
OPTIMAL CURVES OF GENUS 1, 2 AND 3byChristophe Ritzenthaler
Abstra
t. � In this survey, we dis
uss the problem of the maximum number of points of
urves of genus 1, 2 and 3 over �nite �elds.Résumé (Courbes optimales de genre 1, 2 et 3). � Nous examinons la question dunombre maximum de points pour les 
ourbes de genre 1, 2 et 3 sur les 
orps �nis.1. Introdu
tionThe foundations of the theory of equations over �nite �elds were laid, among others, bymathemati
ians like Fermat, Euler, Gauss and Ja
obi (see [Di
66℄). Subsequently, there waslittle a
tivity in the �eld at least until the end of the 19th 
entury and the study of the zetafun
tion of a 
urve. Initiated by Dedekind, Weber, Artin and S
hmidt, this work led to ananalogue of the Riemann hypothesis whi
h was proved by Hasse in the 
ase of ellipti
 
urvesand then by Weil in general in 1948 (see [Wei48℄). The third, modern, period starts in 1980with the work of Goppa [Gop77, Gop88℄. His 
onstru
tion of error-
orre
ting 
odes withgood parameters from 
urves over �nite �elds renewed the interest in this theory.With this appli
ation in mind, the theory has fo
used on the maximum number of points of a(proje
tive, geometri
ally irredu
ible, non singular) 
urve of genus g over a �nite �eld k = Fq,denoted Nq(g). Asymptoti
 results, i.e. values of Nq(g)/g when g goes to in�nity and q is�xed, drew attention �rst, but Serre, in his le
tures at Harvard [Ser85℄, gave equal treatmentto the `dual' 
ase, i.e. values of Nq(g) when g is �xed and q varies. It qui
kly appeared thatdetermining Nq(g) was a hard problem and as soon as g ≥ 3, only sparse values are known(see for instan
e the web page www.manypoints.org for the best estimates when q is small).In this survey, we are going to des
ribe the main ideas that have been developed to deal with2000 Mathemati
s Subje
t Classi�
ation. � Primary 11G20, 11G10 Se
ondary 14K25, 14H45.Key words and phrases. � Optimal 
urve, isogeny 
lass, inde
omposable polarization, hermitian module,Serre's obstru
tion, plane quarti
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100 Optimal 
urves of genus 1, 2 and 3the 
ases 1 ≤ g ≤ 3. It is interesting to note that for ea
h value of g, we will be 
onfronted notonly to harder 
omputations but also to a 
ompletely new kind of issue. In order to emphasizethis progression, we will not 
onsider the a
tual value of Nq(g) but the following sub-problem.As we shall re
all in Se
tion 2.1, Nq(g) ≤ 1 + q + g⌊2√q⌋ and we 
an wonder when Nq(g)rea
hes this bound. If it does, a 
urve with this number of points is 
alled optimal and weare going to ask for whi
h values of q su
h 
urves exist.When g ≤ 3, the 
lassi
al game to prove or disprove the existen
e of optimal 
urves is1. to prove the existen
e (or not) of an abelian variety A/k with a `good' Weil polynomial(Se
tion 2). This is going to 
ontrol the number of points on a possible 
urve C/k su
hthat JacC ≃ A.2. to put a good polarization a on A su
h that (A, a)/k is geometri
ally (i.e. over k̄) theJa
obian of a 
urve C̄ with its 
anoni
al polarization (Se
tion 3).3. to see if C̄ admits a model C/k su
h that (JacC, j) ≃ (A, a) (where j is the 
anoni
alpolarization of C). We will see that if C̄ is non hyperellipti
, there 
an be an obstru
tionto this des
ent (see Se
tion 4) and for g = 3, we will propose solutions to address the
omputation of the obstru
tion (see Se
tion 5).Most ideas we are going to present here are already 
ontained in [Ser85℄ but our proofs for
g = 1 and 2 are sometimes di�erent from the original ones and take advantage of subsequentsimpli�
ations of the theory.Conventions and notation. In the following g ≥ 1 is an integer and q = pn with p aprime and n > 0 an integer. The letter k denotes the �nite �eld Fq and K any perfe
t �eld.When we speak about a genus g 
urve we mean that the 
urve is proje
tive, geometri
allyirredu
ible and non-singular. If A and B are varieties over a �eld K, when we speak of amorphism from A to B we always mean a morphism de�ned over K. So, for instan
e End(A)is the ring of endomorphisms de�ned over K, A ∼ B means A isogenous to B over K, et
. If
(A, a) and (B, b) are polarized abelian varieties, by an isomorphism between them, we alwaysmean `as polarized abelian varieties'.A
knowledgements. I would like to thank Christian Maire for suggesting me to writethis survey. This is part of my `habilitation' thesis [Rit09℄ whi
h was defended during theworkshop Theory of Numbers and Appli
ations whi
h was organized by Karim Belabas andChristian Maire in Luminy in De
ember 2009. I am really grateful to Detlev Ho�mann forthe referen
es of Remark 3.5 and to the Number Theory List 
ommunity and parti
ularly toSamir Siksek for helping me with Remark 3.10.2. Control of the isogeny 
lass2.1. Bounds. � Let C/k be a genus g 
urve. We re
all that its Weil polynomial χC is theWeil polynomial of JacC/k, i.e. the 
hara
teristi
 polynomial of the a
tion of the k-FrobeniusPubli
ations mathématiques de Besançon - 2011



Christophe Ritzenthaler 101endomorphism on an ℓ-adi
 Tate module for any prime ℓ 6= p. It is well known that it 
an bewritten
χC =

g∏

i=1

(X2 + xiX + q) ∈ Z[X]with xi ∈ R and |xi| ≤ 2
√
q. Sin
e

#C(k) = q + 1 +

g∑

i=1

xi,it is 
lear that #C(k) ≤ 1 + q + ⌊2g√q⌋, whi
h is known as Hasse-Weil bound [Wei48℄ andso Nq(g) is less than this bound too. It is possible to improve this bound as the followinglemma shows.Lemma 2.1 (Hasse-Weil-Serre bound [Ser83b℄). � Let m = ⌊2√q⌋. Then
Nq(g) ≤ 1 + q + gm.Proof. � It is enough to use the arithmeti
-geometri
 mean inequality:

1

g

g∑

i=1

(m+ 1− xi) ≥
(

g∏

i=1

(m+ 1− xi)

)1/g

≥ 1,the last inequality 
oming from the fa
t that the produ
t is a non-zero integer.This motivates us to give the following de�nition.De�nition 2.2. � We say that a genus g 
urve C/Fq is optimal if
#C(Fq) = q + 1 + gm.In that 
ase Nq(g) = q + 1 + gm.Note that the previous de�nition is not universally a

epted. Some authors 
all maximal(or Fq-maximal) what we 
all optimal by referen
e to the histori
al 
ases with n even and

Nq(g) = q+1+ gm. We prefer to keep the word maximal for 
urves whi
h numbers of pointsis equal to Nq(g) and our terminology is 
oherent with the histori
al one as well.Remark 2.3. � If g ≥ (q − √
q)/2, the bound 
an be improved, thanks to the expli
itmethods of Oesterlé (and is known as Oesterlé bound [Ser83b℄). It uses the fa
t that thenumber of pla
es of ea
h degree on the 
urve is non negative. As we will mainly deal withsmall values of g 
ompared to q, the Hasse-Weil-Serre bound will be our referen
e.Publi
ations mathématiques de Besançon - 2011



102 Optimal 
urves of genus 1, 2 and 32.2. Existen
e of the isogeny 
lass. � Equality in the arithmeti
-geometri
 mean in-equality is equivalent to the fa
t that all terms in the sum are equal and so xi = m for all
1 ≤ i ≤ g. Hen
e, if an optimal 
urve C exists, its Weil polynomial has the parti
ular simpleexpression

χC = (X2 +mX + q)g.Honda-Tate theory as explained in [Tat66℄, [Hon68℄, [Wat69℄, [MW71℄ or [Tat71℄ showsthat if p ∤ m (resp. n is even) then JacC is isogenous to Eg where E is an ordinary (resp.supersingular) ellipti
 
urve with tra
e −m. However, if p|m and n is odd, this might not betrue (see the proof of Proposition 2.5 below) and there is for instan
e a simple abelian varietyof dimension 9 over F59 with su
h Weil polynomial. If we restri
t to g ≤ 3, it 
an be provedthat this never happens (see for instan
e the proof of Corollary 4.2 of [NR10℄).Lemma 2.4. � If C/Fq is an optimal 
urve of genus g ≤ 3 then JacC is isogenous to Egwhere E is an ellipti
 
urve of tra
e −m.The �rst ne
essary 
ondition is then to see whether su
h an ellipti
 
urve exists or not.Proposition 2.5 (Deuring [Deu41℄). � There does not exist an ellipti
 
urve with tra
e
−m if and only if n ≥ 3, n is odd and p|m.Proof. � Let F = X2 + mX + q. Sin
e m < 2

√
q if and only if q is not a square, F isirredu
ible over Q when n is odd and F = (X +

√
q)2 when n is even.If n is odd, by [Wat69, p.527℄, the minimal e for whi
h χ = F e is the Weil polynomial ofan abelian variety of dimension e over k is the least 
ommon denominator of vp(Fν(0))/nwhere Fν denotes the fa
tors of F in Qp[t] and vp the p-adi
 valuation of Qp. Hen
e F is theWeil polynomial of an ellipti
 
urve if and only if n|vp(Fν(0)) for all fa
tors. This is of 
oursesatis�ed if n = 1. Looking at the Newton polygon of F , we see that if p ∤ m then vp(Fν(0)) = nor 0, so e = 1. With the same te
hnique, if n > 1 odd and p|m, then vp(Fν(0)) < n and so

e > 1.If n is even, we apply the previous arguments to F = X +
√
q. Sin
e vp(

√
q)/n = 1/2, e = 2so F 2 = X2 +mX + q is the Weil polynomial of an ellipti
 
urve.A
tually, the only values of q = p for whi
h p|m are q = 2 or q = 3.Remark 2.6. � For any value of −m ≤ t ≤ m, one knows if an ellipti
 
urve with tra
e

t exists (see [Wat69, Th.4.1℄). Also, the possible Weil polynomials of the isogeny 
lasses ofabelian surfa
es (resp. threefolds) 
an be found in [MN02, Lem.2.1,Th.2.9℄ (resp. [Xin96,Hal10℄). 3. Existen
e of an inde
omposable prin
ipal polarizationThe Ja
obian of a genus g 
urve C/K is naturally equipped with a prin
ipal polarization jindu
ed by the interse
tion pairing on the 
urve C. Sin
e the theta divisor Symg−1C →֒ JacCasso
iated to j is geometri
ally irredu
ible, (JacC, j) is geometri
ally inde
omposable, i.e.Publi
ations mathématiques de Besançon - 2011



Christophe Ritzenthaler 103there does not exists an abelian subvariety B ⊂ JacC de�ned over K̄ su
h that j indu
es on
B a prin
ipal polarization. Conversely, starting with A = Eg where E is an ellipti
 
urve, itis 
lear that A always admits a prin
ipal polarization a0 given by the produ
t of the prin
ipalpolarizations on ea
h fa
tor. As a0 is de
omposable, (A, a0) is not (even geometri
ally) aJa
obian. Hen
e `good' prin
ipal polarizations on A (or on abelian varieties in the isogeny
lass of A) have to be more subtle. Lu
kily, equivalen
es of 
ategory have been developed totranslate the existen
e of an inde
omposable polarization into the existen
e of purely algebrai
obje
ts. As far as I know several points of view 
o-exist and it is not 
lear to see how to gofrom one to the other. I shall use Serre's one and mention others in remark.Remark 3.1. � Howe [How95℄,[How96℄ has developed a powerful ma
hinery to prove theexisten
e of a prin
ipally polarized abelian variety in the isogeny 
lass of an abelian variety
A/k. But only when A is simple, it is easy to see that the polarization is inde
omposable (see[Ryb08℄ for the 
ase E×B where E is an ellipti
 
urve and B a geometri
ally simple abeliansurfa
e).3.1. The equivalen
es. � Let us start with E ordinary. Let E/k be an ordinary ellipti

urve with tra
e t. If π denotes the Fq-Frobenius endomorphism of the 
urve E, then thering R := Z[X]/(X2 − tX + q) is isomorphi
 to Z[π] ⊂ End(E). Serre [Ser85, Se.50-53℄,[Lau02, Appendix℄ de�nes an equivalen
e of 
ategory T between the 
ategory of abelianvarieties whi
h are isogenous to a power of E and R-modules of �nite type without torsion.The fun
tor T maps an obje
t A to the R-module L = Hom(E,A). Obviously, the rank of Lis equal to the dimension of A. This fun
tor also behaves ni
ely with respe
t to duality: if wedenote L̂ the ring of anti-linear homomorphism f : L → R (i.e. f(rx) = r̄f(x) for all r ∈ Rand x ∈ L) then T (Â) = L̂. Thus a morphism a : A → Â de�nes a morphism h : L → L̂ andhen
e an hermitian form H : L×L → R. Serre proves that a is a polarization if and only if His positive de�nite, that a is prin
ipal if (L,H) is unimodular (i.e. h(L) = L̂) and moreover(geometri
ally) inde
omposable if and only if (L,H) is inde
omposable, i.e. 
annot be writtenas a sum of orthogonal sub-modules. The 
ouple (L,H) is 
alled a hermitian module.Remark 3.2. � This equivalen
e is inspired by the 
lassi
al theory over C, whi
h is notsurprising sin
e ordinary abelian varieties 
an be lifted 
anoni
ally and this is used in [Del69℄.When A = Eg and End(E) ≃ R, a more expli
it point of view 
an be 
onsidered looking atthe hermitian matrix M := a−1

0 a ∈ End(A) = Mg(End(E)) ≃ Mg(R) (see [Rit10℄, [Lan06℄).For g = 2, Kani's 
onstru
tion [Kan97℄ also gives ne
essary and su�
ient 
onditions for`gluing' two ellipti
 
urves along their n-torsion for n > 1. Both points of view are related bythe Cholewsky de
omposition of M .A 
lassi�
ation of rank 2 and 3 hermitian modules was a
hieved in [Hof91, Th.8.1,8.2℄ (seealso [S
h98℄ for further 
omputations) and translates into the following result.Publi
ations mathématiques de Besançon - 2011



104 Optimal 
urves of genus 1, 2 and 3Proposition 3.3. � Let E be an ordinary ellipti
 
urve with tra
e t. There is no abeliansurfa
e (resp. threefold) with a geometri
ally inde
omposable prin
ipal polarization in the 
lassof E2 (resp. E3) if and only if t2 − 4q ∈ {−3,−4,−7} (resp. t2 − 4q ∈ {−3,−4,−8,−11}).Remark 3.4. � For g = 2, the result 
an be tra
ed ba
k to [HN65, p.14℄, where the authorsprove the existen
e of genus 2 
urves whi
h Ja
obian is isomorphi
 to E2 by 
onstru
tingfree inde
omposable hermitian modules (in [Hay68℄, the pre
ise number of isomorphism
lasses of su
h 
urves is 
omputed). For g = 2 or 3, it 
ould also be dedu
ed from themass formulae (i.e. number of weighted 
lasses by the order of their automorphism group) of[HK86, HK89℄ (although, a

ording to Ho�mann (lo
. 
it. p.400) there is a minor mistakein these 
omputations).Remark 3.5. � For g > 3, there have been several partial answers on the existen
e ofinde
omposable unimodular positive de�nite hermitian modules of rank g over the ring ofintegers of an imaginary quadrati
 �eld Q(
√
−d). It seems that in [Zhu97℄ and [WL01℄ a
omplete answer is given: there always exists one, ex
ept when d = 1 and g = 5 or d = 3and g = 4, 5, 7. One should be 
areful sin
e, a

ording to the Maths
inet review of [Zhu97℄by Ho�mann, the proofs 
ontain several mistakes. Also, I do not know if the 
ase of nonmaximal orders has been 
onsidered.Assume now that E is supersingular. More pre
isely, let E/Fp be an ellipti
 
urve with tra
e

0, so that E is supersingular, all the geometri
 automorphisms of E are de�ned over Fp2 and
Tr(E/Fp2) = −2p = −m. One says that an abelian variety A (resp. a 
urve C) is superspe
ialif A (resp. JacC) is geometri
ally isomorphi
 to a produ
t of supersingular ellipti
 
urves. Aresult of Deligne (see [Shi79, Th.3.5℄) shows that when g > 1, a superspe
ial abelian varietyof dimension g is geometri
ally isomorphi
 to Eg (whereas for g = 1 there are non-isomorphi
supersingular ellipti
 
urves as soon as p > 7). However, the des
ription of the isogeny 
lass ismade more 
ompli
ated than in the ordinary 
ase by the existen
e of `
ontinuous' families ofisogenies. For instan
e, already when g = 2 (see [Oor75℄), a supersingular abelian surfa
e iseither geometri
ally isomorphi
 to E2 (and so superspe
ial) or of the form E2/αp where αp isthe unique lo
al-lo
al group s
heme over Fp, the inje
tion of αp in E2 being parametrized by
P1(F̄p) \P1(Fp2). In the latter, it 
an be shown that A is not superspe
ial and the des
riptionof the polarizations on this obje
t is more evolved. For this reason, we will 
on
entrate onlyon existen
e results and limit ourselves to the superspe
ial 
ase.Remark 3.6. � Note that it is still possible to obtain a 
omplete des
ription for g = 2 inthe non-superspe
ial 
ase like in [IKO86℄ or [HNR09, Part.2℄ where the mass formula of[Ibu89℄ were used.As in Remark 3.2, we des
ribe the polarizations on A = Eg by matri
es M := a−1

0 a in
End(A) = Mg(End(E)). Now, End(E) is a quaternion algebra, so we need results on thenumber ng of positive de�nite quaternion hermitian forms. Then, to obtain the number of(geometri
ally) inde
omposable polarizations on Eg, the idea is to subtra
t to ng the numberPubli
ations mathématiques de Besançon - 2011



Christophe Ritzenthaler 105of polarizations 
oming from 
ombinations of lower dimensional abelian varieties. In this way,one getsProposition 3.7 ([Eke87, Prop.7.5℄). � There is no geometri
ally inde
omposable prin
i-pal polarization on Eg if and only if g = 2 and p = 2 or 3, or g = 3 and p = 2.Remark 3.8. � More pre
isely, Ekedahl gives in [Eke87, Prop.7.2℄ the mass of inde
ompos-able prin
ipal polarizations on Eg. However, Bro
k [Bro93, Th3.10.
℄ 
orre
ts a mistake inthe 
ase g = 3. He also 
ompletes and re
overs several results obtained in [HI83, I℄, [KO87℄for g = 2 and in [Has83℄, [Oor91℄ for g = 3. For instan
e, in [Bro93, Th.3.14,Th.3.15℄,he gives the number of genus 2 and genus 3 superspe
ial 
urves for ea
h possible group ofautomorphisms.3.2. Appli
ation. � We 
an now answer the question of the existen
e of a good polariza-tion when g ≤ 3.Theorem 3.9. � Let E be an ellipti
 
urve with tra
e −m. There is no abelian surfa
e(resp. threefold) with a geometri
ally inde
omposable prin
ipal polarization in the isogeny
lass of E2 (resp. E3) if and only if q = 4 or 9 or m2 − 4q ∈ {−3,−4,−7} (resp. q = 4 or
16 or m2 − 4q ∈ {−3,−4,−8,−11}).Proof. � When p ∤ m, E is ordinary so we 
an use Proposition 3.3.When n is odd and p|m, E exists if and only if q = 2 or 3, whi
h leaves these two 
ases to betreated apart (for instan
e by extensive 
omputer resear
h of 
urves using Theorem 4 or byRemark 3.10).When n is even then p|m. We distinguish several 
ases.� When p > 3 and g = 2 (resp. p > 2 and g= 3), Proposition 3.7 shows that there isalways an inde
omposable prin
ipal polarization on E2 (resp. E3). Note than when 4|n,the present E is the quadrati
 twist of the ellipti
 
urve in Proposition 3.7.� When p = 2 and g = 2, expli
it 
onstru
tions as in [MN07℄ or a `gluing' argument as in[Ser85, Se.32℄, [Sha01, Prop.30℄ shows that one 
an get a 
urve C/F2n su
h that JacCis isogenous to E2 as soon as n > 2.� When p = 2, g = 3 and n > 4, An expli
it non hyperellipti
 
urve C/F2n su
h that

JacC ∼ E3 
an be 
onstru
ted. (see [Rit09, Lem.2.3.8℄). Note that in [NR08℄, themore general question of the existen
e of a Ja
obian in the isogeny 
lass of a supersingularabelian threefold in 
hara
teristi
 2 is addressed.� Finally when p = 3 and g = 2, one 
an �nd an expli
it 
onstru
tion in [Kuh88℄ (seealso [Sha01, Cor.37℄ where a mistake is 
orre
ted) as soon as n > 2. This work was alsogeneralized to all supersingular abelian surfa
es in 
hara
teristi
 3 in [How08℄.Remark 3.10. � The 
ases m2−4q ∈ {−3,−4} 
an also be ex
luded thanks to a proof dueto Beauville [Sha01, Th.16℄, [Ser85, Se.13℄ without any hypothesis on the p-rank of E (andPubli
ations mathématiques de Besançon - 2011



106 Optimal 
urves of genus 1, 2 and 3then q = 2, 3 are 
overed).As 
onje
turally, there is in�nitely many p in the forms p = x2 + 1 and p = x2 + x + 1 theequations m2 − 4pn ∈ {−3,−4} have in�nitely many solutions with n = 1. For n > 1 odd,one knows that the set of solutions is �nite. For instan
e, in [Ser83a℄, we �nd that there isonly one solution to the equation q = x2 + x+ 1 namely q = 73 and none to q = x2 + 1.Similarly, the 
ase of dis
riminant −7 
orresponds to the equation q = x2+x+2 with uniquesolutions q ∈ {23, 25, 213} when n > 1 is odd.The 
ase of dis
riminant −8 
orresponds to q = x2 +2, whi
h, when n > 1 is odd, has q = 33for unique solution. This is proved using the same arguments as the last 
ase below.Finally, the 
ase of dis
riminant −11 
orresponds to q = x2 + x + 3. When n > 1 is odd,
q = 35 is the unique solution thanks to the following argument due to Samir Siksek. Theequation 
an be rewritten (2x+ 1)2 + 11 = 4pn and fa
tors in K = Q(

√
−11) as

(
2x+ 1 +

√
−11

2

)(
2x+ 1−

√
−11

2

)
= pn.Sin
e n is odd and OK is a prin
ipal domain, there exists α = (a + b

√
−11)/2 ∈ OK su
hthat αn = (2x+1+

√
−11)/2 and αβ = p with β = ᾱ. Now, note that αn − βn =

√
−11 andsin
e (αn − βn)/(α− β) = 1/b ∈ OK , we see that b = ±1. Hen
e, if we �x n, we 
an �nd the�nite set of integer solutions of this polynomial equation in a. However, to solve it for all nwe have to invoke the mu
h deeper theorem from [BHV01℄ whi
h tells us that if there is asolution then n < 4, n = 5 or n = 12. Indeed, with the terminology and notation of lo
. 
it.,one sees that un = (αn − βn)/(α − β) = ±1 is a Lu
as number without primitive divisor, sothe Lu
as pair (α, β) is n-defe
tive. 4. Optimal 
urvesAs we have seen in Se
tion 3, the strategy we have applied so far works in any dimension. Ifwe now have to restri
t ourselves to the dimensions less than or equal to 3 is be
ause, in these
ases, the 
ondition `has an inde
omposable prin
ipal polarization' is geometri
ally su�
ientto be the Ja
obian of a 
urve. This is not true when the dimension is bigger, as it is provedsimply by noting that the dimension of the moduli spa
e of 
urves of genus g, 3g − 3, is lessthan the dimension of the moduli spa
e of prin
ipally polarized abelian varieties of dimension

g, g(g + 1)/2. However,Proposition 4.1 ([OU73℄). � For g ≤ 3, any geometri
ally inde
omposable prin
ipally po-larized abelian variety (A, a)/K is the Ja
obian of a 
urve C̄ over K̄.So, given (A, a)/K as in Proposition 4.1, the question boils down to know whether one 
andes
end the 
urve C̄ to a 
urve C over K su
h that (JacC, j) ≃ (A, a). Surprisingly theanswer is `not always'.Theorem 4.2 (Arithmeti
 Torelli theorem). � There is a unique model C/K of C̄ su
hthat:Publi
ations mathématiques de Besançon - 2011



Christophe Ritzenthaler 1071. If C̄ is hyperellipti
, there is an isomorphism
(JacC, j)

∼−−−−→ (A, a).2. If C̄ is not hyperellipti
, there is a unique quadrati
 
hara
ter ε of Gal(K̄/K), and anisomorphism
(JacC, j)

∼−−−−→ (A, a)εwhere (A, a)ε is the quadrati
 twist of A by ε.Remark 4.3. � It is tri
ky to �nd the right origin of the previous result. In [Ser85, Se.69℄,Gouvéa indi
ates `Oort +. . . ' as a referen
e. One 
an indeed �nd in [Oor91, Lem.5.7℄ asimilar result (but this is 1991). Sekigu
hi also worked on this question but after two errata,he gives in [Sek86℄ only the existen
e of the model C/K but does not speak about ε. One
an also �nd this result in [Maz86, p.236℄.The notation (A, a)ε = (Aε, aε) should be understood as follows. The variety Aǫ is uniquelyde�ned up to isomorphism by the following property: there exists a quadrati
 extension L/Kand an isomorphism φ : A → Aǫ de�ned over L su
h that for all σ ∈ Gal(K̄/K) one has
φσ = ε(σ)φ. The polarization aε is the pull-ba
k of a by φ−1.This result is a 
onsequen
e of Weil's des
ent as explained in [Ser68, 4.20℄ and of Torellitheorem [Mat58, p.790-792℄. The s
hism whi
h appears between the hyperellipti
 and nonhyperellipti
 
ase is due to the fa
t that

Aut(JacC, j) ≃
{
Aut(C) if C is hyperellipti
,
Aut(C)× {±1} if C is non hyperellipti
.De�nition 4.4. � The 
hara
ter ε (or the dis
riminant of the extension L/K) is 
alledSerre's obstru
tion. By extension, in the hyperellipti
 
ase, we say that ε is trivial.Let us emphasize why this obstru
tion is an issue in our strategy. So far we have been able toprove in 
ertain 
ases the existen
e of a geometri
ally inde
omposable prin
ipally polarizedabelian variety (A, a)/k with Weil polynomial (X2 +mX + q)g. Thanks to Proposition 4.1,we know that it is geometri
ally the Ja
obian of a 
urve C̄. If the obstru
tion is trivial, then

C̄ des
ends to a 
urve C/k su
h that JacC ≃ A and so C is optimal. On the 
ontrary, if theobstru
tion is not trivial, then C̄ des
ends to a 
urve C/k su
h that JacC is isomorphi
 tothe (unique) quadrati
 twist of A and so its Weil polynomial is (X2−mX+ q)g. In parti
ular
#C(k) = q+1−gm and C is not optimal (and a
tually C has the minimum number of pointsa genus g 
urve over k 
an have).4.1. The end of the genus 1 and 2 
ases. � Sin
e a genus 1 
urve over a �nite �eldalways has a rational point, it is an ellipti
 
urve and Proposition 2.5 tells us when an optimalgenus 1 
urve exists (for the value of Nq(1) see [Deu41℄ or [Ser83a℄).When g = 2, all genus 2 
urves are hyperellipti
 so the obstru
tion is always trivial and theresult is similar to Theorem 3.9, namely Publi
ations mathématiques de Besançon - 2011



108 Optimal 
urves of genus 1, 2 and 3Theorem 4.5 (Serre). � There is no optimal 
urve of genus 2 over Fq if and only if q = 4or 9 or m2 − 4q ∈ {−3,−4,−7}.In [Ser83a℄, a 
losed formula for the value of Nq(2) is given. More re
ently, 
ompleting thework started by many authors, we obtained in [HNR09℄ the 
omplete pi
ture for abeliansurfa
es, i.e. we determined whi
h isogeny 
lasses 
ontain the Ja
obian of a genus 2 
urvesin terms of the 
oe�
ients of the Weil polynomial.5. The genus 3 
aseAs there exist non hyperellipti
 genus 3 
urves (the non-singular plane quarti
s), Serre'sobstru
tion may not be trivial. One hope is that, for ea
h q, there would be an optimalhyperellipti
 
urve but this possibility has to be dis
arded: for instan
e, there does not existany optimal hyperellipti
 genus 3 
urves over F2n with n even sin
e supersingular hyperellipti

urves do not exists in 
hara
teristi
 2 [Oor91℄. Other 
ounterexamples 
an be found in odd
hara
teristi
 as well as it will be apparent in Proposition 5.6. Therefore, it is important tobe able to 
ompute Serre's obstru
tion. Currently, there is no perfe
t solution to this problembut we will summarize some of the ideas and partial answers whi
h have been obtained.5.1. Spe
ial families. � The key-idea is to use some families of 
urves with non trivialautomorphisms, su
h that their Ja
obian is a produ
t of ellipti
 
urves expli
itly obtained asquotient by 
ertain automorphism subgroups. Then one tries to reverse the pro
ess and see ifone 
an glue given ellipti
 
urves together to get a 
urve in the family. The possible quadrati
extension one has to make during the 
onstru
tion is Serre's obstru
tion. Let us illustratethis pro
edure with an example.Example 5.1. � The following family represents genus 3 non hyperellipti
 
urves in 
har-a
teristi
 2 with automorphism group 
ontaining (Z/2Z)2

C : (a(x2 + y2) + cz2 + xy + ez(x+ y))2 = xyz(x+ y + z), ac(a+ c+ e) 6= 0.The involutions are (x : y : z) maps to (y : x : z), (x + z : y + z : z) or (y + z : x+ z : z). Toget the equation of the 
urve E1 = C/〈(x : y : z) 7→ (y : x : z)〉, one introdu
es the invariantfun
tions X = x+ y, Y = xy and �nds
E1 : (aX

2 + c+ Y + eX)2 = Y (X + 1).Doing similarly with the other involutions and rewriting the equations of the ellipti
 
urves(see [NR10℄ for details) one gets that JacC ∼ E1 × E2 × E3 where
E1 : y2 + xy = x3 + ex2 + a2(a+ c+ e)2,

E2 : y2 + xy = x3 + ex2 + c2(a+ c+ e)2,

E3 : y2 + xy = x3 + ex2 + c2a2.Publi
ations mathématiques de Besançon - 2011



Christophe Ritzenthaler 109Conversely, we now want to glue ordinary ellipti
 
urves Ei with j-invariant ji 6= 0. They 
analways be written Ei : y
2 + xy = x3 + ex2 +1/ji where, if q > 2, TrFq/F2

(e) = 0 if and only if
Tr(Ei) ≡ 1 (mod 4). Let s4i = 1/ji, then

a =
s1s3
s2

,

c =
s2s3
s1

,

e =
s1s3
s2

+
s2s3
s1

+
s1s2
s3

.(1)Now, for instan
e, assume that m ≡ −1 (mod 8). This happens for n = 35, 37, 63, . . .. We
hoose E = E1 = E2 = E3 an ordinary ellipti
 
urve with tra
e −m and j-invariant j (Eexists sin
e 2 ∤ m). Sin
e we 
an assume that q > 4, the 
urve E has an 8-torsion point andit is not di�
ult to 
he
k that this implies (a
tually is equivalent to) TrFq/F2
1/j = 0. Hen
e

TrFq/F2

(
s1s3
s2

+
s2s3
s1

+
s1s2
s3

)
= TrFq/F2

(1/j) = 0.On the other hand, sin
e Tr(E) ≡ 1 (mod 4), we have TrFq/F2
(e) = 0 as well, so there is noobstru
tion to (1). A
tually, we get an expli
it equation

C : (j−1/4(x2 + y2 + z2 + xz + yz) + xy)2 = xyz(x+ y + z)for the optimal 
urve.Exploiting other families of 
urves in 
hara
teristi
 2, we get the following result.Theorem 5.2 ([NR08, NR10℄). � If n is even, there exists an optimal 
urve over F2n ifand only if n ≥ 6.If n is odd and m ≡ 1, 5, 7 (mod 8), there is an optimal 
urve over F2n .When n > 1 is odd and m is even, there is of 
ourse no optimal 
urve sin
e there is no ellipti

urve with tra
e −m. So only the 
ase m ≡ 3 (mod 8) is missing to get a 
omplete answerwhen p = 2.More re
ently, Mestre [Mes10℄ has worked with a family of 
urves with automorphism group
S3 and showed that if p = 3 (resp. p = 7), 3 ∤ m (resp. 3|m) and −m is a non-zero squaremodulo 7 (resp. n ≥ 7), then there exists an optimal 
urve over F3n (resp. F7n).To 
on
lude on this approa
h, let us point out that one 
ould use the family with auto-morphism group (Z/2Z)2 (
alled Ciani quarti
s) also in 
hara
teristi
 greater than 2, sin
eSerre's obstru
tion has been worked out in [HLP00℄. Unfortunately, one does not see whenthis obstru
tion is trivial knowing only m (one needs the equations of the ellipti
 fa
tors tode
ide).5.2. Serre's analyti
 strategy. � Inspired by results of Klein [Kle90, Eq.118,p.462℄ andIgusa [Igu67, Lem.10,11℄, in a 2003 letter to Jaap Top [LR08℄, Serre stated a strategy to
ompute the obstru
tion when the 
hara
teristi
 is di�erent from 2. Roughly speaking, hisidea was that a 
ertain Siegel modular form evaluated at a `moduli point' (A, a)/K is a squarePubli
ations mathématiques de Besançon - 2011



110 Optimal 
urves of genus 1, 2 and 3in K if and only if the obstru
tion is trivial. In a series of three papers, it was shown thatthis is a

urate (�rst for Ciani quarti
s, then in general) and how to 
ompute the obstru
tionin the 
ase of the power of a CM ellipti
 
urve. Let us state the general result without any
omments on the proof whi
h would lead us to far from our initial purpose (see however[Rit09, Chap.4℄ for details).Theorem 5.3 ([LRZ10℄). � Let A = (A, a)/K be a prin
ipally polarized abelian threefoldde�ned over a �eld K with charK 6= 2. Assume that a is geometri
ally inde
omposable. Thereexists a unique primitive geometri
 Siegel modular form of weight 18 de�ned over Z, denoted
χ18, su
h thati) (A, a) is a hyperellipti
 Ja
obian if and only if χ18(A, a) = 0.ii) (A, a) is a non hyperellipti
 Ja
obian if and only if χ18(A, a) is a non-zero square.Moreover, if K ⊂ C, let� (ω1, ω2, ω3) be a basis of regular di�erentials on A;� γ1, . . . γ6 be a symple
ti
 basis (for a) of H1(A,Z);� Ωa := [Ω1 Ω2] = [

∫
γj
ωi] be a period matrix with τa := Ω−1

2 Ω1 ∈ H3 a Riemann matrix.Then (A, a) is a Ja
obian if and only if(2) χ18((A, a), ω1 ∧ ω2 ∧ ω3) :=
(2π)54

228
·
∏

[ε] θ[ε](τa)

det(Ω2)18is a square in K.Let us re
all that the Thetanullwerte θ[ε](τ) are the 36 
onstants su
h that
[ε] =

[
ǫ1
ǫ2

]
∈ {0, 1}3 ⊕ {0, 1}3,with ǫ1

tǫ2 ≡ 0 (mod 2) and for τ ∈ H3

θ

[
ǫ1
ǫ2

]
(τ) =

∑

n∈Z3

exp(iπ(n+ ǫ1/2)τ
t(n+ ǫ1/2) + iπ(n + ǫ1/2)

tǫ2).Remark 5.4. � For a di�erent approa
h on this result, see [Mea08℄.The initial aim of Serre's letter was of 
ourse the existen
e of optimal 
urves of genus 3.However, one does not know how to 
ompute dire
tly the value of χ18 over �nite �elds.Therefore, as Serre suggested, when A is ordinary, we lift (A, a) 
anoni
ally over a number�eld and there, we use formula (2). Doing the 
omputation with enough pre
ision, we 
anre
ognize this value as an algebrai
 number. Finally we redu
e it to the initial �nite �eld tosee if it is a square.As the Ja
obian of an optimal 
urve is isogenous to the power of an ellipti
 
urve E, in[Rit10℄, we worked out this pro
edure expli
it in the parti
ular 
ase A = E3. Let a0 be theprodu
t prin
ipal polarization on E3 and M = a−1
0 a ∈ M3(End(E)). When End(E) is anorder in an imaginary quadrati
 �eld, it is well known that M is the matrix of a prin
ipalPubli
ations mathématiques de Besançon - 2011



Christophe Ritzenthaler 111polarization on E3 if and only if M is a positive de�nite hermitian matrix with determinant
1 (see Remark 3.2 and [Mum08, p.209℄). Moreover, when E is de�ned over a number �eld,we show how to translate the data (E3, a0M) into a period matrix of the 
orresponding torusin order to 
ompute the analyti
 expression of χ18. Let us illustrate this pro
edure with thefollowing example.Example 5.5. � Does there exist an optimal 
urve C of genus 3 over k = F47 ? If so,by Lemma 2.4 we know that JacC is isogenous to E3 where E is an ellipti
 
urve withtra
e −⌊2

√
47⌋ = −13. The 
urve E is then an ordinary ellipti
 
urve and End(E) 
on-tains Z[π] ≃ Z[(13+

√
132 − 4 · 47)/2] = Z[τ ] (where π is the k-Frobenius endomorphism and

τ = (1 +
√
−19)/2). Hen
e End(E) = Z[π] is the ring of integers OL of L = Q(

√
−19). Sin
e

OL is prin
ipal, E is unique up to isomorphism. Using the work of [S
h98℄, one 
an see that,up to automorphism, there is a unique positive de�nite hermitian matrix M ∈ M3(OL) ofdeterminant 1 whi
h is inde
omposable. In the language of Se
tion 3.1, this means that thereexists a unique positive de�nite unimodular inde
omposable rank 3 hermitian OL-module.The abelian threefold (E3, a0M) is then the unique prin
ipally polarized geometri
ally inde-
omposable abelian threefold with Weil polynomial (X2 + 13X + 47)3, up to isomorphism.Lifting E 
anoni
ally over Q as Ē : y2 = x3 − 152x − 722 we 
an 
onsider the prin
ipallyabelian threefold (Ē3, a0M) sin
e End(Ē) = OL as well. Let [w1 w2] be a period matrix of Ewith respe
t to the 
anoni
al regular di�erential dx/(2y). If we let
Ω0 =






w1 0 0

0 w1 0

0 0 w1






w2 0 0

0 w2 0

0 0 w2




 ,

C3/Ω0Z6 ≃ Ē3(C) with the produ
t polarization a0. We then need to �nd a symple
ti
 basisof Ω0Z6 for the polarization a0M . It is not di�
ult to prove that the �rst Chern 
lass of a0Mwith respe
t to the pull-ba
k ωi of the di�erentials dx/(2y) on ea
h 
urve is represented bythe matrix
H =

1

w1w2

tM.The alternated form T 
lassi
ally asso
iated to H on the latti
e Ω0Z6 is T = Im(tΩ0HΩ0).One then �nds a matrix B ∈ GL6(Z) su
h that
BT tB =

[
0 I3

−I3 0

]and Ω = Ω0
tB is a period matrix for the polarization a0M . Finally, one 
omputes an approx-imation of

χ = χ18((Ē
3, a0M), ω1 ∧ ω2 ∧ ω3)thanks to the analyti
 formula (2) and we re
ognize it as an element of L. We �nd in our 
ase

χ = (219 · 197)2. Publi
ations mathématiques de Besançon - 2011



112 Optimal 
urves of genus 1, 2 and 3The value χ is a non-zero square over F47 so by Theorem 5.3 (ii) Serre's obstru
tion is trivialand there is a non hyperellipti
 optimal 
urve of genus 3 over k.Similar 
omputations show that there is an optimal 
urve over Fq for q = 61, 137, 277 but notfor q = 311. Note that this result for q = 47 and q = 61 has already been obtained in [Top03℄using expli
it models and the others have been 
on�rmed by [AAMZ09℄. In [Rit10℄, tablesof values of χ as the one from Example 5.5 are given for (Ē3, a0M) where Ē is an ellipti

urve with 
lass number 1 and M is taken from [S
h98℄. From them, we 
an get for instan
e:Proposition 5.6. � Assume that q = pn is su
h that 4q = m2 + d with d = 7 (resp. 19).Then there exists an (expli
it) genus 3 optimal 
urve over Fq if and only if
m ≡ 1, 2 or 4 (mod 7) (resp. (m

19

)(−2

p

)
= 1).Moreover if this 
urve exists, it is non hyperellipti
.Assume that q = pn is su
h that 4q = m2 + 43. In parti
ular 43 is a square in Fp, let say

43 = r2 with r ∈ Fp. Then there exists a genus 3 optimal 
urve over Fq if and only if
(m
43

)(α

p

)
= 1where α is either −2 · 3 · 7,−487,−47 · 79 · 107 · 173 or −15156± 8214r. Moreover if this 
urveexists, it is non hyperellipti
.Remark 5.7. � The term `expli
it' in Proposition 5.6 
omes from the fa
t that for 
ertain

(Ē3, a0M) of [Rit10℄ we were able to give the equation of a 
urve C̄ su
h that Jac C̄ isisomorphi
 to (Ē3, a0M) using [Guà09℄. Hen
e for these 
ases, we have a `universal' familyof expli
it equations for the optimal 
urve.The fa
t that the previous statement is embarrassedly 
umbersome reveals either the intrinsi
di�
ulty of the problem or a wrong atta
k angle. Moreover, the limits of this strategy alreadyappear in the example: the 
omputation of the 
anoni
al lift, of the matri
esM and of a periodmatrix make it algorithmi
 in nature. Worse, the 
omputation of an approximation of χ istime-
onsuming sin
e one has to re
ognize it as an algebrai
 number (a
tually for a good
hoi
e of the model Ē, χ is an algebrai
 integer). Therefore large values of the dis
riminantof End(E) seem out of rea
h.It might then be interesting to try to understand the prime de
omposition of χ algebrai
ally.Klein's formula linking χ18 to the square of the dis
riminant of plane quarti
s (see [Kle90,Eq.118,p.462℄ and [LRZ10, Th.2.23℄) makes us think about an analogue of the Néron-Ogg-Shafarevi
h formula for ellipti
 
urve [Sil92, Appendix C,16℄. We shall then interpret p|χ interms of the nature of (A, a) := (Ē3, a0M) (mod p). For instan
e, using [I
h95, p.1059℄, p|χif and only if (A, a) is geometri
ally de
omposable or a hyperellipti
 Ja
obian. Unfortunately,we do not know how to dete
t algebrai
ally this last possibility (see the dis
ussion in [Rit09,Se
.4.5.1℄).Publi
ations mathématiques de Besançon - 2011



Christophe Ritzenthaler 113Remark 5.8. � We have not spoken yet about the 
ase q square when p > 2. First, when
p ≡ 3 (mod 4), one knows [Ibu93, p.2℄ that there exists an optimal genus 3 
urve. This
urve is even hyperellipti
 [Oor91℄ but not expli
it (see however [KTW09℄ for some expli
itsub-
ases). Also Fermat 
urve x4 + y4 + z4 = 0 is optimal if n ≡ 2 (mod 4). Then, when
p ≡ 1 (mod 4) and n ≡ 2 (mod 4), Ibukiyama (lo
. 
it.) shows that there is an optimal
urve. Ibukiyama's strategy uses a mass formula on quaternion hermitian forms to show thedes
ent of an inde
omposable prin
ipal polarization on a model over Fp of E3 where E/Fp2 isan ellipti
 
urve with tra
e −2p = −m. The abelian threefold and its quadrati
 twist beingisomorphi
 over Fp2 , he avoids the issue of 
omputing Serre's obstru
tion.5.3. The geometri
 approa
h. � Following a 
onstru
tion of Re
illas [Re
74℄, we wereable to give in [BR10℄ a geometri
 
hara
terization of Serre's obstru
tion. For the sake ofsimpli
ity, let us assume that char k 6= 2 and that (A, a)/k is geometri
ally the Ja
obian of anon hyperellipti
 genus 3 
urve. Sin
e k is a �nite �eld, there exists a symmetri
 theta divisor
Θ (for the polarization a) de�ned over k. Let Σ be the union of 2∗Θ and of the unique divisorin |2Θ| with multipli
ity greater than or equal to 4 at 0.Proposition 5.9. � Let α ∈ A(k̄) \ {0}. The 
urve X̃α = Θ ∩ (Θ + α) is smooth and
onne
ted if and only if α ∈ A(k̄) \ Σ.Hen
e, the divisor Σ represents a bad lo
us that needs to be avoided in the sequel. Assumingthat α /∈ Σ, the involution (z 7→ α− z) of X̃α is �xed point free and so Xα = X̃α/(z 7→ α− z)is a smooth genus 4 
urve.Proposition 5.10. � The 
urve Xα is non hyperellipti
 and its 
anoni
al model in P3 lieson a quadri
 Qα whi
h is smooth.To go further, we need to assume that α is rational. When k is big enough, su
h an α alwaysexists. We then obtain the following result.Theorem 5.11. � Assume there exists α ∈ A(k) \Σ. Then (A, a) is a Ja
obian if and onlyif δ = DiscQα is a square in k∗.Let us sket
h the proof. A non hyperellipti
 genus 4 
urve X lies 
anoni
ally in P3 on theinterse
tion of a unique quadri
 Q and a 
ubi
 surfa
e E. If we assume that Q is smooth,then X has two g13 
oming from the two rulings of Q by interse
ting them with E. Moreover,an easy 
omputation shows that DiscQ is a square if and only if these two g13 are de�nedover k. Now Re
illas' 
onstru
tion, whi
h 
an be used when (A, a) is the Ja
obian of a 
urve,shows that Xα has two (rather expli
it) rational g13 . To 
on
lude, it is then enough to showthat a quadrati
 twist of (A, a) (whi
h is no more a Ja
obian) leads to two 
onjugate g13 .The advantage of this approa
h is that it stays over the �nite �eld k and is 
ompletelyalgebrai
. Unfortunately, so far, we do not see how to 
ompute δ for A = E3 and a = a0MPubli
ations mathématiques de Besançon - 2011
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oe�
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