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Effect of increasing the ramification on
pseudo-deformation rings

par SHAUNAK V. DEO

RESUME. Etant donnée une représentation continue, impaire et semi-simple
de dimension 2 de G, np sur un corps fini de caractéristique impaire p et un
nombre premier ¢ ne divisant pas Np, nous étudions la relation entre les an-
neaux de déformation universels des pseudo-représentations correspondantes
pour les groupes Gg nep €t Gg,np- Nous nous intéressons aussi au probleme
connexe de savoir si la pseudo-représentation universelle provient d'une vé-
ritable représentation sur 'anneau de déformation universel. Sous certaines
hypotheses, nous prouvons des analogues des théoremes de Boston et Bo-
ckle pour les anneaux de pseudo-déformation réduits. Nous améliorons ces
résultats dans le cas ou la pseudo-représentation est non obstruée et p ne di-
vise pas £2 — 1. Lorsque la pseudo-représentation est non obstruée et p divise
£+ 1, nous prouvons que les anneaux de déformation universels de la pseudo-
représentation de Gig n¢p en caractéristique O et p ne sont pas des anneaux
locaux d’intersection complete. Comme application de nos résultats princi-
paux, nous prouvons un théoreme R = T pour les algebres de Hecke élargies
et les anneaux de pseudo-représentations.

ABSTRACT. Given a continuous, odd, semi-simple 2-dimensional representa-
tion of Gg,np over a finite field of odd characteristic p and a prime ¢ not
dividing Np, we study the relation between the universal deformation rings of
the corresponding pseudo-representations for the groups Gg,nep and Go,np-
As a related problem, we investigate when the universal pseudo-representation
arises from an actual representation over the universal deformation ring. Un-
der some hypotheses, we prove analogues of theorems of Boston and Béckle
for the reduced pseudo-deformation rings. We improve these results when the
pseudo-representation is unobstructed and p does not divide ¢2 — 1. When
the pseudo-representation is unobstructed and p divides ¢ + 1, we prove
that the universal deformation rings in characteristic 0 and p of the pseudo-
representation for Gg n¢p are not local complete intersection rings. As an
application of our main results, we prove a big R = T theorem.
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1. Introduction

In [11], Boston studied the effect of enlarging the set of primes that
can ramify on the structure of the universal deformation ring of an odd,
absolutely irreducible representation of Gal(Q/Q) over a finite field which is
attached to a modular eigenform of weight 2. His results were generalized by
Béckle in [8] to any continuous 2-dimensional representation of Gal(Q/Q)
over a finite field such that the centralizer of its image is exactly scalars.
The aim of this paper is to study the same problem for pseudo-deformation
rings i.e. universal deformation rings of pseudo-representations.

This article has two parts. In the first part, we analyze when a pseudo-
representation arises from an actual representation. In the second part, we
use the results obtained in the first part to study how the structure of the
universal deformation ring of a 2-dimensional Galois pseudo-representation
changes after allowing ramification at additional primes. We will now elab-
orate on each part.

All the representations and pseudo-representations of pro-finite groups
considered in this article are assumed to be continuous unless mentioned
otherwise.

1.1. Pseudo-representation arising from a representation. Let G
be a pro-finite group and R be a complete noetherian local (CNL for short)
ring. Roughly speaking, a 2-dimensional pseudo-representation of G over
R is a tuple of functions (¢,d) : G — R which “behaves like” the trace and
determinant of a 2-dimensional representation of G over R. In particular,
if p: G — GLa(R) is a representation of G, then (tr(p),det(p)) : G — R
is a pseudo-representation of G of dimension 2. But the converse to this
statement is not necessarily true.

The notion of pseudo-representation that we are going to use throughout
the article was introduced and studied by Chenevier in [12]. Chenevier’s the-
ory of pseudo-representations generalized the theory of pseudo-characters
developed by Rouquier in [21]. We refer the reader to [4, Section 1.4] for def-
inition and properties of 2-dimensional pseudo-representations and to [12]
for general theory of pseudo-representations.

Now suppose p is an odd prime, F is a finite field of characteristic p
and G is a pro-finite group satisfying the finiteness condition ®, of Mazur
(see [19, Section 1.1]). Denote the ring of Witt vectors of F by W (F).
Suppose pg : G — GLo(F) is a representation such that py = x1 @ x2 where
X1, X2 : G — F* are distinct characters (i.e. x1 # Xx2).

Let R be a CNL W (F)-algebra with residue field F and (¢,d) : G — R be
a pseudo-representation of G deforming (tr(pp),det(pp)). Then we address
the following question in the first part of the article: Does there exist a
representation p : G — GLa(R) such that t = tr(p) and d = det(p)? If
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there does exist such a representation p, then we say that the pseudo-
representation (¢, d) arises from a representation.

1.1.1. Motivation. In [11], Boston used the techniques and results from
the theory of pro-p groups to determine how the deformation ring of an
absolutely irreducible Galois representation changes after enlarging the set
of ramifying primes. The same techniques were used by Bockle in [8] to
extend Boston’s results to non-split reducible representations (see [8, The-
orem 4.7]). However, their method crucially depends on working with actual
representations (and not just pseudo-representations). So, in order to use
their techniques and results, we first investigate when a Galois pseudo-
representation arises from an actual representation.

Moreover, this question is also of an independent interest for any pro-
finite group (and not just for the Galois groups). Therefore, we do not
restrict ourselves to Galois groups in the first part of the article and work
with a general pro-finite group.

1.1.2. Main results. Recall that we have gy : G — GLo(F) with pyp =
X1 D x2. Let x := Xle_l- For i € {1,—1}, we denote the dimension of'the
cohomology group H’(G, x") as a vector space over IF by dim(H’ (G, x*)).

Theorem A (see Theorem 3.5, Theorem 3.7). Suppose dim(H' (G, x*)) =1
and H*(G,x") = 0 for some i € {1,—1} and fix such an i. Then:

(1) If R is a reduced CNL W (IF)-algebra with residue field F, then every
pseudo-representation (t,d) : G — R deforming (tr(pg),det(pp))
arises from a representation.

(2) Suppose dim(H?*(G,x™ %)) <dim(HY(G,x™)), 1 <dim(H(G, x ™))
< 3 and H*(G,1) = 0. If R is a CNL F-algebra with residue
field F, then every pseudo-representation (t,d) : G — R deform-
ing (tr(po),det(po)) arises from a representation.

As a consequence of the theorem above, we get that certain pseudo-
deformation rings are isomorphic to appropriate deformation rings of
reducible, non-split representations (see Theorem 3.5 and Theorem 3.7 for
more details). In Section 3.5, we list the consequences of these results for
Galois groups.

Remark 1.1. The hypotheses dim(H'(G, x?)) = 1 and H?(G, x*) = 0 are
used to construct the representation whose existence is claimed in the first
part of Theorem A. The hypotheses of the second part are used along with
results of [23] to get a description of the structure of the universal mod p
deformation ring of (tr(po),det(pg)). This description is crucially used to
construct a representation which gives rise to the universal mod p pseudo-
representation deforming (tr(po), det(po)). In Proposition 3.1, we prove that
the hypothesis dim(H!(G,x*)) = 1 for some i € {1,—1} is necessary for
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the second part of Theorem A to hold. However, it is not clear whether
Theorem A holds without any of the other hypotheses.

1.2. Level raising for pseudo-deformation rings. In the second part,
we specialize the set-up introduced in Section 3 to the case where G =
Go,np and pg is an odd representation. To be precise, we consider a re-
ducible, semi-simple, odd representation py : Gg np — GL2(IF) where p is
an odd prime, [ is a finite extension of I, N is an integer not divisible by
p. Thus pg = x1 @ x2 where x1,x2 : Gg,np — F* are characters and let
X =x1xz "

Let Rf)—’od be the universal deformation ring of the pseudo-representation
(tr(po),det(po)) : Go,np — F in the category of CNL W (IF)-algebras with
residue field F. Suppose ¢ is a prime not dividing Np. Then we have a
natural surjective map Gg,negp — Go,np and via this surjective map, we

can view (tr(po), det(po)) as a pseudo-representation of Gg np. Let RESM be
the universal deformation ring of the pseudo-representation (tr(pgg), det(po))
for the group Gg,ngp in the category of CNL W ([F)-algebras with residue
field F.

Our aim is to compare ’R,;—);l’e with ’RES and determine the structure of

R23’£ in terms of the structure of Rgg.

1.2.1. Motivation. Our interest in the problem mainly arises from its
potential application to determining the structure of characteristic 0 and
characteristic p Hecke algebras (as defined in [4] and [13]) and to the level
raising of modular forms.

In [11], Boston connects the increase in the space of deformations, after
allowing ramification at an additional prime ¢, to the level raising of mod-
ular forms. To be precise, he shows, using the results of Ribet and Carayol,
that every new component of the bigger deformation space contains a point
corresponding to a modular eigenform which is new at £.

When the residual representation is reducible, the level raising results
for modular forms are not known in all cases (see [5], [25] and [14] for
known cases of level raising results for reducible py). So if pg comes from a
newform of level N and the level raising results are not known for it, then
results along the lines of [11] for pseudo-deformation ring can be treated as
evidence for level raising for py.

On the other hand, suppose gy comes from a newform of level N and level
raising is known for pg. Then, we are interested in studying the relationship

(NE)

between ng , the pg-component of the characteristic 0 Hecke algebra of

level N¢ and TEJ(N) , the pp-component of the characteristic 0 Hecke algebra
of level N (see [4] and [13] for the definitions of these Hecke algebras). In
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(Ne)

particular, we want to explore if the structure of ’]1‘/1;01 can be obtained

from the structure of TES(N)

Note that we have surjective maps Rgg’e — TEJ(NZ) and Rgg —» ’]I'gol(N)
which are known to be isomorphisms in certain cases. Thus, exploring this
question for deformation rings serves as a good starting point for this study
and it also gives us an idea of what to expect in the case of Hecke alge-
bras. We are also interested in exploring similar questions for mod p Hecke

algebra of level N/ and N (as defined in [13] and [4]).

1.2.2. Main results. Recall that we have an odd py : Gg,np — GL2(F)
with 7o = x1 ® x2 and x = x1x5 - For i € {1, —1}, denote the restriction
of x* to the decomposition group at ¢ by XZ|GQK' Let w, be the mod p
cyclotomic character, Rg;u = Rgg’e/ (p) and RES = Rgg /(p). For a ring
R, we denote by (R)™¢ its maximal reduced quotient. Using results of
Section 3.5 and [8], we prove:

Theorem B. Suppose dim(H'(Gg np, x')) =1 and dim(H*(Gg,np, X %)) =
m for some i € {1,—1}. Let £ be a prime such that p 1 > — 1 and
X_i’G@e = wplag, - Then:

(1) There existry,...,rp, ® € W(F)[X1,...,Xn, X] such that

(RELyed o (W(F)[ X0, -, X, X/ (1,7, X (@ — £)))70

and (R o (W(F)[X1,..., Xu]/(F1, ..., 7)), where 7 = 1;
(mod X).

(2) Suppose m = 1,2 and p 1 ¢(N). Then there exist r1,...,1p, P €
F[Xy,...,Xn, X] such that

Rg;wgF[[Xl,...,Xn,X]]/(rl,...,rn,,X(q)_e))
and REE} ~F[Xy,...,X,]/(F1,...,Tn), where r; (mod X) = 7.

Remark 1.2. The hypotheses of Theorem B make sure that the hypotheses
of first and second part of Theorem A hold for both Gg n, and Gg, nyp in
the first and second part of Theorem B, respectively. This allows us to
combine Theorem A and results of [8] to get Theorem B. However, the
description of the structure of Rg;u is expected to get more complicated if
we relax one or more hypotheses of Theorem B. This is illustrated in the
results given below.

We call pp unobstructed when dim(H'(Gg np,x*)) = 1 for i € {1,—1}.
Note that if N = 1, then any reducible pg is unobstructed if Vandiver’s
conjecture is true ([4, Theorem 22]). Moreover, [4, Theorem 22] also gives
some examples of unobstructed pg’s if N = 1. Note that if gy is unobstructed
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and p t ¢(N), then Rgg ~ W(F)[X,Y, Z]. We then prove slightly more
precise results after assuming that pg is unobstructed and p t ¢(IV).

Theorem C (See Corollary 4.9 and Theorem 4.10). Suppose pg is un-
obstructed, p { ¢(N) and £ is a prime such that £ { Np, p { 2 —1 and
X'lGq, = wp for some i € {1,—1}. Then:

1) REY ~ W(F)[ X1, Xo, X3, X4]/(X4f) for some non-zero element
po
f € W(F)[[XDX?)X&X‘JL]];
(2) Moreover if p? { (P~1 — 1, then

RO o W (F)[X1, Xo, X3, Xa] /(X4 X2).

Remark 1.3. The hypotheses that o is unobstructed, p { > — 1 and
X'lGg, = wp for some i € {1,—1} of Theorem C make sure that the hy-
potheses of Theorem B are satisfied. The hypotheses that pg is unobstructed
and p 1 ¢(IN) imply that ’Rgg ~ W(F)[X,Y, Z]. Moreover, combining these
hypotheses with p? { /P~1 — 1, we get a set of generators of the cotangent
space of Rgg’z. All this information is then combined with Theorem A to
prove Theorem C.

The case p | £ + 1 turns out to be different from the other cases which
also happens in [11] and [8].

Theorem D (see Theorem 4.13, Theorem 4.19, Corollary 4.20). Suppose
po is unobstructed, p + ¢(N) and £ is a prime such that £ Np, p || £+ 1
and |Gy, = wp. Then

(R2Myred o~ F[X, Y, Z, X1, X2] /(X1 X2, X1Y, XoY).
Moreover, both Rg;i’e and Rgg’e are not local complete intersection rings.

Remark 1.4. The hypotheses that gy is unobstructed and p { ¢(N) imply
that Rgg ~ W(F)[X,Y, Z]. Moreover, combining these hypotheses with

p || £+ 1, we get a set of generators of the cotangent space of Rg;i’e. All this
information is crucially used to prove Theorem D.

Recall that Mazur’s conjecture ([19]) predicts that the mod p universal
deformation ring of an absolutely irreducible 2-dimensional representation
of Gg,np over some finite extension of F, has Krull dimension 3. This
also implies that the mod p universal deformation ring is always a local
complete intersection ring. From the theorem above, we find examples of
mod p universal pseudo-deformation rings of Krull dimension 3 which are
not local complete intersection rings. On the other hand, in [6], Bleher and
Chinburg found examples of absolutely irreducible representations of pro-
finite groups such that the corresponding universal deformation rings (in
the sense of Mazur) are not locally complete intersection rings.
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Finally, as an application, we prove an R = T theorem for big p-adic
Hecke algebras and pseudo-deformation rings in Section 5 similar to the
ones proved by Boéckle in [10] (see Theorem 5.3 and Corollary 5.5 for more
details). We also give examples where the hypotheses of our “big” R = T
theorem are satisfied.

1.3. Outline of the proof of main results. Since x; # x2, it fol-
lows, from [3] and [2], that a pseudo-representation (¢,d) : G — R lifting
(tr(po), det(po)) arises from a representation of G taking values in a faithful
Generalized Matrix Algebra (GMA) A = (ZB) over R. The assumption
dim(H'(G, x")) = 1 for some i € {1,—1} implies that A can be chosen
in such a way that B is generated by at most 1 element as an R-module.
Moreover, if G = Gg,np or Gg,negp and po is unramified at ¢, then this
representation is tamely ramified at £.

Now if B is a free R-module of rank 1 (i.e. the annihilator of B is (0)),
then it follows that A is isomorphic to a subalgebra of M>(R) which means
(t,d) arises from a representation over R. Faithfulness of A implies that this
is equivalent to the annihilator of the ideal I := m/(B ® C') C R, obtained
by multiplication of B and C, being (0). Note that I is the reducibility
ideal of (t,d) (in the sense of [3]).

Now if R is an integral domain and (¢, d) is not reducible, then it means
I # (0) and hence, the previous paragraph implies that (¢, d) arises from a
representation over R. Since dim(H!(G, x')) = 1, it follows, after changing
the basis if necessary, that this representation is a deformation of a fixed
reducible, non-split representation p,, whose semi-simplification is py. On
the other hand, if (¢,d) is reducible, then we construct, using results and
techniques of [22], a deformation of p,, to R which gives rise to (¢, d). This
proves the first part of Theorem A.

To prove the second part of Theorem A, we first use its hypotheses along
with [23, Theorem 3.3.1] to prove that Rggl is a quotient of a power series
ring by an ideal generated by at most 2 elements. This description, along
with some commutative algebra, is then used to prove that the annihila-
tor of the reducibility ideal of the universal mod p pseudo-deformation of
(tr(po),det(po)) is trivial. Combining this with the discussion above gives
the second part of Theorem A.

Note that Theorem A relates certain quotients of Rggl with the corre-
sponding quotients of the deformation ring of p,,. We use the results of
Section 2.5 to conclude that these relations hold in the setting of Galois
groups appearing in Theorem B and combine them with [8, Theorem 4.7]
to prove Theorem B.

To prove the first part of Theorem C, we combine results of Section 2.5,
second part of Theorem A, the relation between the tame inertia group
and the Frobenius at £ and some basic commutative algebra to prove that



196 Shaunak V. DEO

Rgg’e is isomorphic to the universal deformation ring of p,, for Gg, n¢p. The
result then follows from [8, Theorem 4.7] and [9, Theorem 2.4]. To prove the
second part of Theorem C, we first find a set of generators of the cotangent
space of R%;M. Combining this with the relation between the tame inertia
group and the Frobenius at ¢ and the first part of Theorem C yields the
theorem.

The proof of Theorem D is carried out in several steps. We first find
a set of generators of the cotangent space of Rg;l’e and then use the rela-
tion between the tame inertia group and the Frobenius at ¢ to prove that
(Rgg’e)md is a quotient of F[X,Y, Z, X1, Xo] /(X1 X2, X1Y, X2Y). We then

gg,g has at least 3 distinct prime ideals Py, P; and P, such that

Rg;l’e /P;j ~ F[x,y, 2] for all 0 < j < 2 from which the first part of Theo-
rem D follows. Note that GMAs play a crucial role in obtaining the results
mentioned above. We then use the GMA corresponding to the universal
mod p pseudo-representation deforming (tr(py),det(pp)) and the relation

between the tame inertia group and the Frobenius at £ to get some rela-

prove that R

tions satisfied by the generators of the cotangent space of Rg;l’e found above.
We then use some basic commutative algebra and first part of Theorem D
to prove the second part of Theorem D.

1.4. Wayfinding. In Section 2, we collect definitions and background re-
sults that we use in the rest of the article. In Section 2.1, we introduce the
pseudo-deformation rings which we will be working with throughout the
article. In Section 2.2, we introduce the notion of Generalized Matrix Alge-
bras (GMAs) and collect results which will be used in the rest of the article.
In Section 2.3, we introduce the notion of reducible pseudo-representations
and study its properties. In Section 2.4, we review the definition and prop-
erties of the deformation ring of a reducible, non-split representation. In
Section 2.5, we prove some additional results for Galois groups which will
be used later. In Section 3, we analyze when a pseudo-representation arises
from a representation. In Section 4, we study how the pseudo-deformation
ring changes after enlarging the set of ramifying primes. In Section 5, we
apply results from Section 4 to prove an R = T theorem and also give some
examples where the hypotheses of the theorem are satisfied.

1.5. Notations and conventions. For a pro-finite group G, we will use
the following convention: all the representations, pseudo-representations,
cohomology groups and Ext’ groups of G that we will work with are as-
sumed to be continuous unless mentioned otherwise. Given a representa-
tion p of G defined over F, we denote by dim(H*(G,p)), the dimension of
H'(G, p) as a vector space over F.

For a prime ¢, denote by Gg, the absolute Galois group of Q, and by
I, the inertia group at ¢q. Denote the Frobenius element at ¢ by Frob,. For
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an integer M, denote by Gg,ap the Galois group of the maximal algebraic
extension of Q unramified outside {primes ¢ : ¢ | Mp} U {oco} over Q and
fix an embedding i4 s : Gg, — Gq,mp- For a fixed M, such an embedding
is well defined upto conjugacy.

For a representation p of Gg arp denote by p\G@q the representation p o
ig,m of Gg,. Moreover, for an element g € Gg,, we denote p(iga(g)) by
p(g). If p|I,; factors through the tame inertia quotient of I,, then, given
an element ¢ in the tame inertia group at ¢, we write p(g) for p(iga(g’))
where ¢’ is any lift of g in Gg,. For a pseudo-representation (¢, d) of G arp
denote by (t|qg, . d|Gg,) the pseudo-representation (¢oigar, doign) of Gy,

We denote the mod p cyclotomic character of G arp by wp. For a prime
q, we will also denote wp\GQq by w, by abuse of notation. For a finite field
F, we denote the ring of its Witt vectors by W (F) and we will denote the
Teichmuller lift of an element a € F to W(F) by a.

For a local ring R with residue field F, denote by tan(R) the tangent
space of R and denote by dim(tan(R)) the dimension of tan(R) as a vector
space over [F.

Acknowledgments. I would like to thank Carl Wang-Erickson for helpful
correspondence regarding [23] and the Introduction section of this article.
I would also like to thank Gabor Wiese, Anna Medvedovsky and John
Bergdall for many helpful conversations. I would like to thank the anony-
mous referee for many useful comments and suggestions which helped in
improving the exposition. Most of this work was done when the author was
a postdoc at the University of Luxembourg.

2. Preliminaries

Even though we are primarily interested in the deformation rings of
Galois pseudo-representations, we are going to take a slightly more general
approach in this and the next section. To be precise, instead of Gg, N, and
odd pg, we are going to consider a pro-finite group G which satisfies the
finiteness condition ®, given by Mazur in [19, Section 1.1] and a continuous
representation py : G — GLa(F) such that pp = x1 @ x2 with x; # x2 and

X = X1/Xx2-
Most of the results that we state/prove in this section are well known.

2.1. Pseudo-deformation rings. We now introduce the universal defor-
mation rings of pseudo-representations i.e. pseudo-deformation rings with
which we will be studying for the rest of the article. Let C be the category
whose objects are local complete noetherian rings with residue field F and
the morphisms between the objects are local morphisms of W (IF)-algebras.
Let Cy be the full sub-category of C consisting of local complete noetherian
F-algebras with residue field F.
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Now pg is a 2-dimensional representation of G over F. This means that
(tr(po),det(po)) : G — F is a 2-dimensional pseudo-representation of G
over F. Let Dj, be the functor from C to the category of sets which
sends an object R of C with maximal ideal mp to the set of continuous
pseudo-representations (¢,d) of G to R such that ¢t (mod mp) = tr(po)
and d (mod mpg) = det(py). Let D, be the restriction of D, to the sub-
category Cyp.

From [12], it follows that the functors D;, and Dj, are representable by
objects of C and Cy, respectively. Let Rgs and 7223 be the local complete
noetherian rings with residue field F representing 5,30 and Dj,, respec-
tively. So we have Rgg /(p) =~ RES. Let (t"V, d"™V) be the universal pseudo-
representation of G to Rggl deforming (tr(py), det(po)). Let (TU0Y, DUV be

the universal pseudo-representation of G to Rgg deforming (tr(pp), det(pp))-

As p is odd, it follows that a 2-dimensional pseudo-representation (¢, d)
of G to an object R of C is determined by ¢ which is a pseudo-character
of dimension 2 in the sense of Rouquier ([21]) (see [4, Section 1.4]). Indeed
if p is odd and (¢,d) : G — R is a 2-dimensional pseudo-representation,

then d(g) = M for all g € G. So, in this case, the theory of pseudo-
representations is same as the theory of pseudo-characters.

Hence, it follows that Rgg (resp. Rggl) is the universal deformation ring
and T"™V (resp. t""V) is the universal pseudo-character of the pseudo-
character tr(pp) in the category C (resp. Cy). Therefore, for simplicity, we
will be working with the residual pseudo-character tr(pp) and the universal
pseudo-characters 7% and "™ deforming tr(po) instead of working with
the corresponding pseudo-representations.

Denote the pseudo-character obtained by composing t"™™V with the sur-
jective map Rggl — (jo yred by tunivred and the pseudo-character obtained

by composing T"™" with the surjective map Rgg — (Rgg)red by Tunivired,

We will frequently specialize to the case where G = Gg,np, and pg is
odd. However, even after specializing to this case, we will keep using the
notation introduced above unless mentioned otherwise.

2.2. Reminder on Generalized Matrix Algebras (GMAs). In this
subsection, we recall some standard definitions and results about General-
ized Matrix Algebras which will be used frequently in the rest of the article.
From now on, we will use the abbreviation GMA for Generalized Matrix
Algebra. Our main references for this section are [2, Section 2.2] (for GMAs
of type (1,1)), [2, Section 2.3] (for topological GMAs) and [3, Chapter 1]
(for the general theory of GMAs). For more information, we refer the reader
to them.
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We first recall the definition of a topological Generalized Matrix Algebra
of type (1,1). Let R be a complete noetherian local ring with maximal
ideal mp and residue field F. So R is a topological ring under the mg-adic
topology which we fix from now on. Let A = (& £) be a topological GMA
of type (1,1) over R. This means the following:

(1) B and C are topological R-modules,

(2) An element of A is of the form (2%) with a,d € R, b € B and
ceC,

(3) There exists a continuous morphism m’ : B ®z C — R of R-
modules such that for all by, bs € B and ¢1, co € C, m/(by ® ¢1)by =
m/(be ® c1)by and m/ (b ® ¢1)co = m/ (b1 ® ¢2)cy.

So A is a topological R-algebra with the addition given by

(al b1)+(02 b2>:<a1+a2 b1+b2)
1 dy cy da ci+cy dy+dy)’

the multiplication given by

<CL1 bl> . <a2 b2> - <a1a2 +m/ (b ® c2) a1by + doby >
c1 di oy da) dyca + ageq didy +m/(by ® ¢1)

and the topology given by the topology on R, B and C.

For the rest of this article, GMA means topological GMA unless men-
tioned otherwise. By abuse of notation, we will always denote by m’ the
multiplication map B ® g C — R for any GMA and any R. From now on,
given a pro-finite group G and a GMA A, a representation p : G — A*
means a continuous homomorphism from G to A* unless mentioned other-
wise. If p : G — A* is a representation, then we denote the R-submodule
of A generated by p(G) by R[p(G)]. Note that R[p(G)] is a subalgebra of

A. If p: G — A* is a representation such that p(g) = (Zj ZZ) for every
g € G, then we define tr(p) : G — R by tr(p)(g) := ay + dg. For a topologi-
cal R-module B, we denote by Hompg(B/mgrB,F) the set of all continuous

R-module homomorphisms from B/mprB to F.

Definition 2.1. Let A = (£ B) be a GMA with the map m’ : B&gC — R
giving the multiplication in A. We say that A is faithful if the following
conditions hold:

(1) If be Band m'(b®c¢) =0 for all ¢ € C, then b =0,
(2) If ce C and m'(b®¢) =0 for all b € B, then ¢ = 0.

Definition 2.2. We say that A" is an R-sub-GMA of A if there exists an R-
submodule B’ of B and an R-submodule C’ of C' such that m/(B'®@C’) C R

and A’ = (C@/ %) ie. A/ ={(2b)eA:be B, ce '} (sce 2, Section 2.2]
for the definitions of sub-GMA and R-sub-GMA). Note that A’ is a sub-

algebra of A and hence, a GMA over R.
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Definition 2.3. Let R be an object of C and t : G — R be a pseudo-
character deforming tr(pg). We will say that ¢ is reducible if there exists
characters 1, 72 : G — R* such that ¢t = n; + 12 and »; is a deformation of
x; for i =1,2.

Lemma 2.4. Let R be a complete noetherian local ring with mazimal ideal
mp and residue field F. Let t : G — R be a pseudo-character deforming
tr(pg). Then, there exists a faithful GMA A = (g g) and a representation
p: G — A* such that

(1) For g € G, if plg) = (2210, then ay = x1(g) (mod mp), dy =

cg dyg
x2(g) (mod mpg) and t(g) = ag+dy (i.e. t =tr(p)),

(2) m'(B®pg C) C mp, where m' is the map giving the multiplication
in A,

(3) RIp(G)) = 4,

(4) B and C are finitely generated R-modules,

(5) the minimal number of generators of B as an R-module is at most
dim(H(G, x)) and the minimal number of generators of C' as an
R-module is at most dim(H' (G, x™ 1)),

(6) ¢t (mod I) is reducible, where I :==m/(B ® C).

Proof. As x1 # X2, po is residually multiplicity free. We have assumed that
G satisfies the finiteness condition. Hence, the existence of A and p with the
properties (1)—(4) follows from parts (i), (v), (vii) of [2, Proposition 2.4.2].
To prove part (6), observe that azy = agay (mod I) and dyy = dydgy
(mod I).

The proof of part (5) of the lemma is same as that of [3, Theorem 1.5.5].
We only give a brief summary here. Given f € Homg(B/mgrB,F), we get
a morphism of R-algebras f*: A — My(FF), such that

(e ) )

From the first assumption, it follows that the restriction of f* to p(G) is
an extension of xo by x1 and hence, an element f* of H'(G, x) (see proof
of [3, Theorem 1.5.5] for more details). So we get a linear map j

Homp(B/mrB,F) — H'(G,x) sending f to f*. Since R[p(G)] = A, we
get that the map j is injective. Hence, Nakayama’s lemma gives the asser-
tion about the number of generators of B. The assertion about the number
of generators of C' follows similarly. O

Remark 2.5. It follows, from parts (5) and (6) of Lemma 2.4, that if
HY(G,x") = 0 for some i € {1,—1}, then TV is reducible and hence, it
arises from a 2-dimensional G-representation over Rgg.

Thus, from Lemma 2.4, we see that a pseudo-character ¢t : G — R de-
forming tr(pp) arises from a representation over R if the GMA found in
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Lemma 2.4 corresponding to the tuple (G,t, R) is isomorphic to a subalge-
bra of Ma(R).

Lemma 2.6. Let A = (B L) be a faithful GMA over R and p : G — A*
be a representation. Then:

(1) If y € R is an element such that either yB = 0 or yC = 0, then
ym/(B® C) =0,

(2) If B is a free R-module of rank 1, then there exists an R-algebra
isomorphism ¢ between A and the R-subalgebra of Ms(R) given by

(m’(§®0) g) such that ¢(tr(p(g))) = tr(p(g)) for every g € G.
Proof.

(1). Note that m’ : B® C — R is a map of R-modules. Hence, for every
ye R, beBand ce C, m(yb®c) =m'(b®yc) = ym/(b® c). The first
part follows immediately from this.

(2). Fix a generator v of B. This choice gives us an R-module isomorphism
fy : B — R such that b = f,(b)y for every b € B. Consider the map

f:A— A which sends (2b) € Ato (m’(z(g)c) f"(gb)) It is easy to check,

using the facts that the multiplication map m' : B®g C — R is R-linear
and fy(b)m/(y ® ¢) = m'(b® ¢), that f is a continuous homomorphism of

R-algebras. Note that if a € A, then tr(a) = tr(f(a)). This finishes the
proof of the second part. O

When R is reduced, it turns out that any GMA representation comes
“very close” to being a true representation. To be precise, every GMA
representation over a reduced ring comes from a true representation over
its total fraction field. We record this as a formal result below.

Lemma 2.7. Let R be a reduced complete noetherian local ring with maz-
imal ideal mp and residue field F. Let K be the total fraction field of R. If
A= (EB) is a faithful GMA, then there exist fractional ideals B' and C’
of K and R-module isomorphisms ¢ : B — B’ and ¢ : C — C' such that
(1) For allb € B' and ¢ € C', V.c' € R, where . denotes the multipli-
cation in K,

(2) If A" = (g, %’) C My (K), then A’ is an R-sub-algebra of Ma(K),

(3) The map ® : A — A’ given by ® ((¢5)) = (w‘(lc) ¢gj)> is an isomor-

phism of R-algebras.
Proof. This follows directly from [3, Proposition 1.3.12]. O

2.3. Reducibility properties of pseudo-characters. We will now de-
fine a reducible pseudo-character and study properties of it. We begin by
computing tangent space dimension of Rg;l under some hypothesis.
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Lemma 2.8. Suppose H*(G,1) = 0. Let
k = dim(H'(G,1)),m = dim(H'(G, X)) and n = dim(H (G, x™1)).
Then dim(tan(Rg;i)) =2k + mn.

Proof. Recall that Ext(n,8) ~ HY(G,§/n) and ExtZ(n,n) ~ H*(G,1) for
any continuous characters 7, § : G — F*. Now the lemma directly follows
from [1, Theorem 2] (see also [4, Proposition 20]). O

Lemma 2.9. If J is an ideal of Rg;l such that t" (mod J) = tr(pg), then

J is the mazimal ideal of Rg;i.

Proof. Let f: Rg;l —» Rg(? /J be the natural surjective homomorphism. Let

g : Rg(()i — Rggl /J be the morphism obtained by composing the natural

surjective morphism Rgg — F with the map F — Rggl/ J giving the F-
algebra structure on ng;i /J. As "V (mod J) = tr(pp), we see that f o
pd
Po
Therefore, we get that J is the maximal ideal of Rf,—’s. g

tWiV — g o "V, Hence, by the universality of RES, we get that f = g.

Before proceeding further, we introduce some more notation. Let G?P
denote the continuous abelianization of G.

Lemma 2.10. Let J be an ideal of Rg;i such that t"™ (mod J) is reducible.
If H*(G,1) = 0 and dim(H'(G,1)) = k, then dim(tan(RY/J)) < 2k and
the Krull dimension of RSS/J is at most 2k.

Proof. Denote Rg;i /J by Rand " (mod .J) by ¢ for the rest of the proof.
Suppose t' = X1 + X2, where X1, X2 : G — R* are characters deforming x1
and a9, respectively. _

As H%(G,1) = 0 and dim(H'(G, 1)) = k, we see that lim, G2 /(G*P)P' ~
Hle Zp. Let {g1,...,gk} be a set of topological generators of the abelian
pro-p group @Z Gab/(Gab)pi. For all 1 < i < k, there exist z;, y; € R such
that x1(g:) = x1(9:)(1 + ;) and X2(g:) = x2(9:)(1 + ;). Let I be the ideal
of R generated by the set {x1,..., Tk, y1,...,Yx}

Since {g1,...,9x} is a set of topological generators of l&nz Gab/(Gab)pi,
we see that ' (mod I) = tr(pg). So, by Lemma 2.9, the kernel of the natural
surjective map Rgg — R/I is the maximal ideal of Rf—)’;l and hence, I is the

maximal ideal of R. This proves the claim about dim(tan(R)). The claim
about the Krull dimension of R follows directly from dim(tan(R)) < 2k. O

Remark 2.11. Comparing Lemma 2.10 and Lemma 2.8, we see that if
H?(G,1) = 0, HY(G,x) # 0 and HY(G,x~!) # 0, then t" is not re-
ducible.
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Remark 2.12. Note that Lemma 2.10 is also true when H?(G,1) # 0
but we don’t prove it here as we will mostly restrict ourselves to the case
H?(G,1) = 0 in what follows.

2.4. Deformation rings of reducible non-split representations. We
have pg = x1 ® xo for some distinct characters x1, x2 : G — F*. Let
X = x1/x2- Thus, x : G — F* is a non-trivial character. For a non-zero
element 2 € H'(G,x), denote by p, the corresponding representation of
G. So py : G — GLo(F) is such that p, = (%1 ;2) where * corresponds
to x. Similarly, for a non-zero element y € H'(G,x '), denote by py the
corresponding representation of G.

Let » € H'(G,x") with i € {1,—1} be a non-zero element. Denote by
R%:f the universal deformation ring of p, in the category C in the sense of
Mazur ([19]). Note that, for a non-zero x € H(G, x*) with i € {1,—1},
the centralizer of the image of p, is exactly the set of scalar matrices as
X # 1. Hence, the existence of Rgif follows from [19] and [20]. Let R%Ef
be the universal deformation ring of p, in characteristic p. So we have
Rgif (p) ~ R%Ef. Let piiV : G — GLg(R%jf) be the universal deformation
of pg.

We will frequently specialize to the case where G = Gg,n,. However, even
after specializing to this case, we will keep using the notation introduced
above unless mentioned otherwise.

Lemma 2.13. Letx € HY(G, X", with i € {1, -1}, be a non-zero element.
Let dim(HY(G, x%)) = m, dim(HY(G,x™ ")) = n and dim(H'(G,1)) = k.
Then dim(H(G,ad(p,))) = dim(tan(R%:f)) <m+n+2k-1.

Proof. Recall that dim(tan(jof)) = dim HY(G,ad(p;)) (see [19]). As p is

odd, ad(7,;) = 1 ® ad®(p,). We have the following two exact sequences of
G-modules:

(1) 0= x* = ad’(p,) =V =0,
2)0—=>1=-V>x"—=0.

So, from the second short exact sequence, we get

dim(H'(G,V)) < dim(H'(G,1)) + dim(HY(G, x %)) = k + n.

Since dim(H(G,V)) = 1, the exact sequence of cohomology groups arising
from the first short exact sequence gives

dim(H'(G,ad"(7,))) < dim(H'(G,V)) + dim(H' (G, x%)) — 1.

Combining these two inequalities, we get that dim(H'(G,ad%(5,))) < k +
m+n—1.
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Since
dim(HY(G,ad(p,))) = dim(HY(G,ad’(p,))) + dim(H'(G, 1)),
we get that dim(H(G,ad(p,))) <2k +m +n — 1. O

Lemma 2.14. Suppose dim(H'(G, x)) = 1. Then for any non-zero x,z' €
HYG, x), ReeH ~ RIeL,

Proof. As dim(H'(G,x)) = 1, if z, 2’ € H'(G, ) are both non-zero, then
2’ = ax for some non-zero a € F. Therefore, by conjugating p, by the

matrix (& 9), we get p,/. Hence, we see that R4 ~ R%:f. U

Note that given any non-zero element x € H(G, ") with i € {1, -1},
one has a map VU, : Rgg — R%if induced by the trace of pi™V. We now

recall a result due to Kisin ([18, Corollary 1.4.4(2)]) on the nature of the
map V,:

Lemma 2.15. If dim(H'(G,x%)) = 1 for some i € {1,—1} and x €
HY(G,x") is a non-zero element, then the map ¥, de — Rdef is surjec-
tive.

2.5. Some additional results for Galois groups. We now turn our
attention to the case when G' = Gg ), for some integer M and state some
results which will be used later. Throughout this subsection, we assume
that N is an integer not divisible by p, po : Go,np = GL2(F) is odd and
po = X1 D x2 where x; : Gg,np — F* is a character for ¢ = 1,2.

2.5.1. Dimension of certain Galois cohomology groups. We begin
by computing dimension of certain Galois cohomology groups. These com-
putations will be used later mainly to compute dimensions of tangent spaces
of deformation and pseudo-deformation rings.

Lemma 2.16. Let { be a prime such that ¢ 1 Np. Let x : Go.np — F* be
an odd character. Then, the following holds:

(1) Ifpt o(N), then dim(Hl(GQNp, 1))=1 and diIn(.FIQ(GQJVp7 1))=0,
(2) dim(H*(Go,np,x)) =dim(H(Gg np,x))—1 and dim(H" (Gg,np, X))

(3) If dim(HY(Go.np, X)) =1 and X|Gg, = wp, then dim(HY(Go.nep, X))
(4) If dim(HY(Go.np, X)) =1 and X|cg, # wp, then dim(HY(Go.nep, X))

(5) dim(H (Go,vep: X)) — dim(H (Ggnp X)) < 1.
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Proof. As we have assumed p 1 ¢(N) in the first part, the Kronecker—
Weber theorem implies that dim(H'(Gg,np,1)) = 1. So, from the global
Euler characteristic formula, we get H*(Ggnp,1) = 0 which proves the
first part.

Since x is assumed to be odd, the global Euler characteristic formula
implies that dim(H(Ggnp, X)) — dim(H?(Ggnp, X)) = 1 which means
dim(H'(Gg,np, X)) > 0. This proves the second part.

If X = wp, then by Kummer theory, dim(H'(Gg np,wp)) = 14+ number
of distinct primes dividing N (see the proof of [13, Proposition 24] and the
remark after it). Thus, dim(H'(Ggnepwp)) = 1 + dim(H(Go,np,wp))-
Therefore, if dim(H'(Gg np,wp)) = 1, then N = 1. Thus, we get that
dim(H'(Gg nep,wp)) = 2 in this case. This proves the third part for y = w,.

If x # wp and x is odd, then, by the Greenberg-Wiles version of the
Poitou-Tate duality ([24, Theorem 2]), we see that dim(H'(Gg,np, X)) =
dim(Hg (Go,np, X 'wp)) + 1+ 3y np dim(H°(Gg,, X_lwp|GQq)), where

Hy(Gonp X~ 'wp) = ker(H' (Go,nps X~ 'wp) — ] H'(Goys X 'wplag,))-
q|Np

Therefore, we get that

dim(H' (Go,nep, X)) — dim(H' (Go,np, x)) < dim(H? (G, X' wplag,)) <1

which proves the last part of the lemma.

Now from the equality above, we see that if dim(H(Ggnp, X)) = 1,
then H}(Gg np, X 'wp) = 0 and hence, H} (G nep, X~ 'wp) = 0. Hence, we
get dim(H' (G, nep, x)) — dim(H' (Go,np, X)) = dim(H®(Gg,, x " 'wplag, ))-
This finishes the proof of the remaining part of the lemma. O

Lemma 2.17. Suppose p { ¢(N). Let £ be a prime such that ¢ t Np and
ptl—1. Let p : Gonp — GL2(F) be an odd representation such that
Endgg v, (p) = F. Then, the following holds:

(1) dim(H*(Gg,np,ad(p))) = dim(H' (Go,np, ad(p))) — 3,
(2) Ifp | £+1, dim(H' (Go,np ad(p))) = 3 and plgy, = 1 @ wpn, then
dim(H' (G, nep, ad(p))) = 5.
Proof. As p is assumed to be odd and Endg, ,(p) = F, the first part of

the lemma follows directly from the global Euler characteristic formula.
To prove the second part of the lemma, observe that

dim(H" (Gg.np,ad’(p))) = 2

because we are assuming p { ¢(N) and dim(H' (Gg np,ad(p))) = 3. Now, by
the Greenberg—Wiles version of the Poitou-Tate duality ([24, Theorem 2]),
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we get that

dim(H" (Gg np,ad’(p)))
> dlm(H(%(GQ,N]r (ado(p)
— dim(H°

)" ® wp)) + dim(H' (Goo,2d’(p)))
(Gooyad”(p))) + dim(H' (Gg,,ad’(p)))
— dim(H"(Gg,,ad"(p))) + dim(H"(Gg,ad’(p)))
— dim(H"(Gg, (ad’(p))* @ wp)),

where H}(Go.np, (2d’(p))* @ wp) is

ker(H' (Go,np, (ad”(p)* @ wp) — [ H'(Gq,, (ad(p))” ® wplag, ))-
q|Np
(1) Note that H%(Gg,ad’(p)) = 0. As pis odd, dim(H°(G,ad’(p))) =
1. As |G| = 2 and p > 2, we have H'(Goo,ad’(p)) = 0,
(2) Suppose dim(H°(Gg, (ad’(p))* ®w,)) = k. By the local Euler char-
acteristic formula,

dim(H" (G, ad*(p)|6,,)) — dim(H*(C,,ad(p)l )
= 3+ dim(H°(Gg,, (ad’(p))” @ wylay)) = 3+ K.

Hence, we get that

dim(H' (Gg,np,ad’(p)))
> 34K —1— K + dim(H} Gy, (d°(0)” 1))
= 2 + dim(H} (Go,np, (2d’(p))* @ wp)).

As dim(H (G, np,ad’(p))) = 2, we get that Hi (G, np, (ad’(p))*®@w,) = 0.

Hence, we get that for any prime ¢, dim(H%(Gg,, (ad®(p))* ® wplag,)) +
dim(H(Gg,np,ad"(p))) = dim(H (Go, nep,ad”(p))). Now let £ be a prime
such that £ = —1 (mod p) and plg,, = 17 ® wpn. In this case wylgy, =
Wy 1|G©e' Therefore, ado(p)|GQe ~ 1@ wplay, @ wplag, and we get that
dim(HY(Go.nep,ad’(p))) = dim(HY(Gonp,ad’(p))) +2 = 2+ 2 = 4. As
p1¢(NE), we have dim(H(Gg nep,ad(p))) = 5. O

2.5.2. GMA results for Gg,nep- We now view pg as a representation
of G, n¢p for some prime £ Np. We will state results which will be used
later while analyzing how pseudo-deformation rings change after allowing
ramification at an additional prime. For a prime ¢, denote by ¢ the Teich-
muller lift of £ (mod p) in Z,. So E/EG 1 + pZyp. Recall that, for o € F, we
denoted its Teichmuller lift in W (F) by a.
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Lemma 2.18. Let R be a complete noetherian local ring with maximal ideal
mp and residue field F. Let ¢ be a prime such that £ { Np and X’G@e # 1.
Let t : Go,nep — R be a pseudo-character deforming tr(po). Let g; be a
lift of Froby in Gg,. Then, there exists a faithful GMA A = (E8) and
a representation p : Go g — A* satisfying the properties of Lemma 2.4
such that

Ht=t d _ (alEebotte o >
(1) r(p) and p(ge) < 0 X2 (Frob,)(1+d) )’

(2) R[p(Gq,)] is a sub R-GMA of A,
(3) pl1, factors through the Zy-quotient of the tame inertia group at £.

Moreover, if E/Z is a topological generator of 1 + pZ,, the map RES’Z — R
induced by t is surjective and J is an ideal of R such that t (mod J) is
reducible, then the ideal generated by p, a, d and J is the maximal ideal

of R.

Proof. Since pg is assumed to be odd, we get that x1 # x2 and pg is
residually multiplicity free. We know that Gg ng, satisfies the finiteness
condition. Moreover, we are assuming that ><|(,leZ # 1 which means gy (gy)
has distinct eigenvalues. The existence A and p satisfying properties of
Lemma 2.4 and the first part of the lemma follow from parts (i), (iii), (v)

—

and (vii) of [2, Proposition 2.4.2]. As x1(Froby)(1 4+ a) # x2(Froby)(1 + d)
(mod mp), the claim that R[p(Gg,)] is a sub R-GMA of A follows from |2,
Lemma 2.4.5].

To prove the third part of the lemma, let Ky be the maximal exten-
sion of Q unramified outside the set of primes dividing N/p and oco. So
Go.nep = Gal(K(/Q). Let K be the extension of Q fixed by ker(pg). So K
is a sub-extension of Ky and ¢ is unramified in K. By [12, Lemma 3.8], the
pseudo-character ¢ factors through G n¢p,/H, where H C Gal(Ky/K) is
the smallest closed normal subgroup of Gg n¢p such that Gal(Ko/K)/H is
a pro-p quotient of Gal(Ky/K).

Let g € H. As t factors through G n¢p/H , we get t(zg) = t(z) forall z €
Go,nep- Thus, we have tr(p(g'g)) = tr(p(g')) for all ¢ € Gg nip. Let A =

(%) and p(g) = (4). As Rlp(Gone)] = A, weget tr (4 4) - (24)) =

tr ((‘Z,/ Z’,)) for all (g,/ Z/,) € A. Putting o’ =1 and b = ¢ = d = 0 gives
us a = 1. Putting d’ = 1 and ¥ = ¢ = a’ = 0 gives us d = 1. Putting
bV =d =d =0, we get m(b®c) =0 for all ¢ € C. So faithfulness of
A implies b = 0. Similarly, putting ¢ = o’ = d’ = 0 gives us ¢ = 0 which
proves that p(g) is identity.

As /£ is unramified in K, we get that I, C Gal(Ky/K). Therefore, we see
that p|7, factors through the Z,-quotient of the tame inertia group at ¢.

We will now prove the remaining part of the Lemma. Let I be the ideal
of R generated by p, a, d and J and ¢’ = ¢ (mod I). Suppose 1, 1 :
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Go,nep — (R/I)* are characters deforming x1 and x2 such that ¢’ = 11 +1)s.

2_ 4/
As a,d € I, we get that t'(gs) = x1(Froby) + x2(Froby) and % =
x1x2(Froby). On the other hand, we have ¢'(g¢) = v1(ge) + 2(g¢) and

M = wg(gg) Therefore, 11(g¢) and 12(gy) are roots of the poly-
nomlal f(z) = 2% — (x1(Froby) + xa(Froby))z + x1x2(Froby) € R/I[x]. As
X|GQL, # 1, x1(Froby) # x2(Froby). Hence, from Hensel’s lemma, we get
that ¥;(g¢) = xi(Froby) for i =1, 2.

Thus, for i = 1,2, 9; is a deformation of x; with ¥;(g¢) = xi(Froby).
As p { £ — 1, both 91 and 1 are unramified at ¢. Since p 1 ¢(N¢) and
Z/l7 is a topological generator of 1 + pZ,, it follows that the image of g,

in L G@I?Nep/(Gg?Nep)pl ~ Zp is a topological generator of lim, G@?N@/
Gab . )P, Therefore, it follows, from [19, Section 1.4], that ¢ = x1 and
( Q,Nfp X

1y = x2. Thus, we have ¢’ = tr(pg). Since the map RESM — R induced by ¢
is surjective, we get, from Lemma 2.9, that I is the maximal ideal of R. [

Lemma 2.19. Suppose dim(H(Go np, X)) = dim(H (Gg np, x 1)) = 1.
Let £ be a prime such that £ = —1 (mod p) and x|c,, = wplag, - Let R be a
complete noetherian local ring with maximal ideal mgr and residue field .
Let t : Gg,ngp — R be a pseudo-character deforming tr(po). Let A= (B B)
be the GMA associated to t in Lemma 2.18 and p : Gg nep — A* be the
corresponding representation given by Lemma 2.18. Let iy be a topological
generator of the Z,-quotient of Iy and suppose p(ig) = (‘é 3). Then:

(1) Both B and C' are generated by at most 2 elements,

(2) There exist b’ € B and ¢ € C such that B and C are generated by

{b,b'} and {c,d} as R-modules, respectively.

Proof. As dim(HY(Go.np, X)) = dim(HY(Gonp,x™ 1)) =1, p | £+ 1 and
XlGq, = wplag,, Lemma 2.16 implies that

dim(H' (Go,nep, x)) = dim(H' (Gonep X)) = 2.
The first part of the lemma now follows from part (5) of Lemma 2.4.

By Lemma 2.18, p(ip) is well defined and p(I;) is topologically gen-
erated by p(i¢). Let ji : Homg(B/mgB,F) — HY(GgnNep,X) and j2 :
Hompg(C/mpC,F) — H'(Ggnep, X ') be the injective maps obtained in
the proof of part (5) of Lemma 2.4. Let y be an element of the subspace
Homp(B/R.b + mrB,F) of Hompg(B/mgrB,F). So, j1(y) is an element of
HY(Gog,nep, X) such that ji(y)(Ie) = 0 i.e. ji(y) is unramified at ¢. Thus,
j1(y) lies in the image of the injective map H*(Gg np, X) — H (G nep, X)-
Hence, dim(Hompg(B/R.b + mgB,F)) < dim(H'(Gg np, X)) = 1, There-
fore, by Nakayama’s lemma, B/R.b is generated by at most 1 element. By
the same logic, we also get that C'/R.c is generated by at most 1 element.
So if B = R.b, then we can take b’ = 0. Otherwise, B/R.b is generated by
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one element and let &’ be a lift of its generator in B. Thus, {b, b’} generates
B in both the cases. The lemma for C' and ¢ follows similarly. U
3. Comparison between ’R%: and ’R%ef

In this section, we will explore the question of determining when the
universal pseudo-character T"™V comes from a representation defined over
Rgg. We do this by first assuming the existence of such a representation
to study its implications. Then, we will study if the necessary conditions
found this way are sufficient for the existence of such a representation and
its consequences for the relationship between Rgg and Rgif. Note that,

from Remark 2.5, we already know that 7"V comes from a representation
if either H'(G,x) or H'(G,x™!) is 0. Hence, for the rest of the article,
we are going to assume that both H'(G, x) and H'(G,x~!) are non-zero.
Note that, when G' = G nj, and pg is odd, this assumption is satisfied by
Lemma 2.16. In the last subsection, we state the implications of the main
results found in the general scenario for the case G = G, nyp-

3.1. Necessary condition for "™V to come from a representation.
The existence of a representation over Rgg with trace T"™V implies that

iV js the trace of a representation defined over Rg;i. We will first assume

the existence of a representation over Rg;l with trace t"™V to relate the rings
Rg;j and R%jf. Specifically, we will compare the dimensions of their tangent
spaces to get the necessary conditions for the existence of the required

representation. This will give us a necessary condition for 7"V to be the
trace of a representation.

Proposition 3.1. Suppose H%(G,1) = 0. If there exists a continuous rep-
resentation
p:G— GLQ(RES)
such that tr(p) = t™V, then
either dim(HY(G,x)) =1 or dim(HY(G,x™1))=1.

Proof. From Lemma 2.8, we know that dim(tan(R%ﬁ)) =2k+mn. Asm # 0
and n # 0, dim(tan(Rgg)) > 2k. Let m be the maximal ideal of RES.

Suppose there exists a continuous representation p : G — GLQ(RES) such
that tr(p) = t"V. Let p be its reduction modulo m. As tr(p) = tr(po), it
follows, from the Brauer—Nesbitt theorem, that p is isomorphic over F to
either g or p, for some z € H'(G, x) or HY (G, x~ 1) with o # 0.

Suppose p =~ pg. So, by changing the basis if necessary, we can assume
that p = po. For g € G, let p(g) = (ag b

o d ) Therefore, we see that by,
9 “g
cg €m, ag = x1(9) (mod m) and dy = x2(g9) (mod m). Thus, we get two
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characters x1, X2 : (de/m )* such that " (mod m?) = tr(p)
(mod m?) = X1 + X, X1(g) = ay (mod m?) and X2(g) = dy (mod m?).

By Lemma 2.10, we get that dim(tan(RES/m%) < 2k. But this contra-
dicts the fact that dim(tan(jo )) > 2k. So we conclude that p % po.

Thus, p ~ p, for some x € H (G, x*) with i € {1, -1} and = # 0. So, by
changing the basis if necessary, we can assume that p = p,. This means that
p is a deformation of g, and hence, there exists a continuous morphism ¢, :
R%ﬁf — Rggl. Moreover, ¢, is surjective as the elements "™V (g) = tr(p(g))
with g € G are topological generators of Rgsl as a local complete F-algebra
([12, Remark 3.5)). So, in particular, dim(tan(R3")) > dim(tan(RE)).

From Lemma 2.13, we know that dim(tan(Rggf)) <2k+m+n—1. So,
we get that 2k+m+n—1 > 2k+mn which implies that 0 > (m—1)(n—1).
Therefore, we conclude that either m =1 or n = 1. O

Remark 3.2. Proposition 3.1 also follows from [1, Theorem 4].

Remark 3.3. It is not clear how to prove Proposition 3.1 when H?(G, 1) #
0 by employing the techniques used above or [1, Theorem 4]. This is primar-
ily because one can not determine the exact dimension of tan(Rgg) using [1,
Theorem 2] when H?(G, 1) # 0.

3.2. Existence of the representation over (’R%’:)red. We will now

explore whether the necessary condition for 7"V to be the trace of a rep-
resentation defined over Rgg obtained in Proposition 3.1 is sufficient or not.
We begin by proving that any deformation of tr(pg) to a domain comes from
a representation when dim(H!(G, x%)) = 1 for some i € {1, —1}.

Note that we do not need the hypothesis that H2(G, 1) = 0 for the results
proved in this subsection.

Proposition 3.4. Suppose there exists anic {1, —1} such that H*(G, x") =
0 and dim(H'(G, X)) = 1. For such an i, fix a non-zero x € H*(G,x").

Let P be a prime of Rgg. Then there exists a representation p : G —
GLQ(RE(C}/P) such that p is a deformation of p, and tr(p) = T (mod P).

Proof. Without loss of generality, assume dim(H'(G, x)) = 1, H*(G, x) =
0. For the rest of the proof, denote Rgg/P by R and T""" (mod P) by t.
Let K be the fraction field of R and m be the maximal ideal of R.

Suppose ¢ is not reducible. Let A = (& £) be the faithful GMA obtained
for the pseudo-character t : G — R in Lemma 2.4 and p be the correspond-
ing representation. By Lemma 2.7, we can take A to be an R-subalgebra of
Msy(K).

As t is not reducible, we have B, C' # 0. Hence, by Part (5) of Lemma 2.4,
B is generated by 1 element over R. As B is a non-zero fractional ideal of
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the fraction field K of R, it follows that the annihilator of B is 0. So B is
a free module of rank 1 over R. Hence, by second part of Lemma 2.6, we
get a representation p’ : G — GLa(R) such that tr(p’) = tr(p) = t and p/
(mod m) = py, for some non-zero vg € H'(G,x). As dim(H*(G,x)) = 1,
for any non-zero * € HY(G,X), px =~ pz,- Hence, given a non-zero x €
H'(G, x), we can conjugate p’ by a suitable matrix to get a deformation of
P with trace t.

Now suppose t is reducible. So we have t = Y1 4+ X2 where X; is a de-
formation of y; for ¢ = 1,2. Let ¥ = )2122_1. For every n > 0, denote X
(mod m™) : G — (R/m"™)* by Xn. This makes R/m™ into a G-module for
every n > 0. So ¥1 = x. For every n > 0, the natural map R — R/m" is a
map of G-modules and it induces a map f,, : H*(G,X) — H'(G, X»). These
maps induce a map f : HY(G,X) — lim HY (G, xn). As H°(G, xy) = 0 for
all n > 0, we get, by [22, Corollary 2.2] and its proof, that the natural map
f is an isomorphism.

Now, for every n > 0, the natural exact sequence 0 — m"/m"+1 —
R/m"™™! — R/m™ — 0 is an exact sequence of discrete G-modules. As
the modules are discrete, we get an exact sequence H'(G,R/m"!) —
HY(G,R/m") — H*(G,m"/m™) from the exact sequence of cohomology
groups (see [22, Section 2] for more details). Note that H'(G, R/m"*!) =
HY(G,Xn41) and HY(G, R/m™) = HY(G,X»n). As Xnz1 (mod m/m"™*1) =
X, we see that H?(G,m"/m"™!) ~ H?(G,x)®" for some r > 0. There-
fore, H?>(G,m"/m"*1') = 0 which means the map H'(G,R/m"*!) —
HY(G, R/m") is surjective for every n > 0. Therefore, the natural map
HYG,X) — HYG, ) is surjective.

Given a non-zero x € H'(G, ), there exists a ¥ € H'(G,Y) such that

f1(Z) = x. Therefore, the representation p : G — GLa(R) given by p(g) =

(21(9) X2(9)%(g)

0 3a(g) ) is a deformation of p, with trace t. O

Theorem 3.5. Suppose there exists ani € {1, —1} such that H?(G,x%) =0
and dim(H (G, %)) = 1. Fiz such ani and let z € H' (G, x*) be a non-zero

element. Then the map ¥, : Rgg — R%:f induces an tsomorphism between
d
(Rgo )red and (R%:f)red'

Proof. Without loss of generality, suppose dim(H'(G,x)) = 1 and
H?(G,x) = 0. Let # € H'(G,x) be a non-zero element and let P be a

prime ideal of Rgg. From Proposition 3.4, there is a representation p : G —
GLQ(Rgd /P) deforming p, such that tr(p) = 7"V (mod P). Hence, there

0
exists a map f : R%jf — Rgg /P such that p = f o p""V. Hence, we have
fotr(piv) = TV (mod P). Recall that ¥, o TV = tr(pi"lV). Hence,

xT x
from the universal property of Rgg, it follows that the natural surjective
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map Rg;i — Rgg /P is same as foW,. Hence, ker(¥,) C P for every prime

P of Rgg. This finishes the proof of the theorem. O

3.3. Existence of the representation over RPY. It is natural to ask if
the non-reduced version of Theorem 3.5 is true or not. In order to get an idea
about the answer, we will now study if there exists a representation over
Rgf with trace t"™V. We first prove a lemma about the structure of Rg;l:

Lemma 3.6. Suppose H*(G,1) =0 and dim(Hl(G, X)) =1 for some i €
{1,-1}. For such an i, let dim(H' (G, x™")) := m, dim(H?*(G,x™")) :== m’
and diim(H?(G, x%)) :=n'. Let dim(H'(G,1)) := k. Then,

R;_)g ~ F[[X:[, . ,Xm+2k]]/-[7

where I is an ideal of F[X1,..., Xiyok] generated by at most m' + mn’
elements.

Proof. By [23, Theorem 3.3.1], we see that Rgg is a quotient of a cer-
tain ring R}) by an ideal I generated by at most kg elements, where
ko = Y31 dim(Extg(x;, x;)) + dim(Ext(x1, x2)). dim(Exté (xa, x1)) +
dim(ExtZ (x2, x1)). dim(Ext (x1, x2))-

Recall that ExtZ(n,d) ~ H?(G,d/n) for any characters 0, § : G — F
and we have assumed H?(G, 1) = 0. Therefore, we see that ky = Z?:l 0+
(m). 1+ m.n =m'+mn'.

The ring R}, is defined in [23, Definition 3.2.3]. From the definition, we
see that R}j is a quotient of the power series ring in mg variables over F,
where

2

mo =Y dim(Extg(xi, xi)) + dim(Extg (x1, x2)) dim(Exté(xa, X1))-
i=1
By [23, Fact 3.2.6], the Krull dimension of Rp, is 3" <; j<o dim(Extg (xi, x5))
+ 1 — 2. Since we are assuming that dim(H'(G,x")) = 1 for some i €
{1, -1} and dim(Ext$ (x1, x1)) = dim(Extg (x2, x2)) = k, we get that mg =
2k + m and the Krull dimension of R}, is 2k + m. Hence, we have R} ~
F[X1,..., Xog+m]. This completes the proof of the lemma. O

We are now ready to prove an improvement of Theorem 3.5.

Theorem 3.7. Suppose H?(G,1) =0. Suppose there exists an i € {1, -1}
such that dim(Hl(G, X)) =1, H*(G, x') =0, dim(HY(G,x™ %) € {1,2,3}
and dim(H?(G,x™")) < dim(HY(G,x™ ). Then, there evists a represen-
tation p : G — GLQ(R%S) such that tr(p) = t*V and for any non-zero
r € HY (G, ), Rg;i ~ Rg:f.
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Proof. Without loss of generality, assume dim(H'(G,x)) = 1. So we have

pd

R B
dim(HY(G,x™ 1)) € {1,2,3}. Let A = ( C”f’ de> be the GMA attached
PO
to the pseudo-character t"™V : Gg N, — Rg;l in Lemma 2.4 and let p
be the corresponding representation. Define I, := m/(B ® ppd ). So, by
20

Lemma 2.6, if y € Rg;i and y.B = 0 then y.I;, = 0.
Suppose dim(H'(G,1)) := k and dim(H'(G,x')) := m. Then, by

Lemma 3.6,
Rg(jl = IF[[XLX27 s Xm+2k]]/17

where I is an ideal of F[X1, Xs,..., X;n10k] whose minimal number of
generators is at most dim(H?(G, x~!)). Note that, by assumption, m —1 >
dim(H?(G, x™1)). As m # 0, it follows from Lemma 2.8 and Lemma 2.10,
that dim(tan(RPY/I5,)) < dim(tan(Rggl)) and hence, I, # (0). Therefore,
B and C are non-zero.

Let y € Rg;l be such that y.I; = 0 in Rggl. Let 3 be a lift of y in
F[X1, Xo,..., Xpniox] and denote by I the inverse image of I in
F[X1, Xo, ..., X;mt2k]. So we have §.I C I. Let us denote the power se-
ries ring F[ Xy, ..., X;n10k] by R for the rest of the proof.

By Lemma 2.10, we know that if P is a prime ideal of R containing I ,
then its height is at least m. Suppose y € I. Then, it follows that the ideal
I of R consists of zero-divisors for R/I. Hence, it is contained in the union
of primes associated to the ideal I. It follows, from the prime avoidance
lemma, ([15, Lemma 3.3]), that I is contained in some prime associated to
I. Now, we will do a case by case analysis.

Suppose I = (0). Since I # (0), §.I C I implies § = 0 and hence, y = 0.

Suppose I = (a) for some non-zero o € R. This means m is either 2
or 3 as minimal number of generators of I is at most m — 1. As a # 0,
it follows that « is a regular element in R. Note that R is a regular local
ring and hence, a Cohen-Macaulay ring ([15, Corollary 18.17]). Therefore,
every prime associated to (a) is minimal over it and hence, has height 1
([15, Corollary 18.14]). As the height of any prime ideal of R containing I is
at least 2, it can not be contained in any prime associated to («). Therefore,
we get that § € (o) which means y = 0.

Suppose I = («, 5) with v 8 and (1 . In this case m = 3 as minimal
number of generators of I is at most m — 1. Now, R is regular local ring and
hence, a UFD (see [15, Theorem 19.19]). Let f be a ged of a and 3. Let o/
and ' € R be such that f.o/ = a, f.3" = 3. Hence, o/ and ' are co-prime.
By the argument given in the previous case, we get that if ./ € I, then
fly Lety =y/f€R.Soy € Rand §.I C (<, ).
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Suppose ¥ & (o/, 3"). Then, by the argument given above, I is contained
in some prime associated to (o/, 3').

As o and 8/ are co-prime, it follows that o', 5’ is a regular sequence
in R. Using [15, Corollary 18.14] again, we see that every prime associated
to (o/, #') is minimal over it and hence, has height 2. As the height of any
prime ideal of R containing I is at least 3, it can not be contained in any
prime associated to (o', 3"). Hence, we get contradiction. So we get that
v € («/,8") which means 3 € (o, 3) and y = 0.

So, in both cases, we have y = 0 which means the annihilator ideal of B
is (0).

As we are assuming dim(H'(G,x)) = 1, it follows, from Part (5) of
Lemma 2.4, that B is generated by at most one element over Rgg. On the
other hand, we know B is non-zero which means B is generated by one
element over Rgg. This, combined with the fact that annihilator of B is

(0), implies that B is a free Rgg—module of rank 1. Now second part of
Lemma 2.6 gives a representation p : G — GLg (Rg;l) with tr(p) = ¢V,
Moreover, from the second part of Lemma 2.6, we see that p’ is a defor-
mation of p, for some non-zero z € H'(G, x). Therefore, it induces a map
WPl Rg:f — RES. So we get a map 1, o) : Rg? — Rf)—);i. Now for all g € G,
Uy 0 a1 (9)) = Y (tr(p"™(9))) = tr(p'(g)) = t""(g). Therefore, the
universal property of RES implies that ! o 1), is just the identity map.
Hence, 1, is injective which means ), is an isomorphism. This proves the
theorem. O

Remark 3.8. More generally, if we remove the assumption dim(H'(G, x %))
€ {1,2,3}, the proof of Theorem 3.7 still works if we know that Rgg is iso-
morphic to a quotient of F[X7,..., Xog+m] by an ideal I such that the
height of any prime associated to I is at most m — 1. In particular, the
proof works if I is generated by at most 2 elements. Note that if m > 6
and I is generated by at most 2 elements, then the Krull dimension of Rg;l
is > 4. In [7, Section 4], there are examples of jof having arbitrary large
Krull dimension. So the possibility that I is generated by 2 elements cannot
be ruled out even when m > 6.

Remark 3.9. Without the assumption dim(H'(G,x™?)) € {1,2,3}, we
know that Rgg ~ F[X1,..., Xmyor]/I, where I is an ideal generated by at
most m — 1 elements. If I is generated by at least 3 elements and we do
not know that the height of any prime associated to [ is at most m — 1,
then we can not use the method of the proof of Theorem 3.7. To be precise,
the analysis of the annihilator of B breaks down. The main reason of this
breakdown is the following: if the minimal number of generators of an ideal
I of the ring F[X1,..., X;miok] is at least 3 and at most m — 1, then
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for y € F[Xy,..., X;maok]l, yP C I for a prime ideal of height m does
not necessarily imply that y € I. For example, consider the ideal I =
(zu?,yv?, 2%u — y?v) in Flz,y,u,v, z,w] with m = 4 and k¥ = 1. Now,
zyuv ¢ I but {zyuwv.x, ryuv.y, ryuv.u, zyuv.v} C I. However, if we can
prove that the annihilator of B is (0), then the proof of Theorem 3.7 would
imply the existence of such a representation.

3.4. Existence of the representation over RP4. In this subsection,

Po
we will turn our attention to the characteristic 0 deformation ring Rgg to
see if we can extend Theorem 3.7 in characteristic 0 to prove the existence

. d_. :
of a representation over Rgo with trace TV,

Proposition 3.10. Suppose H?(G,1) = 0 and p is not a zero-divisor in
Rg?. Suppose there exists an i S {1,—1} such that dim(Hl(G, X)) =1,
H?(G,x") =0 and dim(H?(G,x™)) < dim(HY(G,x7?)). Fiz such an i and
let v € HY(G,x") be a non-zero element. If dim(H'(G,x~%)) € {1,2,3},
then there exists a representation T : Gg,np — GLQ(RES) such that tr(t) =

pd
Po

Proof. Without loss of generality, assume dim(H'(G,x)) = 1. Let A =
pd

(ch 0 Rl; ) be the GMA attached to the pseudo-character 7" : G — Rgg

in Lemr’ga 2.4. From Lemma 2.6 and the proof of Theorem 3.7, we see that

it is sufficient to prove that the annihilator of B is (0).

Suppose m'(B @ pa C) = Ij,. Suppose y € ’R,;—);l, yB =0 and y # 0. So,
by Lemma 2.6, we glgt yZs, = 0. Let I be the image of the ideal (p,Zj,)
in Rgg/(p) and 7 be the image of y in Rgg/(p). Hence, we get yI = 0. By
Lemma 2.10 and Part (6) of Lemma 2.4, it follows that if P is a prime of
R%;i minimal over I, then dim(Rggl/P) < 2k, where dim(H'(G,1)) := k.
Now from the proof of Theorem 3.7 it follows that § = 0.

Hence, we see that y € (p). As y # 0, there exists a positive integer kg
such that y = p*y’ with ' ¢ (p). Since p is not a zero divisor in Rgg,
it follows that y'Z5, = 0. As ¥’ # 0, the argument given in the previous
paragraph implies 3 € (p) and hence, gives us a contradiction. Therefore,
we get y = 0. This means that Z;; # (0).

This, along with the fact dim(H'(G, x)) = 1, implies that B is free Rgg—
module of rank 1. Following the proof of Theorem 3.7 from here, we get a
representation with trace 7"V and see that ¥, is an isomorphism for all
non-zero = € H'(G, x). O

T, As a consequence, the map W, : RE" — R is an isomorphism.

Finally, we now give a result which will be used in the next section.
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Proposition 3.11. Suppose H?(G,1) = 0. Suppose there exists an i €
{1, -1} such that dim(H'(G,x%)) = 1, H*(G,x") = 0, dim(H'(G, x™%)) €
{1,2,3} and dim(H?(G,x7%)) < dim(H'Y(G,x™%)). Let x € HY (G, x*) be
a non-zero element. If p is not a zero-divisor in R%jf, then the map VU,

jo — jof s an isomorphism.

Proof. We have the following commutative diagram:

de Rdef

| e

pd Yo def

Here the vertical maps f1 and fo are the morphisms induced by tuniv and
pumY respectively. Now, ker(f1) is the ideal generated by p in Rpo, while
ker(f2) is the ideal generated by p in R%:f. By Theorem 3.13, 3, is an
isomorphism. So ker(¢, o f1) = ker(fi1) = (p). As ¢y 0 fi = fao¥,, it
follows that ker(fy o ¥,) = (p). Thus ker(¥,) C (p).

Let h € ker(¥;). So h € (p). Suppose h # 0. As Rgg is a complete local
ring, Ny>1(p™) = (0). Therefore, we have h = p™h’ where ng > 1 is an
integer, h' € jo and h' & (p). Thus, h' & ker(¥,) and hence, U, (h') # 0.
But ¥;(h) = 0. So we get Wy(h) = U, (p™0.h') = p™. W, (k') = 0. Thus,
we get that p is a zero-divisor in R%:f which contradicts our assumption.
Therefore, it follows that ker(¥,) = (0). From Lemma 2.15, we know that
W, is surjective. Hence, it follows that W, is an isomorphism. O

3.5. Consequences for Galois groups. In this subsection, we list the
consequences of results proved in this section so far for G ;. To be precise,
let N be an integer not divisible by p and py : Gg,np — GL2(F) be an
odd, semi-simple, reducible representation. So there exist characters x1, x2 :
Gao,np — F* such that py = x1 ® x2 and x1 # x2. Let x = Xlxil- We will
now see the consequences of the main results of previous subsections in the
present setup.

Theorem 3.12. Suppose dim(H'(Gg np, X')) = 1 for some i € {1,—1}.
Fiz such an i and let x € HY(Go.np,x") be a non-zero element. Then
the map ¥, de — Rdef induces an isomorphism between (Rp yed and
(Rdef)red

Pz
Proof. This follows from Lemma 2.16 and Theorem 3.5. Il

Theorem 3.13. Suppose pt ¢(N) and dim(H (Go,np, x')) = 1 for some
i € {1,—1}. Moreover, for such an i, assume that dim(H(Gg np, X)) €
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{1,2,3}. Then, there exists a representation p : Go np — GLQ(R%S) such
that tr(p) = t"™ and for any non-zero x € H (Gg.np, X'), Rg;i ~ R%:f.

Proof. The theorem follows from Lemma 2.16 and Theorem 3.7. U

Proposition 3.14. Suppose p 1 ¢(N) and dim(H'(Ggnp, X')) = 1 for
some i € {1,—1}. For such an i, assume that dim(H'(Ggnp, X7%)) €
{1,2,3}. Let x € Hl(GQ,Np,Xi) be a non-zero element. If p is not a zero-
divisor in either RES or R%Ef, then there exists a representation 7 : Go,np —
GLQ(RES) such that tr(t) = T and the map ¥, : Rgg — Rgi’f is an iso-
morphism.

Proof. Follows from Lemma 2.16 and Propositions 3.10 and 3.11. O

4. Increasing the ramification

From now on, we will focus on the case where G' = Gg np, and pp is a
reducible, odd, semi-simple representation of G np. Let £ be a prime such
that £1 Np. As Gg,np is a quotient of Gg nsp, the representations g, with
z € HY(Ggnp, X') and i € {1,—1} are also representations of Gg nsp and
(tr(po), det(po)) is also a pseudo-representation of Gg nep. Let Rgg’g and
Rgg * be the universal deformation rings of (tr(po), det(pp)) considered as
a pseudo-representation of Gg nyp in the categories C and Cp, respectively.
For a non-zero z € H'(Gg np, X*) with i € {1,—1}, let R%:f’e and R;jf’g
be the universal deformation rings of p, considered as a representation of
Go,nep in the categories C and Co, respectively.

We keep the notation from previous sections for G np. In this section,
we will study the relationship between Rgg’g (resp. Rggi ) and Rgg (resp.
Rgg ) using the results obtained in the previous section and results from [8].

Before proceeding further, let us establish some more notation. Let ¢™iV+
be the universal pseudo-character from Gg ngp to Rgg’z deforming tr(pp)
and T"™V+ be the universal pseudo-character from Go,nep to RES’Z deform-

ing tr(po). Denote the pseudo-character obtained by composing t"™V with
the surjective map Rf—)’g £ (jo byred py (fumiv.lyred

4.1. Comparison between ’Rip’;i’e and ’R%;i. We are now ready to com-

pare jo’g and Rgg. We begin with an easy case first.
_ a0 d
Lemma 4.1. Ifp{ {—1 and x|, # wplcg, @y 1’G@e’ 1, then R ~ Ry

Proof. From Lemma 2.18, there exists a faithful GMA A"V over Rg;l’e

and a representation p : Gg nep — (A™V)* such that Rgg’z[p(GQyng)] =
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A tr(p) = T“niv’fdind REM[p(Gg,)] is a sub RE-GMA of A™V. So
RS B
RES’K[p(GQZ)] = < g‘; Rgil), where By and Cy are RES’Z—submodules of
, Rp
B and C| respectively and hence, both of them are finitely generated Rgg’e—
modules.

As X|GQ, #+ wp|GQ[,wp_ 1|G@e’1’ by local Euler characteristic formula, we
get that Hl(GQ£7X|GQZ) = Hl(GQZ,X*HGQZ) = 0. Therefore, we get, by
Part (5) of Lemma 2.4, that By = C; = 0.

Thus, we get characters xi,x2 : Gg, — (RES’Z)* such that p(g) =

()hég) 22(29)) for all ¢ € Gg,. As p 1 £ — 1, we get, by local class field

theory, X1(I;) = X2(I¢) = 1. So the pseudo-character ™"+ factors through
Go,np- Hence, this induces a map f : Rgg — Rgg’z. Viewing 7"V as a
pseudo-character of Gg n¢p gives us a map f': R;—’S’E — Rgg.

Now, for g € Gonp, f(T™V(g)) = TWVE(g') for any lift ¢’ of g in
Gy, Thuss, [0 f(TW (g)) = F(T™ (¢')) = T (g) for all g € Gig
Therefore, f' o f is the identity map. On the other hand, for g € Gg, np,
f1(TwV4(g)) = TV(g"), where ¢” is the image of g in Gg np. So f o
F(TWY4(g)) = F(TWIY(g")) = TV (g) for every g € Gg nep- Therefore,
we get that f o f’ is identity. Hence, f is an isomorphism. Thus, we get
RED o~ REAY, O

We now prove Theorem B.

Proof of Theorem B. As p 1 2 — 1 and X_i|G@L, = wplag,, we see, from
Lemma 2.16, that dim(H'(Gg nep, X')) = 1 and dim(H'(Gg nep, X 7)) <
m + 1. Therefore, by Theorem 3.12, we have for any non-zero element
z € HY (G np: X', (REDd o (RdeTyred ang (REMyred o~ (RIHred, The
first part now follows from [8, Theorem 4.7].

If m < 2, then dim(Hl(GQ’ng,x_i)) < 3. Hence, in this case, by
Theorem 3.13, we have R%;i o~ R%jf and Rg;i’e ~ R%jf’é for any non-zero

z € H' (G np, X*). The second part now follows from [8, Theorem 4.7]. O

Note that Theorem B does not give a precise description of the relations
r;’s even if we know how 7;’s look like. So it is natural to ask if one can get
results about the structure of Rgg’é which are more precise than the ones
obtained in Theorem B. We will focus on this question for the rest of the
article. However, we will restrict ourselves to the simplest case where pg is
unobstructed which will be introduced in the next subsection.

4.2. Unobstructed pseudo-characters. We now introduce the notion
of unobstructed pseudo-representations. In this case, we know the precise
structure of Rgg and our primary goal is to determine the structure of
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Rgg’e as accurately as possible in this special scenario. Here we gather
some results which will be used later on.

Definition 4.2. We say that the pseudo-character associated to py (or by
abuse of notation py) is unobstructed if

dim(Hl(GQNp,X)) = dim(Hl(GQNp,X_l)) =1.

Note that Vandiver’s conjecture implies that pg is unobstructed if N = 1
(see [4, Theorem 22]). Moreover, [4, Theorem 22] also provides some exam-
ples of unobstructed pyp when N = 1. On the other hand, [14, Lemma 2.3]
gives necessary and sufficient conditions for py to be unobstructed. More-
over if p { ¢(N) then, by Lemma 2.13, Lemma 2.16 and Lemma 2.17, we
know that dlm(Hl(GQ Np»ad(p))) = 3 for any non-zero z € H*(Gg np, X*)
with ¢ € {1, —1}. So we get the following result:

Lemma 4.3. Suppose p 1 ¢(N) and py is unobstructed. Then, for a non-
zero x € HY (G np, x') with i € {1,—1}, the map ¥, : Rgg — R%‘;f is an
isomorphism and both are isomorphic to W (F)[X,Y, Z].

Proof. Since pg is odd and p t ¢(N), we get, by the global Euler charac-
teristic formula, that H*(Ggonp, 1) = H*(Gonp, X) = H*(Gonp, X71) =
H?*(Gg.np,ad(py)) = 0. Therefore, we get, from [9, Theorem 2.4], that
Rgif ~ W(F)[X,Y, Z]. The result now follows from Proposition 3.14. O

Lemma 4.4. Suppose py is unobstructed. Then, there exists a z € Rgg
such that T"™V (mod (2)) is reducible.

rPd B )
Proof. Let A = ( o de) be the GMA attached to 79"V : G — R
PO

(which is a pseudo-character) in Lemma 2.4. Since pg is unobstructed,
Part (5) of Lemma 2.4 implies that both B and C' are generated over ’Rgg by
at most 1 element. The lemma now follows from Part (6) of Lemma 2.4. [

Recall that we already know that the pseudo-deformation ring does not
change after allowing ramification at a prime £ such that X|GQ£ F Wp, Wy, L1
So we are not going to consider them anymore in the rest of the article.

4.3. Generators of the co-tangent space of ’Riie” Now suppose pg

is unobstructed, p { ¢(N) and ¢ is a prime such that “ { Np,pt{—1and
X |G@ = w, for some i € {1,—1}. For such an i, let x € HY(Gg np, X ")
be a non-zero element. Throughout this subsection, we are going to fix this
set-up without mentioning it again. We will now give a set of generators
for the co-tangent space of R@ef ¢

We first fix some more notatlon Fix a lift g, of Frob, in Gg, and fix a

topological generator i, of the unique Z,-quotient of the tame inertia group
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at £. Let pivt . Go,Nep — GLQ(Rde”) be a universal deformation of p,

for Gg,nep and let puniv Go,nep — GLQ(jof) be a universal deformation
of p, for Gg np-
We now combine [8, Lemma 4.8] and [8, Lemma 4.9] to get the following:

Lemma 4.5. Suppose we are in the set-up fived above. Then pgnin’f\Ie fac-
tors through the unique Zy,-quotient of the tame inertia group at ¢. More-
over, after conjugation if necessary, we get

v () = (»«T(g\muy) 0 )
0 x2(90)(1 + )
for some y,y' € Rqef’f and
(1) Ifi=1 and pt €+ 1, then pV¢(ip) = (} ) for some w € R
(2) Ifi=—1 and pf£+1, then pi™iVf(ip) = ( ) for some w € R’

(3) Ifp| £+1, thenpunwf( 0) = (@@) for some u, vGRde”.

as a representation of Gg n¢p, we get a map f : Rg:f’f —

def K

w

1
10 def K
w

univ

Viewing p4
def
R

Lemma 4.6. The morphism f : Rdeff Rdef is surjective and ker(f) is
generated by the entries of the matmx p“m"e( ¢) — 1d.

Proof. Let J be the ideal of Rdew generated by the entries of the matrix

punivit(j,) — Id and ¢ : ’Rdew R%jf’g /J be the natural surjective map.
As pUWV(i,) = Id, we get that J C ker(f) which gives us a map f’ :
Rdef K/J — Rdef such that f' o ¢ = f. On the other hand, p™V¢ (mod .J)
is unramlﬁed at ¢ and hence, is a representation of G, np. Thus it induces
a map ¢ : Rdef Rdef’g/ J such that g o pV = pwivil (mod .J). Now
flogopuniv = pun“’ as representations of Gg np, and go f/o piiv: * (mod J) =
PVt (mod J) as representations of G ngp. Hence, we see that both f'og
and go f are identity maps. Hence, f’ is an isomorphism which proves the
lemma. O

We are now ready to state the main result of this subsection.

Lemma 4.7. Suppose po is unobstructed and p t $(N). Let £ be a prime
such that £ Np, p f £ =1 and X'|c,, = wp for some i € {1,-1}.
For such an i, let z € H (Gg np, X ") be a non-zero element. Moreover,
assume Z/E is a topological generator of 1 + pZ,. Suppose pitiV:t(g,) =

<X1(gz)(l+y) o def, ¢
0 x2(g¢)(1+y")
the ideal generated by p, y, y', z and ker(f) is the maximal ideal of

. Then there exists an element z € R such that

def ¢
R,
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Proof. Let zg € Rgg be an element such that 7% (mod (zp)) is reducible.
Such an element exists by Lemma 4.4. By Lemma 4.3, the map ¥, : Rgg —

Rdef is an isomorphism. Hence, tr(p™") (mod (¥,(z0))) is reducible.

univ univ,l __ pumv So

Vlewmg PtV as a representatlon of Go,nep, We get fopl

X1(90) (14 £ () 0

g0) = 0 X2(9)(1+£ ()
Following the proof of the last part of Lemma 2.18, we get that the set

{p, f(), f(y), Y2 (20)} generates the maximal ideal of R@‘Ef By Lemma 4.6,

f is surjective. Hence, if z € Rdef’e is an element such that f(z) = Ua(20),

then the ideal generated by p, y, ¥/, z and ker(f) is the maximal ideal of

Rc}ef,@ 0
Pz

we have piiv(

4.4. Structure of ’RE;“ with unobstructed p, and p { £2 — 1. As

we saw in Lemma 4.3, Rgg ~ W (F)[X,Y, Z] when pp is unobstructed and
p 1 ¢(N). In this sub-section, we are going to analyze how its structure
changes after allowing ramification at a prime ¢ such that ¢ + Np and
pi0?—1.

For a non-zero z € H'(Gg np, X*) with i € {1, -1}, let punivet . Go,nep —

GLo (Rdelc %) be the universal deformation of p, over R(—ief ¢

Proposition 4.8. Suppose py is unobstructed and p t ¢(N). Let £ be a
prime such that p{ % —1, XZ’GQZ = wp|GQz for some i € {1,—1}. Then, for

any non-zero x € HY(Go np, X%, Rgg,g ~ Rgif’g.

Proof. Without loss of generality, suppose X|G@e = wp]G@e. By Lemma 2.16,
we have dim(H'(Gg nep, X)) = 2 and dim(HY(Go nep, x 1)) = 1. So by
Proposition 3.14, it suffices to prove that p is not a zero divisor in Rqew
for any non-zero z € H (G np, X 1).

By Lemma 2.8, dim(tan(Rf)—’od’g)) = 4. By Theorem 3.7, Rgg,e ~ R;jf’g for
any non-zero z € H'(Gg np, x !). Hence, we have dim(H (G, nep, ad(pz)))
= 4 for any non-zero z € H'(Gg np, X ). By Lemma 2.17, this means that
dim(H?(Gg nep,ad(py))) = 1. Therefore, by [9, Theorem 2.4], R%if’g o~
W(F)[X,Y, Z,W]/I where I is either (0) or a principal ideal of the power
series ring W(F)[X,Y, Z, W].

Suppose p is a zero divisor in Rf—}:f’e. As W(F)[X,Y, Z, W] is a regular
local ring, it is a UFD ([15, Theorem 19.19]). This means that I = (pf) for
some f € W(F)[X,Y, Z, W]. Thus, we get R2" ~ F[X,Y, Z, W].

univ, @(

9e) =
(‘%1 s ), ULV, ¢ 1, factors through the Z,-quotient of the tame inertia group

Fix a lift g; of Frob, in Gg,. From Lemma 4 5, we know that p
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at £ and pV:¢(i)) = (§ %) for some w € R@e” From the action of Frob,

on the tame inertia group at ¢, we see that (¢1/¢2 —lw = 0.

If w = 0, then the universal deformation pV+* factors through Gg np-
This would imply that R(—ie” o~ R‘ief which is not true as we know that

dlm(tan(Rg:f %)) = 4. Therefore, we see that w # 0. As Rdef % is an integral
domain, we get that ¢1/¢2 = £.
By Lemma 4.7 and Lemma 4.6, it follows that there exists a z € RC—1ef ¢

such that w, z and ¢; — x1(Froby) generate the maximal ideal of R(—lew
which contradicts the fact that d1m(tam(Rdelc )) = 4. Hence, R(—ie” %

F[X,Y,Z, W] and p is not a zero-divisor in R%jf’g. This finishes the proof
of the proposition. O

As a corollary, we get:

Corollary 4.9. Suppose py is unobstructed and p { ¢(N). Let £ be a prime
such that p 1 > — 1 and X'lag, = wplag, for some i € {1,-1}. Then
Rgf’z ~ W(F)[X1, X2, X3, X4]/(Xaf) for some non-zero, non-unit f €
W(F) [[X17 X27 X3a X4]]
Proof. From the proof of Proposition 4.8, we see that

REVE o~ W (F)[ X1, X, X3, Xa] /1,
where I is a non-zero principal ideal contained in (p, (X1, X2, X3, X4)?).
Since the natural map deg — de is surjective ([21, Proposition 6.1])
and Rg;i ~ W(F)[X,Y, Z]], it follows that its kernel is a minimal prime of
Rgg’g and it is a principal ideal. This finishes the proof of the corollary. [

We will now prove an improvement of Corollary 4.9 in certain cases.

Theorem 4.10. Suppose py is unobstructed and p{ ¢(N). Let £ be a prime
such that p ¥ 2 — 1, Xi|GQ[ = wplag, for some i € {1,—-1} and {/l is a
topological generator of 1 4 pZ,. Then

REVE o W (F)[ X1, X2, X3, Xa]/ (X4 X2).

Proof. Without loss of generality assume X|GQ£ = wp|G@e' By Proposi-
tion 4.8, we have Rgg’g s R%:f’g for any non-zero x € H (G nep, X 1).
Therefore, there exists a representation p : Gg,nep — GLQ(RES’E) such that
tI‘(p) — Tuniv,f'

Fix a lift g, of Frob, in Gg,. From Lemma 4.5, we know that p(g,) =

(%1 q%), pl1, factors through the Z,-quotient of the tame inertia group at

¢ and p(ig) = (§ %) for some w € deé.
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From the proof of Proposition 4.8, we also get that w # 0 and w(¢1/p2 —
0) =0 ie. w(¢1 — lp9) = 0. By Lemma 4.5, there exist y, 3 € Rgg,z

such that ¢ = X1(9£)(1 +y) and ¢y = Xz(ge)(l +y )/N_ﬂ\’, 1 — Lo =

x1(9) — £x2(90) + x1(90)y — txz(g0)y’ and x1(g) = Ux2(g0). As €/0 is a
topological generator of 1 + pZ,, it follows that 1 — ¢/¢ = pu for some

u € Z,. Hence, X/l(g\g)_l(¢1 —lpa) = pu+y — (1 —pu)y’. So we have
w(pu+y — (1 - pu)y) = 0.
By Lemma 4.7, there exists a z € Rgg’f such that the set {p,y, v, z,w}
generates the maximal ideal of Rggl’z. Therefore, the set {p,pu+y — (1 —
pu)y',y,z,w} also generates the maximal ideal of REd’e Hence, by [15,

Theorem 7.16 (b)], we get a surjective map ¢ : W(F )[[X Y, Z, W] — dez
sending X to pu+y— (1—pu)y’, Y toy, Z to z and W to w. The relatlon
w(pu+y — (1 —pu)y’) = 0 implies that WX € J := Ker(¢)).

By Corollary 4.9, it follows that Rggé ~ W(F)[X,Y,Z,W]/I where I
is a principal ideal. Therefore, J is also a principal ideal. We already have
WX € J. Note that W(F)[X,Y, Z, W] is a UFD (by [15, Theorem 19.19])
and both W, X are irreducible elements of it. Hence, J is either (W), (X)

r (WX). Since dim(tan(Rg;l’Z)) = 4, J cannot be (W) or (X). Hence,
REY ~ W(F)[X,Y, Z,W]/(WX). O

Remark 4.11. By Theorem 4.10, we know that
def,l

for a suitable p,. It is not clear how to get this explicit structure of Rdef ¢

directly from [8, Theorem 4.7] or its proof.

4.5. Structure of R%:’Z with unobstructed py and p | £ + 1. We
now turn to the case where pg is unobstructed and £ is a prime such that
¢4 Npand p | ¢+ 1. As we will see, this case is a bit more complicated
than the previous case. This is also the case in the study undertaken in [11]
and [8]. We begin by determining the explicit structure of Rqe”
certain hypotheses.

Before proceeding further, we need a piece of notation. Let {h; : i € Z,
i > 0} be the set of polynomials in F[\/1 4+ UV] satisfying the recurrence
relation b1 — 2(v/1 4+ UV)b; + bj—1 = 0 with hg = 0 and h; = 1 (see [11]
for more details). So {h; : i € Z,i > 0} C F[U,V]. Note that hy = ¢
(mod (UV)). For a non-zero x € H*(Gg,np, X*) withi € {1, —1}, let 73niv:¢ ;
Go,nep — GLg(Rdef g) be the universal deformation of p,.

Note that if p | £+ 1 but p? { £+ 1, then E/E is a topological generator of
1+ pZyp.

under
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Lemma 4.12. Suppose po is unobstructed and p { ¢(N). Let £ be a prime
such thatp | £+ 1, p>{ £+ 1 and Xlag, = wplag,- Let x € HY(Go,np, X*) be
a non-zero element for i € {1,—1}. Then,

RIM ~F[X,Y, Z,U, V]/(U((1+X) +he(1+Y)), V((1+Y) + he(1+ X))).

Proof. By Lemma 4.5, it follows that 7.miv:| 1, factors through the Z,-

quotient of the tame inertia group at ¢, 7V:¢(3,) = ( v 1:”“’ \/ﬁﬁ) and

T;niv’e (g¢) = (‘%1 (;)2) for a fixed lift g, of Froby in Gg,. Note that there exist

4.t such that ¢1 = x1(Froby)(1+m) and ¢g = xa(Frobg)(1 + n).

Pu
By Lemma 4.7, there exists a z € jof,e such that the set {m,n,u,v,z}

generates the maximal ideal of R%if’e. Thus, by [15, Theorem 7.16 (b)],
we have a surjective map ¢ : F[X,Y,Z, U, V] — R;:f’z of W (IF)-algebras
sending X tom, Y ton, Z to z, U to uw and V to v. Let Jy = ker(¢).

From the action of Frob, on the tame inertia group at ¢, we see that
(¢p1/0p2 — hy)u = 0 and (¢2/p1 — hg)v = 0. Note that, as p | £ + 1 and
XlGq, = wplag,, we have x1(Frobg) = —x2(Froby). Therefore, we have ((1+
m)+he(1+n))u = 0and ((14+n)+hy(14+m))v = 0. So (1+X)+h(1+Y))U,
(1+Y)+h(1+ X))V € Jp.

By Lemma 2.16, we know that dim(H'(Gg nep,ad(pz))) = 5 which
means dim(H?(Go nep, ad(ps))) = 2. By [9, Theorem 2.4],

RO ~ F[Xy, X, X3, X4, X5]/J,

where J is generated by at most 2 elements and J C (X1, Xo, X3, X4, X5)%
Denote F[X,Y, Z,U, V] by R and its maximal ideal (X,Y, Z,U, V') by my.
Therefore, Jy is generated by at most 2 elements and Jy C m3.

Note that hy = ¢ (mod (UV)). Since p | £+ 1, we get ((1 + X) +
he(14+Y))=(X-Y) (mod (UV))and (1+Y)+he(l+ X)) =(Y — X)
(mod (UV)). So (1 +X)+he(1+Y), (1+Y)+ he(l +X) €mg\mi. As
moJo C m3, we see that the images of the elements ((14+Y) + hy (14 X))V
and (1 4+ X) + he(1 +Y))U in Jy/mgJo are linearly independent over F.
As Jy is generated by at most 2 elements, the dimension of Jy/mgJy as a
vector space over F is at most 2. Hence, it follows, from Nakayama’s lemma,
that Jo=((1+Y)+ he(1+ X))V, (1 4+ X) + he(1 +Y))U). O

We now turn our attention to the problem of finding the structure of
R when po is unobstructed, p | £+ 1 and x\g@e = wp. Note that in this

m,n € R

Po
case, we have dim(HY(Go nep, X)) = dim(HY(Go.nep, x 1)) = 2. So this
case is different from the cases we have dealt with so far. Hence, we can not
use the results obtained so far. However, we can still use the technique of
comparing Rgg,f with the universal deformation rings of residually non-split
reducible representations.
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Theorem 4.13. Suppose py is unobstructed and p{ ¢(N). Let £ be a prime
such thatp | £+ 1, p> 1 £+ 1 and X|GQz = wp|GQ€. Then,

(REMyed ~ F[X, Y, Z, T1, To] /(T Ty, TV Z, T2 Z).

We will first prove a series of lemmas which will be used to prove Theo-
rem 4.13.
Let P be a prime RESM. Fix a lift g, of Froby in Gg,. Let Ap be the

GMA obtained in Lemma 2.18 for the tuple (RESM/P, £,t"VE (mod P), gy).
RPY/p Bp
— PO
Let Ap = ( Cr RES’Z/P
representation. By Part (3) of Lemma 2.18, we see that pp|j, factors through
the Zp-quotient of the tame inertia group at ¢. Fix a generator i, of this
Zyp-quotient. We will now use this notation throughout the paper.

) and pp : Gg nep — Ap be the corresponding

Lemma 4.14. Suppose ¢ is a prime such that {1 Np, p{{—1 and X‘G(@z %

1. If P is a prime of Rggi’g, then t*V:4(gh) — t®iV4(g) € P for all g € Gy,
and h € Iy.

Proof. Let Kp be the fraction field of RES’Z/P. By Lemma 2.7, we can
choose Ap to be a subalgebra of My(Kp) (see [2, Lemma 2.2.2] as well).
By the action of Frob, on the tame inertia group by conjugation, we see
that pp (i) is conjugate to pp(i¢)¢. So if a € K p is an eigenvalue of pp(iy),
then a’ is also an eigenvalue of pp(ig). As pt ¢ —1, det(pp(I;)) = 1. Hence,
we get that either a’ = a or a’ = ¢~ which means a is an m-th root of
unity for some m € N. Since Kp has characteristic p and iy is a generator
of the Zy,-quotient of I, it follows that 1 is the only eigenvalue of pp(is).
So there exists some @ € GLo(Kp) such that Qpp(i)Q™1 = (3 %)
for some w € Kp. Thus, Qpp(I)Q~' = {({™®) : 0 < n < p—1}.
As I, is normal in Gg,, we see that Qpp(Gg,)Q ! is a subgroup of the
group of upper triangular matrices in GLo(Kp). Hence, we conclude that
tr(pp(gh)) — tr(pp(g)) = 0 for all ¢ € Gg, and h € I,. Since ™V
(mod P) = tr(pp), the lemma follows. O

Lemma 4.15. Suppose py is unobstructed and p t ¢(N). Let £ be a prime
such that p | £+ 1, p> t £+ 1 and Xlcg, = wplag,- Then (R;—’g’g)red is a
quotient Of F[[X, Y, Z7 Xl, XQ]]/(X1Y, XQY, XlXQ).

(Rggye)red Bred
Cred (Rg;iye)red
GMA for the tuple ((Rg;il)red’ ¢, (tmiv-hyred gy obtained in Lemma 2.18 and

o' be the corresponding representation. Let K be the total fraction field

of (Rggi’g)red. By Lemma 2.7, we can take B™? and C™? to be the fractional

Proof. Fix a lift g, of Froby in Gg,. Let A™d = ( ) be the



226 Shaunak V. DEO

ideals of Ky such that the map m’(B™ ® rea O™ coincides with the

(R
multiplication in Kj.

From Lemma 2.18, we know that p*d(g,) = (“rgd droed) with a™¢ and

d**d not congruent modulo the maximal ideal of (Rgg’ﬁ)red. From Part (3)

of Lemma, 2.18, it follows that p™4(I,) is topologically generated by p"9 (i)
which means p**4(Gg,) is topologically generated by p*d(g,) and prd(iy).

Suppose p4(ig) = (2%). From Lemma 4.14, we get that a + d = 2,
ad —bc =1 and a™a 4+ d°d = a1 + . Ifa =1+aand d =1 — o,
then we have a™d(1 + a) + d*4(1 — a) = a*d + d"4. Simplifying, we get
a(a™d — d°d) = 0. As a'd — grd ¢ ((Rg(?’g)red)*, we get a = 0. Hence,
a=d=1and bc=0.

By Lemma 2.19, we see that C™4 and B™9 are generated by at most
two elements and there exists b € B™ and ¢ € C™4 such that {b,'}
is a set of generators of B™4, while {c,c'} is a set of generators of C™.
Let z = V/¢/, 1 = bc and 2o = b'c. Now, a™! = 1 (Froby)(1 + ag) and
d** = yo(Froby)(1 + dp) for some ag, dy € m™? where m™? is the maximal
ideal of (R;—’(?’K)red.

By Lemma 2.4 and Lemma 2.18, the ideal generated by {ao, do, 2z, z1, 22}
is m™d. Thus, by [15, Theorem 7.16 (b)], we get a surjective local morphism
of F-algebras go : F[X,Y, Z, X1, X2 — (Rggl,é)red such that go(X) = ap+dp,
90(Y) = ao — do, go(Z) = z, go(X1) = 1 and go(X2) = zo.

Let Iy = ker(go). As be = 0, we get x1.2x9 = b .b'c = 0. So X1 X3 € .
Note that, from the action of Froby, on the tame inertia group, we get

PN geieg; ) = pro(in)". L
1 re dre b
Now, p‘“ed(ggz@gE ) = ((dred/ared)c (a /1 ) ) . As bc = 0, we have
ped(ig)t = (1, 42) . Thus, we have (a™d/d™d — )b = 0 i.e. (a™d —£.d"%)b =

0 and (d4/a*d—{)c = 0 i.e. (d*®d—L.a"Y)c = 0. As x1(Froby)/x2(Frob,) =
wp(Froby) = ¢, we get (ap—dp)b = 0 and (dp—ag)c = 0. Thus, (ag—dop)z1 =
(ap — dp)z2 = 0 and hence, Y X1,Y Xy € Iy. O

Lemma 4.16. Suppose py is unobstructed and p t ¢(N). Let £ be a prime
such thatp | £+ 1, p>{ £+ 1 and Xlag, = wplag, - Then there exist distinct

prime ideals Py, Py and Py of R%g’e such that dim(Rgg’e/(Pi)) > 3 for
i=0,1,2.

Proof. Fix a non-zero element zo € H'(Ggnp,Xx). Recall that we con-
structed an isomorphism ¢ : R:=F[X,Y, Z, U, V]/(U((14+X)+he(1+Y)),
VI(1+Y)+ h(l1+ X)) — Rqef’g in Lemma 4.12 which sends images of

X,Y, U and V in R to z, y, u and v, respectively, where T“mvg( i0) =

(\/m u ) and 7_umv Z(gg) _ (Xl(FrObe)(l‘Hﬁ) 0

v VItuw 0 XQ(Frobe)(Hy))' Here i¢ is a
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topological generator of the Z,-quotient of the tame inertia group at ¢ and
ge is a lift of Frob, in G nep-

Hence, it follows that Qo = (u,v), @1 = (u,z —y) and Q2 = (v,z — ¥y)
are 3 distinct primes ideals of Rde” such that jou /Q; ~ F[X,Y, Z] for
i=0,1,2. ’

Let g : de ¢ Rgef’e be the map induced by tr(72™":¥). For i = 0, 1,2,

we get a morphism g; : deg — Rdew /Q; composing g with the natural

surjective morphism Rqem RC—lef K/QZ. Let P; be ker(g;) for i = 0,1, 2.

By Lemma 4.3 and Lemma 2. 15 there is a surjective map f : Rﬁ:(f)g —

d univ,/\ _ yuniv univ,l __
Ry such that fotr(72"f) =" and ker(f) = (u,v). So fogot =

"V Hence, by [21, Proposition 6.1], fog: de t REd is surjective. From
the definition of Py, we see that Py = ker(f o g). Slnce po is unobstructed
and pf ¢(N), Lemma 4.3 implies that dim(Rggl’g/Po) =3.

We will denote TQ‘C‘;ﬂV’K by p for the rest of the proof. From the description
of p(g¢) and [2, Lemma 2.4.5], it follows that there exist ideals B and C' of

def, ¢

def,¢ def,¢ _ P . .
R, such that R; [p(Go,nep)] = ( CO RS;ZZ) As p is a deformation

of Py, it follows that B = Rc_lefe

Now let h:=(}1) € Rdefé[ (GQ’N@)]. Then tr(h.p(i¢)) —tr(h) = v.a for

Pz

some « € (R;:Z Y% Observe that tr(h.p(i¢)) — tr(h) € Im(g), tr(h.p(ig)) —

tr(h) € Q2 but tr(h.p(ig)) — tr(h) € Q1. Hence, P # P;.
From above, we know that the map gg induces an isomorphism R%{?’Z /Py~
R /(u, v). Hence, the map 7 : deZ — Rdeg */(u,v,2 — y) obtained by

Pxq
def N4

composing g with the natural map R— — R%:Z g/(% v,x —y) is a surjec-

tive map. Now, Ry := jo(f)z/(u, v, T — ) ~ F[X,Y]. Denote the Ry-valued
representation p (mod (u, v,z —y)) by po.
Now, p(i¢) (mod Q1) is a non-identity lower triangular matrix with di-

agonal entries 1. So if t™V (mod P;) = tr(p) (mod Q1) is unramified at
¢, then tr(p) (mod Q1) is reducible which means tr(pg) is also reducible.

(Froby)(1+a) 0
X 00" XQ(FrObZ)(Ha)) for some a € Ry. So the

last part of Lemma 2.18 implies that («) is the maximal ideal of Ry con-
tradicting the fact that Ry ~ F[X,Y]. Hence, tr(p) is not reducible which
means t™V¢ (mod Pj) is not unramified at £.

On the other hand, p(i) (mod (Q)2) is a non-identity upper triangular
matrix with diagonal entries 1. Then, using the logic of the previous para-
graph, we conclude that ""¥* (mod P,) is not unramified at £. Therefore,
we get that Py ¢ P; for ¢ = 1,2 which means Py, P; and P» are distinct.

However, po(g¢) = (
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Note that ker(n) is a prime ideal of Rgg’ﬁ and Py # ker(n). Now P; C
ker(n) for ¢ = 0,1,2. Hence, we conclude, using previous paragraph that
P; # ker(n) for i =1, 2.

Thus we conclude that all Py, P, and P are proper subsets of ker(n). As
dim(Rgg’g/ ker(n)) = 2 and P;’s are prime ideals for i = 0,1,2, we get that
dim(REM/P;) > 8 for i = 1,2. O

We are now ready to prove Theorem 4.13.

Proof of Theorem 4.13. From Lemma 4.15, we know that there exists a
surjective morphism ¢ : F[X,Y, Z, X, Xo] — (Rgéi’g)red such that

(XlXQ, X1Y, XQY) C ker(g).

We will denote ker(g) by Iy for the rest of the proof. For i = 0,1,2, let
P! be the kernel of the map ¢; : F[X,Y, Z, X1, Xo] — RES’K/P,- obtained
by composing g with the surjective map (Rggi,@)red — Rf)—’;i’e /P;. Here, the

primes P; are the ones appearing in Lemma 4.16. Each P/ is a prime of

F[X,Y, Z, X1, X2] containing I and in particular, (X1 X2, Y X;,Y X3) C P/
for i = 0,1,2. So each P! contains one of the (Y, X1), (Y, X2) or (X1, X2).

Now, the Krull dimension of R%{?’Z/ P; and hence, the Krull dimension
of F[X,Y, Z, X1, Xo]]/ P is at least 3 for i = 0,1, 2. Therefore, every P/ is
either (Y, X1), (Y, X2) or (X1, Xs). Since Py, P and P, are distinct prime
ideals of RSS’Z (by Lemma 4.16), Pj, P{ and Pj are distinct prime ideals of
F[X,Y, Z, X1, X2]. Hence, we have

{P(/)7P1/7P2/} = {(K Xl)? (v, X2)7 (leXQ)}'

So Iy C P(/) N Pll N P2/ = (Y, Xl) N (Yv, XQ) N (Xl,XQ).

Note that (Y, X2) N (Y, X)) = (Y, X1 Xs). Y[ € (X1,X32), then f €
(X1, X2) and hence, Y f € (Y X1,Y X3). Therefore, (Y, X7 X2)N (X1, X2) =
(YXl, YXQ, X1X2). Hence, IO C (YXl, YXQ, X1X2). This implies that I() =
(YXl, YXQ, X1X2) and hence,

(REOed ~ FIX,Y, Z, X1, X2] /(Y X1, Y X, X1 Xo). O

Remark 4.17. The proof of Theorem 4.13, description of the GMA A4,
and [3, Proposition 1.7.4] together imply that there does not exists a rep-

resentation p : Go,nep — GLQ((RES’Z)red) such that tr(p) = (tWivf)red,

It is natural to ask if the same approach can give us the structure
of (Rggl,ﬁ)red as well. But the method does not work. More specifically,

Lemma 4.14 is not true for RES’K. Indeed, let € HY(Gg np, x*) be a non-
zero element with ¢ € {1,—1} and O be the ring of integers in the finite
extension of Q, obtained by attaching all the p-th roots of unity to Q.
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Let ¢, be a primitive p-th root of unity. It can be checked that there ex-

ists a W (IF)-algebra morphism R%:f’z =WWE[X,Y,Z,UV]/(U(1+X)+

he(1+Y)), V(1 +Y)+ he(l + X)) = O[Z] sending both U and V to
-1

%, X and Y to 0 and Z to Z. Composing this map with the map

Rg;tf — R%:f’é, we get amap f : Rgg’g — O] Z]. Observe that foTu“iV’é\GQz

is not reducible and ker(f) is a prime ideal. See [11, Section 3] for a sim-

ilar analysis. Thus, the ring Rg:)i’z has more than 3 minimal primes and
probably has a more complicated structure.

Corollary 4.18. Suppose pg is unobstructed and p{ ¢(N). Let £ be a prime
such that p | £+1, p* 1 £+1 and XlGq, = Wplag,- Then Rg;i’e is not reduced
ring.

Proof. Lemma 2.8 and Lemma 2.16 imply dim(tan(jo ’g)) = 6. Now the
corollary follows directly from Theorem 4.13. g

Though we do not determine the explicit structure of RES’E in this case,
we can still prove the following theorem:

Theorem 4.19. Suppose py is unobstructed and p{ ¢(N). Let £ be a prime
such thatp | L+ 1, p* 1 €+ 1 and XlGq, = wplag,- Then Rf)—’;i’z is not a local
complete intersection ring.

Proof. We use a strategy similar to the one used in the proof of Theo-
rem 4.13. Namely, we first find a set of generators of the co-tangent space
of RES’Z and then find the relations between them using GMAs. After as-

suming that Rg;i’z is a local complete intersection ring, we will find a subset

of these relations which will generate all the relations in Rggl’g. But the de-
scription of this subset will give a contradiction to Theorem 4.13 which will
complete the proof.

REd,Z de
Fix a lift g, of Froby; in Gg,. Let Ard = ( ggd RPd,f.) be the GMA
P0

associated to the tuple ( Rg(‘)i’{ ¢, punivit

,9¢) in Lemma 2.18 and p : Gg nep —
(AP4)* be the corresponding representation. By Part (3) of Lemma 2.18,
p|1, factors through the Z, quotient of the tame inertia group at £. Suppose
p(ie) = (¢5). By Lemma 2.18, we know that p(ge) = (“00 Cg)).
Let Igo i= m(BP! @ ppae CPY). From Lemma 2.19, it follows that there
PO

exists b € BPd and ¢ € CPY such that {b,'} is a set of generators of BP9,
while {c,c'} is a set of generators of CP4. Thus, the ideal I go is generated
by the set {m/(b®@c),m' (V' @c),m' (b c),m' (¥ @)} Let z=m/(V @),
1 =m'(b® ), zg =m'(V ®c¢) and 23 = m/(b® c).
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Now, ag = x1(Frobg)(1+a() and dy = x2(Froby)(14dj) for some ag, dj, €
m’ where m is the maximal ideal of Rgg’z. From last part of Lemma 2.18, we
see that the ideal generated by the set {ay, dj), z, x1, x2, 23} is mf. Thus, we
get a surjective local morphism of F-algebras go : F[X,Y, Z, X1, X2, X3] —
R%;i’g such that go(X) = ay + dpy, go(Y) = af, — dfy, go(Z) = z, go(X1) = 21,
9o(X2) = x2 and go(X3) = x3. Let Jy = ker(gp). Denote the maximal ideal
(X,Y,Z, X1, X2, X3) by mo and F[X,Y, Z, X1, X2, X3] by Ro. We know
that dim(tan(Rggl’g)) = 6. Hence, Jy C m3. Suppose RES’E is a local com-
plete intersection ring. The Krull dimension of Rg;i’e is 3 by Theorem 4.13.
This means that Jy is generated by 3 elements.

Note that if g € Gg, and p(g) = (ag by

cg dg
e Gg, — (Rgg’z/(:pg))* sending ¢ to a, (mod (x3)) and d,; (mod (z3)),
respectively. Moreover, ¢; and co are deformations of X1|G@e and X2|GQW
respectively. As p{ ¢ — 1, this means that c1(I;) = c2(I;) = 1. So we have
a=1+x3a and d =1+ x3d’.

From the action of the Frobenius on the tame inertia, we get that
p(geicg; ) = plie)t. As x5 = m/(b® c), we see, by induction, that for a
positive integer n,

), then we get two characters c1,

n [ l4axzal,  b(n+asb),)
plie)" = <c(n +a3c)) 14 xsd),

n» n’ -nrTn

a (ap/do)b\ [ 1+z3a;, bl + z3b))
((do/ao)c d ) o <c(€ +x3cy) 14 x3d, ) ’

Thus, (ag/do)b = b({+xz3b}) implies that m’((ag/do—€—x3b,)b@CPY) =0
and (do/ag)c = c(f + x3c)) implies that m'((do/ag — £ — z3¢})c ® BPY) =
0. Therefore, we have xz3(ag/dy — ¢ — x3b}) = 0, z1(ag/dy — ¢ — x3b)) =
0, z3(do/ag — £ — x3¢)) = 0 and xa(dp/ag — £ — x3¢) = 0. As p | £+
1 and xi(Froby) = fx2(Froby), we get the following relations from the
relations above: there exists b, ¢ € Rf—;gl’g such that x3(ag —djy + x3b”) = 0,
z1(ag — diy + x3b”) =0, x3(dy — ag + x3¢”) = 0 and x2(df — ag + x3c”) = 0.

Thus, Jy contains the elements X3Y+X§q1, XY+ X1 X3q0 and —XoY +
XoX3q3 for some q1, g2, g3 € Rp. As the minimum number of genera-
tors of Jy is 3, it follows, by Nakayama’s lemma, that Jo/mgJp is an F
vector space of dimension 3. Since mgJy C m3, we see that the images
of X3Y + X32q1, XY + X1 X3q2 and —XoY + X9 X3¢3 inside Jo/mQJ()
are linearly independent over . Therefore, they form an F-basis of the

vector space Jy/moJy. Hence, by Nakayama’s lemma, we get that Jy =
(X3Y + X3q1, X1Y + X1 X3q2, —XoY + X2X343).

for some a), b, ., d € Rgg’e. Therefore, we get that
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In particular, Jy C (X3,Y). This implies that the Krull dimension of
R;—’g’e is 4. However, we know that the Krull dimension of RES’K is 3. Hence,
we get a contradiction to the hypothesis that Jy is generated by 3 elements.
Therefore, Rf)—)j “ is not a local complete intersection ring. O

Corollary 4.20. Suppose py is unobstructed and p{ ¢(N). Let £ be a prime
such that £ = —1 (mod p), X|GQe = wp|GQe and —{ is a topological generator

of 1 4 pZy,. Then Rgg’e is not a local complete intersection ring.

Proof. Since Rgg’e /(p) ~ Rgg * we sce, from Theorem 4.13, that the Krull
dimension of R;—’g’g is either 3 or 4. As py is unobstructed and p { ¢(N),
we know that Rgg ~ W(F)[X,Y, Z]. We have surjective map Rg;l’[ —
”Rg;i induced from the surjection Gg ne — Go,np. Hence, the Krull di-
mension of Rgg,g is 4. As dim(tan(Rgg’e)) = 6, we know that Rg;l,@ o~
W(F[X,Y, Z, X1, X9, X3]/J for some ideal J of the power series ring
W(F[X,Y, Z, X1, Xo, X3]. If Rg;u is a local complete intersection ring,
then J is generated by 3 elements. But this would imply that Rg;l’e is a
local complete intersection ring which is not true by Theorem 4.19. Hence,
we see that Rgg’e is not a local complete intersection ring. O

5. Applications to Hecke algebras

In this section, we will use the results proved so far to determine the
structure of big p-adic Hecke algebras in some cases and prove “big” R =T
theorem in those cases. We begin by defining the big p-adic Hecke algebra.

Let M;(N, W (F)) be the space of modular cuspforms of level I'; (V) and
weight ¢ with Fourier coefficients in W (F). We view it as a subspace of
W (F)[q] via g-expansions. Let M<(N,W(F)) := SF o My(N,W(F)) C
W (F)[q]. Let TZI(N) be the W (IF)-subalgebra of Endyyr)(M<k (N, W (IF)))
generated by the Hecke operators Tj, and S, for primes ¢ { Np (see [16,
Definition 1.7, Definition 1.8] for the action of these Hecke operators on
g-expansions). Let TI1(V) .= lim, T};l(N).

Given a modular form f, let Oy be the ring of integers of the finite ex-
tension of QQ, containing all the Fourier coefficients of f. Now suppose py is
modular of level N i.e. there exists an eigenform f of level I'; (N) such that
the semi-simplification of the reduction of the p-adic Galois representation
attached to f modulo the maximal ideal of Oy is py. Then we get a max-

(N) corresponding to gy (see [13, Section 1] and [4,

imal ideal mj, of T!
Section 1.2]). Let TES(N) be the localization of ') at myj,. So TES(N)
is a complete noetherian local W (F)-algebra with residue field F (see [13,

Section 1] and [4, Section 1.2]).
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Let £ be a prime not dividing Np. After replacing N by N/ everywhere
in the construction of TES(N), we get TES(NL)). Thus we have a natural mor-

phism 1) : ']I“Fl o _, ']I‘EOI(N) obtained by restriction of the Hecke operators

acting on the space of modular forms of level I'1 (N¥) to the space of mod-
ular forms of level I'; (V).

Proposition 5.1.
(1) There exists a pseudo-representation

() gty Gonpy — T,
deforming (tr(po),det(po)) such that
TFl(N)(Frobq) =

I‘l(N)

Fl (M) induced

for all primes gt Np and the morphism ¢ : de — T
from it is surjective.

(2) There exists a pseudo-representation (771 NO §T1INOY - G vy —
T (V) deforming (tr(po),det(po)) such that 771 (NO(Frob,) = T,

po
for all primes q 1 N{lp and the morphism ¢ : dee — ']I‘Fl(NZ)

induced from it is surjective.
(3) The natural morphism 1 : T}

Proof. The first two parts follow from [13, Lemma 4] and [13, Section 2]. For
the last part, we view 711 (V) as a pseudo-character of Gq,nep and denote it
by 7. We know that 711(V) (Frob,) = T, and that 71 (V0 (Frob,) = T, for
all primes g t N¢p. By Chebotarev density theorem, we know that the set
{Frob, : ¢ { N{p} is dense in Gg . Hence, we have ¢ o 771(V0) = 7 which
means 1) o ¢ o TVA = .

On the other hand, if f : RS> At _, de is the natural morphism obtained
by viewing 7"V as pseudo- character of Go,Nep, then ¢’ o fo Tunive —
The universal property of Rgg’é implies that 1) o ¢ = ¢/ o f. Therefore, the
surjectivity of ¢’ implies the surjectivity of . U

Fl(Ne) — Tgol(N) is surjective.

Remark 5.2. Suppose p 1 ¢(N), po is modular of level N and unobstructed.
Let ¢ be a prime such that ¢ { Np and Xi’GQZ = wp for some i € {1,—1}.
Moreover assume that either p { /2 — 1 or p | £+ 1 and p? { £ + 1. Then
combining Proposition 5.1, Corollary 4.9, proof of Corollary 4.20 and the
Gouvéa—Mazur infinite fern argument ([16, Corollary 2.28]), we get that
TEJ(NK) is equidimensional of Krull dimension 4. This proves [16, Conjec-
ture 2.9] in some special cases.

We say that an eigenform h of level N/ lifts pg if the semi-simplification
of the reduction of the p-adic Galois representation attached to it modulo
the maximal ideal of O}, is isomorphic to pg.
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Theorem 5.3. Suppose p t ¢(N), po is modular of level N and unob-
structed. Let £ be a prime such that £ + Np, p { £2 — 1, XZ|GQZ = (.up|c;@‘Z
for some i € {1,—1} and E/l7 is a topological generator of 1+ pZ,. Suppose
there exists an eigenform g of level T'1(NY) lifting po which is new at L.

Then the surjective morphism ¢ : de £ ’]I‘FI(N[) is an isomorphism and

4
TR & W (F)[X1, Xa, X, Xa] /(X2 X).
Proof. Without loss of generality, assume X‘G@e = w,. Suppose ¢ is not an

isomorphism. By Theorem 4.10, we know that
REM o W (F)[ X1, Xo, X3, Xa] /(X2 Xa).

By Gouvéa-Mazur infinite fern argument ([16, Corollary 2.28]), we know
that if P is a minimal prime of TFI(NK) then ']I‘ljl(NZ) /P has Krull dimension

at least 4. Hence, we have ']I‘ (Ne) W(F )[[X Y, Z].

As po is unobstructed and Pt gb( ), it follows from [16, Corollary 2.28]
and Lemma 4.3, that ¢ : Rgg — ’]I‘EJ(N) is an isomorphism and both are
isomorphic to W(F)[X,Y, Z]. Therefore, we get that the surjective map
) ']TFI(NZ) TES(N) is an isomorphism.

By Lemma 4.5 and Proposition 4.8, there exists a representation p :
Go,.nep — GLo (Rp(()i %) such that tr(p) = 7"+ and there exists a w € de ¢
such that p(Iy) is the cyclic group generated by (§ % ). Moreover, Lemma 4 6
implies that (w) is the kernel of the natural surjective map f : de t de
Aspo¢p=¢ o f and ¢ is an isomorphism, we see that ¢(w) = 0

Let g be an eigenform of level I'1 (N?) lifting py which is new at ¢. So we
get a morphism ¢, : T/I;Ol(Ng) — Oy sending each Hecke operator to its g
eigenvalue. Let pg : Go,nep — GL2(Oy) be the p-adic Galois representation
attached to g. Let pj, = ¢4 0 ¢ o p. Then py : Gonyp — GL2(Oy) is a
representation such that tr(p}) = tr(py) and pj is unramified at £. As p,
is absolutely irreducible, we see, by Brauer-Nesbitt theorem, that pg ~ p’g
over Q. This means pg is unramified at ¢ contradicting the assumption
that ¢g is new at £. Hence, ¢ is an isomorphism. O

As corollaries, we get:

Corollary 5.4. Suppose py is unobstructed, pt ¢(N), the Artin conductor
of po divides N, x2 is unramified at p and det(pg) = wwlg‘)*l with 2 < kg < p
and 1) unramified at p. Let £ be a prime such that £{ Np, pt£? —1, K/Z is
a topological generator of 1+ pZ, and X‘G@ =w, |GQ Then, we have:

R o VO

PO £0 - W(F>[|:X17X27X37X4]:|/(X2X4)~
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Proof. From [14, Lemma 2.5], it follows that py is modular of level N and
by [14, Theorem B|, we get the existence of an eigenform g of level I'y (N¥)
lifting pp which is new at £. The corollary now follows from Theorem 5.3. [

Corollary 5.5. Suppose N =1, p9g =1 w}’; for some odd 2 < k <p—3
and 0 is a prime such that £ 4 Np, p{ €2 —1 and p || F*1 — 1. Moreover
suppose either p is a regular prime or p does not divide Byy1B,_j, where
By, is the k-th Bernoulli number. Then, we have:

Rgg’é = TES(Z) ~ W(F)[X1, Xo, X3, Xu] /(X2Xy).

Proof. Note that if £ 2 41 (mod p) and p || /61 =1, then pt ¢2—1 and ¢/
is a topological generator of 1+ pZ,. If either p is regular or p { By41Bp_k,
then either [4, Lemma 21] or [4, Theorem 22] implies that 1 + w;f is an
unobstructed pseudo-character of Gg . Since p | ¢kt 1, we have w]’;\g o =
wy 1 |G‘@e' The corollary now follows directly from Corollary 5.4. O

Remark 5.6. One can also use [5, Theorem 1] instead of Corollary 5.4 to
prove Corollary 5.5.

Examples. The hypotheses of Corollary 5.5 are satisfied in the following
cases:

(1) p=13, po = 1@ w) and £ =5 (mod 169),

(2) p=17, po = 1@ wS and £ =4 (mod 289),

(3) p=37, po=1® w3 and £ =6 (mod 1369).

We now give some examples satisfying the hypotheses of Theorem 5.3
for pp = 1 ® wy,. Note that these cases are not covered in [14, Theorem A].
Let Ej be the Eisenstein series of weight k£ and for a modular form f,
denote its n-th Fourier coefficient by a,(f). We now consider M;(N,Zj)
as a submodule of Zy[q] via g-expansions. Let M;(N,F,) be the image of
M;(N,Zy,) in F,[¢] under the reduction modulo p map Z,[q] — F,[q].

Lemma 5.7. Let p =5,7,11 and ¢ be a prime such that {  +1 (mod p)
and p* ¥ (P~1 — 1. Then the tuple (p,?,1 & w,) satisfies the hypotheses of
Theorem 5.3.

Proof. By [4, Theorem 22|, we know that 1 & w,, is unobstructed. So we
only need to check that there exists a newform of level I'g(¢) lifting po.

Let fr = 70255 (Bp-1(g) — Ep-1(q")). Now fr € M,_1((,Z,). Let fo be

the image of fy in M,_1(¢,F,). So we have Fy := ©f, € Ma,(¢,F,), where
O is the Ramanujan theta operator. Note that Fy # 0.

Note that the action of the Hecke operators T; for primes ¢ # ¢,p and
Uy on My, (¢, Zy) descends to Moy (¢,F,). Moreover, the action of T}, on
Mo, (L,F,) coincides with action of U, ie. if f € My,(¢,F,) and f =
Zan(f)qna then Tpf = Zapn(f)qn'
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By [17, Fact 1.6], it follows that for a prime q # ¢, p, T, Fy = (1 + q)F,
UFy = F, and T,F; = 0. As all these Hecke operators commute with
each other, we get, by Deligne-Serre Lemma, that there exists a G, €
My, (To(¢),Q,) such that:

(1) Gy is an eigenform for U, and for all T, where ¢ # ¢ is a prime,
(2) Modulo the maximal ideal of Og,, its Tj, eigenvalue reduces to 1+¢
for ¢ { p¢, T}, eigenvalue reduces to 0 and Uy eigenvalue reduces to 1.

Thus Gy is an eigenform lifting 1 & wy,. As ¢ # 1 (mod p), the only
Eisenstein series of weight 2p and level I'g(¢) with Uy eigenvalue 1 (mod p)
is Eap(q) — 0P~ Egy(q"). But the T), eigenvalue of Eap,(q) — £2P~ 1 Egy(qt) is
1+ p?P~1. Hence, Gy is a cuspform.

If p = 5,7, then there are no cuspforms of weight 2p and level 1. Hence,
Gy has to be a newform when p = 5,7. Now suppose p = 11. Then the only
cusp eigenform of weight 22 and level 1 is AFEjy. As Fig = 1 (mod 11),
AF19 = A (mod 11). Let pa be the 11-adic Galois representation attached
to A. As 7(2) = —24 # 3 (mod 11), it follows that the semi-simplification
of pa (mod 11) is not 1 & w,. Hence, we see that AEjg # Gy. Hence, Gy
has to be a newform when p = 11. This finishes the proof of the lemma. [
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