dimensional cycle of X and D̂0, . . . , D̂t DSP metrized
pseudo-divisors on X with |D0| ∩ · · · ∩ |Dt| ∩ |Z| = ∅. Then there is a unique local height
λ(Z) :=λD̂0,...,D̂t

(Z) ∈ R satisfying the following properties:

(i) If D̂0, . . . , D̂t are Q-formal metrized, then λ(Z) is the local height of 1.2.10.

(ii) λ(Z) is multilinear and symmetric in D̂0, . . . , D̂t and linear in Z.

(iii) For a proper morphism ϕ : X ′ → X and a t-dimensional cycle Z ′ on X ′ satisfying
|D0| ∩ · · · ∩ |Dt| ∩ |ϕ(Z ′)| = ∅, we have

λϕ∗D̂0,...,ϕ∗D̂t
(Z ′) = λD̂0,...,D̂t

(ϕ∗Z ′) .

In particular, λD̂0,...,D̂t
(Z) does not change when restricting the metrized pseudo-divisors

to the prime cycle Z.

(iv) Let λ′(Z) be the local height obtained by replacing the metric ‖ ·‖ of D̂0 by another DSP
metric ‖ · ‖′. If the metrics of D̂1, . . . , D̂t are semipositive and if Z is effective, then

|λ(Z)− λ′(Z)| ≤ d(‖ · ‖, ‖ · ‖′) · degO(D1),...,O(Dt)(Z) .

(v) Let f be a rational function on X and let D̂0 = d̂iv(f) be endowed with the triv-
ial metric on O(D0) = OX . If Y =

∑
P nPP is a cycle representing D1. . . . .Dt.Z ∈

CH0 (|D1| ∩ · · · ∩ |Dt| ∩ |Z|), then

λ(Z) =
∑
P

nP · log |f(P )| .

Proof. — This follows immediately from Proposition 1.2.11 and the construction in 1.3.4 and
is established in [27, Thm. 10.6]. �

Similarly, there is a generalization of Chambert Loir’s measures to semipositive and DSP line
bundles:

Proposition 1.3.6. — Let Y be a t-dimensional subvariety of X and Li = (Li, ‖ · ‖i),
i = 1, . . . , t, semipositive line bundles. For each i, let (‖·‖i,n)n∈N be the corresponding sequence
of Q-formal semipositive metrics on Li converging to ‖ · ‖i. Then the measures

c1(L1, ‖ · ‖1,n) ∧ · · · ∧ c1(Lt|, ‖ · ‖t,n) ∧ δY
converge weakly to a regular Borel measure on Xan. This measure is independent of the choice
of the sequences.

Proof. — This follows from [29, Prop. 3.12]. �

Definition 1.3.7. — Let Y be a t-dimensional subvariety of X and Li = (Li, ‖ · ‖i), i =
1, . . . , t, semipositive line bundles. We denote the limit measure in 1.3.6 by c1(L1) ∧ · · · ∧
c1(Lt) ∧ δY or shortly by c1(L1) . . . c1(Lt)δY . By multilinearity this notion extends to a t-
dimensional cycle Y of X and DSP line bundles L1, . . . , Lt.
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18 Local Heights of Toric Varieties over Non-archimedean Fields

Chambert Loir’s measure is uniquely determined by the following property which is taken as
definition in [29, 3.8].

Proposition 1.3.8. — Let L1, . . . , Lt be DSP line bundles on X and let Z be a t-dimensional
cycle. For j = 1, . . . , t we choose any metrized pseudo-divisor D̂j with O(Dj) = Lj, for
example D̂j = (Lj , X, 0).
If g is any continuous function on Xan, then there is a sequence of Q-formal metrics (‖ · ‖n)n∈N
on OX such that log ‖1‖−1

n tends uniformly to g for n→∞ and∫
Xan

g · c1(L1) ∧ · · · ∧ c1(Lt) ∧ δZ = lim
n→∞

λ(OX ,‖·‖n,∅,1),D̂1,...,D̂t
(Z) .

Proof. — By [25, Thm. 7.12], the Q-formal metrics are dense in the space of continuous
metrics on OX . This implies the existence of the sequence (‖ · ‖n)n∈N. The second part
follows from [29, Prop. 3.8]. �

Corollary 1.3.9. — Let Z be a cycle on X of dimension t and let D̂0, . . . , D̂t be DSP
metrized pseudo-divisors with |D0|∩· · ·∩|Dt|∩|Z| = ∅. Replacing the metric ‖·‖ on O(D0) by
another DSP metric ‖·‖′, we obtain a metrized pseudo-divisor Ê. Then g := log(‖sD0‖/‖sD0‖′)
extends to a continuous function on X and

λD̂0,...,D̂t
(Z)− λÊ,D̂1,...,D̂t

(Z) =
∫
Xan

g · c1(O(D1)) ∧ · · · ∧ c1(O(Dt)) ∧ δZ .

Proof. — Clearly g defines a continuous function on X and the claim follows easily from
Proposition 1.3.8. �

Proposition 1.3.10. — Let Z be a t-dimensional cycle of X and L1, . . . , Lt DSP line
bundles. Then the measure c1(L1) ∧ · · · ∧ c1(Lt) ∧ δZ has the following properties:

(i) It is multilinear and symmetric in L1, . . . , Lt and linear in Z.

(ii) Let ϕ : X ′ → X be a morphism of proper schemes over K and Z ′ a t-dimensional cycle
of X ′, then

ϕ∗
(
c1(ϕ∗L1) ∧ · · · ∧ c1(ϕ∗Lt) ∧ δZ′

)
= c1(L1) ∧ · · · ∧ c1(Lt) ∧ δϕ∗Z′ .

(iii) If the metrics of L1, . . . , Lt are semipositive, then c1(L1)∧ · · · ∧ c1(Lt)∧ δZ is a positive
measure with total mass degL1,...,Lt(Z).

Proof. — We refer to Corollary 3.9 and Proposition 3.12 in [29]. �

Remark 1.3.11. — In the archimedean case, i.e. for K = C, there is a similar theory of
local heights and Chambert-Loir measures as presented above. Formal metrics are replaced by
smooth metrics, semipositivity means positive curvature. Then uniform limits of semipositive
smooth metrics lead to semipositive continuous metrics on the complex analytification of the
line bundle. The DSP metrics are defined as above and we get Chambert-Loir measures as
before. All of the above properties remain valid. For details, we refer to [31].
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1.4. Induction formula for DSP local heights. — It is quite difficult to generalize the
induction formula from Proposition 1.2.15 to DSP line bundles. In the case of a discrete
valuation (or an archimedean place) and properly intersecting Cartier divisors on a projective
variety, this was done by Chambert-Loir and Thuillier in [15, Thm. 4.1]. The goal of this
subsection is to generalize their result to any proper variety X over an algebraically closed
non-archimedean field K. Note that, once the algebraically closed case is settled, invariance
of the local heights by base change gives the induction formula for any non-archimedean field.

Theorem 1.4.1 (Approximation theorem). — Let L be a line bundle on X endowed
with a semipositive formal metric ‖ · ‖ and let s be a global section of L on X which does not
vanish identically. Then there is a sequence (‖ ·‖n)n∈N of formal metrics on the trivial bundle
OX with the following properties:

(i) The sequence
(
log ‖1‖−1

n

)
n∈N converges pointwise to log ‖s‖−1 and it is monotonically

increasing.

(ii) For each n ∈ N, the formal metric ‖ · ‖/‖ · ‖n on L is semipositive.

Over a complete discrete valuation ring and for a projective variety X, this was proven
by Chambert-Loir and Thuillier [15, Thm. 3.1]. We will use a similar, but more analytic
approach.

Proof. — We fix some non-zero element π in K◦◦ and define, for each n ∈ N, the strictly
analytic domains

An := {x ∈ Xan | ‖s(x)‖ ≥ |πn|} and Bn := {x ∈ Xan | ‖s(x)‖ ≤ |πn|}.(1.6)

By 1.2.5, the formal metric ‖ · ‖ on L is given by a (finite) G-covering {Ui}i∈I of Xan by
strictly affinoid domains and non-vanishing regular sections ti ∈ Lan(Ui) with ‖ti‖ ≡ 1. We
refer to [6, §9] for the G-topology on rigid analytic varieties and to [2, §1.6] for the transition
to Berkovich analytic spaces. Let gij = tj/ti ∈ O(Ui ∩ Uj)× be the transition functions.
Then the nowhere vanishing restrictions s|Ui∩An may be identified with regular functions
fi ∈ O(Ui ∩An)× satisfying fi = gijfj on Ui ∩ Uj ∩An. There is a unique continuous metric
‖ · ‖n on OX with

‖1‖n := max{‖s‖, |π|n}.
Since the functions f−1

i ∈ O(Ui ∩ An), π−n ∈ O(Ui ∩ Bn) are local frames of OXan on a G-
covering of Xan by strictly affinoid domains and since these frames have norm 1 with respect
to ‖ · ‖n, it follows from 1.2.5 that ‖ · ‖n is a formal metric on OX . By construction, we have

(1.7) ‖1‖n =
{
‖s‖ on An,
|π|n on Bn.

Clearly, the sequence
(
log ‖1‖−1

n

)
n∈N is monotonically increasing and converges pointwise to

log ‖s‖−1. This proves (i).
To prove (ii), we show that, for each n ∈ N, the formal metric ‖·‖′n := ‖·‖/‖·‖n is semipositive
on L⊗O−1

X = L. Note that

(1.8) ‖s‖′n = ‖s‖
‖1‖n

=
{

1 on An,
‖s‖ · |π−n| on Bn.
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20 Local Heights of Toric Varieties over Non-archimedean Fields

For the G-covering {Ui ∩ An, Ui ∩ Bn}i∈I of Xan by strictly affinoid domains, there exists
a formal K◦-model Xn of Xan and a formal open covering {Ui,n,Vi,n}i∈I of Xn such that
Uan
i,n = Ui ∩An and Van

i,n = Ui ∩Bn (see [8, Thm. 5.5]). We may assume that Xn has reduced
special fiber (cf. 1.2.12). Then, by 1.2.5, the formal metric ‖ · ‖′n is associated to the formal
K◦-model (L′n,Xn) of (X,L) given by

L′n(U) =
{
r ∈ Lan(Uan) | ‖r(x)‖′n ≤ 1 ∀ x ∈ Uan}(1.9)

on a formal open subset U of Xn. Therefore, we can consider s as a global section of L′n as
we have ‖s‖′n = ‖s‖n/‖1‖n ≤ 1.
Let C ⊆ X̃n be a closed integral curve. If s doesn’t vanish identically on C, then

deg
L̃′n

(C) = deg(c1(L̃′n).C) = deg(div(s|C)) ≥ 0 .

If s vanishes identically on C, let Bn be the union of the formal open subsets (Vi,n)i∈I . Then
it follows from (1.6) and (1.8) that B̃n = red(Bn) contains C. By passing from the G-covering
{Ui}i∈I to the refinement {Ui∩An, Ui∩Bn}i∈I and using the frame ti with ‖ti‖ = 1 on Ui∩An
and on Ui ∩Bn, we see again from 1.2.5 that the formal metric ‖ · ‖ is given by a K◦-model
Ln on Xn. Moreover, Ln satisfies a similar formula as in (1.9) with ‖ · ‖ replacing ‖ · ‖′n. We
get an isomorphism Ln|Bn ∼= L′n|Bn given by r 7→ πn · r. By assumption, the formal metric
‖ · ‖ is semipositive and hence L̃n is nef. Since B̃n is a neighborhood of C, we obtain

deg
L̃′n

(C) = deg
L̃n

(C) ≥ 0 .

This implies the semipositivity of ‖ · ‖/‖ · ‖n proving (ii). �

Corollary 1.4.2. — We use the notations from the approximation Theorem 1.4.1 and in
addition, we consider semipositive line bundles L1, . . . , Lt−1 on the t-dimensional proper va-
riety X. Let µ be a (signed) Radon measure on Xan such that, for every formal metric ‖ · ‖′
on OX ,

lim
n→∞

∫
Xan

log ‖1‖′ · c1 (OX , ‖ · ‖n) c1(L1) . . . c1(Lt−1) =
∫
Xan

log ‖1‖′ · µ.(1.10)

Then the sequence
(
c1(OX , ‖ · ‖n) c1(L1) . . . c1(Lt−1)

)
n∈N

of measures on Xan converges
weakly to µ.

Proof. — We define ν := c1(L, ‖ · ‖) c1(L1) . . . c1(Lt−1) and, for each n ∈ N, we set µn :=
c1(OX , ‖ · ‖n) c1(L1) . . . c1(Lt−1). Then, by the approximation Theorem 1.4.1 and Proposi-
tion 1.3.10(iii), the measures

ν − µn = c1
(
L, ‖·‖‖·‖n

)
c1(L1) . . . c1(Lt−1)

are positive with finite total mass degL,L1,...,Lt−1(X) independent of n. By linearity, the
equation (1.10) also holds for any Q-formal metric on OX . By [25, Thm. 7.12], the space
{− log ‖1‖′ | ‖ · ‖′ Q-formal metric on OX} is dense in C(Xan). An easy application of the
triangle inequality shows that

lim
n→∞

∫
Xan

f · (ν − µn) =
∫
Xan

f · (ν − µ)

for any f ∈ C(Xan). This proves the claim. �
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Theorem 1.4.3 (Induction formula). — Let Z be a t-dimensional prime cycle on X and
let D̂0 = (L0, |D0|, s0), . . . , D̂t = (Lt, |Dt|, st) be DSP pseudo-divisors with |D0| ∩ · · · ∩ |Dt| ∩
|Z| = ∅. If |Z| * |Dt|, then let st,Z := st|Z , otherwise we choose any non-zero meromorphic
section st,Z of Lt|Z . Let cyc(st,Z) be the Weil divisor of st,Z considered as a cycle on X.
Then the function log ‖st,Z‖ is integrable with respect to c1(L0)∧ · · · ∧ c1(Lt−1)∧ δZ and we
have

(1.11) λD̂0,...,D̂t
(Z) = λD̂0,...,D̂t−1

(cyc(st,Z))−
∫
Xan

log ‖st,Z‖ · c1(L0)∧ · · · ∧ c1(Lt−1)∧ δZ .

Remark 1.4.4. — If L0, . . . , Lt have Q-formal metrics, then this result is just Proposi-
tion 1.2.15. It is also evident if Lt is the trivial bundle and hence, log ‖st,Z‖ is a continuous
function on Z. The difficulties of the general case arise from the relation between the limit
process defining the measure, and the singularities of the function log ‖st,Z‖.
Our proof is based on [15, Thm. 4.1] where the formula is demonstrated under the additional
assumptions that X is projective over a complete discrete valuation ring and s0, . . . , st are
global sections with associated Cartier divisors intersecting Z properly. As explained at the
beginning of our proof, our more general setting of pseudo-divisors satisfying |D0|∩· · ·∩|Dt|∩
|Z| = ∅ can be reduced to the projective situation with properly intersecting global sections.
So the main difficulty is to deal with a non-discrete valuation where the main ingredient is
now our generalization of the approximation theorem.
The induction formula 1.4.3 also holds in the archimedean case, i.e. for K = C. Indeed, this
was proven by Chambert-Loir and Thuillier in the projective situation described above and
extends to our setting as explained above.

Proof of Theorem 1.4.3. — By Proposition 1.3.5(iii), we may assume that X = Z, especially
st = st,Z . Furthermore, we can suppose that X is projective by Chow’s lemma and functo-
riality of the height (Proposition 1.3.5). We denote the crucial difference of local heights
by

(1.12) ∆(D̂0, . . . , D̂t) := λD̂0,...,D̂t
(X)− λD̂0,...,D̂t−1

(cyc(st)) .

First note that ∆(D̂0, . . . , D̂t) depends continuously on the metrics (‖ · ‖0, . . . , ‖ · ‖t) by the
metric change formula 1.3.9. If all the metrics are formal, then the induction formula 1.2.15
holds and hence a continuity argument shows that ∆(D̂0, . . . , D̂t) only depends on L0, . . . ,

Lt−1 and D̂t. In fact, it is easy to see that

∆L0,...,Lt−1
(D̂t) := ∆(D̂0, . . . , D̂t)

makes sense for any DSP metrized line bundles L0, . . . , Lt−1 and any metrized DSP pseudo-
divisor D̂t by choosing (generic) pseudo-divisors D̂0, . . . , D̂t−1 for L0, . . . , Lt−1 with |D0| ∩
· · · ∩ |Dt| = ∅. By Proposition 1.3.5(i), ∆L0,...,Lt−1

(D̂t) is multilinear in (L0, . . . , Lt−1, D̂t).
Using this and projectivity, we may assume that L0, . . . , Lt are very ample, st is a global
section and the metrics are semipositive.
Note that − log ‖st‖ is a measurable function on Xan. In the following, we will integrate it
with respect to positive Radon measures on Xan allowing the value ∞ for the integral, the
value −∞ is out of question as the function is bounded from below and Xan is compact. To

Publications mathématiques de Besançon – 2017



22 Local Heights of Toric Varieties over Non-archimedean Fields

prove the theorem, it is enough to show that

(1.13) ∆L0,...,Lt−1
(D̂t) = −

∫
Xan

log ‖st‖ · c1(L0) ∧ · · · ∧ c1(Lt−1)

which implies also integrability of − log ‖st‖. The metric change formula 1.3.9 shows that the
last metric ‖ · ‖t may be assumed to be a semipositive formal metric. Using generic hyperplane
sections of L0, . . . , Lt−1, we may assume that the local heights in the theorem and in (1.12)
are with respect to very ample pseudo-divisors D0, . . . , Dt which intersect properly.
We prove by induction on k ∈ {0, . . . , t} that the theorem holds if Li is a formally metrized
line bundle for i ≥ k. The case k = 0 is just the induction formula for formal metrics (see
Proposition 1.2.15). We assume that the statement holds for k and demonstrate it for k + 1.
In the following we fix a semipositive formal metric ‖ · ‖′ on Lk. We denote the corresponding
metrized line bundle by Mk and the metrized pseudo-divisor (Mk, |Dk|, sk) by Êk. Then we
can extend ϕk := log ‖sk‖′−log ‖sk‖ to a continuous function onXan and OX(ϕk) :=Lk⊗M

−1
k

is a DSP line bundle whose underlying line bundle is trivial. To emphasize that the following
line bundles are equipped with formal metrics, we will use M i := Li and Êi := D̂i for i =
k+1, . . . , t. SinceMk, . . . ,M t−1 are formally metrized line bundles, our induction hypothesis
implies

(1.14)
∫
Xan

log ‖st‖ · c1(L0) . . . c1(Lk−1) c1(Mk) . . . c1(M t−1)

= λD̂0,...,D̂k−1,Êk,...,Êt−1
(cyc(st))− λD̂0,...,D̂k−1,Êk,...,Êt

(X).

If we apply the change of metrics formula 1.3.9 twice in (1.14) to replace Êk by D̂k, then
the same computation as in the proof of [15, Thm. 4.1] shows that (1.13) is equivalent to the
claim∫

Xan
ϕk · c1(L0) . . . c1(Lk−1) c1(Mk+1) . . . c1(M t)

=
∫
Xan

ϕk · c1(L0) . . . c1(Lk−1) c1(Mk+1) . . . c1(M t−1)δcyc(st)

−
∫
Xan

log ‖st‖ · c1(O(ϕk)) c1(L0) . . . c1(Lk−1) c1(Mk+1) . . . c1(M t−1) .

Using our reduction steps at the beginning, we can apply the approximation theorem 1.4.1:
Let (‖ · ‖n)n∈N be a sequence of formal metrics on OX such that the functions gn := log ‖1‖−1

n

tend pointwise to log ‖st‖−1, the sequence (gn)n∈N is monotonically increasing and
(OX , ‖ · ‖n) is a DSP line bundle. Applying Lebesgue’s monotone convergence theorem and
using Proposition 1.3.8 and 1.3.10(i), we obtain∫

Xan
log ‖st‖−1· c1(O(ϕk)) c1(L0) . . . c1(Lk−1) c1(Mk+1) . . . c1(M t−1)

= lim
n→∞

∫
Xan

gn · c1(O(ϕk)) c1(L0) . . . c1(Lk−1) c1(Mk+1) . . . c1(M t−1)

= lim
n→∞

λÔ(gn),Ô(ϕk),D̂0,...,D̂k−1,Êk+1,...,Êt−1
(X)

= lim
n→∞

λÔ(ϕk),Ô(gn),D̂0,...,D̂k−1,Êk+1,...,Êt−1
(X)

= lim
n→∞

∫
Xan

ϕk · c1(OX , ‖ · ‖n) c1(L0) . . . c1(Lk−1) c1(Mk+1) . . . c1(M t−1) .
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For ϕk = log(‖ · ‖′k/‖ · ‖k), this shows that (1.13) is equivalent to the claim

(1.15) lim
n→∞

∫
Xan

ϕk · c1(OX , ‖ · ‖n) c1(L0) . . . c1(Lk−1) c1(Mk+1) . . . c1(M t−1)

=
∫
Xan

ϕk ·
(
c1(L0) . . . c1(Lk−1) c1(Mk+1) . . . c1(M t)

− c1(L1) . . . c1(Lk−1) c1(Mk+1) . . . c1(M t−1)δcyc(st)
)
.

The induction hypothesis implies that equation (1.15) always holds if ‖ · ‖′k/‖ · ‖k is a formal
metric. But then Corollary 1.4.2 says that this equation is also true if ϕk is only continuous.
This shows the induction formula (1.11) and therefore the integrability of log ‖st‖ with respect
to c1(L0) . . . c1(Lt−1). �

Corollary 1.4.5. — Let L1, . . . , Ln be DSP-metrized line bundles on the n-dimensional
proper variety X over K and let Y be any proper closed subset of X endowed with the induced
reduced structure. Then Y an has measure zero with respect to the measure c1(L1)∧. . .∧c1(Ln)
on Xan.

Proof. — By Chow’s lemma and Proposition 1.3.10(ii), we may assume that X is projective.
Then Y is contained in the support of an effective pseudo-divisor (L, |div(s)|, s). By the
induction formula, the function log ‖s‖−1 is integrable with respect to c1(L1)∧ . . .∧c1(Ln−1),
but it takes the value +∞ on |div(s)|an. Thus |div(s)|an and the subset Y an have measure
zero with respect to the measure c1(L1) ∧ . . . ∧ c1(Ln) on Xan. �

Corollary 1.4.6. — Let L1, . . . , Ln be semipositive metrized line bundles on the n-dimen-
sional proper variety X over K. For i = 1, . . . ,m, let si be a non-trivial meromorphic section
of a DSP-metrized line bundle Mi with DSP-metric ‖ · ‖i. Then φ := maxi log ‖si‖i is inte-
grable with respect to the measure µ := c1(L1)∧ . . .∧ c1(Ln) and the function (L1, . . . , Ln) 7→∫
Xan φdµ is continuous with respect to uniform convergence of the semipositive metrics on
the fixed line bundles L1, . . . , Ln.

Proof. — Using Chow’s lemma, we may assume that X is projective. We first handle the
case m = 1. Then it follows from Theorem 1.2.15 that log ‖s‖ is µ-integrable and that we
may write

∫
Xan φdµ as a difference of two local heights. Then continuity with respect to

uniform convergence of the metrics follows from the similar property of local heights (see
Proposition 1.3.5(iv)).
Now we deal with the case m ≥ 2. Let H be an ample line bundle on X. Using that Mi is
the difference of Mi⊗Hk and Hk and both are very ample for k sufficiently large, we deduce
easily that si = ti/t for ti ∈ Γ(X,Mi ⊗ Hk) and t ∈ Γ(X,Hk). Moreover, we may assume
that the same k and that the same denominator t work for all i = 1, . . . ,m. We endow H
with any DSP-metric and Mi ⊗ Hk with the tensor metric. Using the case m = 1 handled
above, it is enough to show the claim for the function maxi log ‖ti‖i. Hence we may assume
that all si are global sections.
Using the case m = 1, we deduce that φ is a maximum of µ-integrable functions and hence
φ is also µ-integrable. Since all the si are now global sections, there is C ∈ R such that
log ‖si‖i ≤ φ ≤ C for any i = 1, . . . ,m. A sandwich argument and the case m = 1 yield that φ
is continuous with respect to uniform convergence of the semipositive metrics L1, . . . , Ln. �
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2. Metrics and local heights of toric varieties

In this section, we study local heights of proper toric varieties with respect to line bundles
endowed with toric metrics. We generalize the program of Burgos–Philippon–Sombra [11,
Ch. 4], where they assumed to a large extend that valuations are discrete, to arbitrary non-
archimedean fields. In the first two sections, we recall the classical theory of toric varieties
and the theory of toric schemes from [32]. The first new results come in Section 2.3 where
we describe Cartier divisors on toric schemes in terms of piecewise affine functions. In Sec-
tion 2.4, we recall toric metrics, tropicalizations and the Kajiwara–Payne compactification.
In Section 2.5, the main result is the characterization of semipositive toric metrics in terms
of concave functions. Moreover, we give a formula for the Chambert-Loir measure of a semi-
positive toric metric in terms of the associated Monge–Ampère measure. Finally, we prove in
Section 2.6 the formula for toric local heights explained in Theorem III of the introduction.

2.1. Toric varieties. —We give a short overview of the theory of (normal) toric varieties
over a fieldK following closely the notation in [11, 3.1–3.4]. For details, we refer to [16, 19, 38].
Let M be a free abelian group of rank n and N :=M∨ := Hom(M,Z) its dual group. The
natural pairing between m ∈ M and u ∈ N is denoted by 〈m,u〉 :=u(m). We have the split
torus T := Spec(K[M ]) over a field K of rank n. Then M can be considered as the character
lattice of T and N as the lattice of one-parameter subgroups. For m ∈ M we will write χm
for the corresponding character. If G is an abelian group, we set NG = N ⊗ZG. In particular,
NR = N ⊗Z R is an n-dimensional real vector space with dual space MR.

Definition 2.1.1. — Let K be a field and T a split torus over K. A (T-)toric variety is an
irreducible variety X over K containing T as a (Zariski) open subset such that the translation
action of T on itself extends to an algebraic action µ : T×X → X.

2.1.2. — There is a nice description of normal toric varieties in combinatorial data. At first
we have a bijection between the sets of

(i) strongly convex rational polyhedral cones σ in NR,

(ii) isomorphism classes of affine normal T-toric varieties X over K.

This correspondence is given by σ 7→ Uσ = Spec(K[Mσ]), where K[Mσ] is the semigroup
algebra of

Mσ = σ∨ ∩M = {m ∈M | 〈m,u〉 ≥ 0 ∀ u ∈ σ}.
The action of T on Uσ is induced by

K[Mσ]→ K[M ]⊗K[Mσ] , χm 7→ χm ⊗ χm .

More generally, we consider a fan Σ in NR (Definition A.4). If σ, σ′ ∈ Σ, then Uσ and Uσ′
glue together along the open subset Uσ∩σ′ . this leads to a normal T-toric variety

XΣ =
⋃
σ∈Σ

Uσ .

This construction induces a bijection between the set of fans Σ in NR and the set of isomor-
phism classes of normal toric varieties XΣ with torus T.
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2.1.3. — Many properties of normal toric varieties are encoded in their fans, for example:

(i) A normal toric varietyXΣ is proper if and only if the fan is complete, i.e. |Σ| :=
⋃
σ∈Σ σ =

NR.

(ii) A normal toric variety XΣ is smooth if and only if the minimal generators of each cone
σ ∈ Σ are part of a Z-basis of N .

2.1.4. — Let XΣ be the normal toric variety of the fan Σ in NR. Then there is a bijective
correspondence between the cones in Σ and the T-orbits in XΣ. The closures of the orbits in
XΣ have the structure of normal toric varieties what we describe in the following: For σ ∈ Σ
we set

N(σ) = N/ 〈N ∩ σ〉 , M(σ) = N(σ)∨ = M ∩ σ⊥, O(σ) = Spec(K[M(σ)]),

where σ⊥ denotes the orthogonal space to σ. Then O(σ) is a torus over K of dimension
n− dim(σ) which can be identified with a T-orbit in XΣ via the surjection

K[Mσ] −→ K[M(σ)], χm 7−→
{
χm if m ∈ σ⊥,
0 otherwise.

We denote by V (σ) the closure of O(σ) in XΣ. Then V (σ) can be identified with the normal
O(σ)-toric variety XΣ(σ) which is given by the fan

Σ(σ) = {τ + 〈N ∩ σ〉R | τ ∈ Σ, τ ⊇ σ}(2.1)

in N(σ)R = NR/ 〈N ∩ σ〉R.

Definition 2.1.5. — Let Xi, i = 1, 2, be toric varieties with dense open torus Ti. We say
that a morphism ϕ : X1 → X2 is toric if ϕ maps T1 into T2 and ϕ|T1 : T1 → T2 is a group
morphism.

2.1.6. — Any toric morphism ϕ : X1 → X2 is equivariant, i.e. we have a commutative
diagram

T1 ×X1
µ1 //

ϕ|T1×ϕ
��

X1

ϕ

��
T1 ×X1

µ2 // X2 ,

where µ1 and µ2 denote the torus actions.

Toric morphisms can be desribed in combinatorial terms.

2.1.7. — For i = 1, 2, let Ni be a lattice with associated torus Ti = SpecK[N∨i ] and let Σi

be a fan in Ni,R. Let H : N1 → N2 be a linear map which is compatible with Σ1 and Σ2. That
is, for each cone σ1 ∈ Σ1, there exists a cone σ2 ∈ Σ2 with H(σ1) ⊆ σ2. Then H induces
a group morphism T1 → T2 of tori and, by the compatibility of H, this group morphism
extends to a toric morphism ϕH : XΣ1 → XΣ2 .
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We fix Ni, Ti and Σi, i = 1, 2, as above. Then the assignment H 7→ ϕH induces a bijection
between the sets of

(i) linear maps H : N1 → N2 which are compatible with Σ1 and Σ2;

(ii) toric morphisms ϕ : XΣ1 → XΣ2 .

A toric morphism ϕH : XΣ1 → XΣ2 is proper if and only if H−1(|Σ2|) = |Σ1|.

Definition 2.1.8. — A T-Cartier divisor on a T-toric variety X is a Cartier divisor D
on X which is invariant under the action of T on X, i.e. we have µ∗D = p∗2D denoting by
µ : T×X → X the toric action and by p2 : T×X → X the second projection.

Torus-invariant Cartier divisors on a normal T-toric variety X = XΣ can be described in
terms of support functions:

Definition 2.1.9. — A function Ψ: |Σ| −→ R is called a virtual support function on Σ,
if there exists a set {mσ}σ∈Σ of elements in M such that, for each cone σ ∈ Σ, we have
Ψ(u) = 〈mσ, u〉 for all u ∈ σ. It is said to be strictly concave if, for maximal cones σ, τ ∈ Σ,
we have mσ = mτ if and only if σ = τ . A support function is a concave virtual support
function on a fan.

2.1.10. — Let Ψ be a virtual support function given by the data {mσ}σ∈Σ. Then Ψ deter-
mines a T-Cartier divisor

DΨ :=
{(
Uσ, χ

−mσ)}
σ∈Σ

on XΣ. The map Ψ 7→ DΨ is an isomorphism between the group of virtual support functions
on Σ and the group of T-Cartier divisors on XΣ. The divisors DΨ1 and DΨ2 are rationally
equivalent if and only if Ψ1 −Ψ2 is linear.

Definition 2.1.11. — Let X be a toric variety. A toric line bundle on X is a pair (L, z)
consisting of a line bundle L on X and a non-zero element z in the fiber Lx0 of the unit point
x0 of U0 = T. A toric section is a rational section s of a toric line bundle which is regular
and non-vanishing on the torus U0 and such that s(x0) = z.

2.1.12. — Let D be a T-Cartier divisor on a normal toric variety XΣ. Then there is an
associated line bundle O(D) and a rational section sD such that div(sD) = D. Since the
support of D lies in the complement of T, the section sD is regular and non-vanishing on
T. Thus, D corresponds to a toric line bundle (O(D), sD(x0)) with toric section sD. This
assignment determines an isomorphism between the group of T-Cartier divisors on XΣ and
the group of isomorphism classes of toric line bundles with toric sections.
Let Ψ be a virtual support function on Σ. This function corresponds bijectively to the iso-
morphism class of the toric line bundle with toric section ((O(DΨ), sDΨ(x0)), sDΨ), which we
simply denote by (LΨ, sΨ).
Note that a line bundle with a toric section admits a unique structure of a T-equivariant line
bundle such that the toric section becomes T-invariant. Conversely, any T-equivariant toric
line bundle has a unique toric section which is T-equivariant (see [11, Rem. 3.3.6]).
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2.1.13. — Let XΣ be a T-toric variety. We denote by Pic(XΣ) the Picard group of XΣ and
by DivT(XΣ) the group of T-Cartier divisors. Then we have a short exact sequence of abelian
groups

M −→ DivT(XΣ) −→ Pic(XΣ) −→ 0 ,
where the first morphism is given by m 7→ div(χm). In particular, every toric line bundle
admits a toric section and, if s and s′ are two toric sections, then there is an m ∈ M such
that s′ = χms.

2.1.14. — Let DΨ be a T-Cartier divisor on a normal toric variety XΣ. Then the associated
Weil divisor cyc(sΨ) is invariant under the torus action. Indeed, let Σ(1) be the set of one-
dimensional cones in Σ. Each ray τ ∈ Σ(1) gives a minimal generator vτ ∈ τ ∩ N and a
corresponding T-invariant prime divisor V (τ) on XΣ (see 2.1.4). Then we have

(2.2) cyc(sΨ) =
∑

τ∈Σ(1)

−Ψ(vτ )V (τ) .

2.1.15. — We describe the intersection of a T-Cartier divisor with the closure of an orbit.
Let Σ be a fan in NR and Ψ a virtual support function on Σ given by the defining vectors
{mτ}τ∈Σ. Let σ be a cone of Σ and V (σ) the corresponding orbit closure. Each cone τ � σ
corresponds to a cone τ of the fan Σ(σ) defined in (2.1). Since mτ − mσ|σ = 0, we have
mτ −mσ ∈ M(σ) = M ∩ σ⊥. Thus, the defining vectors {mτ −mσ}τ∈Σ(σ) gives us a well-
defined virtual support function (Ψ−mσ)(σ) on Σ(σ).
When Ψ|σ 6= 0, then DΨ and V (σ) do not intersect properly. But DΨ is rationally equivalent
to DΨ−mσ and the latter divisor properly intersects V (σ). Moreover, we have DΨ−mσ |V (σ) =
D(Ψ−mσ)(σ). For details, we refer to [11, Prop. 3.3.14].

We end this subsection with some positivity statements about T-Cartier divisors. For this,
we consider a complete fan Σ in NR and a virtual support function Ψ on Σ given by the
defining vectors {mσ}σ∈Σ.

2.1.16. — Many properties of the associated toric line bundle O(DΨ) are encoded in its
(virtual) support function.

(i) O(DΨ) is generated by global sections if and only if Ψ is concave;

(ii) O(DΨ) is ample if and only if Ψ is strictly concave.

If Ψ is concave, then the stability set ∆Ψ from A.7 is a lattice polytope and {χm}m∈M∩∆Ψ is
a basis of the K-vector space Γ(XΣ,O(DΨ)). Moreover, we have in this case
(2.3) degO(DΨ)(XΣ) = n! volM (∆Ψ).

2.1.17. — Assume that Ψ is strictly concave or equivalently that DΨ is ample. We use
the notations and statements from A.20. Then the stability set ∆ := ∆Ψ is a full dimensional
lattice polytope and Σ coincides with the normal fan Σ∆ of ∆. Thus, a facet F of ∆ correspond
to a ray σF of Σ and we can reformulate (2.2),

cyc(sΨ) =
∑
F

−〈F, vF 〉V (σF ),

where the sum is over the facets F of ∆ and where vF is the primitive inner normal vector
to F (see A.21).
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2.1.18. — Assume that Ψ is concave, i.e. DΨ is generated by global sections. Then ∆ = ∆Ψ
is a (not necessarily full dimensional) lattice polytope. We set

M(∆) = M ∩ L∆ , N(∆) = M(∆)∨ = N
/(
N ∩ L⊥∆

)
,

where L∆ denotes the linear subspace of MR associated to the affine hull aff(∆) of ∆. We
choose any m ∈ aff(∆) ∩M . Then, the lattice polytope ∆ −m is full dimensional in L∆ =
M(∆)R. Let Σ∆ be the normal fan of ∆−m in N(∆)R (see A.20). The projection H : N →
N(∆) is compatible with Σ and Σ∆ and so, by 2.1.7, it induces a proper toric morphism
ϕ : XΣ → XΣ∆ . We set ∆′ = ∆−m and consider the function

Ψ∆′ : N(∆)R −→ R , u 7−→ min
m′∈∆′

〈
m′, u

〉
.

This is a strictly concave support function on Σ∆. By 2.1.16, the divisor DΨ∆′ is ample and,

(2.4) DΨ = ϕ∗DΨ∆′ + div(χ−m) .

2.2. Toric schemes over valuation rings of rank one. — In this subsection we summa-
rize some facts from the theory of toric schemes over valuation rings of rank one developed
in [32] and [35].
LetK be a field equipped with a non-archimedean absolute value |·|. Then we have a valuation
ring K◦ with valuation val :=− log | · | of rank one and a value group Γ := val(K×). As usual,
we fix a free abelian group M of rank n with dual N . Then we denote by TS the split torus
TS = Spec (K◦[M ]) over S = Spec(K◦) with generic fiber T = Spec(K[M ]) and special fiber
TK̃ = Spec(K̃[M ]) over the residue field K̃.

Definition 2.2.1. — A (TS-)toric scheme is an integral separated S-scheme X such that
the generic fiber Xη contains T as an open subset and the translation action of T on itself
extends to an algebraic action TS ×S X →X over S.

Note that by [32, Lem. 4.2] a toric scheme X is flat over S and the generic fiber Xη is a
T-toric variety over K.

Definition 2.2.2. — Let X be a T-toric variety and X a TS-toric scheme. Then X is
called a (TS-)toric model of X if it comes with a fixed isomorphism Xη ' X which is the
identity on T. If X and X ′ are toric models of X and α : X → X ′ is an S-morphism, we
say that α is a morphism of toric models if its restriction to T is the identity.

2.2.3. — A Γ-admissible cone σ in NR×R≥0 is a strongly convex cone which is of the form

σ =
k⋂
i=1
{(u, r) ∈ NR × R≥0 | 〈mi, u〉+ li · r ≥ 0} with mi ∈M, li ∈ Γ, i = 1, . . . , k.

For such a cone σ, we define

K[M ]σ :=
{ ∑

m∈M
αmχ

m ∈ K[M ]
∣∣∣∣∣ 〈m,u〉+ val(αm) · r ≥ 0 ∀ (u, r) ∈ σ

}
.

This is an M -graded K◦-subalgebra of K[M ] which is an integrally closed domain. Hence,
we get an affine normal TS-toric scheme Uσ := Spec(K[M ]σ) over S. It is finitely generated
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as a K◦-algebra if and only if the following condition (F) is fulfilled:

(F) The value group Γ is discrete or the vertices of σ ∩ (NR × {1})
are contained in NΓ × {1}.

Hence Uσ is of finite type if and only if (F) holds. If Γ is discrete or divisible, then (F) is
always satisfied.

2.2.4. — A fan in NR×R≥0 is called Γ-admissible if it consists of Γ-admissible cones. Given
such a fan Σ̃, the affine TS-toric schemes Uσ, σ ∈ Σ̃, glue together along the open subschemes
corresponding to the common faces as in the case of toric varieties. This leads to a normal
TS-toric scheme

(2.5) XΣ̃ =
⋃
σ∈Σ̃

Uσ

over S. It is universally closed if and only if Σ̃ is complete, i.e. |Σ̃| = NR × R≥0 (see [32,
Prop. 11.8]).

2.2.5. — We have the following generalization of the classification of toric varieties over a
field: By [35, Thm. 3], Σ̃ 7→XΣ̃ defines a bijection between the sets of

(i) Γ-admissible fans in NR × R≥0 whose cones satisfy condition (F),

(ii) isomorphism classes of normal TS-toric schemes of finite type over S.

In this case, XΣ̃ is proper over S if and only if Σ̃ is complete.

2.2.6. — It is also possible to describe toric schemes in terms of polyhedra in NR. Let σ be
a cone in NR × R≥0. For r ∈ R≥0, we set

σr :={u ∈ NR | (u, r) ∈ σ}.
Then σ 7→ σ1 defines a bijection between the set of Γ-admissible cones in NR×R≥0, which are
not contained in NR × {0}, and the set of strongly convex Γ-rational polyhedra in NR. The
inverse map is given by Λ 7→ c(Λ), where c(Λ) is the closure of R>0(Λ× {1}) in NR × R≥0.

2.2.7. — Let Σ̃ be a Γ-admissible fan. Then we have two kinds of cones σ in Σ̃:

(i) If σ is contained in NR × {0}, then K[M ]σ = K[Mσ0 ]. Hence, Uσ is equal to the toric
variety Uσ0 associated to the cone σ0 (see 2.1.2) and it is contained in the generic fiber
of XΣ̃.

(ii) If σ is not contained in NR×{0}, then Λ :=σ1 is a strongly convex Γ-rational polyhedron
in NR. It easily follows that K[M ]σ is equal to

K[M ]Λ :=
{ ∑

m∈M
αmχ

m ∈ K[M ]
∣∣∣∣∣ 〈m,u〉+ val(αm) ≥ 0 ∀ u ∈ Λ

}
.

Thus, Uσ equals the TS-toric scheme UΛ := Spec(K[M ]Λ). The generic fiber of UΛ = Uσ

is identified with the T-toric variety Uσ0 = Urec(Λ).
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We set Σ :={σ0 |σ ∈ Σ̃} and Π :={σ1 |σ ∈ Σ̃}. Then Σ is a fan in NR and Π is a Γ-rational
strongly convex polyhedral complex in NR. Now we can rewrite the open cover (2.5) as

(2.6) XΣ̃ =
⋃
σ∈Σ

Uσ ∪
⋃

Λ∈Π
UΛ

using the same gluing data. The generic fiber of this toric scheme is the T-toric variety XΣ
associated to Σ, i.e. XΣ̃ is a toric model of XΣ.

2.2.8. — If the value group Γ is discrete, then the special fiber Xs is reduced for X := XΣ̃
if and only if the vertices of all Λ ∈ Π are contained in NΓ. If the valuation is not discrete,
then Xs is always reduced (see [32, Prop. 7.11 and 7.12]).

2.2.9. — Conversely, if we start with an arbitrary Γ-rational strongly convex polyhedral
complex Π, we can’t expect that

c(Π) :={c(Λ) | Λ ∈ Π} ∪ {rec(Λ)× {0} | Λ ∈ Π}

is a fan in NR × R≥0. Burgos and Sombra have shown that the correspondence Π 7→ c(Π)
gives a bijection between complete Γ-rational strongly convex polyhedral complexes in NR
and complete Γ-admissible fans in NR × R≥0 (see [13, Cor. 3.11]). We set XΠ := Xc(Π) and
we identify the generic fiber XΠ,η with the toric variety Xrec(Π).

We end this subsection with a description of the orbits of a toric scheme. As in 2.2.7, we
consider a Γ-admissible fan Σ̃ with associated fan Σ :={σ0 |σ ∈ Σ̃} in NR and with associated
polyhedral complex Π :={σ1 |σ ∈ Σ̃} in NR.

Notation 2.2.10. — For Λ ∈ Π, let LΛ be the R-linear subspace of NR associated to the
affine space aff(Λ). We set

N(Λ) = N/(N ∩ LΛ) , M(Λ) = N(Λ)∨ = M ∩ L⊥Λ ,

generalizing the notation in 2.1.4. Furthermore, we define

M̃(Λ) = {m ∈M(Λ) | 〈m,u〉 ∈ Γ ∀ u ∈ Λ}, widetildeN(Λ) = M̃(Λ)∨ .

Because of the Γ-rationality of Λ, the lattice M̃(Λ) is of finite index in M(Λ). We define the
multiplicity of a polyhedron Λ ∈ Π by

(2.7) mult(Λ) =
[
M(Λ) : M̃(Λ)

]
.

Let Λ′ ∈ Π and Λ a face of Λ′. The local cone (or angle) of Λ′ at Λ is defined as

∠(Λ,Λ′) :=
{
t(u− v) | u ∈ Λ′, v ∈ Λ, t ≥ 0

}
.

This is a polyhedral cone.

There is a bijection between torus orbits of XΣ̃ and the two kinds of cones in Σ̃ corresponding
to cones in Σ as well as polyhedra in Π.
First, the cones in Σ correspond to the T-orbits on the generic fiber XΣ via σ 7→ O(σ) as
in 2.1.4. We denote by V (σ) the Zariski closure of O(σ) in XΣ̃. Then V (σ) is a scheme of
relative dimension n− dim(σ) over S. Moreover, we have τ � σ if and only if O(σ) ⊆ V (τ).

Publications mathématiques de Besançon – 2017



Walter Gubler and Julius Hertel 31

Proposition 2.2.11. — Using the notation above, there is a canonical isomorphism from
V (σ) to the Spec(K◦[M(σ)])-toric scheme over K◦ associated to the Γ-admissible fan Σ̃(σ) :=
{(πσ × idR≥0)(ν) | ν ∈ Σ, ν ⊃ σ} in N(σ)R × R≥0. The associated polyhedral complex Π(σ)
in N(σ)R = NR/ 〈N ∩ σ〉R is given by

Π(σ) =
{

Λ + 〈N ∩ σ〉R
∣∣∣Λ ∈ Π, rec(Λ) ⊇ σ

}
.

Proof. — This follows from [32, Prop. 7.14]. �

The polyhedra of Π correspond to the TK̃-orbits on the special fiber of XΣ̃. This bijective
correspondence is given by

O : Λ 7−→ red(trop−1(ri Λ)) ,
where red is the reduction map from 1.1.7, trop is the tropicalization map from 2.4.5 and
ri(Λ) is the relative interior of Λ from A.1. For details, we refer to [32, Prop. 6.22 and 7.9].
For Λ ∈ Π, we denote by V (Λ) the Zariski closure of O(Λ) in XΣ̃. Then V (Λ) is contained
in the special fiber of XΣ̃ and has dimension n− dim(Λ). For Λ,Λ′ ∈ Π and σ ∈ Σ, we have

Λ � Λ′ ⇐⇒ O(Λ′) ⊆ V (Λ) and σ � rec(Λ) ⇐⇒ O(Λ) ⊆ V (σ) .(2.8)

Proposition 2.2.12. — The variety V (Λ) is equivariantly (but non-canonically) isomorphic
to the Spec(K̃[M̃(Λ)])-toric variety over K̃ associated to the fan

Π(Λ) =
{
∠(Λ,Λ′) + LΛ

∣∣∣Λ′ ∈ Π, Λ′ ⊇ Λ
}

(2.9)

in Ñ(Λ)R = N(Λ)R = NR/ 〈N ∩ LΛ〉R.

Proof. — This is [32, Prop. 7.15]. �

2.2.13. — In particular, there is a bijection between vertices of Π and the irreducible com-
ponents of the special fiber of XΣ̃. For each v ∈ Π0, the component V (v) is a toric variety
over K̃ with torus associated to the character lattice {m ∈M | 〈m, v〉 ∈ Γ} and given by the
fan Π(v) = {R≥0(Λ′ − v) | Λ′ ∈ Π,Λ′ 3 v} in NR.

2.3. Toric Cartier divisors on toric schemes. —We extend the theory of T-Cartier
divisors to the case of toric schemes over a valuation ring of rank one. This generalizes [11,
§3.6] where the case of discrete valuation is handled and which we use as a guideline. We
keep the notations of the previous subsection.

Definition 2.3.1. — A TS-Cartier divisor on a TS-toric scheme X is a Cartier divisor D
on X which is invariant under the action of TS on X , i.e. we have µ∗D = p∗2D denoting by
µ : TS ×X →X the toric action and by p2 : TS ×X →X the second projection.

In the following, we consider the TS-toric scheme X given by a Γ-admissible fan Σ̃ in NR ×
R≥0 with associated fan Σ :={σ0 |σ ∈ Σ̃} in NR and with associated polyhedral complex
Π :={σ1 |σ ∈ Σ̃} in NR as in 2.2.7.

2.3.2. — A function ψ : |Σ̃| → R is called a Γ-admissible virtual support function on Σ̃ if
for every σ ∈ Σ̃, there is mσ ∈M and lσ ∈ Γ such that
(2.10) ψ(u, r) = 〈mσ, u〉+ lσr
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for all (u, r) ∈ σ. By restriction to Σ̃0 = Σ (resp. Σ̃1 = Π), we get a virtual support function
ψ0 on Σ (resp. a Γ-rational piecewise affine function ψ1 on Π).
Conversely, suppose that we have (mσ, lσ) ∈M × R for every σ ∈ Σ̃ satisfying the condition

〈mσ, u〉+ lσr = 〈mσ′ , u〉+ lσ′r for all (u, r) ∈ σ ∩ σ′ and all σ, σ′ ∈ Σ̃ .(2.11)

Then it is clear that (2.10) defines a Γ-admissible virtual support function on Σ̃.
On each open subset Uσ, the vector (mσ, lσ) determines a rational function α−1

σ χ−mσ , where
ασ ∈ K× is any element with val(ασ) = lσ. For σ, σ′ ∈ Σ̃, condition (2.11) implies that this
function is regular and non-vanishing on Uσ ∩Uσ′ = Uσ∩σ′ . By construction {Uσ}σ∈Σ̃ is an
open covering of X . Thus, ψ defines a Cartier divisor

Dψ =
{(

Uσ, α
−1
σ χ−mσ

)}
σ∈Σ̃

,(2.12)

where ασ ∈ K× is any element with val(ασ) = lσ. The divisor Dψ only depends on ψ and not
on the particular choice of the defining vectors and elements ασ. It is easy to see that Dψ is
TS-invariant.

Theorem 2.3.3. — Let Σ̃ be a Γ-admissible fan in NR × R≥0 with corresponding TS-toric
scheme X = XΣ̃.

(i) The assignment ψ 7→ Dψ is an isomorphism between the group of Γ-admissible virtual
support functions on Σ̃ and the group of TS-Cartier divisors on X .

(ii) The divisors Dψ and Dψ′ are rationally equivalent if and only if ψ′ − ψ is affine.

For the proof, we need the following helpful lemma.

Lemma 2.3.4. — Let σ a Γ-admissible cone in NR×R≥0. Then for each TS-Cartier divisor
D on Uσ we have

D = div(αχm)
for some m ∈M and α ∈ K×.

Proof. — Using the decomposition (2.6), we may assume that Uσ = UΛ for Λ ∈ Π with
c(Λ) = σ as the case σ ∈ Σ is well-known. Let us consider the K◦-algebra A :=OUΛ(UΛ) =
K[M ]Λ and the fractional ideal I := Γ(UΛ,OUΛ(−D)) of A. Since D is TS-invariant, the K◦-
module I is graded by M , i.e. we can write I =

⊕
m∈M Im, where Im is a K◦-submodule

contained in Kχm. Because K◦ is a valuation ring of rank one, either Im = (0) or Im =
K◦◦αmχ

m or Im = K◦αmχ
m or Im = Kχm for some m ∈ M , αm ∈ K×. Since I is finitely

generated as an A-module, we deduce

I =
⊕

αmχm∈I
K◦αmχ

m .(2.13)

Now we fix a point p ∈ O(Λ). Then D is principal on an open neighborhood U of p in UΛ.
We may assume that U = Spec(Ah) for some h ∈ A with h(p) 6= 0. Hence, D|U = div(f)|U
for some f ∈ K(M)× = Quot(A)×. This implies

Ih = OUΛ(−D)(U) = f · OUΛ(U) = f ·Ah .
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In particular, f ∈ Ih, and by (2.13), we can write

f =
∑
i

ci
hk
αmiχ

mi with ci ∈ K◦ \ {0}, k ∈ N .

Since αmiχmi/f ∈ OUΛ(U) and p ∈ U , we deduce (αmiχmi/f) (p) 6= 0 for some i. There
exists an open neighborhood W ⊆ U of p on which αmiχmi/f is non-vanishing and thus,

div(αmiχmi)|W = div(f)|W = D|W .(2.14)

By [35, Cor. 2.12 (c)], we have an injective homomorphism D 7→ cyc(D) from the group of
Cartier divisors on UΛ to the group of Weil divisors on UΛ, which restricts to a homomorphism
of the corresponding groups of TS-invariant divisors. The TS-invariant prime (Weil) divisors
are exactly the TS-orbit closures of codimension one. By (2.8),

p ∈ O(Λ) ⊆
⋂

v∈Π0,
v�Λ

V (v) ∩
⋂

τ∈rec(Π)1,
τ�rec(Λ)

V (τ) ,

and therefore, W meets each TS-invariant prime divisor of UΛ. Thus, equation (2.14) implies
cyc(D) = cyc (div(αmiχmi)) and hence D = div(αmiχmi). �

Proof of Theorem 2.3.3. — (i). — Let σ be a Γ-admissible virtual support function on Σ̃
given by defining vectors {(mσ, val(ασ))}

σ∈Σ̃. Then, by the construction in 2.3.2, Dψ is a
well-defined TS-Cartier divisor on X . It is easy to see that this assignment defines a group
homomorphism.
To prove injectivity, we assume that ψ maps to the zero divisor (X , 1). Then, for each σ ∈ Σ̃,
the function α−1

σ χ−mσ is invertible on Uσ or equivalently,

ψ(u, r) = 〈mσ, u〉+ val(ασ)r = 0 for all (u, r) ∈ σ.

Therefore, ψ is identically zero and we proved the injectivity.
For surjectivity, let D be an arbitrary TS-Cartier divisor on X . By Lemma 2.3.4, there exist,
for each σ ∈ Σ̃, elements ασ ∈ K× and mσ ∈M , such that D|Uσ = div(ασ χmσ)|Uσ . Since D
is a Cartier divisor, we have, for σ, σ′ ∈ Σ̃,

div(ασ χmσ)|Uσ∩σ′ = div(ασ′ χmσ′ )|Uσ′∩σ ,

which implies that

val(ασ)r + 〈mσ, u〉 = val(ασ′)r + 〈mσ′ , u〉 for all (u, r) ∈ σ ∩ σ′.(2.15)

For each σ ∈ Σ̃, we set ψ(u, r) := 〈−mσ, u〉 − val(ασ)r for all (u, r) ∈ σ. By (2.15), this
determines a well-defined Γ-admissible virtual support function ψ : NR → R and, by (2.12),
ψ maps to D.
(ii). — We claim that a TS-Cartier divisor on X is principal if and only if it has the form
div(αχm) for α ∈ K×,m ∈ M . Indeed, let D be any principal TS-Cartier divisor on X , i.e.
D = div(f) for some f ∈ K(X )×. The support of D is disjoint from the torus T. Therefore,
when regarded as an element of K(T)×, the divisor of f |T is zero. This implies f ∈ K[M ]×
and thus, f = αχm for some α ∈ K× and m ∈M .
Using this equivalence, statement (ii) follows easily from (i). �
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2.3.5. — Let X be a toric scheme over S. A toric line bundle on X is a pair (L , z)
consisting of a line bundle L on X and a non-zero element z in the fiber Lx0 of the unit
point x0 ∈ Xη. A toric section is a rational section s of a toric line bundle which is regular
and non-vanishing on the torus T ⊆Xη and such that s(x0) = z.
As in 2.1.12, each T-Cartier divisor D on X gives us a toric line bundle (O(D), sD(x0)) with
toric section sD. Usually, we are concerned with toric schemes X := XΣ̃ associated to a Γ-
admissible fan Σ̃ in NR×R. Then each Γ-admissible virtual support function ψ on Σ̃ defines
a toric line bundle with toric section ((O(Dψ), sDψ(x0)), sDψ), which we simply denote by
(Lψ, sψ).
Let (XΣ, DΨ) be a toric variety with a T-Cartier divisor. A toric model of (XΣ, DΨ) is a
triple (X , D, e) consisting of a TS-toric model X of XΣ associated to a Γ-admissible fan Σ̃
in NR × R≥0, a TS-Cartier divisor D on X and an integer e > 0 such that D|XΣ = eDΨ.

Remark 2.3.6. — In our applications, we consider a complete Γ-rational polyhedral com-
plex Π or equivalently a complete Γ-admissible cone Σ̃ = c(Π). As in 2.2.9, we get a universally
closed TS-toric scheme XΠ := Xc(Π). In this case, the map ψ → ψ1 from 2.3.2 gives a bijective
correspondence between Γ-admissible virtual support functions on Σ̃ and Γ-lattice functions
on Π.
For a Γ-lattice function φ with corresponding Γ-admissible virtual support function ψ, 2.3.2
gives an associated Cartier divisor Dφ := Dφ. We conclude from Theorem 2.3.3 that φ 7→ Dψ

is an isomorphism from the group of Γ-lattice functions on Π onto the group of T-Cartier
divisors on XΠ. Moreover, the Cartier divisors Dφ and Dφ′ are linearly equivalent if and only
if φ′ − φ is affine.

Theorem 2.3.7. — Suppose that the value group Γ is discrete or that Γ is divisible. Let
Σ be a complete fan in NR and Ψ a virtual support function on Σ. Then the assignment
(Π, φ) 7→ (XΠ, Dφ) gives a bijection between the sets of

(i) pairs (Π, φ), where Π is a complete Γ-rational polyhedral complex in NR and rec(Π) = Σ,
and φ is a Γ-lattice function on Π with rec(φ) = Ψ;

(ii) isomorphism classes of proper normal toric models (X , D, 1) of (XΣ, DΨ).

Proof. — Let (Π, φ) be a pair as in (i) and let {(mΛ, val(αΛ))}Λ∈Π be defining vectors of φ.
Then

Dφ|XΣ =
{(

UΛ, α
−1
Λ χ−mΛ

)}∣∣
Xrec(Π)

=
{(
Urec(Λ), χ

−mΛ
)}

= Drec(φ) = DΨ .

Hence, (XΠ, Dφ, 1) is a toric model of (XΣ, DΨ). The statement follows from 2.2.5 and The-
orem 2.3.3. �

Now we describe the restriction of TS-Cartier divisors to closures of orbits. But we are only
interested in the case of orbits lying in the special fiber. The other case can be handled
analogously to [11, Prop. 3.6.12].
Let Σ̃ be a Γ-admissible fan in NR × R≥0 with associated fan Σ := Σ̃0 in NR and associated
polyhedral complex Π := Σ̃1 in NR. Let ψ be a Γ-admissible virtual support function on Σ̃
and let Dψ be the associated TS-Cartier divisor. We also consider the associated Γ-lattice
function φ := ψ1 on Π.

Publications mathématiques de Besançon – 2017



Walter Gubler and Julius Hertel 35

Let Λ ∈ Π be a polyhedron. Then we have φ(u) = 〈m∆, u〉+ l∆ on ∆ for some m∆ ∈M and
l∆ ∈ Γ. We assume φ|Λ = 0. Using Notation 2.2.10 and (2.9), we define a virtual support
function φ(Λ) on the rational fan Π(Λ) in N(Λ)R given by the following defining vectors
{mπ}π∈Π(Λ). For each cone π ∈ Π(Λ), let Λπ ∈ Π be the unique polyhedron with Λ � Λπ and
∠(Λ,Λπ) + LΛ = π. The condition φ|Λ = 0 implies that mΛπ ∈ L⊥Λ and 〈mΛπ , u〉 = −lΛπ ∈ Γ
for all u ∈ Λ. Hence, mΛπ lies in M̃(Λ). We set mπ :=mΛπ .

Proposition 2.3.8. — We use the above notation. If φ|Λ = 0, then Dψ properly intersects
the orbit closure V (Λ). Moreover, the restriction of Dψ to V (Λ) is the divisor Dφ(Λ).

Proof. — The TS-Cartier divisor Dψ is given on UΛ by α−1
Λ χ−mΛ , where αΛ ∈ K× is any

element of K× with val(αΛ) = lΛ. If φ|Λ = 0, then val(αΛ) + 〈mΛ, u〉 = 0 for all u ∈ Λ. Thus,
the local equation α−1

Λ χ−mΛ of Dψ in UΛ is a unit in O(UΛ) = K[M ]Λ. Hence, the orbit
O(Λ) ⊆ UΛ does not meet the support of Dψ and hence V (Λ) and Dψ intersect properly.
Furthermore,

Dψ|V (Λ) =
{(

UΛπ ∩ V (Λ), α−1
Λπχ

−mΛπ |UΛπ∩V (Λ)
)}

π∈Π(Λ)
.

Using the non-canonical isomorphism K̃[Uπ] ' K̃[UΛπ ∩ V (Λ)], we get

Dψ|V (Λ) =
{(
Uπ, χ

−mπ)}
π∈Π(Λ) = Dφ(Λ)

proving the claim. �

Proposition 2.3.9. — Let Π be a complete Γ-rational polyhedral complex in NR with as-
sociated TS-toric scheme XΠ and let φ be a concave Γ-lattice function on Π with associated
TS-Cartier divisor Dφ on XΠ. Let Λ ∈ Π be a k-dimensional polyhedron and v ∈ ri(Λ). Then
we have

(2.16) mult(Λ) degDφ(V (Λ)) = (n− k)! volM(Λ)(∂φ(v)) ,

where mult(Λ) is the multiplicity of Λ (see (2.7)) and ∂φ(v) is the sup-differential of φ at v
(see A.15) which is in fact a polytope contained in a translate of M(Λ)R.

Proof. — It follows from Proposition 2.2.12 that V (Λ) is a toric variety over K̃ and that the
associated fan Π(Λ) is complete. We conclude from 2.1.3 that V (Λ) is a proper variety and
hence the degree degDφ(V (Λ)) is well-defined. We have φ(u) = 〈mΛ, u〉 + lΛ on Λ for some
mΛ ∈M and lΛ ∈ Γ. Then Dφ is rationally equivalent to Dφ−mΛ−lΛ and ∂(φ−mΛ− lΛ)(v) =
∂φ(v)−mΛ. Thus, replacing φ by φ−mΛ− lΛ does not change both sides of equation (2.16)
and we may assume that φ|Λ = 0.
By Proposition 2.3.8 and (2.3),

degDφ(V (Λ)) = degDφ(Λ)

(
XΠ(Λ)

)
= (n− k)! vol

M̃(Λ)(∆φ(Λ)) .

Using Remark A.16, we have ∆φ(Λ) = (∂φ(Λ))(0) = ∂φ(v). We have

vol
M̃(Λ)(∆φ(Λ)) = vol

M̃(Λ)(∂(φ(Λ))(v)) = 1[
M(Λ) : M̃(Λ)

] volM(Λ)(∂(φ(Λ))(v)) ,

and hence we get the claim. �
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2.4. Metrized line bundles on toric varieties. — In this subsection, we recall results
about toric metrics on a toric line bundle from [11, Ch. 4]. Note that in [11, §4.1–4.3] the non-
archimedean fields are not assumed to be discrete, in contrast to the rest of their Chapter 4.
We fix the following notation. Let K be field which is complete with respect to a non-trivial
non-archimedean absolute value | · |. Then we have a valuation val :=− log | · | and a value
group Γ := val(K×) of rank one. We fix a free abelian group M of rank n with dual N and
denote by T = Spec(K[M ]) the n-dimensional split torus over K.
Let Σ be a complete fan in NR and XΣ the corresponding proper toric variety. Furthermore,
let Ψ be a virtual support function on Σ and (L, s) the associated toric line bundle with toric
section.

Definition 2.4.1. — A metric ‖ · ‖ on L is called toric if, for all p, q ∈ T an satisfying
|χm(p)| = |χm(q)| for each m ∈M , we have ‖s(p)‖ = ‖s(q)‖.

It easily follows from 2.1.13 that this definition is independent of the choice of the toric
section s.

Remark 2.4.2. — In [11, 4.2], the authors study the action of the analytic group T an on
Xan

Σ and in particular, the action of the compact analytic subgroup
S = {p ∈ T an | |χm(p)| = 1 for all m ∈M}.

By [11, Prop. 4.2.15], we have for p ∈ T an,
S · p = {q ∈ T an | |χm(p)| = |χm(q)| for all m ∈M}.

Hence, a metric ‖ · ‖ is toric if and only if the function p 7→ ‖s(p)‖ is invariant under the
action of S.

2.4.3. — Given an arbitrary metric ‖ · ‖ on L, we can associate to it a toric metric in the
following way: For σ ∈ Σ, let sσ be a toric section of L which is regular and non-vanishing in
Uσ. Then we set, for p ∈ Uan

σ ,
‖sσ(p)‖S := ‖sσ(p̃)‖,

where p̃ ∈ Uan
σ is given by ∑

m∈Mσ

αmχ
m 7−→ max

m
|αm||χm(p)|.

It is easy to check that this defines a toric metric ‖·‖S on L. This process is called torification
of ‖ · ‖.

Proposition 2.4.4. — Toric metrics are invariant under torification. Moreover, torification
is multiplicative with respect to products of metrized line bundles and continuous with respect
to uniform convergence of metrics.

Proof. — This is established in [11, Prop. 4.3.4] and follows easily from the definition. �

2.4.5. — We have the tropicalization map trop: T an → NR, p 7→ trop(p), where trop(p) is
the element of NR = Hom(M,R) given by

〈m, trop(p)〉 :=− log |χm(p)| .
This defines a proper surjective continuous map. For details, we refer to [41, §3].
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Let ‖ · ‖ be a toric metric on L. Then consider the following diagram

T an log ‖s(·)‖ //

trop ""

R

NR

>>

Since ‖ · ‖ is toric, log ‖s(·)‖ is constant along the fibers of trop. Moreover, trop is surjective
and closed, and hence, there exists a unique continuous function on NR making the above
diagram commutative. This leads to the following definition.

Definition 2.4.6. — Let L = (L, ‖ · ‖) be a metrized toric line bundle on XΣ and s a toric
section of L. We define the function

ψL,s : NR −→ R, u 7−→ log ‖s(p)‖S ,

where p ∈ T an is any element with trop(p) = u. The line bundle and the toric section are
usually clear from the context and we alternatively denote this function by ψ‖·‖

2.4.7. — For an alternative description of ψL,s, we consider the continuous map ρ : NR →
T an defined, for each u ∈ NR, by the multiplicative norm

ρ(u) : K[M ] −→ R≥0 ,
∑
m∈M

αmχ
m 7−→ max

m∈M
|αm| exp(−〈m,u〉) .

Then it is easy to see that ψL,s(u) = log ‖s(ρ(u))‖ for all u ∈ NR.
We note that ρ is a homeomorphism of NR onto a canonical closed subset S(T) := ρ(NR)
of Tan called the skeleton of Tan. Berkovich showed in [1, §6.3] that τ := trop ◦ρ is a strong
proper deformation retraction from Tan onto S(T).

Proposition 2.4.8. — Let L = (L, ‖ · ‖) and L′ be metrized toric line bundles on XΣ with
toric sections s and s′, respectively. Let ϕ : XΣ′ → XΣ be a toric morphism with corresponding
linear map H as in 2.1.7. Then

ψ
L⊗L′,s⊗s′ = ψL,s + ψ

L
′
,s′
, ψ

L
−1
,s−1 = −ψL and ψϕ∗L,ϕ∗s = ϕL,s ◦H.

Moreover, if (‖ · ‖n)n∈N is a sequence of metrics on L that converges uniformly to ‖ · ‖, then(
ψ‖·‖n

)
n∈N converges uniformly to ψ‖·‖.

Proof. — This is established in the Propositions 4.3.14 and 4.3.19 in [11] and follows easily
from the definitions. �

2.4.9. — In order to characterize toric metrics by functions on NR, we need the Kajiwara–
Payne tropicalization of XΣ introduced by [36] and [41]. This is a topological space NΣ
together with a tropicalization map Xan

Σ → NΣ. As a set, NΣ is a disjoint union of linear
spaces

NΣ =
∐
σ∈Σ

N(σ)R ,

where N(σ) = N/ 〈N ∩ σ〉 is the quotient lattice as in 2.1.4. We refer to [41] for a description
of the topology.
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The toric variety XΣ is the disjoint union of tori TN(σ) = SpecK[M(σ)], σ ∈ Σ. Hence, we
can define the tropicalization map

trop: Xan
Σ −→ NΣ

as the disjoint union of tropicalization maps trop: Tan
N(σ) → N(σ)R as defined in 2.4.5. This

is also a proper surjective continuous map. Especially, NΣ = trop(Xan
Σ ) is a compact space.

By [11, 4.2.12], the canonical section ρ : NR → Tan from 2.4.7 extends uniquely to a continuous
proper section ρΣ : NΣ → Xan

Σ .

Proposition 2.4.10. — Let Σ be a complete fan in NR and Ψ a virtual support function
on Σ. We set L = LΨ. Then, for any metric ‖ · ‖ on L, the function ψ‖·‖ − Ψ extends to a
continuous function on NΣ. In particular, the function |ψ‖·‖ −Ψ| is bounded.
Moreover, the assignment ‖ · ‖ 7→ ψ‖·‖ is a bijection between the sets of

(i) toric metrics on L;

(ii) continuous functions ψ : NR → R sucht that ψ − Ψ can be extended to a continuous
function on NΣ.

Proof. — This is proved in Proposition 4.3.10 and Corollary 4.3.13 in [11]. The inverse map
is given as follows: Let ψ be a function as in (ii) and {mσ} a set of defining vectors of Ψ. For
each cone σ ∈ Σ, the section sσ = χmσs is a non-vanishing regular section on Uσ. Then we
obtain a toric metric ‖ · ‖ψ on L characterized by

‖sσ(p)‖ψ := exp
(
(ψ −mσ)(trop(p))

)
(2.17)
on Uσ. �

Definition 2.4.11. — Let L be a toric line bundle on XΣ with toric section s and let Ψ
be the associated virtual support function on Σ. By Proposition 2.4.10, the function ψ := Ψ
defines a toric metric on L. This metric is called the canonical metric of L. We denoted it by
‖ · ‖can and write Lcan = (L, ‖ · ‖can).

Remark 2.4.12. — By [11, Prop. 4.3.15], the canonical metric only depends on the struc-
ture of toric line bundle of L and not on the choice of s.

Proposition 2.4.13. — Let L, L′ be toric line bundles on XΣ and let ϕ : X ′Σ → XΣ be a
toric morphism. Let σ ∈ Σ and ι : V (σ)→ XΣ the closed immersion of 2.1.4. Then

L⊗ L′can = L
can⊗ L′can

, L−1can = (Lcan)−1, ϕ∗L
can = ϕ∗L

can
, ι∗L

can = ι∗L
can
.

Proof. — The first two statements are established in [11, Prop. 4.3.16]. The last two state-
ments are the Corollaries 4.3.20 and 4.3.18 in [11]. �

2.5. Semipositive metrics and measures on toric varieties. —We continue our study
of metrized line bundles on a toric variety. We assume that the reader is familiar with the
notation introduced in Section 2.4. We give a complete characterization of semipositive toric
metrics in terms of concave functions. Moreover, we describe the Chambert-Loir measure of a
semipositive toric metric as the Monge–Ampère measure of the associated concave function.
In this subsection, we will use the following setup. LetK be an algebraically closed field which
is complete with respect to a non-trivial non-archimedean absolute value | · |. Then we have
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a valuation val :=− log | · | and a value group Γ := val(K×) of rank one. We fix a free abelian
group M of rank n with dual N and denote by T = Spec(K[M ]) the n-dimensional split
torus over K. We consider a complete rational fan Σ in NR with associated T-toric variety
XΣ. For a virtual support function Ψ on Σ, we denote by DΨ the associated T-toric Cartier
divisor on XΣ and by L :=O(DΨ) the associated toric line bundle.

2.5.1. — Let Π be a complete Γ-rational polyhedral complex in NR with rec(Π) = Σ, and
let φ be a Γ-rational piecewise affine function on Π with rec(φ) = Ψ. Let e > 0 be an integer
such that eφ is a Γ-lattice function given by the defining vectors {(mΛ, lΛ)}Λ∈Π in M × Γ.
Then eφ defines a TS-Cartier divisor

Deφ =
{(

UΛ, α
−1
Λ χ−mΛ

)}
Λ∈Π

,

where αΛ ∈ K× with val(αΛ) = lΛ, and the pair (Π, eφ) defines a toric model (XΠ, Deφ, e)
of (XΣ, DΨ) (see Theorem 2.3.7). We write L = O(Deφ) for the corresponding toric line
bundles. The model (XΠ,L , e) induces an algebraic metric ‖ · ‖L on L (see 1.2.6).

Proposition 2.5.2. — In the above notation, the metric ‖ · ‖L is toric. Moreover, the
equalities ψ‖·‖L = ψ and ‖ · ‖L = ‖ · ‖ψ hold.

Proof. — Let Λ ∈ Π. Recall that UΛ := Spec(K[M ]Λ) is an algebraic K◦-model of Urec(Λ).
The associated formal scheme has generic fiber

U◦rec(Λ) :={p ∈ Uan
rec(Λ) | p(f) ≤ 1 ∀ f ∈ K[M ]Λ}.

Then UΛ is a trivialization of L on which s⊗eΨ , considered as a rational section of L , corre-
sponds to the rational function α−1

Λ χ−mΛ (see [32, 4.9]). Hence we have

‖sΨ(p)‖L = |α−1
Λ χ−mΛ(p)|1/e

for all p ∈ U◦rec(Λ). Let u ∈ Λ and p ∈ T an with trop(p) = u. Lemma 2.5.3 below implies that
p ∈ U◦rec(Λ) and we obtain

log ‖sΨ(p)‖L = log |α−1
Λ χ−mΛ(p)|1/e = 1

e
(〈mΛ, u〉+ lΛ) = ψ(u) .

This shows that the metric ‖ · ‖L is toric. We deduce, by Definition 2.4.6, that ψ‖·‖L = ψ
and, by Proposition 2.4.10, that ‖ · ‖L = ‖ · ‖ψ. �

Lemma 2.5.3. — Let Π be a complete Γ-rational polyhedral complex in NR and rec(Π) = Σ,
and let red: Xan

Σ →XΠ,s be the reduction map from 1.1.7. Let Λ ∈ Π and p ∈ T an. Then

trop(p) ∈ Λ ⇐⇒ p ∈ U◦rec(Λ) ⇐⇒ red(p) ∈ UΛ,s .

Proof. — By [32, Lem. 6.21], we have trop(p) ∈ Λ if and only if |p(f)| ≤ 1 for all f ∈ K[M ]Λ
or in other words p ∈ U◦rec(Λ). By the description of the reduction map in 1.1.7, this is
equivalent to red(p) ∈ UΛ,s. �

Corollary 2.5.4. — Let ψ be a Γ-rational piecewise affine concave function on NR with
rec(ψ) = Ψ. Then the metric ‖ · ‖ψ on L is induced by a toric model.
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Proof. — As in the proof of [11, Thm. 3.7.3], we can show that there exists a complete
Γ-rational polyhedral complex Π in NR such that rec(Π) = Σ and ψ is piecewise affine
on Π. Since Γ is discrete or divisible, the complex Π induces a proper toric scheme XΠ
(see 2.2.5). Then Proposition 2.5.2 says that ‖ · ‖ψ is induced by a toric model (XΠ, Deψ, e)
of (XΣ, DΨ). �

Proposition 2.5.5. — Let ‖ · ‖ be an algebraic metric on L. Then the function ψ‖·‖ is
Γ-rational piecewise affine.

Proof. — There exists a proper K◦-model (X ,L , e) of (XΣ, L) inducing the metric ‖ ·‖. Let
{Ui}i∈I be a trivialization of L . Then the subsets U◦i = red−1(Ui ∩ X̃

)
form a finite closed

cover of Xan
Σ . On Ui the rational section s⊗e corresponds to a rational function λi ∈ K(M)×

such that on U◦i we have
‖s(p)‖ = |λi(p)|1/e.

We write λi =
∑

m∈M αmχm∑
m∈M βmχm

. Using the continuous map ρ : NR → T an from 2.4.7, we have on

the closed subset Λi := ρ−1(U◦i ∩ T an) ⊆ NR,

ψ‖·‖(u) = log ‖s(ρ(u))‖

= log |λi(ρ(u))|1/e

= 1
e

log
(

max
m∈M

|αm| exp(−〈m,u〉)
)
− 1
e

log
(

max
m∈M

|βm| exp(−〈m,u〉)
)

= 1
e

min
m∈M

(〈m,u〉+ val(βm))− 1
e

min
m∈M

(〈m,u〉+ val(αm)) .

We see that ψ‖·‖|Λi is the difference of two Γ-rational piecewise affine concave functions.
Since {Λi}i∈I is a finite closed cover of NR, we deduce that ψ‖·‖ is Γ-rational piecewise affine
(see A.10 and A.11). �

Next we study semipositive toric metrics on L.

Proposition 2.5.6. — Let ‖ · ‖ be an algebraic metric on L.

(i) If ‖ · ‖ is semipositive, then ψ‖·‖ is concave.

(ii) We assume that ‖ · ‖ is toric. Then ‖ · ‖ is semipositive if and only if ψ‖·‖ is concave.

Proof. — (ii). — Because each algebraic metric is formal (see 1.1.7), this follows from Corol-
lary 8.12 in [33].
(i). — For ‖ · ‖ semipositive, we have to show that ψ‖·‖ is concave along any affine line. By
a density argument, we may assume that the line is Γ-rational. Similarly as in [11, proof of
Prop. 4.7.1], we use pull-back with respect to a suitable equivariant morphism to reduce the
concavity on the affine line to the case of P1

K and hence the claim follows from Corollary B.18
and (ii). �

Corollary 2.5.7. — Let ‖ ·‖ be a semipositive algebraic metric on L. Then the toric metric
‖ · ‖S is also algebraic and semipositive.
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Proof. — By Propositions 2.5.6(i), 2.5.5 and 2.4.10, the function ψ = ψ‖·‖ is a concave Γ-
rational piecewise affine function with rec(ψ) = Ψ. Then Corollary 2.5.4 says that the metric
‖ · ‖S = ‖ · ‖ψ is algebraic and Proposition 2.5.6(ii) implies semipositivity. �

Theorem 2.5.8. — Let Ψ be a support function on the complete fan Σ in NR and set
L = LΨ. Then there is a bijection between the sets of

(i) semipositive toric metrics on L;

(ii) concave functions ψ on NR such that the function |ψ −Ψ| is bounded;

(iii) continuous concave functions on ∆Ψ.

The bijections are given by ‖ · ‖ 7→ ψ‖·‖ and by ψ 7→ ψ∨.

This theorem was proven by Burgos–Philippon–Sombra [11, Thm. 4.8.1] in the case of a
discrete or an archimedean absolute value. Note that the bijection between (i) and (ii) holds
also in case of a non-concave virtual support function Ψ as then both sets are empty. This
follows from the arguments in the proof below.

Proof. — The bijection between (ii) and (iii) follows from Proposition A.9. To prove the bi-
jection between (i) and (ii), let ‖·‖ be a semipositive toric metric on L. By Proposition 2.4.10,
the function |ψ‖·‖ −Ψ| is bounded. Furthermore, there exists a sequence (‖ · ‖n)n∈N of semi-
positive algebraic metrics converging to the toric metric ‖ · ‖. Proposition 2.5.6(i) says that
the functions ψ‖·‖n are concave. By Proposition 2.4.8, the sequence (ψ‖·‖n)n∈N converges
uniformly to ψ‖·‖ and hence the latter is also concave.
Conversely, let ψ be a concave function on NR such that |ψ − Ψ| is bounded. Then by
Proposition A.14, there is a sequence of Γ-rational piecewise affine concave functions (ψk)k∈N
with rec(ψk) = Ψ, that uniformly converges to ψ. Because ψk is a piecewise affine concave
function with rec(ψk) = Ψ, the function ψk − Ψ continuously extends to NΣ. We conclude
that ψ − Ψ continuously to NΣ. By Proposition 2.4.10, we obtain toric metrics ‖ · ‖ψ and
‖ · ‖ψk , k ∈ N, given as in (2.17). Then the sequence of metrics (‖ · ‖ψk)k∈N converges to ‖ · ‖ψ.
By Proposition 2.5.2, the metric ‖ · ‖ψk is algebraic and therefore, by Proposition 2.5.6(ii),
semipositive. It follows that the metric ‖ · ‖ψ is also semipositive. �

Remark 2.5.9. — Theorem 2.5.8 induces a bijective correspondence between semipositive
algebraic toric metrics ‖ · ‖ on L and concave Γ-rational piecewise affine functions ψ on NR
with rec(ψ) = Ψ. Moreover, such metrics always have a toric model. One direction follows
from Propositions 2.5.5, 2.5.6(i) and 2.4.10. The converse and the last claim are a consequence
of Corollary 2.5.7.

Now we characterize the Chambert-Loir measure associated to a semipositive toric metric.
Let ψ : NR → R be a concave function. We extend the Monge–Ampère measureMM (ψ) on
NR (Definition A.17) to a measureMM (ψ) on NΣ by setting

MM (ψ)(E) =MM (ψ) (E ∩NR)

for any Borel subset E of NΣ.
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Theorem 2.5.10. — Let ‖·‖ be a semipositive toric metric on L and ψ = ψ‖·‖ the associated
concave function on NR. Then

trop∗ (c1 (L, ‖ · ‖)n) = n!MM (ψ) .

Moreover, we have
c1(L, ‖ · ‖)n = (ρΣ)∗

(
n!MM (ψ)

)
.

Proof. — In the case of an algebraic metric, the claim follows from the same arguments as
in [11, Thm. 4.7.4] based in our case on Remark 2.5.9, 2.2.13 and Proposition 2.3.9. Note
that our assumption K algebraically closed yields that Γ is divisible and hence the special
fiber of a toric model XΠ is reduced (see 2.2.8) and the multiplicity of a vertex of Π is one
as well. This simplifies this argument a little bit.
The general case is based on the algebraic case as in [11, Cor. 4.7.5]. It is used here that the
boundaryXan

Σ \T an is a set of measure zero with respect to c1 (L, ‖ · ‖)n by Corollary 1.4.5. �

At the end of this subsection, we quote a result about the restriction of semipositive metrics
to toric orbits which will be useful in the proof of the local height formula. Recall that Ψ is
a support function on Σ with associated toric line bundle (L, s) with toric section. Let σ be
a cone of Σ and V (σ) the corresponding orbit closure with the structure of a toric variety
(cf. 2.1.4). We denote by ι : V (σ) → XΣ the closed immersion. Let mσ ∈ M be a defining
vector of Ψ at σ and set sσ = χmσs. By 2.1.15, the divisor DΨ−mσ = div(sσ) intersects V (σ)
properly and we can restrict sσ to V (σ) to obtain a toric section ι∗sσ of the toric line bundle
O
(
D(Ψ−mσ)(σ)

)
' ι∗L.

Proposition 2.5.11. — Let notation be as above and denote by Fσ the face of ∆Ψ associated
to σ (see A.20). Let ‖ · ‖ be a semipositive toric metric on L. Then, for all m ∈ Fσ −mσ,

ψ∨
ι∗L,ι∗sσ

(m) = ψ∨
L,s

(m+mσ) .

Proof. — We can prove the statement as in [11, Prop. 4.8.8] since the discreteness of the
valuation doesn’t play a role in the argument. �

2.6. Local heights of toric varieties. —We prove a formula to compute the local height
of a normal toric variety over an algebraically closed non-archimedean field. Note that this
is no restriction of generality as we can always achieve that by a base extension and as
local heights are invariant under such a base extension. This generalizes work by Burgos,
Philippon and Sombra who showed this formula over fields with a discrete valuation (cf. [11,
Thm. 5.1.6]).
Let K be an algebraically closed field which is complete with respect to a non-trivial absolute
value | · | and denote by Γ = − log |K×| the associated value group. We fix a lattice M ' Zn
with dual M∨ = N and denote by T = Spec(K[M ]) the n-dimensional split torus over K.
Let Σ be a complete fan on NR and XΣ the associated proper T-toric variety.
Following [11, §5.1] we define a local height for toric metrized line bundles that does not
depend on the choice of sections.

Definition 2.6.1. — Let Li, i = 0, . . . , t, be toric line bundles on XΣ equipped with DSP
toric metrics. We denote by Lcan

i the same line bundle endowed with the canonical metric.
Let Y be a t-dimensional prime cycle of XΣ and let ϕ : Y ′ → Y be a birational morphism
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such that Y ′ is projective. Recall the definition of local heights in 1.3.4. Then the toric local
height of Y with respect to L0, . . . , Lt is defined as

λtor
L0,...,Lt

(Y ) = λ(ϕ∗L0,s0),...,(ϕ∗Lt,st)(Y
′)− λ(ϕ∗Lcan

0 ,s0),...,(ϕ∗Lcan
t ,st)(Y

′) ,

where s0 . . . , st are invertible meromorphic sections of L with
|div(s0)| ∩ · · · ∩ | div(st)| ∩ Y = ∅ .(2.18)

This definition extends to cycles by linearity. When L0 = · · · = Lt = L, we write shortly
λtor
L

(Y ) = λtor
L0,...,Lt

(Y ).

Remark 2.6.2. — Proposition 1.3.5.((iii),(v)) implies that the toric local height does not
depend on the choice of ϕ and Y ′ nor on the choice of the meromorphic sections. When
|div(s0)| , . . . , |div(st)| intersect properly on Y , then condition (2.18) is fullfilled.

Proposition 2.6.3. — The toric local height is symmetric and multilinear in the metrized
line bundles.

Proof. — This follows easily from Proposition 1.3.5(ii). �

Definition 2.6.4. — Let L = (L, ‖ · ‖) be a semipositive metrized toric line bundle with
a toric section s. Let Ψ be the corresponding support function on Σ and ψL,s the associ-
ated concave function on NR. The roof function associated to (L, s) is the concave function
ϑL,s : ∆Ψ → R given by

ϑL,s = ψ∨
L,s
,

where ψ∨
L,s

denotes the Legendre–Fenchel dual (see A.7). We will denote ϑL,s by ϑ‖·‖ if the
line bundle and section are clear from the context.

2.6.5. — Let notation be as above. If ‖ · ‖ is an algebraic metric, then, by Proposition 2.5.5
and A.12, the roof function ϑ‖·‖ is piecewise affine concave.

Theorem 2.6.6. — Let Σ be a complete fan on NR. Let L = (L, ‖ · ‖) be a toric line bundle
on XΣ equipped with a semipositive toric metric. We choose any toric section s of L and
denote by Ψ the corresponding support function on Σ. Then, the toric local height of XΣ with
respect to L is given by

λtor
L

(XΣ) = (n+ 1)!
∫

∆Ψ
ϑL,s d volM(2.19)

where ∆Ψ is the stability set of Ψ and volM is the Haar measure on MR such that M has
covolume one.

Proof. — The proof is completely analogous to [11, Thm. 5.1.6]. It is based on induction
relative to n and uses the induction formula 1.4.3 in an essential way. �

Remark 2.6.7. — The above theorem also holds in the archimedean case (see [11,
Thm. 5.1.6]). In [11, §5.1], the formula in (2.19) is extended to toric local heights with
respect to distinct line bundles in the archimedean case or in case of a discrete valuation.
Moreover, the toric local height of a translated toric subvariety and its behavior with respect
to equivariant morphisms is studied. For arbitrary non-archimedean fields, all these results
remain valid and the arguments are the same.
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3. Global heights of varieties over finitely generated fields

In this section, we apply the results about toric local heights from the previous section to
global heights. First, we recall the theory of global heights over an M -field and we give an
induction formula for global heights. In Section 3.2, we consider Moriwaki’sM -field structure
on a finitely generated field over a global field and we prove Theorem IV from the introduction.
In Section 3.3, we apply Theorem III and Theorem IV to a fibration with toric generic fiber
leading to a combinatorial formula for a suitable global height of the fibration. In the last
subsection, we illustrate this formula for projective toric varieties over the function field of
an elliptic curve.

3.1. Global heights of varieties over an M-field. —Diophantine geometry is usually
considered over a number field or a function field. Osgood and Vojta realized a stunning
similarity to Nevanlinna theory where the base field is the field of meromorphic function on
C. The characteristic function in Nevanlinna theory corresponds to the height in diophantine
geometry. Inspired by the analogy and the proof of the second main theorem of Nevanlinna
theory, Vojta found a new proof of the Mordell conjecture which was later generalized by
Faltings to prove Lang’s conjecture for subvarieties of abelian varieties.
In [24, Def. 2.1], the notion of an M -field was introduced to capture all three situations
simultaneously. In this subsection, we will recall the definition and the theory of global heights
over an M -field. This will be later applied to heights over finitely generated fields introduced
by Moriwaki.

Definition 3.1.1. — Let K be a field and (M,µ) be a measure space endowed with a
positive measure µ. We assume that for µ-almost every v ∈M , we fix a non-trivial absolute
value | |v on K. Then K is called an M -field if log |f |v ∈ L1(M,µ) for all f ∈ K×. We say
that K satisfies the product formula if

∫
M log |f |v dµ(v) = 0 for all f ∈ K×.

Remark 3.1.2. — In [24, Def. 2.1], a more general definition of an M -field is given which
is more suitable to uncountable fields as occurring in Nevanlinna theory. For countable fields,
the definitions are the same. For our purposes in this paper, the above definition will suffice.
We refer to [24] for the theory of global heights over the more general M -fields noticing that
this much more technical and that one reduces always to the above special case by passing
to a sufficiently large finitely generated subfield.

Example 3.1.3. — Let F be a number field and MF be the set of places endowed with
the discrete measure µ given by µ(v) = [Fv :Qv ]

[F :Q] for v ∈MF with completions Fv and Qv. We
denote by | |v the absolute value for the place v ∈MF which extends the standard euclidean
or p-adic absolute value on Q. Then F is an MF -field satisfying the product formula.

Example 3.1.4. — Let us fix the function field F0 := k(C) of a regular projective curve C
over an arbitrary field k and let MF0 be the set of places of F0 corresponding to the closed
points of C. We fix q ∈ R with q > 1. For v0 ∈ MF0 , we choose the standard absolute value
given by

(3.1) |α|v0 = q− ordv0 (α)

for α ∈ F0. We endow MF0 with the discrete measure given by µ(v0) = [k(v0) : k]. Then F0
is an MF0-field satisfying the product formula.
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More generally, we consider a finite extension F of F0. Then F is the function field of a regular
projective curve Z over C. Let MF be the set of places corresponding to the closed points of
Z. For v ∈ MF , we use the representative | |v which extends | |v0 to K, where v0 := v|F0 .
We endow F with the discrete measure given by

µ(v) = [Fv : F0,v0 ]
[F : F0] µ0(v0).

Then F is an MF -field satisfying the product formula.

3.1.5. — A global field F is either a number field or a finite extension of the function field
of a fixed regular projective curve over a finite field k. We endow F always with the MF -field
structure given in Examples 3.1.3 and 3.1.4. In the latter case, we choose q as the number of
elements of k. In fact, we never use that k is finite and we could choose any constant q > 1.
For some results of the next subsection, it is required that k is countable (otherwise one has
to state them differently restricting to a countable subfield of k).

Definition 3.1.6. — Let K be a field with an absolute value | |v. We denote by Cv the
completion of an algebraic closure of the completion of K with respect to v ∈M . Note that
Cv is a minimal algebraically closed complete field extending (K, | |v) with residue field equal
to an algebraic closure of K̃ (see [6, Prop. 3.4.1/3, Lem. 3.4.1/4]). By abuse of notation, we
denote the absolute value of Cv also by | |v.
Let X be a variety over K. We set Xv :=X ×K Spec(Cv). If v is archimedean, then Cv = C
and we denote by Xan

v = Xv(Cv) the complex analytic space associated to X. If v is non-
archimedean, then Xan

v is the Berkovich analytic space associated to Xv over Cv as defined
in 1.1.4. We call Xan

v the analytification of X with respect to v (or | · |v).

3.1.7. — In the following, K is always an M -field. Our goal is to define an M -metric on
a line bundle L over the proper variety X over K. For µ-almost every v ∈ M , we have
an associated absolute value | |v. An (M -)metric on L is a family of metrics ‖ · ‖v on Lan

v

for µ-almost every v ∈ M as above. The corresponding metrized line bundle is denoted by
L = (L, (‖ · ‖v)v).
An M -metric on L is said to be semipositive if ‖ · ‖v is semipositive for µ-almost all v ∈ M
(cf. Definition 1.3.1 and Remark 1.3.11). Moreover, a metrized line bundle L is DSP if there
are semipositive metrized line bundles M , N on X such that L = M ⊗N−1.

3.1.8. — Let Z be a t-dimensional cycle on X and (Li, si), i = 0, . . . , t, DSP metrized line
bundles onX with invertible meromorphic sections such that | div(s0)|∩· · ·∩| div(st)|∩|Z| = ∅.
For v ∈M , we set for the local height at v,

λ(L0,s0),...,(Lt,st)(Z, v) :=λd̂iv(s0)v ,...,d̂iv(st)v
(Zv) ,

where d̂iv(si)v is the pseudo-divisor on Xv induced by d̂iv(si) (cf. Example 1.2.9).

3.1.9. — A t-dimensional prime cycle Y of X is called integrable with respect to DSP
metrized line bundles Li, i = 0, . . . , t, on X if there is a birational map ϕ : Y ′ → Y from
a projective variety Y ′ and invertible meromorphic sections si of ϕ∗Li, i = 0, . . . , t, with
div(s0), . . . ,div(st) intersecting properly, such that the function

M −→ R, v 7−→ λ(ϕ∗L0,s0),...,(ϕ∗Lt,st)(Y
′, v)(3.2)
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is µ-integrable on M . A t-dimensional cycle is integrable if its components are integrable.

3.1.10. — Let Y be a prime cycle. Then there exists a generically finite surjective morphism
ϕ : Y ′ → Y from a proper variety Y ′ and invertible meromorphic sections si of ϕ∗Li, i =
0, . . . , t, satisfying

|div(s0)| ∩ · · · ∩ |div(st)| = ∅ .
By Chow’s lemma, we may even assume that Y is projective, ϕ is birational and that
div(s0), . . . ,div(st) intersect properly, but we don’t want to make these additional assump-
tions here. Then Y is µ-integrable with respect to L0, . . . , Lt if and only if the µ-integrability
of (3.2) holds. Moreover, the notion of integrability of cycles is closed under tensor product
and pullback of DSP metrized line bundles. This follows from [27, 11.4, 11.5].

Definition 3.1.11. — Let X be a proper variety over an M -field K and Y a t-dimensional
prime cycle on X which is integrable with respect to DSP metrized line bundles L0, . . . , Lt on
X. Let Y ′ and s0, . . . , st be as in 3.1.9. Then the global height of Y with respect to L, . . . , Lt
is defined as

hL0,...,Lt
(Y ) =

∫
M
λ(ϕ∗L0,s0),...,(ϕ∗Lt,st)(Y

′, v) dµ(v) .

By linearity, we extend this definition to all t-dimensional cycles on X.
Using Corollary 1.3.5(iii), the archimedean analogon mentioned in Remark 1.3.11 and the
product formula of K, we see that this definition is independent of the choice of the sections.

Proposition 3.1.12. — The global height of integrable cycles has the following basic prop-
erties:

(i) It is multilinear and symmetric with respect to tensor products of DSP metrized line
bundles.

(ii) Let ϕ : X ′ → X be a morphism of proper varieties over K and let Z ′ be a t-dimensional
cycle such that ϕ∗Z ′ is integrable with respect to DSP metrized line bundles L0, . . . , Lt
on X. Then we have

hϕ∗L0,...,ϕ∗Lt
(Z ′) = hL0,...,Lt

(ϕ∗Z ′) .

Proof. — Using 3.1.10, we get the results by integrating the corresponding formulas stated
in Proposition 1.3.5. �

Theorem 3.1.13 (Global induction formula). — Let X be a d-dimensional proper va-
riety over the M -field K. Let L0, . . . , Ld be DSP metrized line bundles on X and let sd be
any invertible meromorphic section of Ld. If X is integrable with respect to L0, . . . , Ld and if
cyc(sd) is integrable with respect to L0, . . . , Ld−1, then

φ(v) :=
∫
Xan
v

log ‖sd‖d,v c1(L0,v) ∧ · · · ∧ c1(Ld−1,v)

is in L1(M,µ) and

hL0,...,Ld
(X ) = hL0,...,Ld−1

(cyc(sd))−
∫
MF

φ(v) dµ(v).
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Proof. — We may assume that K is infinite as otherwiseM has measure zero and all heights
are zero as well. By Proposition 3.1.12 and Chow’s lemma, we may assume thatX is projective
and there are invertible meromorphic sections sj of Lj for j = 0, . . . , d with

|div(s0)| ∩ · · · ∩ | div(sd)| = ∅ .
Then the claim follows from Theorem 1.4.3. �

Definition 3.1.14. — Let F be a global field with the structure (MF , µ) of an MF -field as
in Example 3.1.5. Let X be a proper variety over a global field F and L a line bundle on X .
We call an MF -metric on L quasi-algebraic if there exist a finite subset S ⊆ MF containing
the archimedean places and a proper algebraic model (X ,L , e) of (X ,L) over the ring

F ◦S = {α ∈ F | |α|v ≤ 1 ∀ v /∈ S},
such that, for each v /∈ S, the metric ‖ · ‖v is induced by the localization

(X ×F ◦S SpecC◦v,L ⊗F ◦S C◦v, e).

Proposition 3.1.15. — Let X be a proper variety over a global field F . Then every d-
dimensional cycle of X is µ-integrable with respect to DSP quasi-algebraic MF -metrized line
bundles L0, . . . ,Ld on X .

Proof. — This is [11, Prop. 1.5.14]. �

Remark 3.1.16. — In the situation of Proposition 3.1.15 and with dim(X ) = d, the hy-
potheses of the global induction formula 3.1.13 are always satisfied for any invertible mero-
morphic section sd of Ld and hence there is only a finite number of v ∈MF such that∫

X an
v

log ‖sd‖d,v c1(L0,v) ∧ · · · ∧ c1(Ld−1,v) 6= 0

and the global induction formula holds.

Proposition 3.1.17. — Let F be a global field and F ′ a finite extension of F with the
induced structure of anMF ′-field (see Example 3.1.5). Let X be an F -variety, Li, i = 0, . . . , t,
quasi-algebraic DSP metrized line bundles on X and Z a t-dimensional cycle on X . We denote
by π : X ′ → X the morphism, by Z ′ the cycle and by π∗Li the MF ′-metrized line bundles
obtained by base change to F ′. Then

hπ∗L0,...,π∗Lt
(
Z ′
)

= hL0,...,Lt(Z) .

Proof. — This follows from [11, Prop. 1.5.10]. �

Definition 3.1.18. — Let F be a global field and let L be a quasi-algebraic MF -metrized
line bundle on the proper variety X over F . We say that L is nef if ‖ · ‖ is semipositive and,
for each point p ∈ X (F ), the global height hL(p) is non-negative.

Example 3.1.19. — Let L = (L, (‖ · ‖v)v) be a semipositive quasi-algebraic metrized line
bundle. We assume that L is generated by small global sections, i.e. for each point p ∈ X (F ),
there exists a global section s such that p /∈ |div(s)| and supx∈X an

v
‖s(x)‖v ≤ 1 for all v ∈MF .

Then L is nef.

The idea of the following proof was suggested to us by José Burgos Gil.
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Lemma 3.1.20. — Let V be a d-dimensional subvariety of X and let L1, . . . ,Ld be nef
quasi-algebraic MF -metrized line bundles on X . Then,

hL1,...,Ld(V ) ≥ 0 .

Proof. — We may assume that V = X and, by Chow’s Lemma and Proposition 3.1.12(ii),
that there is a closed immersion ϕ : X ↪→ PmF . Consider the line bundle ϕ∗OPmF (1) on X ,
equipped with the metric 1

2ϕ
∗‖ · ‖can,v0 at one place v0 ∈MF and with the metric ϕ∗‖ · ‖can,v

at all other places v 6= v0. This MF -metrized line bundle is denoted by L. For each point
p ∈ X (F ) with function field F (p), there exists a homogeneous coordinate xj , considered as
a global section of OPmF (1), such that p /∈ |div(ϕ∗xj)| and hence,

hL(p) = −
∑

w∈MF (p)

µ(w) log ‖xj ◦ ϕ(p)‖can,w +
∑

w∈MF (p)
w|v0

µ(w) log 2 ≥ log 2 > 0 .(3.3)

We extend the group of isomorphism classes of MF -metrized line bundles on X by Q-
coefficients and write its group structure additively. For i = 1, . . . , d, and a positive rational
number ε, we set Li,ε :=Li + εL. Since Li is nef, we obtain, by (3.3) and the multilinearity
of the heights, for each point p ∈ X (F ),

hLi,ε(p) = hLi(p) + ε hL(p) ≥ ε log 2 > 0 .(3.4)
Now, we distinguish between number fields and function fields. First, let F be a number field.
Since Li,ε is semipositive quasi-algebraic, there exists a sequence (Li,ε,k)k∈N that converges
to Li,ε and that consists of MF -metrized line bundles which are induced by vertically nef
smooth hermitian Q-line bundles L i,ε,k, k ∈ N, on a common model Xε,k over the ring of
integers OF . By Proposition 1.3.5(iv), we have, for all k ∈ N and all p ∈ X (F ),∣∣∣hLi,ε,k(p)− hLi,ε(p)

∣∣∣ ≤ ∑
v∈MF

µ(v) d (‖ · ‖i,ε,k,v, ‖ · ‖i,ε,v) .

Note that the sum is finite and does not depend on p. Hence, by (3.4), there is a k0 ∈ N such
that for all k ≥ k0 and all p ∈ X (F ),

hL i,ε,k
(p) = hLi,ε,k(p) ≥ 0 .

Thus, for all k ≥ k0, we have nef smooth hermitian Q-line bundles L 1,ε,k, . . . ,L d,ε,k. By a
result of Zhang (see Moriwaki’s paper [40, Prop. 2.3(1)]), the proposition holds for such line
bundles and hence we get

hL1,ε,k,...,Ld,ε,k(X ) = hL 1,ε,k,...,L d,ε,k
(X ) ≥ 0 .(3.5)

Next, let F be the function field of a smooth projective curve C over any field. Since Li,ε
is semipositive quasi-algebraic, there exists a sequence (Li,ε,k)k∈N that converges to Li,ε and
that consists of MF -metrized line bundles which are induced by vertically nef Q-line bundles
Li,ε,k, k ∈ N, on a common model πε,k : Xε,k → C. As in the number field case, we can
deduce, for sufficiently large k’s and for all p ∈ X (F ),

hLi,ε,k(p) ≥ 0 .(3.6)

By [30, Thm. 3.5(d)], the height with respect to such algebraic metrized line bundles is given
as an algebraic intersection number of the associated models. So, the inequality (3.6) just
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says that the line bundles L1,ε,k, . . . ,Ld,ε,k on the model Xε,k are horizontally nef. Using
that they are also vertically nef, it follows from Kleiman’s Theorem [39, Thm. III.2.1] that

hL1,ε,k,...,Ld,ε,k(X ) = degC ((πε,k)∗(c1(L1,ε,k) . . . c1(Ld,ε,k))) ≥ 0 .(3.7)

Finally, by (3.5) for number fields and by (3.7) for function fields, continuity of heights in the
metrized line bundles yields

hL1,...,Ln(X ) = lim
ε→0

hL1,ε,...,Ld,ε(X ) = lim
ε→0

lim
k→∞

hL1,ε,k,...,Ld,ε,k(X ) ≥ 0 ,

proving the lemma. �

3.2. Relative varieties over a global field. — Let F be a global field with the canonical
MF -field structure from Example 3.1.5. Let B be a b-dimensional normal proper variety over
F with function field K = F (B).
We first endow the field K with the structure of an M-field where M is a natural set of places
and where the positive measure is induced by fixed nef quasi-algebraic MF -metrized line
bundles H1, . . . ,Hb on B. This generalizes the M-fields obtained by Moriwaki’s construction
in [40, §3] where the function field of an arithmetic variety and a family of nef hermitian line
bundles on B are considered (see also [27, Ex. 11.22] and [12, §2]).
We consider a dominant morphism π : X → B of proper varieties over F of relative dimen-
sion n. The generic fiber X = X ×B Spec(K) of π is a proper variety over K. Then we
prove the main result of this section (Theorem 3.2.6) showing that the intersection number
hπ∗H1,...,π∗Hb,L0,...,Ln(X ) with respect to DSP quasi-algebraic MF -metrized line bundles Li is
equal to the height hL0,...,Ln

(X) with respect to induced M-metrized line bundles Li. Note
that the first height is a sum of local heights over MF whereas the second is an integral over
M. This generalizes Theorem 2.4 in [11] where the global field is a number field and only
hermitian line bundles are considered. Our more general assumptions above on the metrics
of the polarizations H1, . . . ,Hb lead to the problem that also non-discrete non-archimedean
places in M have to be considered leading to considerable difficulties in the proof of the
theorem.

3.2.1. — Let H1, . . . ,Hb be nef quasi-algebraic line bundles on B. By Lemma 3.1.20, we
deduce, for every one-codimensional prime cycle V on B,
(3.8) hH1,...,Hb

(V ) ≥ 0 .

Let B(1) be the set of prime cycles of B of codimension 1. By (3.8), the cycle V ∈ B(1) induces
a non-archimedean absolute value on K given, for f ∈ K, by

(3.9) |f |V = e− h
H1,...,Hb

(V ) ordV (f)
,

where ordV is the discrete valuation associated to the regular local ring OB,V . We equip B(1)

with the counting measure µfin.
Let us fix a place v ∈MF . Then we define the generic points of Ban

v as

Bgen
v = Ban

v \
⋃

V ∈B(1)

V an
v .

Since each V ∈ B(1) is contained in the support of the divisor of a rational function, a point
p ∈ Ban

v lies in Bgen
v if and only if, for each f ∈ K×, p does not lie in the analytification (with
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respect to v) of the support of div(f). Thus every p ∈ Bgen
v defines a well-defined absolute

value on K given by

|f |v,p = |f(p)| .(3.10)

If v is non-archimedean, then this absolute value is just p. Let µ(v) be the weight of the
product formula for F in v as given in Example 3.1.3 and Example 3.1.4. On Ban

v we have
the positive measure

µv = µ(v) · c1(H1,v) ∧ · · · ∧ c1(Hb,v) ,
which is a weak limit of smooth volume forms in the archimedean case (cf. [11, Def. 1.4.6]) and
defined as in Definition 1.3.7 in the non-archimedean case. Each V an

v , V ∈ B(1), has measure
zero with respect to µv by Corollary 1.4.5 (non-archimedean case) and by [15, Cor. 4.2]
(archimedean case). Since F is countable, the set B(1) is also countable and therefore Ban

v \
Bgen
v has measure zero with respect to µv. So we get a positive measure on Bgen

v , which we
also denote by µv.
In conclusion, we obtain a measure space

(M, µ) = (B(1), µfin) t
( ⊔
v∈MF

Bgen
v ,

⊔
v∈MF

µv

)
,(3.11)

which is in bijection with a set of absolute values on K.

The following shows that (K,M, µ) is an M-field:

Proposition 3.2.2. — Let f ∈ K×, then the function M → R, w 7→ log |f |w is integrable
with respect to µ and we have the product formula∫

M
log |f |w dµ(w) = 0 .

Proof. — Let f ∈ K× be a non-zero rational function on B. Then for almost every V ∈ B(1),
we have f ∈ O×B,V . Hence, the function on B(1) given by V 7→ log |f |V is µfin-integrable.
For every v ∈ MF , the function on Bgen

v given by p 7→ log |f(p)| is µv-integrable (see Theo-
rem 1.4.3). Since the trivially metrized line bundle OB and H1, . . . ,Hb are quasi-algebraic,
there is, by Remark 3.1.16, only a finite number of v ∈MF such that∫

Bgen
v

log |f(p)| dµv(p) 6= 0 .

Summing up, the function M→ R, w 7→ log |f |w, is µ-integrable.
By the global induction formula 3.1.16,∫

M
log |f |w dµ(w) =

∑
V ∈B(1)

− ordV (f) hH1,...,Hb
(V ) +

∑
v∈MF

∫
Ban
v

log |f(p)| dµv(p)

= − hH1,...,Hb
(cyc(f)) +

∑
v∈MF

∫
Ban
v

log |f(p)| dµv(p)

= −hOB ,H1,...,Hb
(B)

= 0 ,

which concludes the proof. �
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3.2.3. — Let L = (L, (‖ · ‖v)v) be an MF -metrized line bundle on X . Then L induces an
M-metric on the line bundle L = L ⊗K on X given as follows:
For each V ∈ B(1), consider the non-archimedean absolute value | · |V on K from (3.9) and let
CV be the completion of an algebraic closure of the completion of K with respect to | · |V . We
get a proper C◦V -model (XV ,LV ) := (X ×B SpecC◦V ,L ⊗ C◦V ) of (X,L). By Definition 1.2.6,
the model (XV ,LV ) induces a metric ‖ · ‖V on the analytification Lan

V over Xan
V with respect

to | · |V .
Let us fix a place v ∈ MF . By (3.10), a generic point p ∈ Bgen

v induces an absolute value
| · |v,p on K. We denote by Cv,p the completion of an algebraic closure of the completion of K
with respect to | · |v,p and by Xan

v,p the analytification of X with respect to | · |v,p. Then the
projection Xv ×Bv SpecCv,p → Xv induces a morphism
(3.12) ip : Xan

v,p → X an
v .

Note that ip is injective if v is an archimedean place (cf. [12, (2.1)]), but not necessarily in the
non-archimedean case. The analytification Lan

v,p of L with respect to | · |v,p can be identified
with the line bundle i∗pLan

v and we equip it with the metric ‖ · ‖v,p := i∗p‖ · ‖v. This leads to an
M-metrized line bundle
(3.13) L = (L, (‖ · ‖w)w∈M)
on X.

Lemma 3.2.4. — Let πv : X an
v → Ban

v be the morphism of Cv-analytic spaces induced by
π : X → B and let ip : Xan

v,p → X an
v be the morphism from (3.12). Then we have

ip(Xan
v,p) = π−1

v (p) .

Proof. — We only show this for a non-archimedean place v, the archimedean case is estab-
lished at the beginning of [12, §2]. We may assume that B = Spec(A) resp. X = Spec(C)
for finitely generated F -algebras A and C. Then π corresponds to an injective F -algebra
homomorphism A ↪→ C and we have X = Spec(C ⊗A K) with K = F (B) = Quot(A).
Let q ∈ X an

v , that means q is a multiplicative seminorm on C ⊗F Cv satisfying q|Cv = | · |v.
Then q lies in ip(Xan

v,p) if and only if it extends to a multiplicative seminorm q̃ on C ⊗A Cv,p
with q̃|Cv,p = | · |v,p. This is illustrated in the following diagram,

A⊗F Cv �
� //

� _

��

Cv,p
� _

�� |·|v,p

��

C ⊗F Cv �
� //

q
--

C ⊗A Cv,p
q̃

%%
R≥0 .

On the one hand, if we have such a commutative diagram, then
πv(q) = q|A⊗Cv = | · |v,p|A⊗Cv = p.

On the other hand, if πv(q) = p, then we have a multiplicative seminorm q̃ given by

C ⊗A Cv,p = (C ⊗F Cv)⊗(A⊗Cv) Cv,p −→H (q) ⊗̂H (p)Cv,p
y−→ R≥0 ,
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where y is some element of the non-empty Berkovich spectrum M
(
H (q) ⊗̂H (p)Cv,p

)
(cf. [17,

0.3.2]). It follows easily that we obtain a commutative diagram as above. This proves the
result. �

We need the following projection formula for heights. This formula is possible because we
have one more line bundle Hj on the base B than usual (compare with Theorem 3.2.6).

Proposition 3.2.5. — Let π : W → V be a morphism of proper varieties over a global field
F of dimensions n+ b− 1 and b− 1 respectively, with b, n ≥ 0. Let H i, i = 1, . . . , b, and Lj,
j = 1, . . . , n, be DSP quasi-algebraic line bundles on V and W respectively. Then

hπ∗H1,...,π∗Hb,L1,...,Ln(W) = degL1,...,Ln(Wη) hH1,...,Hb
(V ) ,

where Wη denotes the generic fiber of π. In particular, if dim(π(W)) ≤ b − 2, then
hπ∗H1,...,π∗Hb,L1,...,Ln(W) = 0.

Proof. — The proof is similar as for [12, Prop. 2.3] and we only sketch the additional con-
tributions. By continuity of the height, we may assume that the metrics in H i and Lj are
smooth or algebraic for all i, j. We prove this proposition by induction on n. The case n = 0
follows from functoriality of the height (Proposition 3.1.12). Let n ≥ 1. We choose any in-
vertible meromorphic section sn of Ln and denote by ‖ · ‖n = (‖ · ‖n,v)v the metric of Ln.
Then the global induction formula 3.1.16 implies

hπ∗H1,...,π∗Hb,L1,...,Ln(W) = hπ∗H1,...,π∗Hb,L1,...,Ln−1
(cyc(sn))

−
∑
v∈MF

µ(v)
∫
Wan
v

log ‖sn‖n,v
b∧
i=1

c1(π∗H i,v) ∧
n−1∧
j=1

c1(Lj,v) .

If v is archimedean, then
∧b
i=1 c1(H i,v) is the zero measure on V an

v since dim(V an
v ) = b − 1.

Thus, the measure in the above integral vanishes and so the integral is zero.
If v is non-archimedean, then the metrics in H i,v, i = 1, . . . , b, are induced by models Hi of
Hei
i,v on a common model V of Vv over SpecC◦v. By linearity, we may assume that ei = 1 for

all i. Analogously, the metrics in Lj,v, j = 1, . . . , n, are induced by models Lj of Lj,v on a
common model W ofWv. Moreover, we may assume that the morphism πv : Wv → Vv extends
to a morphism τ : W → V over SpecC◦v. Since the special fiber Ṽ of V has dimension b− 1,
the degree with respect to H1, . . . ,Hb of a cycle of Ṽ is zero. Hence, for every irreducible
component Y of the special fiber of W , we have by means of the projection formula,

degτ∗H1,...,τ∗Hb,L1,...,Ln−1(Y ) = degH1,...,Hb
(τ∗(c1(L1) . . . c1(Ln−1).Y )) = 0 .

Therefore, for each v ∈MF , the measure in the above integral vanishes and so the integral is
zero.
Finally, we obtain by the induction hypothesis,

hπ∗H1,...,π∗Hb,L1,...,Ln(W) = hπ∗H1,...,π∗Hb,L1,...,Ln−1
(cyc(sn))

= degL1,...,Ln−1(cyc(sn)η) hH1,...,Hb
(V )

= degL1,...,Ln(Wη) hH1,...,Hb
(V ) ,

proving the result. �
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Theorem 3.2.6. — Let B be a b-dimensional normal proper variety over a global field F
and let H1, . . . ,Hb be nef quasi-algebraic line bundles on B. Let K = F (B) be the function
field of B and (M, µ) the associated structure of an M-field on K as in (3.11).
Let π : X → B be a dominant morphism of proper varieties over F and X the generic fiber of
π. Let Y be an n-dimensional prime cycle of X and Y its closure in X . For j = 0, . . . , n, let
Lj be an M-metrized line bundle on X which is induced by a DSP quasi-algebraic line bundle
Lj on X as in (3.13).
Then Y is integrable with respect to L0, . . . , Ln and we have
(3.14) hL0,...,Ln

(Y ) = hπ∗H1,...,π∗Hb,L0,...,Ln(Y) .

Proof. — By Chow’s lemma (e.g. [22, Thm. 13.100]) and functoriality of the height (Propo-
sition 3.1.12(ii)), we reduce to the case when the proper varieties are projective over F . Then
π is also projective. By (multi-)linearity of the height (Proposition 3.1.12(i)), we may assume
that the line bundles Lj are very ample and theirMF -metrics are semipositive. Making a finite
base change and using Proposition 3.1.17, we may suppose that B and X are geometrically
integral.
We prove this theorem by induction on the dimension of Y . If dim(Y ) = −1, thus Y = ∅,
then Y is integrable since the local heights of Y are zero. Equation (3.14) holds in this case
because Y is empty as well.
From now on we suppose that dim(Y ) = n ≥ 0. Then the restriction π|Y : Y → B is dominant.
By Proposition 3.1.12(ii), the height does not change if we restrict the corresponding metrized
line bundles to Y. So we may assume that Y = X , Y = X and n = dim(Y ) = dim(X).
Let s0, . . . , sn be global sections of L0, . . . ,Ln respectively, whose divisors intersect properly
on X, and let ρ : M→ R be the function given by

w 7−→ λ(L0,s0|X),...,(Ln,sn|X)(X,w) .

We must show that ρ is µ-integrable and that∫
M
ρ(w) dµ(w) = hπ∗H1,...,π∗Hb,L0,...,Ln(X ) .

By the induction formula of local heights (Theorem 1.4.3), there is a decomposition ρ = ρ1+ρ2
into well-defined functions ρ1, ρ2 : M→ R given by

ρ1(w) = λ(L0,s0|X),...,(Ln−1,sn−1|X)(cyc(sn|X), w)

and
ρ2(w) =

∫
Xan
w

log ‖sn|Xw‖−1
n,w c1(L0,w) ∧ · · · ∧ c1(Ln−1,w) .

Moreover, we can write the cycle cyc(sn) in X as
cyc(sn) = cyc(sn)hor/B + cyc(sn)vert/B ,

where cyc(sn)hor/B contains the components which are dominant over B and cyc(sn)vert/B
contains the components not meeting X.
By the induction hypothesis, the function ρ1 is µ-integrable and∫

M
ρ1(w) dµ(w) = hL0,...,Ln−1

(cyc(sn|X))

= hπ∗H1,...,π∗Hb,L0,...,Ln−1
(cyc(sn)hor/B) .(3.15)
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If w = V ∈ B(1), then we deduce as in the corresponding part of the proof of [12, Thm. 2.4]
that
(3.16) ρ2(V ) =

∑
W∈X (1)

π(W)=V

hH1,...,Hb
(V ) ordW(sn) degL0,...,Ln−1(WV ) ,

where WV denotes the generic fiber of π|W : W → V . This formula implies the integrability
of ρ2 on B(1) with respect to the counting measure µfin because there are only finitely many
W ∈ X (1) such that ordW(sn) 6= 0. The same arguments as in the corresponding part of the
proof of [12, Thm. 2.4] show that

(3.17)
∫
B(1)

ρ2(w) dµfin(w) = hπ∗H1,...,π∗Hb,L0,...,Ln−1
(cyc(sn)vert/B).

Now, let v be a place of MF and p a generic point of Ban
v . We claim that the function

(3.18) ρ2(p) =
∫
Xan
v,p

log i∗p‖sn‖−1
n,v

n−1∧
j=0

c1(i∗pLj,v)

is integrable with respect to µv = µ(v) · c1(H1,v)∧ · · · ∧ c1(Hb,v). Furthermore, we claim that

(3.19)
∫
Bgen
v

ρ2(p) dµv(p) = µ(v)
∫
X an
v

log ‖sn‖−1
n,v

n−1∧
j=0

c1(Lj,v) ∧
b∧
i=1

c1(π∗H i,v) .

This two claims will be shown in a rather elaborate argument below.
Assuming these two claims, we will first show that the theorem now follows easily. By Propo-
sition 3.1.16, the integral in (3.19) is zero for all but finitely many v ∈ MF because the
line bundles π∗H1, . . . , π

∗Hb, L0, . . . ,Ln are quasi-algebraic. We conclude that the function
ρ = ρ1 +ρ2 is µ-integrable and obtain, by using the induction hypothesis (3.15), (3.17), (3.19)
and the global induction formula 3.1.16,

hL0,...,Ln
(X) =

∫
M
ρ1(w) dµ(w) +

∫
B(1)

ρ2(w) dµfin(w) +
∑
v∈MF

∫
Bgen
v

ρ2(p) dµv(p)

= hπ∗H1,...,π∗Hb,L0,...,Ln−1
(cyc(sn)hor/B)

+ hπ∗H1,...,π∗Hb,L0,...,Ln−1
(cyc(sn)vert/B)

+
∑
v∈MF

µ(v)
∫
X an
v

log ‖sn‖−1
n,v

n−1∧
j=0

c1(Lj,v) ∧
b∧
i=1

c1(π∗H i,v)

= hπ∗H1,...,π∗Hb,L0,...,Ln(X ) ,

proving the theorem.
We will prove more generally that for any non-trivial sn ∈ Γ(Xv,Lv), the function ρ2 in (3.18)
is µv-integrable and that (3.19) holds. If v ∈ MF is an archimedean place, then the proof
of [12, Thm. 2.4] shows that ρ2 is µv-integrable on Bgen

v and that the equation (3.19) holds.
From now on, we consider the case where v ∈MF is non-archimedean. We first assume that,
for each j = 0, . . . , n − 1 and i = 1, . . . , b, the metrics on Lj,v and Hi,v are algebraic. Then
the function ρ2 is µv-integrable because µv is a discrete finite measure.
We choose, for each j, a proper model (Xj ,Lj , ej) of (Xv,Lj,v) over SpecC◦v that induces the
metric of Lj,v. Note that we omit the place v in the notation of the models in order not to
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burden the notation. By linearity, we may assume that ej = 1 for all j. Furthermore, we can
suppose that the models Xj agree with a common model X with reduced special fiber (cf.
Remark 1.2.12). In the same way, we have a proper C◦v-model B of Bv with reduced special
fiber and, for each i = 1, . . . , b, a model Hi of Hi,v on B inducing the corresponding metric.
As in the proof of Proposition 3.2.5, we can asume that the morphism πv : Xv → Bv extends
to a morphism τ : X → B over C◦v.
To construct a suitable model of Xv,p = X ×K SpecCv,p over C◦v,p, we consider the commu-
tative diagram

SpecCv,p //

��

B

��
SpecCv // SpecF .

By the universal property of the fiber product, we have a unique morphism SpecCv,p →
Bv. Because B is proper over C◦v and by the valuative criterion, this morphism extends to
SpecC◦v,p → B. Let Xp be the fiber product X ×B SpecC◦v,p. This is a model of Xv,p over
C◦v,p. We denote the special fibers of B, X and Xp by B̃, X̃ and X̃p respectively. By 1.1.7,
there exists a formal admissible scheme Xp over C◦v,p with generic fiber Xan

p = Xan
v,p and

with reduced special fiber X̃p such that the canonical morphism ιp : X̃p → X̃p is finite and
surjective. We obtain the following commutative diagram

Xan
v,p

= //

red
��

Xan
v,p

ip //

red
��

X an
v

πv //

red
��

Ban
v

red
��

X̃p
ιp // X̃p

jp // X̃
τ̃ // B̃ ,

where red is the reduction map from 1.1.5 and 1.1.7. We have X̃p = X̃ ×
B̃

Spec C̃v,p.
By Definition 1.2.13, the left-hand side of equation (3.19) is equal to

(3.20)
∫
Bgen
v

( ∫
Xan
v,p

log i∗p‖sn‖−1
n,v

n−1∧
j=0

c1(i∗pLj,v)
) b∧
i=1

c1(H i,v)(p)

=
∑

Z∈B̃(0)

( ∑
V ∈X̃(0)

ξZ

log ‖sn(iξZ (ξV ))‖−1
n,v deg

ι∗
ξZ
j∗
ξZ

L̃0,...,ι∗ξZ
j∗
ξZ

L̃n−1
(V )
)

degH1,...,Hb
(Z) ,

where ξZ (resp. ξV ) denotes the unique point whose reduction is the generic point of Z
(resp. V ).
First, we consider the inner sum. Let Z be an irreducible component of B̃ with generic point
ηZ = red(ξZ). For V ∈ X

(0)
ξZ

, we consider the irreducible component W := ιξZ (V ) of X̃ξZ

and the irreducible component Y := jξZ (W ) of X̃ . It follows from the compatibility of the
reduction with morphisms of models that iξZ (ξV ) is the unique point ξY of X an

v with reduction
equal to the generic point of Y . We conclude that

(3.21) log ‖sn(iξZ (ξV ))‖−1
n,v = log ‖sn(ξY )‖−1

n,v .
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Applying the projection formula in [25, Prop. 4.5], we deduce that

(3.22) (ιξZ )∗(cyc(X̃ξZ )) = cyc(X̃ξZ )

Now the geometric projection formula, (3.21) and (3.22) yield

(3.23)
∑

V ∈X̃(0)
ξZ

log ‖sn(iξZ (ξV ))‖−1
n,v deg(

ι∗
ξZ
j∗
ξZ

L̃k

)
k=0,...,n−1

(V )

=
∑

W∈X̃
(0)
ξZ

log ‖sn(ξY )‖−1
n,v m

(
W, X̃ξZ

)
deg(

j∗
ξZ

L̃k

)
k=0,...,n−1

(W ) ,

where m
(
W, X̃ξZ

)
denotes the multiplicity of W in X̃ξZ and where Y = jξZ (W ). By [23,

Ch. 0, (2.1.8)], there is a bijective map{
Y ∈ X̃ (0) | τ̃(Y ) = Z

}
−→ X̃ (0)

ηZ
, Y 7−→ YηZ .(3.24)

The special fiber of B is reduced and hence, applying [1, 2.4.4(ii)] and using the compat-
ibility of reduction and algebraic closure, we get C̃v,ξZ = H̃ (ξZ) = κ(ηZ). Thus, X̃ξZ =
X̃ ×

B̃
Spec C̃v,ξZ is the base change of the fiber X̃ηZ = X̃ ×

B̃
Specκ(ηZ) by κ(ηZ)→ κ(ηZ).

Thus, by [43, Lem. 32.6.10], we obtain a surjective map

(3.25) X̃
(0)
ξZ
−→ X̃ (0)

ηZ
.

Composing the maps (3.24) and (3.25), we get a canonical surjective map

X̃
(0)
ξZ
−→

{
Y ∈ X̃ (0) | τ̃(Y ) = Z

}
with finite fibers. More precisely, for each irreducible component Y in X̃ with τ̃(Y ) = Z,
the scheme YξZ = Y ×Z Spec C̃v,ξZ is a finite union of (non-necessarily reduced) irreducible
components of X̃

(0)
ξZ

. Since iξZ (ξW ) = ξY for W ∈ Y (0)
ξZ

, we deduce

(3.26)
∑

W∈X̃
(0)
ξZ

log ‖sn(ξjξZ (W ))‖−1
n,v m

(
W, X̃ξZ

)
deg(

j∗
ξZ

L̃k

)
k=0,...,n−1

(W )

=
∑

Y ∈X̃ (0)

τ̃(Y )=Z

log ‖sn(ξY )‖−1
n,v deg(

j∗
ξZ

L̃k

)
k=0,...,n−1

(YξZ ) .

Let Y be an irreducible component of X̃ with generic point ηY such that τ̃(Y ) = Z. It follows
from the definitions in algebraic intersection theory that we have

degL0,...,Ln−1,τ∗H1,...,τ∗Hb
(Y ) = deg

j∗ηZ L̃0,...,j∗ηZ L̃n−1
(YηZ ) degH1,...,Hb

(Z) .

Since the degree is stable unter base change, we deduce

degL0,...,Ln−1,τ∗H1,...,τ∗Hb
(Y ) = deg

j∗
ξZ

L̃0,...,j∗ξZ
L̃n−1

(YξZ ) degH1,...,Hb
(Z) .(3.27)
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Combining the equations (3.20), (3.23), (3.26) and (3.27), we obtain∫
Bgen
v

( ∫
Xan
v,p

log i∗p‖sn‖−1
n,v

n−1∧
j=0

c1(i∗pLj,v)
) b∧
i=1

c1(H i,v)(p)

=
∑

Z∈B̃(0)

∑
Y ∈X̃ (0)

τ̃(Y )=Z

log ‖sn(ξY )‖−1
n,v degL0,...Ln−1,τ∗H1,...,τ∗Hb

(Y )

=
∑

Y ∈X̃ (0)

log ‖sn(ξY )‖−1
n,v degL0,...Ln−1,τ∗H1,...,τ∗Hb

(Y )

=
∫
X an
v

log ‖sn‖−1
n,v

n−1∧
j=0

c1(Lj,v) ∧
b∧
i=1

c1(π∗H i,v) ,

using in the next-to-last equality that, for an irreducible component Y of X̃ with dim(τ̃(Y )) ≤
b− 1, the degree is zero. This proves equation (3.19) in the algebraic case.
In a next step, we assume that, for each j = 0, . . . , n, the metric ‖ · ‖j,v on Lj,v is algebraic,
but that the metrics on Hi,v, i = 1, . . . , b, are not necessarily algebraic. For this case, we once
again show that ρ2 is µv-integrable and that the equality (3.19) holds.
As in the previous case, we may assume that, for each j = 0, . . . , n, there is a proper model
(Lj ,X ) of (Lj,v,Xv) over C◦v inducing the corresponding metric. We choose any projective
model B over C◦v of the projective variety Bv and suppose, as in the previous case, that
πv : Xv → Bv extends to a proper morphism τ : X → B. Because Xv is projective over
Cv and by [27, Prop. 10.5], we may assume that X is projective over C◦v and thus, τ is
projective. Using Serre’s theorem (see [22, Thm. 13.62]), the line bundle Lj is the difference
of two very ample line bundles relative to τ . By multilinearity of the height, we reduce to the
case where Lj is very ample relative to τ . Because B is projective over C◦v, we deduce by [22,
Summary 13.71(3)] that there is a closed immersion fj : X ↪→ PNjB such that Lj ' f∗jOP

Nj
B

(1).

For projective spaces PNj , j = 0, . . . , n, let P :=PN0 × · · · × PNn be the multiprojective space
and let OP(ej) be the pullback of OPNj (1) by the j-th projection. Since B is geometrically
integral, we have the function field Kv = Cv(Bv) and we define Xv = Xv ×Bv SpecKv and
Lj,v = Lj,v ⊗ Kv. The product of f0, . . . , fn is a closed immersion f : X ↪→ PB with
Lj ' f∗OPB

(ej) for j = 0, . . . , n. We obtain the following commutative diagram

X ×B SpecC◦v,p
� � fp //

jp

��

PC◦v,p

��

Xv,p
� � gp //

hp

��

::

PCv,p

��

::

X � � f // PB .

Xv
� � g //

::

PKv

::

Note that each horizontal arrow is a closed immersion because f is a closed immersion and
the other morphisms are obtained by base change.
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Let p ∈ Bgen
v . Then the metric ‖ · ‖v,p = i∗p‖ · ‖v on Lj,v,p = g∗pOPCv,p (ej) is induced by

j∗pLj = j∗pf
∗OPB

(ej) = f∗pOPC◦v,p
(ej) .

Hence, Lj,v,p = g∗pOPCv,p (ej), where OPCv,p (ej) is endowed with the canonical metric. By
Proposition 3.2.2, the field Kv together with (Bgen

v , µv) is a Bgen
v -field in the sense of Def-

inition 3.1.1. Therefore, [26, Prop. 5.3.7(d)] says that every n-dimensional cycle on PKv is
µv-integrable on Bgen

v with respect to OPKv (e0), . . . ,OPKv (en). Since integrability is closed
under tensor product and pullback (see 3.1.10), the local height ρ is µv-integrable on Bgen

v .
By the induction hypothesis, we deduce that ρ2 = ρ− ρ1 is also µv-integrable on Bgen

v .
For proving the equality (3.19), we study ρ in more detail. We may always replace sn by λsn
for a non-zero λ ∈ Cv and hence we may assume that sn ∈ Γ(X ,Ln). Using Lj ' f∗OPB

(ej)
and by possibly changing the closed immersion f , we may assume that sn = g∗tn for a global
section of OPKv (en). We choose global sections tj of OPKv (ej), j = 0, . . . , n− 1, such that

|div(t0)| ∩ · · · ∩ |div(tn)| ∩Xv = ∅ .

Note that the original s0, . . . , sn−1 do not play a role anymore and so we may set sj := g∗tj
for j = 0, . . . , n− 1. By Proposition 1.3.5, we get

(3.28)
ρ(p) = λ(L0,s0),...,(Ln,sn)(Xv, p)

= λ(OPCv
(e0),t0),...,(OPCv

(en),tn) (Xv, p) .

We can express ρ in terms of the Chow form of the n-dimensional subvariety Xv of the multi-
projective space PKv . This is a multihomogenous polynomial FXv(ξ0, . . . , ξn) with coefficients
in Kv and in the variables ξj = (ξj0, . . . , ξjNj ) viewed as dual coordinates on PNjKv (see [26,
Rem. 2.4.17] for details). By (3.28) and [26, Ex. 4.5.16], we obtain

(3.29) ρ(p) = log |FXv |v,p − log |FXv(t0, . . . , tn)|v,p ,

where in the first term we use the Gauss norm and in the second term tj denotes the dual
coordinates of tj .
For each i = 1, . . . , n, we choose a sequence of algebraic semipositive metrics (‖ · ‖i,v,k)k∈N on
Hi,v that converges to the semipositive metric ‖ · ‖i,v on Hi. Denote H i,v,k = (Hi,v, ‖ · ‖i,v,k)
and set

µv,k = µ(v) · c1(H1,v,k) ∧ · · · ∧ c1(Hb,v,k) .

By Corollary 1.4.6, we obtain

lim
k→∞

∫
Bgen
v

ρ(p) dµv,k(p) =
∫
Bgen
v

ρ(p) dµv(p) .(3.30)

Analogously we can show this for the local height ρ1 and hence we get

lim
k→∞

∫
Bgen
v

ρ2(p) dµv,k(p) =
∫
Bgen
v

ρ2(p) dµv(p) .(3.31)
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On the other hand, Corollary 1.4.6 again shows

(3.32) lim
k→∞

∫
X an
v

log ‖sn‖n,v
n−1∧
j=0

c1(Lj,v) ∧
b∧
i=1

c1(π∗H i,v,k)

=
∫
X an
v

log ‖sn‖n,v
n−1∧
j=0

c1(Lj,v) ∧
b∧
i=1

c1(π∗H i,v) .

Thus, the equality (3.19) for semipositive metrics on Hi,v and algebraic metrics on Lj,v follows
from (3.31), (3.32) and the algebraic case.
In the last step, we assume that the metrics on Hi,v and Lj,v are semipositive and not
necessarily algebraic. We choose, for each j = 0, . . . , n−1, a sequence of algebraic semipositive
metrics (‖ · ‖j,v,k)k∈N on Lj,v that converges to ‖ · ‖j,v. For p ∈ Bgen

v , we set

ρ2,k(p) :=
∫
Xan
v,p

log i∗p‖sn‖−1
n,v,k

n−1∧
j=0

c1(i∗pLj,v,k).

By the induction formula 1.2.15 and Proposition 1.2.11(iii), we obtain for each k, l ∈ N,

|ρ2,k(p)− ρ2,l(p)| =
∣∣∣λ(L0,k,s0),...,(Ln,k,sn)(Xv, p)− λ(L0,k,s0),...,(Ln−1,k,sn−1) (cyc(sn|Xv), p)

− λ(L0,l,s0),...,(Ln,l,sn)(Xv, p) + λ(L0,l,s0),...,(Ln−1,l,sn−1) (cyc(sn|Xv), p)
∣∣∣

≤
n∑
j=0

d(‖ · ‖j,v,k, ‖ · ‖j,v,l) degL0,...,Lj−1,Lj+1,...,Ln(Xv)

+
n−1∑
j=0

d(‖ · ‖j,v,k, ‖ · ‖j,v,l) degL0,...,Lj−1,Lj+1,...,Ln−1(cyc(sn|Xv)) .

Hence, the sequence (ρ2,k)k∈N converges uniformly to ρ2 on Bgen
v . Because the measure µv has

finite total mass and, by the previous case, the functions ρ2,k are µv-integrable, we deduce
that ρ2 is µv-integrable and that

lim
k→∞

∫
Bgen
v

ρ2,k(p) dµv(p) =
∫
Bgen
v

ρ2(p) dµv(p) .

Thus, using (3.19) for the functions ρ2,k and the induction formula 1.4.3, the equality (3.19)
also holds in the case when all the metrics are semipositive. �

3.3. Global heights of toric varieties over finitely generated fields. — Following [12,
§3] closely, we use our preceding results to get some combinatorial formulas for the height of a
fibration with generic toric fiber. Indeed, our non-discrete non-archimedean toric geometry is
necessary since the measure spaceM from (3.11) contains arbitrary non-archimedean absolute
values, in contrast to the measure space considered in [12, §1].
As usual, we fix a lattice M ' Zn with dual M∨ = N and use the respective notations from
the sections on toric geometry. At first, we consider an arbitrary M -field K with associated
positive measure µ. Let Σ be a complete fan in NR and let XΣ be the associated proper toric
variety over K with torus T = SpecK[M ].
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3.3.1. — Let L be a toric line bundle on XΣ. An M -metric ‖ · ‖ = (‖ · ‖v)v∈M on L is
toric if, for each v ∈M , the metric ‖ · ‖v on Lv is toric (see Definition 2.4.1). The canonical
M -metric on L, denoted ‖ · ‖can, is given, for each v ∈M , by the canonical metric on Lv (see
Definition 2.4.11). We will write Lcan = (L, ‖ · ‖can).
Let s be a toric section on L and Ψ the associated virtual support function. Then a toric
M -metric (‖ · ‖v)v on L induces a family

(
ψL,s,v

)
v∈M of real-valued functions on NR as in

Definition 2.4.6. If ‖ · ‖ is semipositive, then each ψL,s,v is concave and we obtain a family(
ϑL,s,v

)
v∈M of concave functions on ∆Ψ called v-adic roof functions (cf. Definition 2.6.4 which

works the same way in the archimedean case). When L and s are clear from the context, we
also denote ψL,s,v by ψv and ϑL,s,v by ϑv.

Proposition 3.3.2. — For each i = 0, . . . , t, let Li be a toric line bundle on XΣ equipped
with a DSP toric M -metric and denote by Lcan

i the same toric line bundle endowed with the
canonical M -metric. Let Y be either the closure of an orbit or the image of a proper toric
morphism of dimension t. Then Y is integrable with respect to Lcan

0 , . . . , L
can
t and

(3.33) hLcan
0 ,...,L

can
t

(Y ) = 0 .

Furthermore, if Y is integrable with respect to L0, . . . , Lt, then the global height is given by

(3.34) hL0,...,Lt
(Y ) =

∫
M
λtor
L0,...,Lt

(Y, v) dµ(v) ,

where λtor
L0,...,Lt

(Y, v) = λtor
L0,v ,...,Lt,v

(Yv) is the toric local height from Definition 2.6.1.

Proof. — The first statement and equation (3.33) can be shown using the same arguments
as in [11, Prop. 5.2.4]. The proof is based on an inductive argument using the local induction
formula from Theorem 1.2.15. The second equation follows easily from the first one. �

Corollary 3.3.3. — Let L = (L, (‖·‖v)v) be a toric line bundle on XΣ equipped with a semi-
positive toric M -metric. Choose any toric section s of L and denote by Ψ the corresponding
support function on Σ. If XΣ is integrable with respect to L, then

hL(XΣ) = (n+ 1)!
∫
M

∫
∆Ψ

ϑL,s,v dvolM dµ(v) .

Proof. — This is a direct consequence of Proposition 3.3.2 and Theorem 2.6.6 which holds
also in the archimedean case by [11, Thm. 5.1.6]. �

Now we consider the particular case of an M-field which is induced by a variety over a global
field as in Section 3.2. Let B be a b-dimensional normal proper variety over a global field
F and let H1, . . . ,Hb be nef quasi-algebraic metrized line bundles on B. This provides the
function field K = F (B) with the structure (M, µ) of an M-field as in (3.11). Let X be an
n-dimensional normal proper toric variety over K with torus T = SpecK[M ], corresponding
to a complete fan Σ in NR. We choose a base-point-free toric line bundle L on X together
with a toric section s and denote by Ψ the associated support function on Σ.
Let π : X → B be a dominant morphism of proper varieties over F such that X is the generic
fiber of π. We equip L with a toric M-metric ‖ · ‖ such that L = (L, ‖ · ‖) is induced by a
semipositive quasi-algebraic MF -metrized line bundle L on X as in (3.13). Then it follows
easily that L is also semipositive and so, for each v ∈M, the function ψv is concave.
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The following result generalizes Corollary 3.1 in [12], where the global field is Q and the
metrized line bundles are induced by models over Z. It is based on our main Theorems 2.6.6
and 3.2.6.

Corollary 3.3.4. — Let notation be as above. Then the function

(3.35) M −→ R, w 7−→
∫

∆Ψ
ϑL,s,w(m) dvolM (m)

is integrable with respect to µ and

(3.36) hπ∗H1,...,π∗Hb,L,...,L(X ) = hL(X) = (n+ 1)!
∫
M

∫
∆Ψ
ϑw(m) dvolM (m) dµ(w) .

Proof. — By Theorem 2.6.6 (non-archimedean case) and [11, Thm. 5.1.6] (archimedean case),
we have

(n+ 1)!
∫

∆Ψ
ϑw dvolM = λtor

L0,w,...,Ln,w
(Xw) .

Hence, Theorem 3.2.6 implies the µ-integrability of the function (3.35). The first equality
of (3.36) is Theorem 3.2.6. The second follows readily from (3.34) and (3.35). �

Proposition 3.3.5. — We use the same notation as above.

(i) For each m ∈ ∆Ψ, the function M −→ R, w 7−→ ϑw(m) is µ-integrable.

(ii) The function
ϑL,s : ∆Ψ −→ R, m 7−→

∫
M
ϑL,s,w(m) dµ(w)

is continuous and concave.

(iii) The function M×∆Ψ −→ R, (w,m) 7−→ ϑw(m) is integrable with respect to the measure
µ× volM .

(iv) We have

hπ∗H1,...,π∗Hb,L,...,L(X ) = hL(X) = (n+ 1)!
∫

∆Ψ
ϑL,s(m) dvolM (m) ,

where ϑL,s is the function in (ii).

Proof. — The proof of (i)–(iii) respectively (iv) is analogous to [12, Thm. 3.2 resp. Cor. 3.4]
using Corollary 3.3.4 in place of [12, Cor. 3.1]. It utilizes in an essential way that ϑw is concave
(see Theorem 2.5.8). �

3.4. Heights of projectively embedded toric varieties over the function field of an
elliptic curve. — Similarly as in [12, §4], we consider the formulas in Section 3.3 in the case
where X is the normalization of a translated subtorus in a projective space using canonical
metrics. Then we illustrate the resulting formulas in the case of the function field K of an
elliptic curve which is a natural example where the canonical polarizations at a place of bad
reduction lead to non-discrete valuations on K.
Let B be a b-dimensional normal proper variety over a global field F and let H1, . . . ,Hb be
nef quasi-algebraic MF -metrized line bundles on B. We equip K = F (B) with the structure
(M, µ) of an M-field as in (3.11).
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For r ≥ 1, let us consider the projective space PrB = PrF×FB over B and Serre’s twisting sheaf
OPrB (1). We equip OPrB (1) with the metric obtained by pulling back the canonical MF -metric
of OPrF (1) and denote this metrized line bundle by O(1) = OPrB (1).
For mj ∈ Zn and fj ∈ K×, j = 0, . . . , r, we regard the morphism

Gn
m,K −→ PrK , t 7−→ (f0t

m0 : · · · : frtmr) ,

where fjtmj = fjt
mj,1
1 · · · tmj,nn . For simplicity, we suppose that m0 = 0, f0 = 1 and that

m0, . . . ,mr generate Zn as an abelian group. Let Y be the closure of the image of this
morphism. Then Y is a toric variety over K, but not necessarily normal.
Let Y be the closure of Y in PrB and let π : Y → B be the restriction of PrB → B. Our
goal is to compute the height h

π∗H1,...,π∗Hb,O(1),...,O(1)(Y) using formula (3.36). Since Y is
not necessarily normal, we consider the normalization X of Y and the induced dominant
morphism X → B which we also denote by π. Then the generic fiber X = X ×B SpecK
is a normal Gn

m,K-toric variety over K. Let L be the pullback of O(1) via X → PrB and let
L be the induced M-metrized line bundle on X as in (3.13). Then L is a toric semipositive
M-metrized line bundle on X.
Analogously to [12, Prop. 4.1], we can explicitly describe the associated w-adic roof functions
as follows:

Proposition 3.4.1. — We keep the above notations and let s be the toric section of L
induced by the global section x0 of O(1). Then the polytope ∆ associated to (L, s) is determined
by

∆ = conv(m0, . . . ,mr) .
For w ∈ M, the graph of the w-adic roof function ϑw : ∆ → R is the upper envelope of the
polytope ∆w ⊆ Rn × R which is given by

∆w =
{

conv
(
(mj ,−hH1,...,Hb

(V ) ordV (fj))j=0,...,r
)
, if w = V ∈ B(1),

conv
(
(mj , log |fj(p)|v)j=0,...,r

)
, if w = p ∈ Bgen

v , v ∈MF .

Now we differ from the setting in [12, §4] and consider the special case of the function field
of an elliptic curve equipped with a canonical metrized line bundle. Note that in this case
non-discrete non-archimedean absolute values naturally occur.

3.4.2. — From now on, we assume that B is an elliptic curve E over the global field F
and let H be an ample symmetric line bundle on E. We choose any rigidification ρ of H,
i.e. ρ ∈ H0(F ) \ {0}. By the theorem of the cube, we have, for each m ∈ Z, a canonical
identification [m]∗H = H⊗m

2 of rigidified line bundles. Then there exists a uniqueMF -metric
‖ · ‖ρ = (‖ · ‖ρ,v)v on H such that, for all v ∈MF , m ∈ Z,

[m]∗‖ · ‖ρ,v = ‖ · ‖⊗m2
ρ,v .

For details, see [5, Thm. 9.5.7]. We call such anMF -metric canonical because it is canonically
determined by H up to (|a|v)v∈MF

for some a ∈ F×. By [28, 3.5], the canonical metric ‖ · ‖ρ
is quasi-algebraic and, since H is ample and symmetric, it is semipositive.
The global height associated to H = (H, ‖ · ‖ρ) is equal to the Néron–Tate height ĥH (see [5,
Cor. 9.5.14]). In particular, it does not depend on the choice of the rigidification ρ. Since H
is ample, we have hH = ĥH ≥ 0.
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For each v ∈ MF , the canonically metrized line bundle H induces the canonical measure
c1(Hv) = c1(Hv, ‖ · ‖ρ,v) which does not depend on the choice of the rigidification (cf. [29,
3.15]) and which is positive. It has the properties

c1(Hv)(Ean
v ) = degH(E) and [m]∗ c1(Hv) = m2 c1(Hv) for all m ∈ Z .

For a detailed description of these measures, we have to consider three kinds of places v ∈MF .

(i) The set of archimedean places is denoted by M∞F . For v archimedean, Ean
v = E(C) is a

complex analytic space which is biholomorphic to a complex torus C/(Z+Zτ), =τ > 0.
We have c1(Hv) = degH(E)µHaar for the Haar probability measure µHaar on this torus.

(ii) The set of non-archimedean places v with E of good reduction at v is denoted by Mg
F .

For such a v, the canonical measure c1(Hv) is a Dirac measure at a single point of Ean
v .

Since E has good reduction at v, there is a smooth proper scheme Ev over C◦v with
generic fiber Ev. The special fiber Ẽv is an elliptic curve over C̃v. Let ξv be the unique
point of Ean

v such that red(ξv) is the generic point of Ẽv. Then c1(Hv) = degH(E) δξv .

(iii) The set of non-archimedean places v with E of bad reduction at v is denoted by Mb
F .

Then Ean
v is a Tate elliptic curve over Cv, i.e. Ean

v is isomorphic as an analytic group to
Gan

m,v/q
Z, where Gm,v is the multiplicative group over Cv with fixed coordinate x and

q is an element of Gm,v(Cv) = C×v with |q|v < 1 (see, for example, [6, 9.7.3]). Denote
by trop: Gan

m,v → R, p 7→ − log p(x), the tropicalization map and set Λv :=− log |q|vZ.
Then we obtain a commutative diagram

Gan
m,v

trop //

��

R

��
Ean
v

trop // R/Λv .

Consider the continuous section ρ : R→ Gan
m,v of trop, where ρ(u) is given by

(3.37)
∑
m∈Z

αmx
m 7−→ max

m∈Z
|αm| exp(−m · u)

as in 2.4.7. Using Ean
v = Gan

m,v/q
Z, this section descends to a continuous section ρ̄ :

R/Λv → Ean
v of trop. The image of ρ̄ is a canonical subset S(Ean

v ) of Ean
v which is

called the skeleton of Ean
v . By [1, Ex. 5.2.12 and Thm. 6.5.1], this is a closed subset of

Ean
v and trop restricts to a homeomorphism from S(Ean

v ) onto R/Λv. By [29, Cor. 9.9],
the canonical measure c1(Hv) on Ean

v is supported on the skeleton S(Ean
v ) and we have

c1(Hv) = degH(E)µHaar for the Haar probability measure µHaar on R/Λv.

Let m0 = 0 ∈ Zn and m1 . . . ,mr ∈ Zn generating Zn as a group and let f0, . . . fr ∈
K× = F (E)× with f0 = 1. Recall that we consider the morphism

Gn
m,K −→ PrK , t 7−→ (f0t

m0 : · · · : frtmr) .

The closure of the image of this morphism in PrE is denoted by Y.
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Corollary 3.4.3. — With the assumptions and notations from 3.4.2, we have
1

(n+ 1)! · degH(E) h
π∗H,O(1),...,O(1)(Y)

= 1
degH(E)

∑
P∈C

∫
∆
ϑP (x) dvol(x) +

∑
v∈M∞F

∫
E(Cv)

∫
∆
ϑp(x) dvol(x) dµHaar(p)

+
∑
v∈Mg

F

∫
∆
ϑξv(x) dvol(x) +

∑
v∈Mb

F

∫
R/Λv

∫
∆
ϑρ̄(u)(x) dvol(x) dµHaar(u) ,

where C ⊂E(1) is the set of irreducible components of the divisors cyc(f0), . . . , cyc(fr) and
vol is the standard measure on Rn.

Proof. — We have h
π∗H,O(1),...,O(1)(Y) = hπ∗H,L,...,L(X ) because the global height is invariant

under normalization. We get the result by Theorem 3.2.6, Corollary 3.3.3, Proposition 3.4.1
and the description in 3.4.2. �

Appendix A. Convex geometry

In this appendix, we collect the notions of convex geometry that we need for the study of
toric geometry. We follow the notation of [11, §2] and [32] which is based on the classical
book [42].
Let M be a free abelian group of rank n and N :=M∨ := Hom(M,Z) its dual group. The
natural pairing between m ∈ M and u ∈ N is denoted by 〈m,u〉 :=u(m). If G is an abelian
group, we set NG :=N ⊗ZG = Hom(M,G). In particular, NR = N ⊗Z R is an n-dimensional
real vector space with dual space MR = Hom(N,R). We denote by Γ a subgroup of R.

A.1. — A polyhedron Λ in NR is a non-empty set defined as the intersection of finitely many
closed half-spaces, i. e.

(A.1) Λ =
r⋂
i=1
{u ∈ NR | 〈mi, u〉 ≥ li} where mi ∈MR, li ∈ R .

A polytope is a bounded polyhedron. A face Λ′ of a polyhedron Λ, denoted by Λ′ � Λ, is
either Λ itself or of the form Λ∩H where H is the boundary of a closed half-space containing
Λ. A face of Λ of codimension 1 is called a facet, a face of dimension 0 is a vertex. The relative
interior of Λ, denoted by ri Λ, is the interior of Λ in its affine hull.

A.2. — Let Λ be a polyhedron in NR. We call Λ strongly convex if it does not contain any
affine line. We say that Λ is Γ-rational if there is a representation as (A.1) with mi ∈ M
and li ∈ Γ. If Γ = Q, we just say Λ is rational. We say that a polytope in MR is lattice if its
vertices lie in M .

A.3. — A polyhedral cone in NR is a polyhedron σ such that λσ = σ for all λ ≥ 0. Its dual
is defined as

σ∨ := {m ∈MR | 〈m,u〉 ≥ 0 ∀ u ∈ σ}.
A polyhedral cone is strongly convex if and only if dim(σ∨) = 0. We denote by σ⊥ the set of
m ∈MR with 〈m,u〉 = 0 for all u ∈ σ. The recession cone of a polyhedron Λ is defined as

rec(Λ) :={u ∈ NR | u+ Λ ⊆ Λ}.

Publications mathématiques de Besançon – 2017



Walter Gubler and Julius Hertel 65

If Λ has a representation as (A.1), the recession cone can be written as

rec(Λ) =
r⋂
i=1
{u ∈ NR | 〈mi, u〉 ≥ 0}.

A.4. — A polyhedral complex Π in NR is a non-empty finite set of polyhedra such that

(i) every face of Λ ∈ Π lies also in Π;

(ii) if Λ,Λ′ ∈ Π, then Λ ∩ Λ′ is empty or a face of Λ and Λ′.

A polyhedral complex Π is called Γ-rational (resp. rational, resp. strongly convex) if each
Λ ∈ Π is Γ-rational (resp. rational, resp. strongly convex). The support of Π is defined as the
set |Π| :=

⋃
Λ∈Π Λ. We say that Π is complete if |Π| = NR. We will denote by Πk the subset

of k-dimensional polyhedra of Π.
A fan in NR is a polyhedral complex in NR consisting of strongly convex rational polyhedral
cones.

A.5. — Let Π be a polyhedral complex in NR. The recession rec(Π) of Π is defined as

rec(Π) = {rec(Λ) | Λ ∈ Π}.

If Π is a complete Γ-rational strongly convex polyhedral complex, then rec(Π) is a complete
fan in NR.

A.6. — Let C be a convex set in a real vector space. A function f : C → R is concave if

f(tu1 + (1− t)u2) ≥ tf(u1) + (1− t)f(u2)(A.2)

for all u1, u2 ∈ C and 0 < t < 1.
Note that we use the same terminology as in convex analysis. In the classical books of toric
varieties [38], [19], [16], our concave functions are called “convex”.

A.7. — Let f be a concave function on NR. We define the stability set of f as

∆f :={m ∈MR | 〈m, ·〉 − f is bounded below}.

This is a convex set in MR. The (Legendre–Fenchel) dual of f is the function

f∨ : ∆f −→ R, m 7−→ inf
u∈NR

(〈m,u〉 − f(u)) .

It is a continuous concave function.

A.8. — Let f : NR → R be a concave function. The recession function rec(f) of f is defined
as

rec(f) : NR −→ R, u 7−→ lim
λ→∞

f(λu)
λ

.

By [42, Thm. 13.1], rec(f) is the support function of the stability set ∆f , i.e. it is given by

rec(f)(u) = inf
m∈∆f

〈m,u〉

for u ∈ NR.
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Proposition A.9. — Let Σ be a complete fan in NR and let Ψ: NR → R be a support
function on Σ (Definition 2.1.9). Then the assignment ψ 7→ ψ∨ gives a bijection between the
sets of

(i) concave functions ψ on NR such that |ψ −Ψ| is bounded,

(ii) continuous concave functions on ∆Ψ.

Proof. — This follows from the Propositions 2.5.20(2) and 2.5.23 in [11]. �

A.10. — A function f : NR → R is piecewise affine if there is a finite cover {Λi}i∈I of NR
by closed subsets such that f |Λi is an affine function.
Let Π be a complete polyhedral complex in NR. We say that f is a piecewise affine function
on Π if f is affine on each polyhedron of Π.

A.11. — Let f : NR → R be a piecewise affine function on NR. Then there is a complete
polyhedral complex Π in NR such that, for each Λ ∈ Π,

f |Λ(u) = 〈mΛ, u〉+ lΛ with (mΛ, lΛ) ∈MR × R .(A.3)

The set {(mΛ, lΛ)}Λ∈Π is called defining vectors of f . We call f a Γ-lattice function if it has a
representation as (A.3) with (mΛ, lΛ) ∈M × Γ for each Λ ∈ Π. We say that f is a Γ-rational
piecewise affine function if there is an integer e > 0 such that ef is a Γ-lattice function.

A.12. — Let f be a concave piecewise affine function on NR. Then there are mi ∈ MR,
li ∈ R, i = 1, . . . , r, such that f is given by

f(u) = min
i=1,...,r

〈mi, u〉+ li for u ∈ NR .

The stability set ∆f is a polytope in MR which is the convex hull of m1, . . . ,mr.
The recession function rec(f) has integral slopes if and only if the stability set ∆f is a lattice
polytope.

A.13. — Let f be a piecewise affine function on NR. Then we can write f = g − h, where
g and h are concave piecewise affine functions on NR. The recesssion function of f is defined
as rec(f) = rec(g)− rec(h).

In Theorem 2.5.8 we need the following assertion.

Proposition A.14. — Let Γ be a non-trivial subgroup of R. Let Ψ be a support function on
a complete fan in NR (Definition 2.1.9) and ψ a concave function on NR such that |ψ − Ψ|
is bounded. Then there is a sequence of Γ-rational piecewise affine concave functions (ψk)k∈N
with rec(ψk) = Ψ, that uniformly converges to ψ.

Proof. — Since Ψ is a support function with bounded |ψ−Ψ|, the stability set ∆Ψ is a lattice
polytope inMR with ∆Ψ = ∆ψ. Thus, by Proposition [11, Prop. 2.5.23(2)], there is a sequence
of piecewise affine concave functions (ψk)k∈N with ∆ψk = ∆Ψ, that converges uniformly to ψ.
Because the divisible hull of Γ lies dense in R, we may assume that the ψk’s are Γ-rational.
Finally, Proposition 2.3.10 in [11] says that ∆ψk = ∆Ψ implies rec(ψk) = Ψ. �
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A.15. — Let f be a concave function on NR. The sup-differential of f at u ∈ NR is defined
as

∂f(u) :={m ∈MR | 〈m, v − u〉 ≥ f(v)− f(u) for all v ∈ NR}.
For each u ∈ NR, the sup-differential ∂f(u) is a non-empty compact convex set. For a subset
E of NR, we set

∂f(E) :=
⋃
u∈E

∂f(u).

Remark A.16. — Let f be a concave function on NR which is piecewise affine on a complete
fan. Then the stability set ∆f is equal to the sup-differential ∂f(0). This follows easily from
the definitions.

A.17. — We denote by volM the Haar measure on MR such that M has covolume one.
Let f be a concave function on NR. The Monge–Ampère measure of f with respect to M is
defined, for any Borel subset E of NR, as

MM (f)(E) := volM (∂f(E)) .

We have for the total massMM (f)(NR) = volM (∆f ).

Proposition A.18. — Let (fk)k∈N be a sequence of concave functions on NR that converges
uniformly to a function f . Then the Monge–Ampère measures MM (fk) converge weakly to
MM (f).

Proof. — This follows from [11, Prop. 2.7.2]. �

Proposition A.19. — Let f be a piecewise affine concave function on a complete polyhedral
complex Π in NR. Then

MM (f) =
∑
v∈Π0

volM (∂f(v)) δv ,

where δv is the Dirac measure supported on v.

Proof. — This is [11, Prop. 2.7.4]. �

A.20. — Let ∆ be an n-dimensional lattice polytope in MR and let F be a face of ∆. Then
we set

σF :=
{
u ∈ NR |

〈
m−m′, u

〉
≥ 0 for all m ∈ ∆, m′ ∈ F

}
.

This is a strongly convex rational polyhedral cone which is normal to F . By setting Σ∆ :={σF |
F � ∆}, we obtain a complete fan in NR. We call Σ∆ the normal fan of ∆. The assignment
F 7→ σF defines a bijective order reversing correspondence between faces of ∆ and cones of
Σ∆. The inverse map sends a cone σ to the face

(A.4) Fσ :={m ∈ ∆ |
〈
m′ −m,u

〉
≥ 0 for all m′ ∈ ∆, u ∈ σ}.

For details, we refer to [16, §2.3].
We also use the notation Fσ in the following situation. Let Σ be a fan in NR and Ψ a support
function on Σ with associated lattice polytope ∆Ψ. For σ ∈ Σ, we denote by Fσ the face of
∆Ψ given as in (A.4).
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A.21. — Let ∆ be a lattice polytope inMR. We denote by aff(∆) the affine hull of ∆ and by
L∆ the linear subspace of MR associated to aff(∆). Then M(∆) :=M ∩ L∆ defines a lattice
in L∆. The measure volM(∆) on L∆ = M(∆)R (see A.17) induces a measure on aff(∆) which
we also denote by volM(∆).
If ∆ is n-dimensional and F is a facet of ∆, we denote by vF ∈ N the unique minimal
generator of the ray σF ∈ Σ∆ (see A.20). We call vF the primitive inner normal vector to F .

Proposition A.22. — Let f be a concave function on NR such that the stability set ∆f is
a lattice polytope of dimension n. With the notations in A.21 we have

−
∫
NR
f dMM (f) = (n+ 1)

∫
∆f

f∨ dvolM +
∑
F

〈F, vF 〉
∫
F
f∨ dvolM(F ) ,

where the sum is over the facets F of ∆f .

Proof. — This is [11, Cor. 2.7.10]. �

Appendix B. Strictly semistable models

In this appendix, we will see that the theory of strictly semistable models has strong similar-
ities to the theory of toric schemes and we will use that to prove a semipositivity statement
on a toric scheme of relative dimension 1 which will be useful in Section 2.5. On the way, we
will prove some new results for formal models related to regular subdivisons of the skeleton
of a given strictly semistable formal scheme.
In this appendix, K is an algebraically closed field endowed with a complete non-trivial
non-archimedean absolute value | |, valuation val :=− log | | and corresponding valuation
ring K◦.

B.1. — A strictly semistable formal scheme X is a connected quasi-compact admissible
formal scheme X over K◦ which is covered by formal open subsets U admitting an étale
morphism

(B.1) ψ : U −→ Spf
(
K◦ 〈x0, . . . , xd〉 / 〈x0 . . . xr − π〉

)
for r ≤ d and π ∈ K× with |π| < 1.
A strictly semistable formal model over K◦ of a proper algebraic variety X is a strictly
semistable formal scheme which is a formal K◦-model of X.

B.2. — Let V1, . . . , VR be the irreducible components of the special fiber of a strictly
semistable formal scheme X over K◦. Then the special fiber X̃ has a stratification, where
a stratum S is given as an irreducible component of

⋂
i∈I Vi \

⋃
i 6∈I Vi for any I ⊂ {1, . . . , R}.

We get a partial order on the set of strata by using S ≤ T if and only if S ⊂ T .
A formal open subset U as in B.1 is called a building block if the special fiber Ũ has a smallest
stratum. This stratum is called the distinguished stratum of the building block U. It is given
on Ũ by ψ−1(x0 = · · · = xr = 0) in terms of the étale morphism ψ in B.1. We note from [31,
Prop. 5.2] that the building blocks form a basis of topology for the strictly semistable formal
scheme X.
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B.3. — Berkovich showed in [3] and in [4] that for a formal strictly semistable scheme X
over K◦ there is a canonical deformation retraction τ : Xη → S(X) to a canonical piecewise
linear subspace S(X) of Xη called the skeleton of X. We sketch the construction referring
to [31, §5] for details.
In the construction of S(U) for a building block U, one uses the skeleton S(D) of the closed
affine torus D in Gd+1

m given by the equation x0 . . . xr = π. Note that the skeleton S(D) can
be canonically identified with {u ∈ Rr+1 | u0 + · · · + ur = val(π)} and hence it contains
∆(r, π)× {0} ⊂ Rr+1 × Rd−r for the Γ-rational standard simplex
(B.2) ∆(r, π) :=

{
u ∈ Rr+1

≥0 | u0 + · · ·+ ur = val(π)
}

associated to U. Then we define S(U) :=ψ−1(∆(r, π) × {0}). One further notices that S(U)
depends only on the stratum S of X̃ which contains the distinguished stratum of the building
block U. We call S(U) the canonical simplex associated to S and we denote it by ∆S . We note
that any stratum of X̃ contains the distinguished stratum of a suitable building block as a
dense subset. We use the canonical homeomorphism

Val : ∆S −→ ∆(r, π), x 7−→ (val(x0), . . . , val(xr))
to see ∆S as a Γ-rational simplex. Now the skeleton S(X) is defined as the union of all S(U) and
hence it is a compact subset of Xη. The piecewise linear structure is given by the closed faces
∆S and we have the order-reversing correspondence ∆S ⊂ ∆T if and only if T ≤ S for strata
S, T of X̃. It is clear that the integral structure is preserved on overlappings. The retraction
map τ : Xη → S(X) is given on Uη by Val and the natural identification ∆S

∼= ∆(r, π). It is
shown in [3, Thm. 5.2] that τ is a proper strong deformation retraction. The stratum–face
correspondence is an order-reversing bijective correspondence between the strata S of X̃ and
the canonical simplices ∆S of S(X) given by

ri(∆S) = τ(red−1(S)) , red(τ−1(ri(∆S))) = S .

Moreover, we have dim(S) = d − dim(∆S). In particular, we get a bijective correspondence
between the irreducible components of X̃ and the vertices of S(X). A vertex u means a
canonical simplex of dimension 0 and we will denote the associate irreducible component
by Yu.

B.4. — For every smooth projective curve X over K and every admissible formal K◦-model
X0 of X, there is a strictly semistable formal model X over K◦ such that the canonical
isomorphism on the generic fibers extends to a morphism X→ X0. This is proved in [7, §7].
In the case of a curve, the skeleton is also called the dual graph of X.

B.5. — Let X and X′ be strictly formal schemes over K◦. A morphism ϕ : X′ → X of formal
schemes over K◦ induces the map τ ◦ ϕ : S(X′) → S(X) which is integral Γ-affine on each
canonical simplex (see [4, Cor. 6.1.3]). Here, integral Γ-affine means that the map is a translate
of a linear homomorphism of the underlying integral structure by a Γ-rational vector.

Let L be a line bundle on the proper algebraic variety X over K. We consider a strictly
semistable formal K◦-model X of X with a line bundle L which is a formal model of L. This
model induces a formal metric ‖ · ‖L on L (see Section 1.2).

Proposition B.6. — Let s be an invertible meromorphic section of L and let ψ be the
restriction of − log ‖s‖L to the skeleton S(X).
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(i) Then ψ is a well-defined function on S(X).

(ii) Any canonical simplex ∆S is covered by finitely Γ-rational polyhedra ∆j such that ψ|∆j

is a Γ-lattice function.

(iii) If s is a nowhere vanishing global section, then the restriction of ψ to ∆S is even a
Γ-lattice function and we have ψ ◦ τ = − log ‖s‖L on Xan = Xη.

Proof. — Since the building blocks form a basis, we may assume that X is a building block U
and that L = OX. Then s is a meromorphic function on X and ψ is the restriction of − log |f |
to S(X). Then the claim follows from the proofs of Propositions 5.2 and 5.6 in [34]. �

Proposition B.7. — For a strictly semistable formal K◦-model X of the proper algebraic
variety X, there are canonical isomorphisms between the following groups:
(i) the group {‖ · ‖L | L formal model of OX on X} endowed with ⊗;

(ii) the additive group of functions ψ : S(X) → R which are Γ-lattice functions on every
canonical simplex ∆S;

(iii) the group of Cartier divisors on X which are trivial on the generic fiber Xη.

Proof. — Since the special fiber X̃ of a strictly semistable formal scheme is reduced, it follows
from [25, Prop. 7.5] that the map D 7→ ‖ · ‖O(D) is an isomorphism from the group in (iii)
onto the group in (i).
By Proposition B.6 and using the canonical invertible global section s := 1 of OX , we get a
homomorphism ‖ · ‖L 7→ ψL :=− log ‖s‖L from the group in (i) to the group in (ii).
Next, we will define a map ψ 7→ Dψ from the group in (ii) to the group in (iii). Let U be a
building block given as in (B.1). Let S be the unique stratum of X̃ containing the distinguished
stratum of U in X̃. Then there is m∆ ∈ Zr+1 and α∆ ∈ K× such that ψ(u) = 〈m,u〉+val(α∆)
for all u ∈ ∆ := ∆S = ∆(r, π). Using the coordinates x0, . . . , xr from B.1, we define the
equation α∆ψ

∗(x0)m0 . . . ψ∗(xr)mr on Uη. We claim that this defines a Cartier divisor Dψ on
X. By construction, the absolute values of the equations agree on overlappings and hence the
equations are equal up to units as claimed. It is clear from the construction that Dψ is trivial
on the generic fiber.
Our goal is to show that all these homomorphisms are isomorphisms. Let us consider the
formal metric ‖ · ‖L for a line bundle L as in (i) and let ψ :=ψL. We claim that L = O(Dψ)
as formal models for OX . We cover X by building blocks U. Then the Cartier divisor div(1)
associated to the meromorphic section 1 of L is given on U by some γ ∈ O(Uη)×. Let S be
the unique stratum of X̃ containing the distinguished stratum of U and let ∆ := ∆S . We use
the same equations for the Cartier divisor Dψ as above. It follows from [29, Prop. 2.11] that
γ agrees with α∆ψ

∗(x0)m0 · · ·ψ∗(xr)mr up to multiplication by a unit in K◦. This proves
div(1) = Dψ and hence L = O(Dψ).
Conversely, if D is a Cartier divisor on X which is trivial on Xη, then we always find a covering
of X by building blocks U such that D is given on U by γ ∈ O(Uη)×. Let S be the unique
stratum of X̃ containing the distinguished stratum of U and let ∆ := ∆S . Then as above, we
may assume that γ = α∆ψ

∗(x0)m0 . . . ψ∗(xr)mr for suitable m∆ ∈ Zr+1 and α∆ ∈ K×. Let
ψ : S(X)→ R be the restriction of − log ‖sD‖O(D) to S(X). By construction, we have Dψ = D
on U and hence all maps between the groups in (i)–(iii) are isomorphisms. �
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B.8. — Let X be a strictly semistable formal model of X over K◦. We consider a regular
subdivision D of the skeleton S(X) which means the following:

(i) Every ∆ ∈ D is a subset of a canonical face of S(X) and is integral Γ-affine isomorphic
to a standard simplex of the form (B.2).

(ii) For every canonical face ∆S of S(X), the set {∆ ∈ D | ∆ ⊂ ∆S} is a polyhedral complex
with support equal to ∆S .

We will show that the regular subdivision D induces a canonical strictly semistable formal
model X′′ of X over X with skeleton S(X′′) = S(X) as a subset of Xan, with τ ′′ = τ for the
canonical retractions and with canonical simplices of S(X′′) agreeing with the subdivision D .
We recall the construction of X′′ from [31, 5.5, 5.6]. Let U be a building block of X as in B.1
and let S be the unique stratum of X̃ containing the distinguished stratum of Ũ. Then ∆S

denotes the associated canonical simplex of S(X). Let ∆ ∈ D with ∆ ⊂ ∆S . We identify
∆S = ∆(r, π) as in (B.3). Using the relation u0 = val(π)− u1 − · · · − ur, the simplex ∆(r, π)
leads to the simplex

∆0(r, π) = {u ∈ Rr≥0 | 0 ≤ u1 + · · ·+ ur ≤ val(π)}
and ∆ induces a Γ-rational simplex ∆0 ⊂ ∆0(r, π). This allows us to work with the TrS-toric
schemes U∆0 and U∆(r,π), where TrS is the split affine torus over S of rank r with coordi-
nates x1, . . . , xr. Let U∆0 and U∆(r,π) be the associated formal schemes obtained by ρ-adic
completion for some non-zero ρ ∈ K◦◦. Since ∆0 ⊂ ∆0(r, π), we have a canonical morphism
ι1 : U∆0 → U∆0(r,π). Let Bd−r := Spf(K◦〈xr+1, . . . , xd〉) be the formal ball of dimension d− r.
We may skip the coordinate x0 in (B.1) by the relation x0 . . . xr = π and then ψ may be seen
as a morphism U→ U∆0(r,π) ×Bd−r. We form the cartesian square

(B.3)

U′′
ψ′ //

ι′

��

U∆0 ×Bd−r p′1 //

ι

��

U∆0

ι1

��
U

ψ // U∆0(r,π) ×Bd−r p1 // U∆0(r,π)

where p1 is the first projection. This defines the building block U′′ of X′′. We glue the building
blocks U′′ along common faces of the subdivision D and then along overlappings of the building
blocks U which leads to a formal model X′′ of X overK◦. By construction, we have a canonical
morphism ϕ0 : X′′ → X extending the identity on X. Since ∆0 is isomorphic to a standard
simplex of the form (B.2) and since ψ′ is étale, we conclude that X′′ is strictly semistable. It
follows from the above construction and the definitions in B.3 that S(X′′) = S(X) as a set,
that the canonical faces of S(X′′) agree with the regular subdivision D and that τ ′′ = τ .

B.9. — Let ϕ : X′ → X be a morphism of strictly semistable models of the proper algebraic
variety X over K extending the identity on X. Berkovich gave in [4, Thm. 4.3.1] an intrinsic
characterization of the points of S(X) as the maximal points of a certain partial order on
Xan = Xan depending canonically on the strictly semistable formal model X. He mentioned
after the definition at the beginning of [4, §4.3] that this partial order is compatible with
morphisms of formal schemes which implies immediately that S(X) ⊂ S(X′) in our situation
above and that the contractions agree on S(X).
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It follows from the projection formula in [25, Prop. 4.5] that every irreducible component
Y of X̃ is dominated by exactly one irreducible component Y ′ of X̃′. Moreover, in this case
the induced morphism Y ′ → Y is a proper birational morphism. We conclude from the
stratum–face correspondence in B.3 that the vertices of S(X) are vertices of S(X′). It follows
from B.5 that every canonical simplex of S(X′) with relative interior intersecting S(X) is in
fact contained in a canonical simplex of S(X). Putting these two facts together, we get a
regular subdivision D :={∆′ ⊂ S(X) | ∆′ canonical simplex of S(X′)} of S(X).

B.10. — Let ϕ : X′ → X be a morphism of strictly semistable formal schemes over K◦
extending the identity on X and let D be the regular subdivision of S(X) constructed in B.9.
We apply B.8 to this subdivision D and we get an associated strictly semistable formal scheme
X′′ and a canonical morphism ϕ0 : X′′ → X extending the identity on X. Now let us consider
a line bundle L on X which has a formal model L on X. In this situation and for L′ a formal
model of L on X′, we define the following formal metric ‖ · ‖L′,S(X) on L: By Proposition B.7,
the metric ‖ · ‖L′/‖ · ‖L corresponds to a piecewise linear function ψ′ on S(X′). Let ψ be the
restriction of ψ′ to S(X). Then ψ is also piecewise linear function satisfying the requirements
of Proposition B.7(b) for the strictly semistable model X′′ from B.8. By Proposition B.7, we
get an associated vertical Cartier divisor Dψ on X′′ and we define

‖ · ‖L′,S(X) := ‖ · ‖O(Dψ) ⊗ ‖ · ‖L .

To get a geometric idea of this definition, we note that the value of ψ in a vertex u of S(X′′)
is the multiplicity of the Weil divisor associated to Dψ in the corresponding irreducible
component Yu of X̃′′. We have a similar description for the Weil divisor of Dψ′ in the vertices
of the skeleton S(X′) and hence we may view Dψ as some sort of push-forward of Dψ′ . This
could be made more precise if the identity on X extends to a morphism X′ → X, but we will
not need it.

Proposition B.11. — Under the hypotheses from B.10, we have the following properties:

(i) The definition of ‖ · ‖L′,S(X) is independent of the choice of L.

(ii) There is a formal model L′′ of L on X′′ with ‖ · ‖L′′ = ‖ · ‖L′,S(X).

(iii) The line bundle L′′ in (ii) is unique up to isomorphism.

(iv) The construction of the metric ‖ · ‖L′,S(X) is additive in L′.

(v) If there is a morphism ϕ1 : X′ → X′′ extending the identity on X and factorizing through
ϕ with L′ ∼= ϕ∗1(L1) for a line bundle L1 on X′′, then L′′ ∼= L1.

Proof. — Let L1 and L2 be two formal models of L on X. For i = 1, 2, we denote by ψi
the corresponding piecewise linear function on S(X) constructed in B.10. Then the canonical
vertical Cartier divisor D on X with O(D) = L1 ⊗ L−1

2 corresponds in Proposition B.7 to
the piecewise linear function ψ1 − ψ2 on S(X). By linearity, this proves (i). By construction,
we get (ii). Property (iii) follows from [25, Prop. 7.5] using that a strictly semistable formal
scheme has reduced special fiber. Property (iv) and (v) are obvious from the construction. �
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Remark B.12. — Let ϕ : X′ → X and ψ : X → Y be morphisms of strictly semistable
formal models of X extending the identity on X. We assume that the line bundle L on X
has a formal model on Y. For the line bundle L′′ on X′′ with ‖ · ‖L′′ = ‖ · ‖L′,S(X), we have
the transitivity property

‖ · ‖L′,S(Y) = ‖ · ‖L′′,S(Y) .

This follows easily from S(X′′) = S(X) and the construction in B.10.

B.13. — Now we return to the case of a proper algebraic curve X over K with strictly
semistable formal K◦-model X. Then the skeleton S(X) is the dual graph which is canonically
a metrized graph using lattice length on each segment. For a function ψ : S(X)→ R which is
piecewise affine on each segment, we define the formal sum

div(ψ) :=
∑

v∈S(X)

∑
e3v

deψ(v)[v]

on S(X), where e ranges over all edges containing v and where de(ψ)(v) is the slope of ψ at
v along the edge e. We view div(ψ) as a divisor on the dual graph. For any P ∈ X(K), we
define τ∗([P ]) :=[τ(P )] and we extend the map τ∗ linearly to all cycles of X.

The following result is due to Katz, Rabinoff and Zureick-Brown. Note that they use another
sign in the definition of div(ψ).

Theorem B.14. — Let X be a smooth proper curve over K and let X be a strictly semistable
formal model of X over K◦. Let s be an invertible meromorphic section of the line bundle L
on X with formal model L on X. Then − log ‖s‖L restricts to a piecewise linear function ψ
on S(X ) and we have the slope formula

τ∗(div(s)) + div(ψ) =
∑
v

deg(L|Yv)[v] ,

where v ranges over the vertices of the dual graph S(X).

Proof. — See [37, Prop. 2.6]. �

Proposition B.15. — Let ϕ : X′ → X be a morphism of strictly semistable formal K◦-
models of the proper curve X extending the identity. We assume that the line bundle L has
a formal model on X and that L′ is a formal model of L on X′. For the canonical retraction
τ : Xan → S(X), we have

τ∗(c1(L, ‖ · ‖L′) = c1(L, ‖ · ‖L′,S(X)) .

Proof. — We first assume that L′ ∼= ϕ∗(L) for a formal model L of L on X. Then the pro-
jection formula (Proposition 1.3.10(ii)) shows that c1(L, ‖ · ‖L′) = c1(L, ‖ · ‖L). By Proposi-
tion B.11(v), we have ‖ · ‖L′,S(X) = ‖ · ‖L and since the Chambert-Loir measure c1(L, ‖ · ‖L)
is supported in the vertices of S(X), we get the claim in this special case.
Now we handle the general case. Using the above and the linearity of the constructions, we
may assume that L = OX . Moreover, the above special case and Proposition B.11(v) show
that we may replace X and X′ by models associated to compatible Γ-rational subdivisions
of the dual graphs S(X) and S(X′). Hence we may assume that the piecewise linear map
τ : S(X′)→ S(X) from B.5 maps vertices to vertices.
Now we consider a vertex u′ of S(X′) which is not contained in S(X). We claim that any
edge e′ of S(X′) with vertex u′ is contracted by τ . To prove that, we note that the projection
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formula shows that the irreducible component Yu′ of X̃′ corresponding to u′ is mapped to
a closed point by ϕ. By the stratum–face correspondence in B.3, this point is contained in
the dense open stratum of the irreducible component Yu of X̃′ corresponding to the vertex
u = τ(u′). In particular, we deduce that the double point corresponding to the edge e′ is
mapped to this open stratum and hence the whole edge is mapped to u.
Since the dual graph S(X′) is connected, we conclude that u′ is connected by an edge-path
to the vertex u = τ(u′) in S(X). Since τ is a retraction, we conclude that τ−1(u) ∩ S(X′) is
a tree with finitely many edges ei for i = 0, . . . , r. We denote the vertices of ei by vi and wi
using some orientation. Let µ = c1(L, ‖ · ‖L′,S(X)) and let µ′ = c1(L, ‖ · ‖L′).
Let ψ′ be the restriction of − log ‖1‖L′ to S(X′). We have seen in Theorem B.14 that ψ′ is
affine on each edge of S(X′). Moreover, for a vertex w 6= u in the tree, we have

µ′({w}) =
∑
vi=w

deiψ
′(w) +

∑
wi=w

deiψ
′(w)

and
µ′({u}) =

∑
vi=u

deiψ
′(u) +

∑
wi=u

deiψ
′(u) +

∑
e3u

deψ
′(u) ,

where e ranges over all edges of S(X) with vertex u. On the other hand, we have

µ({u}) =
∑
e3u

deψ
′(u) .

Since ψ′ is affine on each edge ei, we have deiψ′(vi) = −deiψ′(wi). Using that we deal with a
tree, we deduce for the multiplicity (τ∗(µ′))({u}) of the discrete measure τ∗(µ′) in u that

(τ∗(µ′))({u}) =
∑
w

µ′({w}) =
∑
e3u

deψ
′(u) = µ({u})

where w ranges over all vertices of the tree contracted to u. �

Corollary B.16. — Let L be a line bundle on the proper smooth curve X over K which
has a formal model L on X and let ϕ : X′ → X be a morphism of strictly semistable models
of X extending the identity. If L′ is a formal model of L on X′ such that the formal metric
‖ · ‖L′ is semipositive, then ‖ · ‖L′,S(X) is a semipositive formal metric.

Proof. — It follows from Proposition B.15 that c1(L, ‖ · ‖L′,S(X)) is a positive measure and
hence ‖ · ‖L′,S(X) is a semipositive formal metric. �

Proposition B.17. — Let XΠ be the toric scheme of relative dimension n over K◦ associ-
ated to a complete Γ-rational polyhedral complex Π (see 2.2.9). Then XΠ is strictly semistable
if every maximal polyhedron of Π has an integral Γ-affine isomorphism onto a polyhedron of
the form ∆(r, π)× Rn−r≥0 for suitable r ∈ N≤n and non-zero π in K◦◦.

Proof. — This follows easily from the definitions. �

In 2.4.3, we have introduced the torification ‖ · ‖S of the metric on a toric line bundle over a
toric variety over K. In the next result, we apply the above theory to the toric variety P1

K .

Corollary B.18. — The torification of a semipositive formal metric on P1
K is semipositive.
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Proof. — Note that algebraic metrics and formal metrics are the same (see Proposition 1.2.7).
We choose the toric model P1

K◦ . Let L be the underlying line bundle of the semipositive
formal metric ‖ · ‖ in question. Then L is isomorphic to OP1

K
(k) for some k ≥ 0 and hence

we find a canonical model OP1
K◦

(k) on P1
K◦ . Let s be a non-trivial global section and let

ψ be the restriction of − log(‖s‖/‖s‖O(k)) to the skeleton S(T) = NR of the dense torus
T = P1

K \ {0, 1} (see 2.4.7). Then ψ is a piecewise affine function on the skeleton S(T) and
there is a Γ-rational polyhedral subdivision of the fan of P1

K such that ψ is a Γ-lattice function
on the segments and halflines (see Proposition 2.5.5). Let X be the associated toric model
of P1

K . By Proposition B.17, we note that X is a strictly semistable formal scheme and it
is obvious that S(X) is the bounded part of the polyhedral subdivision. Note also that ψ is
constant on the two halflines as the recession function is associated to the trivial line bundle
(see Proposition 2.4.10).
The formal metric ‖ · ‖ is given by a formal model L′ on a formal model X′ of P1

K . By B.4, we
may assume that X′ is strictly semistable and that we have a canonical morphism ϕ : X′ → X
extending the identity. By construction, the metric ‖ · ‖L′,S(X) from B.10 is the torification of
‖ · ‖. Then the claim follows from Corollary B.16. �
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