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Abstract
We address the issue of computing a global minimizer of the AC Optimal Power Flow problem. We introduce valid
inequalities to strengthen the Semidefinite Programming relaxation, yielding a novel Conic Programming relaxation.
Leveraging these Conic Programming constraints, we dynamically generate Mixed-Integer Linear Programming (MILP)
relaxations, whose solutions asymptotically converge to global minimizers of the AC Optimal Power Flow problem. We
apply this iterative MILP scheme on the IEEE PES PGLib [2] benchmark and compare the results with two recent
Global Optimization approaches.
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1 Introduction

1.1 Motivation and related works
The Alternating-Current Optimal Power Flow (ACOPF) is a seminal optimization problem related to the
dispatching of electricity in a power network. The authorship of this problem is attributed to Carpentier [6], who
introduced it in 1962 as “Economic Dispatch”. Since then, this problem has not only interested the Power Systems
research community, but also the community of Operations Research and Mathematical Programming [5, 28].
Indeed, ACOPF was identified as a challenging and fruitful application of Nonlinear Programming (NLP) and
Global Optimization methods. Thanks to Interior-Point algorithms, developed since the 1990s, the computation
of ACOPF feasible solutions and local minimizers is accessible, even for instances of several thousand nodes [33].
To bound the optimality gap of feasible solutions found by such NLP algorithms, several convex relaxations
have been introduced during the past decade. A review of the numerous relaxation techniques for the ACOPF
problem is available in [28]. Leveraging NLP algorithms and convex relaxations techniques, several approaches
emerged to solve the ACOPF problem to global optimality. We gather these works in four different categories.

Relaxation Strengthening and Bound Tightening. Strengthening the classical convex relaxations [28]
such as the rank relaxation helps improving the corresponding lower bounds. This strengthening is possible
through additional valid inequalities coming from the polar formulation of the ACOPF problem [10, 19, 20]
or derived from the Reformulation-Linearization Technique (RLT) [31]. Feasibility-Based Bound Tightening
(FBBT) and Optimization-Based Bound Tightening (OBBT) techniques [3], the latter being based on the
value of a known feasible solution, are also known to be particularly efficient for the ACOPF problem [9, 32].
Even if these methods do not have a guarantee of convergence towards a global solution, the aforementioned
articles report that they significantly reduce the optimality gap and even close the gap for some instances.
Moment-Sum-of-Squares hierarchy. The celebrated Moment-Sum-of-Squares hierarchy of relaxations for
polynomial optimization problems [23] has been applied to the ACOPF problem in several works [14, 13, 27, 29].
The convergence of the relaxations’ values towards the optimal value of the ACOPF problem is proven, at
the price of the rapidly increasing size and computational cost of the resulting convex relaxations. In practice,
only the first and second order relaxations are solvable for medium-scale ACOPF instances, using the sparse
variant of the Moment-Sum-of-Squares hierarchy [24].
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Spatial Branch-and-Bound. Other Global Optimization approaches for the ACOPF problem follow
Spatial Branch-and-Bound schemes [4]. To obtain a lower bound at each node of the exploration tree, these
algorithms may use a Second-Order Cone Programming (SOCP) relaxation [21], a Quadratically Constrained
Programming (QCP) relaxation [12] or a Semidefinite Programming (SDP) relaxation [7].
Piecewise convex relaxations. Rather than implementing a Spatial Branch-and-Bound algorithm from
scratch, an alternative is to encode branching decisions via binary variables and use an off-the-shelf Mixed-
Integer Programming solver. This leads to piecewise convex relaxations, which can be iteratively refined. This
is the approach followed in [25], leading to convex Mixed-Integer Quadratically Constrained Programming
(MIQCP) problems.

1.2 Contributions and organization of the paper
In this quest towards Global Optimization, our contributions are manifold:

We add valid inequalities to strengthen the SDP relaxation, which yields a Conic Programming relaxation.
These valid inequalities dominate the lifted nonlinear cuts introduced in [10] for the same purpose.
Leveraging the Conic Programming constraints, we propose a Global Optimization algorithm that proceeds
by solving a sequence of dynamically generated piecewise linear relaxations, i.e., Mixed-Integer Linear
Programming (MILP) problems. Contrary to [25], a previous paper using piecewise relaxations for the
ACOPF problem, we do not use MIQCP but MILP models, which integrate cuts from the conic relaxation.
We apply this algorithm on the IEEE PES PGLib [2] benchmark and compare the optimality gaps with two
recent Global Optimization approaches [13, 32] that use this reference benchmark.

In Section 2, we present the ACOPF problem and an equivalent reformulation of it. Section 3 introduces our
valid inequalities, the resulting Conic Programming relaxation, and the Bound Tightening procedure that we
apply. The iterative MILP scheme is presented in Section 4 and the numerical experiments in Section 5.

1.3 Mathematical notation
For any complex number x ∈ C, x∗ = Re(x)− i Im(x) is its complex conjugate, |x| is its magnitude and ∠x its
argument. We denote by Cn×n the C-vector space of n× n matrices with complex entries. We denote by (Eab)ab
the canonical basis of this C-vector space. For any matrix M ∈ Cn×n, its Hermitian transpose is MH, defined
such as MH

ab = M∗ba for all b, a ∈ {1, . . . , n}. The R-vector space of Hermitian matrices, Hn ⊂ Cn×n, is the set of
matrices M ∈ Cn×n such that (s.t.) M = MH.

2 Mathematical Programming formulations for the ACOPF

2.1 Original formulation
A power grid is a network of buses interconnected by lines. We give an arbitrary orientation to each line, so as
to distinguish its two extremities. Hence, the grid is modelled as a directed graph N = (B,L) with size n = |B|.
The set L is s.t. L ∩ LR = ∅, where LR is the set of couples (b, a) s.t. (a, b) ∈ L. A line ` ∈ L is described by
a couple (b, a) s.t. b ∈ B is the “from” bus (denoted by f), a ∈ B is the “to” bus (denoted by t). Electricity
generating units are located at several buses in the network. We denote by Gb the set of generators located at bus
b ∈ B. The set of all generators is G =

⋃
b∈B Gb, whose cardinality is m = |G|. The parameters of the ACOPF

problem are described in Table 1.

Table 1 Parameters of the ACOPF problem

Parameters Index set Description
c1g ∈ R, c2g ∈ R+ g ∈ G Cost parameters
sg, sg ∈ C g ∈ G Power injection bounds
vb, vb ∈ [0, 2] b ∈ B Normalized voltage bounds
Sd
b ∈ C b ∈ B Power demand
Y sb ∈ C b ∈ B Shunt admittance
Y ff
ba, Y

ft
ba, Y

tf
ba, Y

tt
ba ∈ C (b, a) ∈ L Line impedance coefficients

θba, θba ∈ [−π2 ,
π
2 ] (b, a) ∈ L ∪ LR Angle difference limits
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In the (S,V) formulation [5], the ACOPF problem has two types of decision variables:
for any g ∈ G, Sg ∈ C is the complex power injection of generator g,
for any b ∈ B, Vb ∈ C is the complex voltage at bus b.

It is traditionally assumed that the generation cost of each generator g ∈ G is a convex quadratic form in Re(Sg).
The objective function is the sum of the generation costs∑

g∈G

(
c1g Re(Sg) + c2g Re(Sg)2) , (1)

to be minimized. The decision variables are subject to different types of constraints:
Injection Limits for Generators. For each g ∈ G, we have

sg ≤ Sg ≤ sg. (2)

These inequalities between complex numbers designate the respective real inequalities for the real and for the
imaginary parts.
Voltage Magnitude Limits. For each b ∈ B, the voltage at b satisfies

vb ≤ |Vb| ≤ vb. (3)

The ACOPF instances in the literature are scaled so that each bus has a nominal voltage normalized to 1.
The lower and upper bounds respectively correspond to deviations of at most 50% around this nominal value.
Introducing ∆b = vb − vb, we assume, thus, that vb, vb ∈ [0, 2] and ∆b ≤ 1.
Power Flow Equations. For each bus b ∈ B, we define the complex matrix

Mb = Y sb Ebb +
∑

a:(b,a)∈L

(Y ff
baEbb + Y ft

baEba) +
∑

a:(b,a)∈LR
(Y tt
abEbb + Y tf

abEba).

With this notation, we write the Power Flow conservation at bus b ∈ B as∑
g∈Gb

Sg − Sd
b =

〈
Mb, V V

H〉 . (4)

Constraint (4) describes the equality between the net injection of power at b and the power transfer towards
the adjacent buses.
Thermal Limits for Lines. For each line (b, a) ∈ L, the operational limit in terms of apparent power is

|(Y ff
ba)∗|Vb|2 + (Y ft

ba)∗VbV ∗a | ≤ Sba. (5)

For (b, a) ∈ LR, this reads

|(Y tt
ab)∗|Vb|2 + (Y tf

ab)∗VbV ∗a | ≤ Sba. (6)

Line Phase Angle Difference Limits. For any (b, a) ∈ L ∪ LR,

θba ≤ ∠Vb − ∠Va ≤ θba. (7)

In summary, the ACOPF problem is the following Nonconvex Optimization problem

ACOPF



minS∈Cm, V ∈Cn
∑
g∈G

(
c1g Re(Sg) + c2g Re(Sg)2)

∀ g ∈ G sg ≤ Sg ≤ sg
∀ b ∈ B vb ≤ |Vb| ≤ vb
∀ b ∈ B

∑
g∈Gb Sg − S

d
b =

〈
Mb, V V

H〉
∀ (b, a) ∈ L |(Y ff

ba)∗|Vb|2 + (Y ft
ba)∗VbV ∗a | ≤ Sba

∀ (b, a) ∈ LR |(Y tt
ab)∗|Vb|2 + (Y tf

ab)∗VbV ∗a | ≤ Sba
∀ (b, a) ∈ L ∪ LR θba ≤ ∠Vb − ∠Va ≤ θba.
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2.2 ACOPF reformulation
I Definition 1. A tree decomposition T of the graph N = (B,L) is a tree where each node k ∈ T is associated
with a set Bk ⊂ B, and satisfying the following properties

The union of the subsets Bk equals the set B:
⋃
k∈T Bk = B,

For every (b, a) ∈ L, there exists k ∈ T s.t {b, a} ⊂ Bk,
If b ∈ Bk ∩ B` for any k, ` ∈ T , then b ∈ Bj for all nodes j of the tree T in the unique path between k and `.

We consider a given tree decomposition T of the graph N , and we introduce the symmetric set E ⊂ B ×B of
arcs defined as E =

⋃
k∈T Bk × Bk. As a matter of fact, the sets Bk are cliques of the undirected graph induced

by (B, E). In this respect, the sets Bk are called cliques. We denote by Hn(E) the set of partially defined matrices
W , seen as vectors indexed by E , and s.t. Wba = W ∗ab for all (b, a) ∈ E . For any k ∈ T , we denote by WBk,Bk the
matrix (Wba)(b,a)∈B2

k
. With this notation, we reformulate (ACOPF) as

ACOPFW



minS∈Cm, W∈Hn(E)
∑
g∈G

(
c1g Re(Sg) + c2g Re(Sg)2)

∀ g ∈ G sg ≤ Sg ≤ sg
∀ b ∈ B v2

b ≤Wbb ≤ v2
b

∀ b ∈ B
∑
g∈Gb Sg − S

d
b = 〈Mb,W 〉

∀ (b, a) ∈ L |(Y ff
ba)∗Wbb + (Y ft

ba)∗Wba| ≤ Sba
∀ (b, a) ∈ LR |(Y tt

ab)∗Wbb + (Y tf
ab)∗Wba| ≤ Sba

∀ (b, a) ∈ L ∪ LR tan (θba)Re(Wba) ≤ Im(Wba) ≤ tan (θba)Re(Wba)
∀ (b, a) ∈ E |Wba|2 = WbbWaa (?)
∀ k ∈ T WBk,Bk � 0.

While the clique-based SDP relaxation is well known, this clique-based reformulation of the ACOPF problem
itself is not properly stated in the literature, as far as we know. Yet, we acknowledge that the proof of Theorem 2
is closely related to the developments presented in [7].

I Theorem 2. A pair (S,W ) is feasible (resp. optimal) in (ACOPFW) if and only if there exists V ∈ Cn s.t.
(S, V ) is feasible (resp. optimal) in (ACOPF) and Wba = VbV

∗
a for all (b, a) ∈ E.

Proof. We prove the equivalence for the feasibility, which also proves the equivalence for the optimality since
both problems share the same objective value. We take (S, V ) a feasible solution in (ACOPF) and we define
W ∈ Hn(E) as Wba = VbV

∗
a for any (b, a) ∈ E . For any b ∈ B, we make the following observations:

Since vb ≤ |Vb| ≤ vb, the inequalities v2
b ≤ |Vb|2 ≤ v2

b and v2
b ≤Wbb ≤ v2

b hold.
Since

∑
g∈Gb Sg − S

d
b =

〈
Mb, V V

H〉 and since Mb ∈ Hn(E), we deduce by substitution that
∑
g∈Gb Sg − S

d
b =

〈Mb,W 〉.
Similarly by direct substitution, we deduce that |(Y ff

ba)∗Wbb+(Y ft
ba)∗Wba| ≤ Sba for all (b, a) ∈ L and |(Y tt

ab)∗Wbb+
(Y tf
ab)∗Wba| ≤ Sba for all (b, a) ∈ LR. For any (b, a) ∈ L∪LR, since ∠Wba = ∠VbV ∗a = ∠Vb −∠Va, we have θba ≤

∠Wba ≤ θba. Using that θba, θba ∈ [−π2 ,
π
2 ], we deduce that tan (θba)Re(Wba) ≤ Im(Wba) ≤ tan (θba)Re(Wba).

To conclude about the feasibility of (S,W ) in (ACOPFW), we state that WBk,Bk = (VbV ∗a )(b,a)∈B2
k
� 0 for all

k ∈ T , and that |Wba|2 = |Vb|2|Va|2 = WbbWaa for all (b, a) ∈ E .
Conversely, we consider any (S,W ) feasible in (ACOPFW). Since WBk,Bk � 0 and |Wba|2 = WbbWaa for

all (b, a) ∈ B2
k, we can apply [7, Prop. 6] to state that rankWBk,Bk = 1 for all k ∈ T . By induction on the tree

decomposition T , we prove that there exists V ∈ Cn s.t. Wba = Vb(Va)∗ for all (b, a) ∈ E . The case |T | = 1
is trivial, since any rank-one positive semidefinite (PSD) matrix W can be written as W = V V H. We assume
now that the induction hypothesis is true for any graph with a tree decomposition with size less or equal than
p ∈ N∗, and we consider a graph N with a tree decomposition T with size p+ 1. We consider a leaf k of T , Bk
the corresponding clique, B̃ =

⋃
` 6=k B` the union of the other cliques, and Ck = Bk \ B̃. By property of a tree

decomposition, since k is a leaf of T , T \ {k} is a tree decomposition of the graph (B̃, Ẽ), where Ẽ denotes the
edges in E that are not adjacent to Ck. Applying the induction hypothesis, since T \ {k} has size p, there exists
a complex vector V ∈ C|B̃| s.t. Wba = VbV

∗
a for all (b, a) ∈ Ẽ . Additionally, since WBk,Bk is a rank-one PSD

matrix, there exists U ∈ C|Bk| s.t. Wba = UbU
∗
a for all (b, a) ∈ Bk × Bk. For all b ∈ Bk \ Ck, |Vb|2 = Wbb = |Ub|2,

since b ∈ B̃ ∩ Bk. Hence, |Vb| = |Ub| by nonnegativity of the module. Moreover, for all (b, a) ∈ (Bk \ Ck)2,
∠Vb − ∠Va = ∠Wba = ∠Ub − ∠Ua, and hence, ∠Vb − ∠Ub = ∠Va − ∠Ua. Defining µ = ∠Vb − ∠Ub for any
b ∈ Bk \ Ck, we define U ′ = eiµU , which satisfies U ′b = Vb for all b ∈ Bk \ Ck. Hence, the vector V ′ ∈ Cn defined
as V ′b = U ′b if b ∈ Bk and V ′b = Vb if b ∈ B̃, is well-defined and satisfies Wba = V ′b (V ′a)∗ for all (b, a) ∈ E .
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By induction, this proves that there exists a vector V ∈ Cn s.t. Wba = VbV
∗
a for all (b, a) ∈ E . The feasibility

of (S, V ) in (ACOPF) follows by substituting Wba by VbV ∗a in the constraints of (ACOPFW). J

3 Strengthening the SDP relaxation

In formulation (ACOPFW), Constraints (?) are the only nonconvex constraints. Removing them leads to the
clique-based SDP relaxation [28, 30]. Instead of merely deleting Constraints (?), we add valid inequalities based
on Voltage Magnitude and Phase Angle Difference bounds.

3.1 Conic Programming Outer-Approximation of Constraints (?)
For all b ∈ B, we introduce a variable Lb ∈ [vb, vb] that represents the Voltage Magnitude |Vb|. For all (b, a) ∈ E ,
we introduce a variable Rba ∈ [vbva, vbva] that stands for |Vb||Va| and is subject to

Rba ≥ vbLa + vaLb − vbva Rba ≥ vbLa + vaLb − vbva (8)
Rba ≤ vbLa + vaLb − vavb Rba ≤ vaLb + vbLa − vavb. (9)

For all b ∈ B, we also define the following constraints

L2
b ≤ Rbb Rbb = Wbb (10)

Rbb + vbvb ≤ (vb + vb)Lb. (11)

Whereas Constraints (8)–(11) approximate the equality R2
ba = WbbWaa, we also need to approximate |Wba| = Rba.

For this purpose, we impose for all (b, a) ∈ E ,

|Wba| ≤ Rba. (12)

For all (b, a) ∈ E \ (L ∪ LR), we define θba = −2π and θba = 2π. In fact, we present in Section 3.3.3 how these
Phase Angle Difference bounds may be tightened based on a Shortest Path algorithm. Then, we can define the
angles φba = θba+θba

2 and δba = θba−θba
2 for any (b, a) ∈ E . With this notation, the following constraints are valid

for any (b, a) ∈ E s.t. δba ≤ π
2 :

cos(φba)Re(Wba) + sin(φba)Im(Wba) ≥ Rba cos(δba). (13)

Finally, for every k ∈ T , we require that

RBkBk = (RBkBk)H
(

1 LH
Bk

LBk RBkBk

)
� 0, (14)

where RBkBk denotes the matrix (Rba)(b,a)∈B2
k
and LBk denotes the vector (Lb)b∈Bk . Adding the decision

vectors L ∈ Rn and R ∈ RE to the optimization problem (ACOPFW) and replacing Constraints (?) by
Constraints (8)–(14), we obtain a Conic Programming problem, that we denote (R).

I Proposition 3. The Conic Programming problem (R) is a relaxation of (ACOPFW).

Proof. We prove the validity of the Constraints (8)–(14). More specifically, we prove that for any couple
(S,W ) ∈ Cm × Hn(E) feasible in (ACOPFW), the quadruplet (S,W,L,R) is feasible in (R), where L and
R are defined as Lb =

√
Wbb and Rba = |Wba| for all (b, a) ∈ E . Since the objective function is the same

in (R) and (ACOPFW), this will prove that (R) is a relaxation of (ACOPFW). Since Rba = LbLa and
(Lb, La) ∈ [vb, vb] × [va, va], the triplet (Rba, Lb, La) satisfies the Mc Cormick inequalities [26] with respect
to (w.r.t.) these bounds, i.e., Constraints (8)–(9). Constraint (10) is satisfied since Wbb ∈ R, as (S,W ) is
feasible in (ACOPFW), yielding Rbb = |Wbb| = Wbb = L2

b . Constraint (11) also being a Mc Cormick constraint
(for b = a), it is satisfied by (Rbb, Lb), as Rbb = L2

b . Constraint (12) just follows from the definition of
Rba = |Wba|. For any (b, a) ∈ E , we define θba = ∠Wba; considering the definition of φba and δba, we notice
that |θba − φba| ≤ δba. For this reason, if δba ≤ π

2 , we obtain cos(|θba − φba|) ≥ cos(δba), as cos is decreasing
over [0, π2 ]. Using the parity of cos, and multiplying by Rba ≥ 0, we obtain Rba cos(θba − φba) ≥ Rba cos(δba)
Moreover, Rba cos(θba−φba) = |Wba|(cos(φba) cos(θba) + sin(φba) sin(θba)) = cos(φba)Re(Wba) + sin(φba)Im(Wba),
explaining that (Rba,Wba) satisfies Constraint (13), whenever δ. Finally, Constraint (14) just follows from the
equalities Rba = |Wba| = |Wab| = Rab and

(
1 LH

Bk
LBk RBkBk

)
=
(

1
LBk

)
( 1 LH

Bk ) � 0. J
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By construction, the relaxation (R) is tighter than the clique-based SDP relaxation, the value of which equals
the value of the standard SDP relaxation [15], also known as rank relaxation. The following theorem shows how
Constraints (8)–(13) help having |Wba|2 ≈WbbWaa when the Voltage Magnitude and Phase Angle Difference
intervals are small. We recall the notation ∆b = vb − vb and that we assume ∆b ≤ 1 throughout the paper.

I Theorem 4. For any (b, a) ∈ E, the following statements hold
Under Constraints (8)–(9), we have |R2

ba − L2
aL

2
b | ≤ 9∆b∆a.

Under Constraints (10)–(11), we have |WbbWaa − L2
bL

2
a| ≤ (∆b + ∆a)2.

Under Constraints (12)–(13), if δba ≤ π
2 , we have | |Wba|2 −R2

ba| ≤ 16δ2
ba.

Therefore, if Constraints (8)–(13) are satisfied and δba ≤ π
2 , then ||Wba|2−WbbWaa| ≤ 9∆b∆a+(∆b+∆a)2+16δ2

ba.

Proof. First, we take any (b, a) ∈ E and we define a tuplet (W,L,R) satisfying Constraints (8)–(9). We define
a1 = vbLa + vaLb − vbva and we notice that LbLa − a1 = (Lb − vb)(La − va) ∈ [0,∆b∆a], since Lb − vb ∈ [0,∆b]
and La−va ∈ [0,∆a]. Hence, a1 ∈ [LbLa−∆b∆a, LbLa]. Similarly, defining a2 = vbLa+vaLb−vbva, a3 = vbLa+
vaLb−vavb and a4 = vaLb+vbLa−vavb, we can prove that a2 ∈ [LbLa−∆b∆a, LbLa], a3 ∈ [LbLa, LbLa+∆b∆a]
and a4 ∈ [LbLa, LbLa + ∆b∆a]. According to Constraints (8)–(9), Rba ∈ [max(a1, a2),min(a3, a4)], which proves
that Rba ∈ [LbLa −∆b∆a, LbLa + ∆b∆a]. We square the inequalities 0 ≤ Rba ≤ LbLa + ∆b∆a to obtain

R2
ba ≤ L2

bL
2
a + ∆b∆a(2LbLa + ∆b∆a) ≤ L2

bL
2
a + 9∆b∆a,

the last inequality following from Lb ≤ vb ≤ 2, La ≤ va ≤ 2 and 0 ≤ ∆b∆a ≤ 1. Squaring the inequalities
0 ≤ LbLa ≤ Rba+∆b∆a, we deduce that L2

bL
2
a ≤ R2

ba+∆b∆a(2Rba+∆b∆a) ≤ R2
ba+9∆b∆a since Rba ≤ vbva ≤ 4.

Consequently,

|R2
ba − L2

aL
2
b | ≤ 9∆b∆a. (15)

Second, we take any tuplet (W,L,R) satisfying Constraints (10)–(11) for b and a. We notice that the maximum
of the quadratic form (vb + vb)X −X2 − vbvb is attained for X = vb+vb

2 with value (vb+vb)2

4 − vbvb = ∆2
b

4 . Hence,
(vb+vb)Lb−L2

b−vbvb ≤
∆2
b

4 . Constraint (11) yielding Rbb+vbvb ≤ (vb+vb)Lb, we deduce that Rbb−L2
b ≤ ∆2

b/4.
As Rbb ≥ 0, we have 0 ≤ Rbb ≤ L2

b + ∆2
b/4. Applying the same reasoning for a, we have 0 ≤ Raa ≤ L2

a + ∆2
a/4.

Multiplying both sets of inequalities together, we obtain

0 ≤ RbbRaa ≤ L2
bL

2
a + L2

b

∆2
a

4 + L2
a

∆2
b

4 + ∆2
b

4
∆2
a

4 ≤ L
2
bL

2
a + ∆2

a + ∆2
b + 2∆b∆a ≤ L2

bL
2
a + (∆b + ∆a)2, (16)

using that Lb, La ∈ [0, 2] and ∆b,∆a ∈ [0, 1]. As Constraint (10) yields L2
b ≤ Rbb and L2

a ≤ Raa, we deduce that
L2
bL

2
a ≤ RbbRaa and finally, since Rbb = Wbb and Raa = Waa,

|WbbWaa − L2
bL

2
a| ≤ (∆b + ∆a)2. (17)

Third, we take any tuplet (W,L,R) satisfying Constraints (12)–(13). We consider (b, a) ∈ E s.t. δba ≤ π
2 . We

write Wba as |Wba|eiθ and Constraint (13), which is applicable since δba ≤ π
2 , yields |Wba|(cos(φba) cos(θ) +

sin(φba) sin(θ)) ≥ Rba cos(δba). This may be written as |Wba| cos(φba − θ) ≥ Rba cos(δba). This implies that
|Wba| ≥ Rba cos(δba), and thus |Wba|2 ≥ R2

ba cos(δba)2. As |Wba|2 ≤ R2
ba, according to Constraint (12), we have

0 ≤ R2
ba − |Wba|2 ≤ R2

ba(1− cos(δba)2) = R2
ba sin(δba)2.

Using that Rba ≤ 4 and that sin(δba)2 ≤ δ2
ba, we obtain∣∣|Wba|2 −R2

ba

∣∣ ≤ 16δ2
ba. (18)

As a conclusion, for any tuplet (W,L,R) satisfying Constraints (8)–(13), we deduce from Equations (15), (17)
and (18) that∣∣|Wba|2 −WbbWaa

∣∣ ≤ ∣∣|Wba|2 −R2
ba

∣∣+ |R2
ba − L2

bL
2
a|+ |L2

bL
2
a −WbbWaa| ≤ 9∆b∆a + (∆b + ∆a)2 + 16δ2

ba.

J
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3.2 Connections to previous works
Previous works in the Power Systems community proposed valid inequalities to strengthen the SDP relaxation
of the ACOPF problem [19, 20, 10]. In [10], the authors show that these valid inequalities are all dominated by
the inequalities [10, (36a) and (36b)]. Using the parameter vσb = vb + vb, the inequalities [10, (36a) and (36b)]
read, with our notation,

vσb v
σ
a (cos(φba)Re(Wba) + sin(φba)Im(Wba))− va cos(δba)vσaWbb − vb cos(δba)vσbWaa ≥ vbva cos(δba)(vbva − vbva) (†)

vσb v
σ
a (cos(φba)Re(Wba) + sin(φba)Im(Wba))− va cos(δba)vσaWbb − vb cos(δba)vσbWaa ≥ −vbva cos(δba)(vbva − vbva). (‡)

The following Proposition states that Constraints (8)–(13), that we introduce here to strengthen the SDP
relaxation, dominate Equations (†)–(‡).

I Proposition 5. For any (b, a) ∈ L ∪ LR, for any quadruplet (Re(Wba), Im(Wba),Wbb,Waa) s.t. there exists
Lb, La, Rba ∈ R+ s.t. Constraints (8)–(13) are satisfied, then the quadruplet (Re(Wba), Im(Wba),Wbb,Waa)
satisfies (†)–(‡).

Proof. We take any (b, a) ∈ L ∪ LR and any quadruplet (Re(Wba), Im(Wba),Wbb,Waa) s.t. there exists
Lb, La, Rba ∈ R+ s.t. Constraints (8)–(13) are satisfied. Constraints (10)–(11) applied for b and a yields

vσb Lb ≥Wbb + vbvb (19)
vσaLa ≥Waa + vava. (20)

First, we combine Equations (19)–(20) with Rba ≥ vaLb + vbLa − vbva from Constraint (8), that we multiply by
vσb v

σ
a ≥ 0, to deduce that vσb vσaRba ≥ vavσaWbb + vbv

σ
bWaa + vav

σ
avbvb + vbv

σ
b vava − vσb vσavbva and, thus,

vσb v
σ
aRba − vavσaWbb − vbvσbWaa ≥ vavσavbvb + vbv

σ
b vava − vσb vσavbva = vbva(vbva − vbva), (21)

as vavσavbvb+vbvσb vava−vσb vσavbva = vbva(vbva+vbva+vbva+vbva−vbva−vbva−vbva−vbva) = vbva(vbva−vbva).
Multiplying Equation (21) by cos(δba) ≥ 0, we have

vσb v
σ
a cos(δba)Rba − va cos(δba)vσaWbb − vb cos(δba)vσbWaa ≥ vbva cos(δba)(vbva − vbva). (22)

Multiplying Constraint (13) by vσb vσa ≥ 0 yields vσb vσa (cos(φba)Re(Wba) + sin(φba)Im(Wba)) ≥ vσb vσa cos(δba)Rba;
combining this with (22), we deduce Equation (†). We underline that Constraint (13) is indeed applicable since
δba ≤ π

2 , as (b, a) ∈ L ∩ LR (see Table 1).
Second, we combine the Equations (19)–(20) with Rba ≥ vaLb + vbLa − vbva from Constraint (8) that

we multiply by vσb vσa ≥ 0, to obtain vσb v
σ
aRba ≥ vav

σ
aWbb + vbv

σ
bWaa + vav

σ
avbvb + vbv

σ
b vava − vσb vσavbva. As

vav
σ
avbvb+vbvσb vava−vσb vσavbva = vbva(vbva+vbva+vbva+vbva−vbva−vbva−vbva−vbva) = −vbva(vbva−vbva),

we deduce that

vσb v
σ
aRba − vavσaWbb − vbvσbWaa ≥ −vbva(vbva − vbva). (23)

Multiplying Equation (23) by cos(δba) ≥ 0, we obtain

vσb v
σ
a cos(δba)Rba − va cos(δba)vσaWbb − vb cos(δba)vσbWaa ≥ −vbva cos(δba)(vbva − vbva). (24)

Multiplying Constraint (13) by vσb vσa ≥ 0 yields vσb vσa (cos(φba)Re(Wba) + sin(φba)Im(Wba)) ≥ vσb vσa cos(δba)Rba;
combining this with (24), we deduce Equation (‡). J

The advantage of Constraints (8)–(13) is to enforce a coupling between the convex envelopes of the quadruplets
(Re(Wba), Im(Wba),Wbb,Waa) involving a same index b. This coupling is realized by the additional decision vectors
L and R. In Appendix A, we present an illustrative example of two quadruplets (Re(Wba), Im(Wba),Wbb,Waa)
and (Re(Wbc), Im(Wbc),Wbb,Wcc) satisfying Equations (†)–(‡) introduced in [10], but for which there is no vector
L and R s.t. Constraints (8)–(13) are satisfied. In this respect, we can state that Constraints (8)–(13) strictly
dominate Equations (†)–(‡).

3.3 Bound Tightening procedures
We use Bound Tightening procedures to reduce the interval lengths ∆b and δba and, thus, reduce the error bound
in Theorem 4.
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3.3.1 Feasibility-based Bound Tightening (FBBT)
The Power Flow limit for the line (b, a) ∈ L implicitly restricts the phase ∠VbV ∗a and, consequently, can help
reduce the length of the interval [θba, θba]. Dividing the inequality |(Y ft

ba)∗VbV ∗a + (Y ff
ba)∗|Vb|2| ≤ Sba by |Y ft

baVbVa|,
we deduce that | VbV

∗
a

|Va||Vb| − z
|Vb|
|Va| | ≤ R, where z = (Y ff

ba)∗

(Y ft
ba

)∗ and R = Sba
|Y ft
ba
VbVa|

. We notice that u = VbV
∗
a

|Va||Vb| is a unit

complex number and has a nonnegative real part since ∠Vb − ∠Va ∈ [−π2 ,
π
2 ]. Representing the ratio |Vb||Va| by a

variable λ, we can formulate the following Convex Optimization problem

maxu,λ Im(u)
s.t. |u− zλ| ≤ R

Re(u) ≥ 0
|u| ≤ 1
u ∈ C, λ ∈ [ vbva ,

vb
va

].

(25)

Denoting by h its value, we deduce that arcsin(h) is an upper-bound on ∠Vb − ∠Va. Hence, we can set
θba ← min(θba, arcsin(h)) without changing the value of (ACOPF). If we minimize Im(u) under the same
constraints to get a value h, we can set θba ← max(θba, arcsin(h)).

Similarly for any (b, a) ∈ LR, leveraging the inequality |(Y tf
ab)∗VbV ∗a + (Y tt

ab)∗|Vb|2| ≤ Sba, we use the same
procedure with z = (Y tt

ab)
∗

(Y tf
ab

)∗ and R = Sba
|Y tf
ab
VbVa|

to tighten θba and θba. This type of Bound Tightening is cheap,
since it requires to solve a 2-variable optimization problem for each bound.

3.3.2 Optimization-Based Bound Tightening (OBBT)
We also apply a OBBT procedure to the Conic Programming relaxation (R), as performed in [32] with the QCP
relaxation. We use any NLP algorithm to find an ACOPF feasible solution. With the corresponding upper-bound
denoted obj, we add the constraint

∑
g∈G c1g Re(Sg) + c2g Re(Sg)2 ≤ obj to Problem (R). We denote by F the

resulting convex feasible set for the tuplet (S,W,L,R). Then, we update the following bounds:
• For the Voltage Magnitude at bus b ∈ B, we set

vb ← max
(S,W,L,R)∈F

Lb (26)

vb ← min
(S,W,L,R)∈F

Lb. (27)

• For the Phase Angle Difference on line (b, a) ∈ L, we compute hba = max(S,W,L,R)∈F Im(Wba) and
hba = min(S,W,L,R)∈F Im(Wba) and set

θba ← min
(
θba, arcsin

(
max

(
hba
vbva

,
hba
vbva

)))
(28)

θba ← max
(
θba, arcsin

(
min

(
hba
vbva

,
hba
vbva

)))
. (29)

3.3.3 Shortest Path algorithm to tighten Phase Angle Difference bounds
Through FBBT and OBBT, we may individually improve the bounds θba and θba for any (b, a) ∈ E . To propagate
the reduction of the Phase Angle Difference domains, we apply a Shortest Path algorithm. Indeed we notice
that, for any (b0, bt) ∈ B × B, for any path b0, b1, . . . , bt in the graph (B, E), for any feasible solution (S, V ) in
(ACOPF), we have ∠Vbt − ∠Vb0 =

∑t−1
s=0 ∠Vbs+1 − ∠Vbs ≤

∑t−1
s=0 θbs+1bs . The Shortest Path between b0 and bt

in the directed weighted graph (B, E , θ) helps finding the lowest sum
∑t−1
s=0 θbs+1bs to update θbtb0 . Symmetrically,

we have that ∠Vbt − ∠Vb0 ≥
∑t−1
s=0 θbs+1bs . The Shortest Path between b0 and bt in the directed weighted graph

(B, E ,−θ) helps improving the lower-bound on ∠Vbt − ∠Vb0 to update θbtb0 . To compute Shortest Paths, we
apply the Floyd–Warshall algorithm [11], which fits the context of a weighted directed graph, with weights of
unspecified sign. May the Floyd–Warshall algorithm find a cycle with negative weight in the directed weighted
graph (B, E , θ), it would certify the infeasibility of (ACOPF), since it would give a path b0, b1, . . . , bt with
bt = b0 and 0 = ∠Vbt − ∠Vb0 =

∑t−1
s=0 ∠Vbs+1 − ∠Vbs ≤

∑t−1
s=0 θbs+1bs < 0. Similarly, finding a cycle of negative

weight in (B, E ,−θ) certifies the infeasibility of (ACOPF).
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4 A MILP-based Global Optimization algorithm

Leveraging the Conic Programming relaxation (R) and its solution, we generate a sequence of MILP problems
whose values converge to the ACOPF value.

4.1 Linear Programming Outer-Approximations
The disadvantage of Problem (R) is its computational cost, that is higher, due to SDP constraints, than the cost
of a Linear Programming (LP) or a convex QCP relaxation. Hence, it may not be computationally efficient to
solve such a relaxation at every node of an exploration tree. The idea of our approach is to solve the relaxation
(R) at the root node only, and use it to generate a LP relaxation with the same value. We denote by x ∈ RN the
decision vector (Re(S), Im(S),Re(W ), Im(W ), L,R), and we notice that the Problem (R) may also be seen as{

minx∈P f0(x)
∀ j ∈ {1, . . . ,M} fj(x) ≤ 0, (R)

with P ⊂ RN being a polytope and f0(x), f1(x), . . . , fM (x) continuous and convex functions. In Appendix B, we
detail this polytope, the functions fj(x), and show that they share a common structure: for any j ∈ {0, . . . ,M},
there exists an affine application πj : RN 7→ Rpj and a compact and convex set Uj ⊂ Rpj s.t. for all x ∈ P,
fj(x) = maxu∈Uj u>πj(x). For any finite subset qU j ⊂ Uj , we define the following polyhedral function qfj(x) =
maxu∈Ǔj u

>πj(x). This function, called “cutting-plane model”, is an underestimator of fj . If we relax the
formulation (R) by replacing each function fj(x) by its polyhedral underestimator qfj(x) related to a given finite
set qU j , we obtain the LP relaxation

{
minx∈P qf0(x)
∀ j ∈ {1, . . . ,M} qf j(x) ≤ 0

=


minx∈P,λ∈R λ

∀ u ∈ qU0 u>π0(x) ≤ λ
∀ j ∈ {1, . . . ,M},∀ u ∈ qU j u>πj(x) ≤ 0.

(RL)

We show that based on a primal-dual solution of (R), we can compute finite sets qU0, . . . , qUM s.t. val(R) = val(RL).
For j ∈ {1, . . . ,M} we define Kj as the convex cone generated by Uj . We define K0 as the convex cone generated
by {1} × U0. We also define λ and λ as a priori lower and upper bounds on the value of (R), that may
be very rough estimates. We introduce a Lagrangian L function for the conic program (R), defined for any
(x, λ) ∈ P × [λ, λ], κ = (κ0, κ1, . . . , κM ) ∈ K0 ×K1 × · · · × KM as L(x, λ, κ) = λ+ κ>0

(
−λ
π0(x)

)
+
∑M
j=1 κ

>
j πj(x).

With this definition, we see that the conic program (R) is the min-max problem

inf
x∈P,λ∈[λ,λ]

sup
κ∈K0×K1×···×KM

L(x, λ, κ).

We define the concave function D(κ) = infx∈P,λ∈[λ,λ] L(x, λ, κ) ∈ R∪ {−∞}, and the dual optimization problem

sup
κ∈K0×K1×···×KM

D(κ). (30)

I Proposition 6. There is no duality gap between Problem (R) and Problem (30), i.e., they share the same value.
Moreover, if Problem (30) has an optimal solution κ∗ ∈ K0×K1×· · ·×KM , written as κ∗ = (η0v

∗
0 , η1u

∗
1, . . . ηMu

∗
M )

with
ηj ∈ R+ for all j ∈ {0, 1, . . . ,M},
v∗0 = (1, u∗0) with u∗0 ∈ U0, and u∗j ∈ Uj for all j ∈ {0, 1, . . . ,M},

then the definition of the finite sets qU j = {u∗j} yields a LP relaxation (RL) that satisfies val(RL) = val(R).

Proof. The absence of duality gap follows from the Sion min-max theorem [22], since
The primal optimization set P × [λ, λ] is convex and compact,
The dual optimization set K0 ×K1 × · · · × KM is convex,
The Lagrangian L is continuous and convex w.r.t. (x, λ) for any κ ∈ K0 ×K1 × · · · × KM , and,
The Lagrangian L is continuous and concave w.r.t. κ for any (x, λ) ∈ P × [λ, λ].
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Then, we assume that Problem (30) has an optimal solution κ∗ ∈ K0 ×K1 × · · · × KM . Due to the absence of
duality gap, we know that D(κ∗) = val(R). Writing κ∗ = (η0(1, u∗0), η1u

∗
1, . . . ηMu

∗
M ) as indicated above, we

define qU j = {u∗j} ⊂ Uj and qKj = cone( qU j), for all j ∈ {0, . . . ,M}. With this definition, (RL) reads

inf
x∈P,λ∈[λ,λ]

sup
κ∈Ǩ0×Ǩ1×···×ǨM

L(x, λ, κ),

and its dual problem is supκ∈Ǩ0×Ǩ1×···×ǨM D(u). As κ∗ ∈ qK0 × qK1 × · · · × qKM , we can write by weak duality
that val(RL) ≥ D(κ∗) = val(R). As (RL) is a relaxation of (R), we conclude that val(RL) = val(R). J

At the price of finding an optimal primal-dual solution (x∗, λ∗, κ∗) of (R)–(30), we can build an LP relaxation
with the same value. In practice, we obtain such a primal-dual solution for every tested instance.

4.2 Binary variables to encode Piecewise Linear constraints

4.2.1 Partitioning Voltage Magnitude intervals
For any b ∈ B, we may want to split the interval [vb, vb] in subintervals. We introduce a tree Jb and pairs
(vbj , vbj) s.t. vbj ≤ vbj for all j ∈ Jb. For r being the root node of Jb, we have (vbr, vbr) = (vb, vb). Denoting
J +
b (i) the set of the child nodes of i, the partition [vbi, vbi] =

⋃
j∈J+

b
(i)[vbj , vbj ] holds for any i ∈ Jb. For any

j ∈ Jb, we introduce a variable αbj ∈ {0, 1}. To encode the equivalence (αbj = 1) ⇐⇒ (Lb ∈ [vbj , vbj ]) for any
j ∈ Jb, we impose αbr = 1, and for any j ∈ Jb

vbjαbj + (1− αbj)vb ≤ Lb ≤ vbjαbj + (1− αbj)vb, (31)

and for any i ∈ Jb s.t. J +
b (i) 6= ∅,∑

j∈J+
b

(i)

αbj = αbi. (32)

Moreover we add the following constraint for every j ∈ Jb,

Rbb + vbjvbj ≤ (vbj + vbj)Lb + (v2
b + vbjvbj)(1− αbj). (33)

For every j ∈ Jb and for all a ∈ B s.t. (b, a) ∈ E , we add the inequalities

Rba ≥ vbjLa + vaLb − vbjva + vbva(αbj − 1) Rba ≥ vbjLa + vaLb − vbjva + vbva(αbj − 1) (34)
Rba ≤ vbjLa + vaLb − vavbj + vbva(1− αbj) Rba ≤ vaLb + vbjLa − vavbj + vbva(1− αbj). (35)

4.2.2 Partitioning Phase Angle Difference intervals
For any (b, a) ∈ E , we may want to split the interval [θba, θba] in subintervals. We introduce a tree Jba and pairs
(θbaj , θbaj) s.t. θbaj ≤ θbaj for all j ∈ Jba. For r being the root node of Jba, we have (θbar, θbar) = (θba, θba).
Denoting J +

ba(i) the set of child nodes of i, the partition [θbai, θbai] =
⋃
j∈J+

ba
(i)[θbaj , θbaj ] holds for any i ∈ Jba. For

j ∈ Jba, we introduce a variable βbaj ∈ {0, 1}. To encode the equivalence (βbaj = 1) ⇐⇒ (∠Wba ∈ [θbaj , θbaj ]),
we impose βbar = 1 and for any j ∈ Jba

tan (θba)Re(Wba) + (βbaj − 1)vbva ≤ Im(Wba) ≤ tan (θba)Re(Wba) + (1− βbaj)vbva, (36)

and for any i ∈ Jba s.t. J +
ba(i) 6= ∅∑

j∈J+
ba

(i)

βbaj = βbai. (37)

Moreover, for all j ∈ Jba, we define the angles φbaj = θbaj+θbaj
2 and δbaj = θbaj−θbaj

2 , and if δbaj ≤ π
2 , we impose

cos(φbaj)Re(Wba) + sin(φbaj)Im(Wba) ≥ Rba cos(δbaj) + (βbaj − 1)vbva. (38)
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4.3 Updating the partitions of the intervals
During the algorithm presented in Section 4.4, the partitions of the intervals [vb, vb] and [θba, θba] are not static
but are made dynamically. The partition trees are all initialized as single-node graphs, and are then updated
over the course of the algorithm. We present how these trees are updated, at any iteration t of the algorithm,
where the current iterate is (St,W t, Lt, Rt).

For a given bus b ∈ B, we update the partition tree Jb by selecting the active leaf j, i.e. the only leaf j of
Jb s.t. Ltb ∈ [vbj , vbj ]. We create three new leaves j1, j2, j3 in the tree, which are attached to node j, and we
partition the interval [vbj , vbj ] as follows:

We define vbj1 = vbj and vbj3 = vbj ;
If Ltb ≤

vbj+vbj
2 , we define vbj1 = vbj2 = Ltb and vbj2 = vbj3 = Ltb+vbj

2 ;
Else, we define vbj1 = vbj2 = vbj+Ltb

2 and vbj2 = vbj3 = Ltb.
For a given pair (b, a) ∈ E , we update the partition tree Jba by selecting the active leaf j, i.e. the only leaf j

of Jba s.t. ∠W t
ba ∈ [θbaj , θbaj ]. We create three new leaves j1, j2, j3 in the tree, which are attached to node j,

and we partition the interval [θbaj , θbaj ] as follows:
We define θbaj1 = θbaj and θbaj3 = θbaj ;
If ∠W t

ba ≤
θbaj+θbaj

2 , we define θbaj1 = θbaj2 = ∠W t
ba and θbaj2 = θbaj3 = ∠W t

ba+θbaj
2 ;

Else, we define θbaj1 = θbaj2 = θbaj+∠W t
ba

2 and θbaj2 = θbaj3 = ∠W t
ba.

The construction procedure of the trees Jb and Jba guarantees that (i) vbj − vbj , the length of the interval
associated with a node j ∈ Jb of depth D(j), is less than ∆b

2D(j) , (ii) the coefficient δbaj associated with a node
j ∈ Jba is less than δba

2D(j) .

I Proposition 7. We assume that the convex Constraints (8)–(13) and the MILP Constraints (31)–(38) are
satisfied, but with a tolerance ρ ∈ [0, 1] for the nonlinear Constraints (10) and (12). Then, for any nodes
jb ∈ Jb, ja ∈ Ja and jba ∈ Jba that are active, i.e., s.t. αbjb = αaja = βbajba = 1, we have

∣∣(Rba)2 −WbbWaa

∣∣ ≤ 9∆b∆a

2max{D(jb),D(ja)} + max
{

9ρ,
(

∆b

2D(jb)
+ ∆a

2D(ja)

)2}
, (39)(

D(jba) ≥ log2

(
2δba
π

))
=⇒

(∣∣|Wba|2 − (Rba)2∣∣ ≤ max
{

9ρ, 16δ2
ba

4D(jba)

})
. (40)

We underline that the implication is still valid if δba = 0 and log2( 2δba
π ) = −∞.

Proof. Since αbjb = 1, Constraints (34)–(35) yield Constraints (8)–(9), but with vb, vb and ∆b replaced by vbjb ,
vbjb and ∆̃b = vbjb − vbjb ≤ ∆b

2D(jb) . Applying the first point of Theorem 4 with these parameters, we deduce that
|(Rba)2 − L2

aL
2
b | ≤ 9∆̃b∆a ≤ 9 ∆b

2D(jb) ∆a. Similarly, since αbja = 1 and since Rba = Rab, we also deduce from
Constraints (34)–(35) that |(Rba)2 − L2

aL
2
b | ≤ 9 ∆a

2D(ja) ∆b. Hence, we obtain

|(Rba)2 − L2
aL

2
b | ≤

9∆b∆a

2max{D(jb),D(ja)} . (41)

Since αbjb = 1 (resp. αaja = 1), Constraint (33) yields Constraint (11) for b (resp. a) with vb, vb and ∆b (resp.
va, va and ∆a) replaced by vbjb , vbjb and ∆̃b (resp. vaja , vbja and ∆̃a). Applying Equation (16) in the Proof of
Theorem 4, that follows only from Constraint (11), we deduce that RbbRaa − L2

bL
2
a ≤ (∆̃b + ∆̃a)2 ≤ ( ∆b

2D(jb) +
∆a

2D(ja) )2. Since Constraint (10) is satisfied with tolerance ρ ∈ [0, 1], we have that L2
b ≤ Rbb + ρ and L2

a ≤ Raa + ρ.
Multiplying both inequalities, we deduce that L2

bL
2
a ≤ RbbRaa+ρ(Rbb+Raa)+ρ2 ≤ RbbRaa+9ρ, since Rbb, Raa ∈

[0, 4] and ρ2 ≤ ρ. Hence, |WbbWaa−L2
bL

2
a| = |RbbRaa−L2

bL
2
a| ≤ max{9ρ, ( ∆b

2D(jb) + ∆a

2D(ja) )2}. Combining this with
Equation (41), we deduce Equation (39) due to the triangle inequality. We assume now that D(jba) ≥ log2( 2δba

π ),
implying that δbajba ≤ δba

2D(jba) ≤ π
2 . Since βbajba = 1, Constraint (38) yields Constraint (13) with φba, δba

replaced by φbajba , δbajba . Writing Wba as |Wba|eiθ we thus have |Wba|(cos(φbajba) cos(θ) + sin(φbajba) sin(θ)) ≥
Rba cos(δbajba). This also reads |Wba| cos(φbajba − θ) ≥ Rba cos(δbajba). This implies that |Wba| ≥ Rba cos(δbajba),
and thus |Wba|2 ≥ R2

ba cos(δbajba)2. Noticing that Constraint (12) is satisfied with tolerance ρ, we have that
|Wba| ≤ Rba + ρ and |Wba|2 ≤ R2

ba + 2Rbaρ + ρ2 ≤ R2
ba + 9ρ. In summary, we have −9ρ ≤ R2

ba − |Wba|2 ≤
R2
ba(1− cos(δbajba)2) ≤ R2

ba sin(δbajba)2 ≤ 16(δbajba)2 ≤ 16( δba
2D(jba) )2. J
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4.4 The MILP-based iterative scheme
The following Global Optimization algorithm is executed based on (i) a local NLP solver (ii) a Conic Programming
solver and (iii) a MILP solver. In this pseudo-code, we use the function ε(W ) = max(b,a)∈E

∣∣|Wba|2 −WbbWaa

∣∣,
which denotes the feasibility error in Constraints (?).
0. Input: A target optimality gap targetOptGap ≥ 0, a tolerance ε ≥ 0, integers N1, N2 ∈ N∗ and a sequence

(ρt)t∈N with ρt > 0.
1. Initialization: Compute an ACOPF feasible solution with a NLP solver and denote by obj its value (if

the NLP solver fails, obj← +∞). Solve the Conic Programming relaxation (R). If the gap is greater than
targetOptGap, apply FBBT and OBBT to (R). Based on the optimal solution of Problem (R), generate the
LP relaxation (RL) with same value as (R) (see Subsect. 4.1). Set t← 0 and LBt ← val(R).

2. Outer-iterations: While (i) obj− LBt > targetOptGap and (ii) ε(W ) > ε, do:
2.1. For N1 couples (b, a) ∈ E with largest violation |R2

ba −WbbWaa|, update the partition trees Jb and Ja
according to Section 4.3 and add the corresponding Constraints (31)–(35) to the MILP relaxation.

2.2. For N2 couples (b, a) ∈ E with largest violation
∣∣|Wba|2 −R2

ba

∣∣, update the partition tree Jba according
to Section 4.3 and add the corresponding Constraints (36)–(38) to the MILP relaxation.

2.3. Solve the resulting MILP relaxation to global optimality to get (S,W,L,R) and enter the inner loop
(step 3.). After the end of the inner loop, set LBt+1 as the value of the MILP relaxation and set t← t+1.

3. Inner-iterations: While x = (Re(S), Im(S),Re(W ), Im(W ), L,R) does not satisfy the convex constraints
within tolerance ρt, i.e., while maxj fj(x)− qf j(x) > ρt,
3.1. Add the corresponding cuts: qU j ← qU j ∪ {u}, for all j ∈ {0, . . . ,M} and for u ∈ Uj s.t. fj(x) = u>πj(x).
3.2. Solve the resulting MILP problem to global optimality to get x = (Re(S), Im(S),Re(W ), Im(W ), L,R).
Theorem 9 states that, if the parameters targetOptGap and ε are set to zero and if (ρt)t∈N vanishes, the

algorithm asymptotically recovers global minimizers of (ACOPFW). Before stating this Theorem, we introduce
a preliminary Proposition about the finite termination of the inner-loops.

I Proposition 8. For any outer-iteration index t ∈ N∗, for any tolerance ρt > 0, the inner-loop has a finite
number of iterations.

Proof. During outer-iteration t ∈ N∗ and the previous iterations, several auxiliary binary variables and asso-
ciated linear constraints have been added to the relaxation (R). From the perspective of the decision vector
x = (Re(S), Im(S),Re(W ), Im(W ), L,R), this yields a closed nonconvex set X . We also inherit finite sets
( qU j0)j∈{0,1,...,M}, the subscript 0 denoting the inner-iteration of index s = 0. The inner-iteration s ∈ N consists
in solving

minx∈P∩X ,λ∈R λ

∀ u ∈ qU0s u>π0(x) ≤ λ
∀ j ∈ {1, . . . ,M}, ∀ u ∈ qU js u>πj(x) ≤ 0,

(42)

to obtain a solution xs, and in defining Uj(s+1) = {ujs} ∪ Ujs for some ujs ∈ argmaxu∈Uju>πj(xs) for all
j ∈ {0, . . . ,M}. We define the error ejs = fj(xs) − qf js(xs) = fj(xs) − maxu∈Ǔjs u

>πj(xs). We reason by
contrapositive and assume now that the inner-loop is not terminating in finite time, meaning that the generated
MILP relaxation is feasible at each inner-iteration and the stopping condition of the inner-loop is never met.
This second point means that ρt ≤ maxj∈{0,...,M} ejs for all s ∈ N. We take any j ∈ {0, . . . ,M} and show that
ejs →s 0. Since the sets P ∩ X and Uj are compact and since the functions x 7→ fj(x) and (x, u) 7→ u>πj(x) are
continuous, we deduce that the sequence (ejs)s∈N is bounded. We take any limit point e∗ of this sequence, and
we take a converging subsequence (ejψ(s))→s e

∗. Without loss of generality, since P ∩ X and Uj are compact,
we can choose the extraction ψ(s) so that xψ(s) →s x

∗ and ujψ(s) →s u
∗, for (x∗, u∗) ∈ P ∩ X × Uj . For s ∈ N∗,

we notice that

ejψ(s) = fj(xψ(s))− max
u∈Ujψ(s)

u>πj(xψ(s)) (43)

≤ fj(xψ(s))− u>jψ(s−1)πj(xψ(s)) (44)
≤ u>jψ(s)πj(xψ(s))− u>jψ(s−1)πj(xψ(s)). (45)

Indeed, Equation (44) follows from the fact that ujψ(s−1) ∈ Ujψ(s) since ψ(s− 1) ≤ ψ(s)− 1, and Equation (45)
follows from the definition of ujψ(s). The limit of the term in Equation (45) is u∗πj(x∗) − u∗πj(x∗) = 0.
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Since 0 ≤ ejψ(s), this proves that (ejψ(s)) →s 0, i.e., e∗ = 0. This being true for any limit value e∗ of the
bounded sequence (ejs), we deduce that it converges to zero. This implies that (maxj∈{0,...,M} ejs) →s 0. As
ρt ≤ maxj∈{0,...,M} ejs, we see that the hypothesis “the inner-loop is not terminating” implies that ρt = 0. By
contrapositive, since ρt > 0, we deduce that the inner-loop has a finite number of iterations. J

I Theorem 9. If targetOptGap = ε = 0 and ρt →t 0, then
Either the algorithm stops due to the stopping criterion, and yields a global minimizer of (ACOPFW ),
Or the algorithm stops due to the infeasibility of a relaxation, certifying the infeasibility of (ACOPFW ),
Or the algorithm generates an infinite sequence of iterates (St,W t, Lt, Rt), and

The sequence LBt monotonously converges to val(ACOPFW) = val(ACOPF),
The limit points of the sequence (St,W t)t∈N are global minimizers of (ACOPFW).

Proof. We consider the first case where the algorithm meets the stopping criterion at the beginning of a certain
outer-iteration t. This means that either (a) obj = LBt, proving that the solution (S, V ) found by the NLP solver
at step 1. is globally optimal in (ACOPF) and yields (S, V V H) globally optimal in (ACOPFW ), or (b) the
solution (St,W t, Lt, Rt) of the current MILP relaxation of (ACOPFW ) satisfies ε(W t) = 0, i.e., (St,W t) is in
fact feasible in (ACOPFW ) and thus optimal in (ACOPFW ) since it is the optimal solution of a relaxation.

The second case is trivial: if the relaxation (R) or any MILP relaxation during the iterations is infeasible,
this implies that (ACOPFW ) is also infeasible.

We consider now the third case, where the algorithm does not terminate. We invoke Proposition 8 to claim
that for any outer-iteration t ∈ N, the inner-loop terminates in finite time. Hence, there is an infinite number
of outer-iterations and we define the infinite sequence xt = (St,W t, Lt, Rt)t∈N, where xt is the solution of the
MILP relaxation at the beginning of the outer-iteration t. For any (b, a) ∈ E , we define χtba = |(Rtba)2 −W t

bbW
t
aa|

and ξtba =
∣∣|W t

ba|2 − (Rtba)2
∣∣. We let J tb (resp. J tba) denote the state of the tree Jb (resp. Jba) at the beginning

of iteration t, and J b (resp. J ba) the (potentially infinite) limit tree
⋃
t J tb (resp.

⋃
t J tba). We first show that

χtba →t 0 for any (b, a) ∈ E . For t ∈ N, we define (bt, at) ∈ E s.t. χtbtat = maxba χtba, and we define jb(t) ∈ J tbt
and ja(t) ∈ J tat the active leaves to which three child nodes are attached during step 2.1 since (bt, at) presents
the largest violation. For any j ∈

⋃
b J b, we recall that D(j) is the depth of j in the (unique) tree J b it belongs

to. As xt is the output of the outer-iteration t− 1, it satisfies Constraint (10) and (12) with tolerance ρt−1, and
we can apply Proposition 7 with ρ = ρt−1. This yields

χtbtat =
∣∣(Rtbtat)2 −W t

btbtW
t
atat

∣∣ ≤ 9∆bt∆at

2max{D(jb(t)),D(ja(t))} + max
{

9ρt−1,

(
∆bt

2D(jb(t))
+ ∆at

2D(ja(t))

)2}
. (46)

We notice that the sequence (jb(t))t∈N is injective, since each jb(t) is a leaf in J tbt , but not in the trees J sbt for
s ≥ t+ 1. We deduce that D(jb(t))→t ∞, otherwise by contrapositive, there would exist M ∈ N s.t. an infinite
number of nodes of depth less or equal than M are created in the union of ternary trees

⋃
b J b; This is false

since the number of nodes with depth less or equal than M is bounded by n
∑M
`=0 3`. By the same argument, we

have D(ja(t))→t ∞. Combined with (46), we deduce that χtbtat →t 0 since ρt →t 0 and because ∆bt ,∆at are
bounded. For any t ∈ N and (b, a) ∈ E , we have 0 ≤ χtba ≤ χtbtat by definition of (bt, at), implying χtba →t 0.

We apply the same approach to prove that ξtba →t 0 for any (b, a) ∈ E . For t ∈ N, we define (̃bt, ãt) ∈ E
s.t. ξt

b̃tãt
= maxba ξtba, and we define j̃(t) ∈ J t

b̃tãt
the active leaf to which three child nodes are attached during

step 2.2. We also define D(j̃(t)) as the depth of j̃(t) in J t
b̃tãt

, which satisfies D(j̃(t)) →t ∞ by injectivity
of (j̃(t))n∈N and since the number of nodes in

⋃
(b,a)∈E J ba with depth less or equal than M is bounded by

|E|
∑M
`=0 3`. As D(j̃(t))→t ∞, we know that it exists t0 ∈ N s.t. D(j̃(t)) ≥ 2 for all t ≥ t0. Hence, for all t ≥ 0,

D(j̃(t)) ≥ log2( 4π
π ) ≥ log2

( 2δb̃tãt
π

)
, since δbtat ∈ [0, 2π]. Applying Proposition 7, we know that for any t ≥ t0,

ξt
b̃tãt

=
∣∣|W t

b̃tãt

∣∣2 − (Rt
b̃tãt

)2| ≤ max
{

9ρt−1,
16(δb̃tãt)

2

4D(j̃(t))

}
≤ max

{
9ρt−1,

64π2

4D(j̃(t))

}
, (47)

Combined with ρt →t 0 and D(j̃(t))→t ∞, we deduce that ξt
b̃tãt
→t 0. Additionally, since ξt

b̃tãt
= maxba ξtba, we

have 0 ≤ ξtba ≤ ξtb̃tãt and, thus, ξ
t
ba →t 0 for any (b, a) ∈ E .

We deduce that ε(W t)→t 0, since ε(W t) = max(b,a)∈E bigl||W t
ba|2−W t

bbW
t
aa

∣∣ ≤∑(b,a)∈E
∣∣|W t

ba|2−W t
bbW

t
aa

∣∣ ≤∑
(b,a)∈E χ

t
ba + ξtba, due to the triangle inequality. Hence, for any limit point (S,W ) of (St,W t), we thus have

ε(W ) = 0. As ρt →t 0, this also proves that (S,W ) satisfies the nonlinear convex constraints in (R). Hence, (S,W )
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is feasible in (ACOPFW ). We denote by qf t0 the cutting-plane model of the objective function at the beginning
of iteration t; this function only depends on S, hence, we write qf t0(S) instead of qf t0(x). As the successive MILP
relaxations over the iterations have nonincreasing feasible sets w.r.t. variables (S,W,L,R) and have nondecreasing
sequence qf t0(S) as objective functions, the sequence qf t0(St) = LBt is nondecreasing. It is also bounded above
by val(ACOPFW ) and, thus, converges to a value v∗ ≤ val(ACOPFW ). Since ρt →t 0, qf t0(St) →t f0(S) =∑
g∈G c1g Re(Sg) + c2g Re(Sg)2, for any limit point (S,W ). By uniqueness of the limit of qf t0(St) and since

(S,W ) is feasible in (ACOPFW ), we deduce that v∗ =
∑
g∈G

(
c1g Re(Sg) + c2g Re(Sg)2) ≥ val(ACOPFW ).

We conclude that v∗ = val(ACOPFW ) = val(ACOPF) and that (S,W ) is optimal in (ACOPF). J

5 Experimental evaluation

5.1 Experimental setting
For all experiments, we use a 64-bit Ubuntu computer with 32 Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz and
64 GB RAM. Along our algorithm, we use the commercial solvers MOSEK [1] and CPLEX [18] called through
their Python APIs, as well as the academic solver IPOPT [33] called through the Pyomo interface [16]. We
compute the tree decomposition with the approximate minimum degree (AMD) ordering routine of the chompack
package. We consider a relative optimality gap of 0.01% for global optimality (GOPT) and use the parameters
(N1, N2, ε) = (4, 4, 10−6). The FBBT and OBBT procedures are applied for all variables a maximum of 4 times,
and with a time limit of 10 hours (TL1). After each pass of FBBT and OBBT, we apply the Floyd–Warshall
algorithm and we check whether the gap of the tightened conic relaxation reaches the target optimality gap.
If the maximum number of Bound Tightening iterations or time limit is reached, we enter the MILP iterative
scheme with a time limit of 5 hours (TL2). Our code is available at github.com/aoustry/SDP-MILP4OPF.

This study focuses on the network instances from the IEEE PES PGLib AC-OPF v21.07 library [2] with less
than 500 buses. As shown in Table 2, the instances of this benchmark are split in three categories depending on
their characteristics: Typical Operating Condition (TYP) instances correspond to a reference scenario, Congested
Operating Condition (API) correspond to situations with greater Power Demands, and Small Angle Condition
(SAD) correspond to tighter constraints for the Phase Angle Difference.

We compare our approach with the standard SOCP and SDP relaxations [28], and with two other Global
Optimization approaches [13, 32]. We performed these comparative experiments on the same PGLib v21.07
instances, with the same hardware, the same time limit (TL1) as our OBBT algorithm, and the same relative
optimality gap tolerance. The concurrent approach from [32] is an OBBT algorithm based on a strengthened QC
relaxation. We ran the Julia implementation of this algorithm provided in the PowerModels.jl package [8]. The
QC relaxations are solved with IPOPT. The concurrent approach from [13] consists of an OBBT algorithm,
based on a Determinant SDP relaxation strengthened with RLT constraints. We ran a C++ implementation of
this algorithm, that is based on the Mathematical Modeling Language Gravity [17], and is available at the link
indicated in [13]; The corresponding relaxations are also solved with IPOPT. We point out that these competing
approaches [13, 32] solely rely on open-source tools, whereas our implementation uses commercial solvers.

5.2 Numerical results
Table 2 presents the optimality gap (in %) and the computational times obtained by the several approaches for
the considered list of instances. For lack of space, we do not detail the computation time of the SOCP and SDP
relaxations. To give an idea, the computation time of the SOCP relaxation is below 2s for all instances; for the
SDP relaxation, the computation time goes from 0.2s for the smallest cases to about 40s for the largest cases. As
regards the column “This work”, in the optimality gap section of the table: the entry (GOPT) means that the
Bound Tightening procedure based on the Conic Programming relaxation closed the gap; else, the entry a/b
represents the gap after the Bound Tightening procedure (a) and the gap after the iterative MILP scheme (b).

This table shows that our algorithm reaches Global Optimality for 35 instances over 51. The optimality gap
is below 0.5% for 43 instances over 51. For 4 instances only, the optimality gap at the end of the algorithm is
above 2%. As regards the instances with less than 57 buses, they are all solved to Global Optimality in less
than 220 seconds. For all these instances with less than 57 buses, except case5_pjm and case30_as_api, the
Bound Tightening procedure based on the Conic Programming relaxation (R) manages to close the gap. For the
instances case5_pjm and case30_as_api, the gap is closed by the iterative MILP scheme. For all the instances
with more than 57 nodes where the MILP scheme is executed, the gap is admittedly not closed within the

github.com/aoustry/SDP-MILP4OPF


Antoine Oustry 15

time limit, but it is reduced, except for case500_goc_api. For 44 over these 51 instances, our algorithm has
the lowest gap; for 14 instances over 51, it has a strictly lower gap than the others approaches. For 5 instances
(among those 14 instances), our approach is the only one to reach Global Optimality. Regarding the 7 instances
where our approach has not the best gap: for 3 instances, only the QC relaxation-based Bound Tightening
algorithm [32] yields a strictly lower gap than our approach; for the 4 other instances, only the Determinant-SDP
relaxation-based Bound Tightening algorithm [13] yields a strictly lower gap than our approach.

Table 2 Results for the instances from IEEE PES PGLib AC-OPF v21.07 with less than 500 buses

Optimality gap (%) Time (s)
Benchmark This work Benchmark This work

Case SOCP SDP [32] [13] (R)-BT/MILP [32] [13] (R)-BT MILP
Typical Operating Condition (TYP)

case3_lmbd 1.32 0.39 GOPT GOPT GOPT 1 <1 1 0
case5_pjm 14.55 5.21 5.76 GOPT 5.01/GOPT 44 30 7 198
case14_ieee 0.11 GOPT GOPT GOPT GOPT 12 <1 3 0
case24_ieee_rts 0.02 GOPT GOPT GOPT GOPT 41 10 7 0
case30_as 0.06 GOPT GOPT GOPT GOPT 107 5 10 0
case30_ieee 18.84 GOPT GOPT GOPT GOPT 226 3 8 0
case39_epri 0.56 GOPT GOPT GOPT GOPT 272 2 9 0
case57_ieee 0.16 GOPT GOPT GOPT GOPT 437 280 13 0
case73_ieee_rts 0.04 GOPT GOPT GOPT GOPT 399 30 21 0
case89_pegase 0.75 0.37 0.32 0.08 0.27/0.18 TL1 TL1 16,582 TL2

case118_ieee 0.91 0.07 GOPT GOPT GOPT 8,527 TL1 783 0
case162_ieee_dtc 5.95 1.78 0.04 1.58 0.59/0.53 TL1 TL1 TL1 TL2

case179_goc 0.16 0.07 0.04 0.05 0.04/0.03 TL1 TL1 5,293 TL2

case200_activ 0.01 GOPT GOPT GOPT GOPT 1,998 1,573 54 0
case240_pserc 2.78 1.43 2.71 1.21 1.02/0.93 TL1 TL1 25,578 TL2

case300_ieee 2.63 1.03 2.55 0.05 GOPT TL2 TL1 5,482 0
case500_goc 0.25 GOPT 0.19 GOPT GOPT TL1 10,040 139 0

Congested Operating Condition (API)
case3_lmbd_api 9.27 7.10 GOPT GOPT GOPT 2 3 2 0
case5_pjm_api 4.09 0.26 GOPT GOPT GOPT 10 51 3 0
case14_ieee_api 5.13 GOPT GOPT GOPT GOPT 55 1 4 0
case24_ieee_rts_api 17.9 2.07 GOPT GOPT GOPT 1,311 67 97 0
case30_as_api 44.6 10.86 36.1 0.71 0.13/GOPT 3,331 1,526 216 2
case30_ieee_api 5.46 GOPT GOPT 0.02 GOPT 444 1,673 8 0
case39_epri_api 1.72 0.20 GOPT GOPT GOPT 622 1,228 96 0
case57_ieee_api 0.08 GOPT GOPT GOPT GOPT 434 5 13 0
case73_ieee_rts_api 12.9 2.90 0.29 0.23 0.28/0.08 TL1 TL1 2,096 TL2

case89_pegase_api 23.1 22.0 18.3 17.6 21.7/19.3 TL1 TL1 16,085 TL2

case118_ieee_api 30.0 11.7 3.10 1.44 1.26/0.90 21,152 TL1 3,491 TL2

case162_ieee_dtc_api 4.36 1.44 0.27 1.31 0.29/0.25 TL1 TL1 TL1 TL2

case179_goc_api 9.88 0.59 0.54 0.39 0.54/0.53 TL1 TL1 5,992 TL2

case200_activ_api 0.03 1.49 GOPT GOPT GOPT 2,561 1,472 55 0
case240_pserc_api 0.67 0.28 0.62 ?1 0.12/0.11 TL1 ? 26,401 TL2

case300_ieee_api 0.85 0.09 0.81 0.07 GOPT TL1 TL1 7,841 0
case500_goc_api 3.44 2.36 3.28 2.12 2.19/2.19 TL1 TL1 TL1 TL2

Small Angle Difference (SAD)
case3_lmbd_sad 3.75 1.86 GOPT GOPT GOPT 1 2 1 0
case5_pjm_sad 3.62 GOPT GOPT GOPT GOPT 4 <1 1 0
case14_ieee_sad 21.53 0.09 GOPT 0.11 GOPT 40 367 17 0
case24_ieee_rts_sad 9.55 4.35 GOPT GOPT GOPT 603 1,050 98 0
case30_as_sad 7.88 0.24 GOPT 0.10 GOPT 168 478 71 0
case30_ieee_sad 9.70 GOPT GOPT GOPT GOPT 161 5 9 0
case39_epri_sad 0.67 0.02 GOPT GOPT GOPT 193 1,101 90 0
case57_ieee_sad 0.71 0.05 GOPT GOPT GOPT 661 4,925 212 0
case73_ieee_rts_sad 6.73 2.74 GOPT 0.06 GOPT 8,818 TL1 1,472 0
case89_pegase_sad 0.73 0.37 0.33 0.29 0.28/0.19 TL1 TL1 16,590 TL2

case118_ieee_sad 8.17 3.25 0.02 0.27 GOPT TL1 TL1 1,693 0
case162_ieee_dtc_sad 6.48 2.07 0.02 1.35 0.51/0.48 TL1 TL1 TL1 TL2

case179_goc_sad 1.12 0.95 0.05 0.93 0.66/0.42 TL1 TL1 4,414 TL2

case200_activ_sad 0.03 GOPT GOPT GOPT GOPT 2,187 805 53 0
case240_pserc_sad 4.93 3.42 4.34 3.16 2.63/2.61 TL1 TL1 27,875 TL2

case300_ieee_sad 2.61 0.67 2.34 0.05 GOPT TL1 TL1 5,654 0
case500_goc_sad 6.67 5.68 5.29 5.57 5.21/5,18 TL1 TL1 TL1 TL2

1 IPOPT did not manage to solve the Determinant-SDP relaxation for the instance case240_pserc_api.
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6 Conclusion and perspectives

We introduce a Conic Programming relaxation for the AC Optimal Power Flow problem. This relaxation is a
tightening of the classical Semidefinite Programming relaxation with additional variables and valid inequalities.
These inequalities dominate previously introduced nonlinear cuts, used to strengthen convex relaxations. Our
numerical experiments on a reference benchmark illustrate that this Conic Programming relaxation is particularly
suitable for a Bound Tightening procedure: it closes the gap in many cases where a Bound Tightening based on
a Quadratic Convex relaxation does not. We also introduce an iterative scheme based on Mixed-Integer Linear
Programming, that converges asymptotically towards global minimizers of the AC Optimal Power Flow problem.
For the instances where the Bound Tightening procedure does not close the gap, this iterative scheme is able to
reduce significantly the gap in most of the cases. A future line of research will consist in improving the scalability
of the Optimization-Based Bound Tightening: parallelizing this procedure, or targeting the bounds to tighten,
based on the graph structure. Another avenue to explore is the possibility of speeding-up the solution of the
Mixed-Integer Linear Programming problem at a given iteration, by reusing the Branch-and-Bound trees of the
problems solved during the previous iterations.
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A Strict dominance of Constraints (8)–(13) with respect to Constraints (†)–(‡)

In Section 3.2, Proposition 5 states that Constraints (8)–(13) dominate Constraints (†)–(‡). The advantage of
Constraints (8)–(13) is to enforce a coupling between the convex envelopes of the quadruplets (Re(Wba), Im(Wba),
Wbb,Waa) involving the same index b. In this Appendix, we present an illustrative example of two quadruplets
(Re(Wba), Im(Wba), Wbb,Waa) and (Re(Wbc), Im(Wbc),Wbb,Wcc) satisfying Constraints (†)–(‡) introduced in [10],
but for which there are no vectors L and R s.t. Constraints (8)–(13) are simultaneously satisfied for (b, a) and
(b, c).

We consider any (b, a, c) ∈ B3 with the following realistic data:
Voltage Magnitude Bounds: vb = va = vc = 0.9 and vb = va = vc = 1.1,
Phase Angle Difference Bounds: θba = θbc = −θba = −θbc = arccos(0.99) ' 8.11◦.

As a consequence, we have vσb = vσa = vσc = 2 and φba = φbc = 0 and δba = δbc = arccos(0.99). We consider the
quadruplets

(Re(Wba), Im(Wba),Wbb,Waa) = (1.1, 0, 1, 1.21) (48)
(Re(Wbc), Im(Wbc),Wbb,Wcc) = (1.085, 0, 1, 1.21), (49)

noticing that Wbb has indeed the same value in both quadruplets. These quadruplets both satisfy Equations (†)–
(‡).

First quadruplet: It satisfies (†), since vσb v
σ
a (cos(φba)Re(Wba) + sin(φba)Im(Wba)) − va cos(δba)vσaWbb −

vb cos(δba)vσbWaa = 2× 2× 1× 1.1 + 0− 1.1× 0.99× 2× 1− 1.1× 0.99× 2× 1.21 = −0.41338, which is greater
than vbva cos(δba)(vbva − vbva) = 1.1× 1.1× 0.99× (0.9× 0.9− 1.1× 1.1) = −0.47916. It satisfies (‡), since
vσb v

σ
a (cos(φba)Re(Wba) + sin(φba)Im(Wba))−va cos(δba)vσaWbb−vb cos(δba)vσbWaa = 2×2×1×1.1+0−0.9×

0.99× 2× 1− 0.9× 0.99× 2× 1.21 = 0.46178 is greater than −vbva cos(δba)(vbva− vbva) = −0.9× 0.9× 0.99 :
×(0.9× 0.9− 1.1× 1.1) = 0.32076.
Second quadruplet: It satisfies (†), since vσb vσc (cos(φbc)Re(Wbc) + sin(φbc)Im(Wbc)) − vc cos(δbc)vσcWbb −
vb cos(δbc)vσbWcc = 2×2×1×1.085+0−1.1×0.99×2×1−1.1×0.99×2×1.21 = −0.47338, which is greater
than vbvc cos(δbc)(vbvc − vbvc) = 1.1× 1.1× 0.99× (0.9× 0.9− 1.1× 1.1) = −0.47916. It satisfies (‡), since
vσb v

σ
c (cos(φbc)Re(Wbc) + sin(φbc)Im(Wbc))−vc cos(δbc)vσcWbb−vb cos(δbc)vσbWcc = 2×2×1×1.085+0−0.9×

0.99× 2× 1− 0.9× 0.99× 2× 1.21 = 0.40178 is greater than −vbvc cos(δbc)(vbvc− vbvc) = −0.9× 0.9× 0.99 :
×(0.9× 0.9− 1.1× 1.1) = 0.32076.
We assume now that there exists Lb ∈ [vb, vb], La ∈ [va, va], Lc ∈ [vc, vc], Rba ∈ [vbva, vbva], Rbc ∈ [vbvc, vbvc]

s.t. Constraints (8)–(13) are satisfied. Since Waa = v2
a, we deduce from Constraint (11) that v2

a + vava =
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Raa + vava ≤ (va + va)La, i.e., that (va + va)va ≤ (va + va)La, and, thus, va ≤ La since (va + va) > 0.
As va ≥ La by definition of La, we observe that La = va. We use then Rba ≤ vaLb + vbLa − vavb from
Constraint (9) to deduce that Rba ≤ vaLb. Constraint (12) gives |Wba| ≤ Rba, meaning that Lb ≥ |Wba|

va
= 1.

As L2
b ≤ Wbb = 1 according to Constraint (10), Lb = 1. As we did for a, we deduce from Waa = v2

a and
Constraint (11) that Lc = vc. We use Rbc ≤ vcLb+vbLc−vcvb from Constraint (9) to state that Rbc ≤ vcLb, and
we use Rbc ≥ vbLc + vcLb− vbvc to state that Rbc ≥ vcLb. Hence, Rbc = vcLb = 1.1. As Constraint (13) imposes
cos(φbc)Re(Wbc) + sin(φbc)Im(Wbc) ≥ Rbc cos(δbc), we deduce that (φbc)Re(Wbc) + sin(φbc)Im(Wbc) ≥ 1.089. This
is contradictory with the fact that (φbc)Re(Wbc)+sin(φbc)Im(Wbc) = Re(Wbc) = 1.085. As a conclusion, there does
not exist Lb ∈ [vb, vb], La ∈ [va, va], Lc ∈ [vc, vc], Rba ∈ [vbva, vbva], Rbc ∈ [vbvc, vbvc] s.t. Constraints (8)–(13)
are satisfied simultaneously for the pairs (b, a) and (b, c).

This illustrates the interest of setting the trigonometric cuts (13) with a variable radius Rba, whereas previous
works, to our knowledge, only use cuts associated to an extreme value of Rba.

B Nonlinear but convex objective and constraints in relaxation (R)

We recall that the decision vector in relaxation (R) is x = (Re(S), Im(S),Re(W ), Im(W ), L,R). First, we denote
by P ⊂ RN the polytope defined by the following box constraints:

For all g ∈ G, Re(Sg) ∈ [Re(sg),Re(sg)] and Im(Sg) ∈ [Im(sg), Im(sg)],
For all (b, a) ∈ E , Re(Wba) ∈ [0, vbva], Im(Wba) ∈ [−vbva, vbva] and Rba ∈ [vbva, vbva],
For all b ∈ B, Lb ∈ [vb, vb].

Now, we review the nonlinear terms in the objective and in the constraints of relaxation (R), as functions of
x. We show that all these functions have the form f(x) = maxu∈U u>π(x) for all x ∈ P, with a given affine
application π : RN 7→ Rp and a compact and convex set U ⊂ Rp.

The objective function is
∑
g∈G
(
c1g Re(Sg) +

∑
g∈G2

c2g Re(Sg)2), where G2 is the set of generators g ∈ G
s.t. c2g > 0. This function reads maxu∈U u>π(x) for all x ∈ P with

The compact and convex set U = {1} ×
∏
g∈G2
{(z1,−z2) : z2

1 ≤ z2, z1 ∈ [Re(sg),Re(sg)]},
The affine application π(x) =

(∑
g∈G c1gRe(Sg), (2c2gRe(Sg), c2g)g∈G2

)
.

Thermal limits for lines yield constraints with the form |y∗1Wbb+y∗2Wba|−Sba ≤ 0, with (y1, y2) = (Y ff
ba, Y

ft
ba)

if (b, a) ∈ L or (y1, y2) = (Y tt
ab, Y

tf
ab) if (b, a) ∈ LR. Introducing (r1, h1, r2, h2) = (Re(y1), Im(y1),Re(y2), Im(y2)),

this constraint is
√

(r1Re(Wbb) + r2Re(Wba) + h2Im(Wba))2 + (−h1Re(Wbb) + r2Im(Wba)− h2Re(Wba))2 −
Sba ≤ 0. This is maxu∈U u>π(x) ≤ 0 with

The compact and convex set U = {(−1, z1, z2) ∈ R3 : z2
1 + z2

2 ≤ 1},
The affine application π(x) = (Sba, r1Re(Wbb) + r2Re(Wba) + h2Im(Wba),−h1Re(Wbb) + r2Im(Wba) −
h2Re(Wba)).

Constraint (10), i.e., L2
b −Rbb ≤ 0 for any b ∈ B, has the form maxu∈U u>π(x) ≤ 0, with

The compact and convex set U = {(−1, z1,−z2) ∈ R2 : z2
1 ≤ z2 ∈ [vb, vb]},

The affine application π(x) = (Rbb, 2Lb, 1).
Constraint (12), i.e., |Wba| −Rba ≤ 0 for any (b, a) ∈ E , has the form maxu∈U u>π(x) ≤ 0 with

The compact and convex set U = {(−1, z1, z2) ∈ R3 : z2
1 + z2

2 ≤ 1},
The affine application π(x) = (Rba,Re(Wba), Im(Wba)).

The relaxation (R) includes several SDP constraints A(x) � 0, where A is a linear matrix operator. Such
a constraint amounts to maxu∈U u>π(x) ≤ 0 with

The compact and convex set U = {M ∈ Hp : (Tr(M) = 1) ∧ (M � 0)},
The linear application π(x) = −A(x),

and seeing p× p Hermitian matrices as real vectors of length 2p2.
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