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Effect of increasing the ramification on
pseudo-deformation rings

par Shaunak V. DEO

Résumé. Etant donnée une représentation continue, impaire et semi-simple
de dimension 2 de GQ,Np sur un corps fini de caractéristique impaire p et un
nombre premier ` ne divisant pas Np, nous étudions la relation entre les an-
neaux de déformation universels des pseudo-représentations correspondantes
pour les groupes GQ,N`p et GQ,Np. Nous nous intéressons aussi au problème
connexe de savoir si la pseudo-représentation universelle provient d’une vé-
ritable représentation sur l’anneau de déformation universel. Sous certaines
hypothèses, nous prouvons des analogues des théorèmes de Boston et Bö-
ckle pour les anneaux de pseudo-déformation réduits. Nous améliorons ces
résultats dans le cas où la pseudo-représentation est non obstruée et p ne di-
vise pas `2 − 1. Lorsque la pseudo-représentation est non obstruée et p divise
`+ 1, nous prouvons que les anneaux de déformation universels de la pseudo-
représentation de GQ,N`p en caractéristique 0 et p ne sont pas des anneaux
locaux d’intersection complète. Comme application de nos résultats princi-
paux, nous prouvons un théorème R = T pour les algèbres de Hecke élargies
et les anneaux de pseudo-représentations.

Abstract. Given a continuous, odd, semi-simple 2-dimensional representa-
tion of GQ,Np over a finite field of odd characteristic p and a prime ` not
dividing Np, we study the relation between the universal deformation rings of
the corresponding pseudo-representations for the groups GQ,N`p and GQ,Np.
As a related problem, we investigate when the universal pseudo-representation
arises from an actual representation over the universal deformation ring. Un-
der some hypotheses, we prove analogues of theorems of Boston and Böckle
for the reduced pseudo-deformation rings. We improve these results when the
pseudo-representation is unobstructed and p does not divide `2 − 1. When
the pseudo-representation is unobstructed and p divides ` + 1, we prove
that the universal deformation rings in characteristic 0 and p of the pseudo-
representation for GQ,N`p are not local complete intersection rings. As an
application of our main results, we prove a big R = T theorem.

Manuscrit reçu le 14 septembre 2020, révisé le 8 décembre 2021, accepté le 30 janvier 2022.
2010 Mathematics Subject Classification. 11F80, 11F70, 11F33, 13H10.
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1. Introduction

In [11], Boston studied the effect of enlarging the set of primes that
can ramify on the structure of the universal deformation ring of an odd,
absolutely irreducible representation of Gal(Q/Q) over a finite field which is
attached to a modular eigenform of weight 2. His results were generalized by
Böckle in [8] to any continuous 2-dimensional representation of Gal(Q/Q)
over a finite field such that the centralizer of its image is exactly scalars.
The aim of this paper is to study the same problem for pseudo-deformation
rings i.e. universal deformation rings of pseudo-representations.

This article has two parts. In the first part, we analyze when a pseudo-
representation arises from an actual representation. In the second part, we
use the results obtained in the first part to study how the structure of the
universal deformation ring of a 2-dimensional Galois pseudo-representation
changes after allowing ramification at additional primes. We will now elab-
orate on each part.

All the representations and pseudo-representations of pro-finite groups
considered in this article are assumed to be continuous unless mentioned
otherwise.

1.1. Pseudo-representation arising from a representation. Let G
be a pro-finite group and R be a complete noetherian local (CNL for short)
ring. Roughly speaking, a 2-dimensional pseudo-representation of G over
R is a tuple of functions (t, d) : G→ R which “behaves like” the trace and
determinant of a 2-dimensional representation of G over R. In particular,
if ρ : G → GL2(R) is a representation of G, then (tr(ρ), det(ρ)) : G → R
is a pseudo-representation of G of dimension 2. But the converse to this
statement is not necessarily true.

The notion of pseudo-representation that we are going to use throughout
the article was introduced and studied by Chenevier in [12]. Chenevier’s the-
ory of pseudo-representations generalized the theory of pseudo-characters
developed by Rouquier in [21]. We refer the reader to [4, Section 1.4] for def-
inition and properties of 2-dimensional pseudo-representations and to [12]
for general theory of pseudo-representations.

Now suppose p is an odd prime, F is a finite field of characteristic p
and G is a pro-finite group satisfying the finiteness condition Φp of Mazur
(see [19, Section 1.1]). Denote the ring of Witt vectors of F by W (F).
Suppose ρ0 : G→ GL2(F) is a representation such that ρ0 = χ1⊕χ2 where
χ1, χ2 : G→ F× are distinct characters (i.e. χ1 6= χ2).

Let R be a CNL W (F)-algebra with residue field F and (t, d) : G→ R be
a pseudo-representation of G deforming (tr(ρ0),det(ρ0)). Then we address
the following question in the first part of the article: Does there exist a
representation ρ : G → GL2(R) such that t = tr(ρ) and d = det(ρ)? If
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there does exist such a representation ρ, then we say that the pseudo-
representation (t, d) arises from a representation.

1.1.1. Motivation. In [11], Boston used the techniques and results from
the theory of pro-p groups to determine how the deformation ring of an
absolutely irreducible Galois representation changes after enlarging the set
of ramifying primes. The same techniques were used by Böckle in [8] to
extend Boston’s results to non-split reducible representations (see [8, The-
orem 4.7]). However, their method crucially depends on working with actual
representations (and not just pseudo-representations). So, in order to use
their techniques and results, we first investigate when a Galois pseudo-
representation arises from an actual representation.

Moreover, this question is also of an independent interest for any pro-
finite group (and not just for the Galois groups). Therefore, we do not
restrict ourselves to Galois groups in the first part of the article and work
with a general pro-finite group.

1.1.2. Main results. Recall that we have ρ0 : G → GL2(F) with ρ0 =
χ1 ⊕ χ2. Let χ := χ1χ

−1
2 . For i ∈ {1,−1}, we denote the dimension of the

cohomology group Hj(G,χi) as a vector space over F by dim(Hj(G,χi)).

Theorem A (see Theorem 3.5, Theorem 3.7). Suppose dim(H1(G,χi)) = 1
and H2(G,χi) = 0 for some i ∈ {1,−1} and fix such an i. Then:

(1) If R is a reduced CNLW (F)-algebra with residue field F, then every
pseudo-representation (t, d) : G → R deforming (tr(ρ0),det(ρ0))
arises from a representation.

(2) Suppose dim(H2(G,χ−i))<dim(H1(G,χ−i)), 1≤dim(H1(G,χ−i))
≤ 3 and H2(G, 1) = 0. If R is a CNL F-algebra with residue
field F, then every pseudo-representation (t, d) : G → R deform-
ing (tr(ρ0),det(ρ0)) arises from a representation.

As a consequence of the theorem above, we get that certain pseudo-
deformation rings are isomorphic to appropriate deformation rings of
reducible, non-split representations (see Theorem 3.5 and Theorem 3.7 for
more details). In Section 3.5, we list the consequences of these results for
Galois groups.

Remark 1.1. The hypotheses dim(H1(G,χi)) = 1 and H2(G,χi) = 0 are
used to construct the representation whose existence is claimed in the first
part of Theorem A. The hypotheses of the second part are used along with
results of [23] to get a description of the structure of the universal mod p
deformation ring of (tr(ρ0), det(ρ0)). This description is crucially used to
construct a representation which gives rise to the universal mod p pseudo-
representation deforming (tr(ρ0),det(ρ0)). In Proposition 3.1, we prove that
the hypothesis dim(H1(G,χi)) = 1 for some i ∈ {1,−1} is necessary for
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the second part of Theorem A to hold. However, it is not clear whether
Theorem A holds without any of the other hypotheses.

1.2. Level raising for pseudo-deformation rings. In the second part,
we specialize the set-up introduced in Section 3 to the case where G =
GQ,Np and ρ0 is an odd representation. To be precise, we consider a re-
ducible, semi-simple, odd representation ρ0 : GQ,Np → GL2(F) where p is
an odd prime, F is a finite extension of Fp, N is an integer not divisible by
p. Thus ρ0 = χ1 ⊕ χ2 where χ1, χ2 : GQ,Np → F× are characters and let
χ := χ1χ

−1
2 .

Let Rpd
ρ̄0 be the universal deformation ring of the pseudo-representation

(tr(ρ0),det(ρ0)) : GQ,Np → F in the category of CNL W (F)-algebras with
residue field F. Suppose ` is a prime not dividing Np. Then we have a
natural surjective map GQ,N`p � GQ,Np and via this surjective map, we
can view (tr(ρ0),det(ρ0)) as a pseudo-representation ofGQ,N`p. LetRpd,`

ρ̄0 be
the universal deformation ring of the pseudo-representation (tr(ρ0),det(ρ0))
for the group GQ,N`p in the category of CNL W (F)-algebras with residue
field F.

Our aim is to compare Rpd,`
ρ̄0 with Rpd

ρ̄0 and determine the structure of
Rpd,`
ρ̄0 in terms of the structure of Rpd

ρ̄0 .

1.2.1. Motivation. Our interest in the problem mainly arises from its
potential application to determining the structure of characteristic 0 and
characteristic p Hecke algebras (as defined in [4] and [13]) and to the level
raising of modular forms.

In [11], Boston connects the increase in the space of deformations, after
allowing ramification at an additional prime `, to the level raising of mod-
ular forms. To be precise, he shows, using the results of Ribet and Carayol,
that every new component of the bigger deformation space contains a point
corresponding to a modular eigenform which is new at `.

When the residual representation is reducible, the level raising results
for modular forms are not known in all cases (see [5], [25] and [14] for
known cases of level raising results for reducible ρ0). So if ρ0 comes from a
newform of level N and the level raising results are not known for it, then
results along the lines of [11] for pseudo-deformation ring can be treated as
evidence for level raising for ρ0.

On the other hand, suppose ρ0 comes from a newform of level N and level
raising is known for ρ0. Then, we are interested in studying the relationship
between TΓ1(N`)

ρ̄0 , the ρ0-component of the characteristic 0 Hecke algebra of
level N` and TΓ1(N)

ρ̄0 , the ρ0-component of the characteristic 0 Hecke algebra
of level N (see [4] and [13] for the definitions of these Hecke algebras). In
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particular, we want to explore if the structure of TΓ1(N`)
ρ̄0 can be obtained

from the structure of TΓ1(N)
ρ̄0 .

Note that we have surjective maps Rpd,`
ρ̄0 � TΓ1(N`)

ρ̄0 and Rpd
ρ̄0 � TΓ1(N)

ρ̄0
which are known to be isomorphisms in certain cases. Thus, exploring this
question for deformation rings serves as a good starting point for this study
and it also gives us an idea of what to expect in the case of Hecke alge-
bras. We are also interested in exploring similar questions for mod p Hecke
algebra of level N` and N (as defined in [13] and [4]).

1.2.2. Main results. Recall that we have an odd ρ0 : GQ,Np → GL2(F)
with ρ0 = χ1 ⊕ χ2 and χ = χ1χ

−1
2 . For i ∈ {1,−1}, denote the restriction

of χi to the decomposition group at ` by χi|GQ`
. Let ωp be the mod p

cyclotomic character, Rpd,`
ρ̄0 := Rpd,`

ρ̄0 /(p) and Rpd
ρ̄0 := Rpd

ρ̄0 /(p). For a ring
R, we denote by (R)red its maximal reduced quotient. Using results of
Section 3.5 and [8], we prove:

Theorem B. Suppose dim(H1(GQ,Np, χ
i)) = 1 and dim(H1(GQ,Np, χ

−i)) =
m for some i ∈ {1,−1}. Let ` be a prime such that p - `2 − 1 and
χ−i|GQ`

= ωp|GQ`
. Then:

(1) There exist r1, . . . , rn′ ,Φ ∈W (F)[[X1, . . . , Xn, X]] such that

(Rpd,`
ρ̄0 )red ' (W (F)[[X1, . . . , Xn, X]]/(r1, . . . , rn′ , X(Φ− `)))red

and (Rpd
ρ̄0 )red ' (W (F)[[X1, . . . , Xn]]/(r1, . . . , rn′))red, where ri = ri

(mod X).
(2) Suppose m = 1, 2 and p - φ(N). Then there exist r1, . . . , rn′ ,Φ ∈

F[[X1, . . . , Xn, X]] such that

Rpd,`
ρ̄0 ' F[[X1, . . . , Xn, X]]/(r1, . . . , rn′ , X(Φ− `))

and Rpd
ρ̄0 ' F[[X1, . . . , Xn]]/(r1, . . . , rn′), where ri (mod X) = ri.

Remark 1.2. The hypotheses of Theorem B make sure that the hypotheses
of first and second part of Theorem A hold for both GQ,Np and GQ,N`p in
the first and second part of Theorem B, respectively. This allows us to
combine Theorem A and results of [8] to get Theorem B. However, the
description of the structure of Rpd,`

ρ̄0 is expected to get more complicated if
we relax one or more hypotheses of Theorem B. This is illustrated in the
results given below.

We call ρ0 unobstructed when dim(H1(GQ,Np, χ
i)) = 1 for i ∈ {1,−1}.

Note that if N = 1, then any reducible ρ0 is unobstructed if Vandiver’s
conjecture is true ([4, Theorem 22]). Moreover, [4, Theorem 22] also gives
some examples of unobstructed ρ0’s ifN = 1. Note that if ρ0 is unobstructed
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and p - φ(N), then Rpd
ρ̄0 ' W (F)[[X,Y, Z]]. We then prove slightly more

precise results after assuming that ρ0 is unobstructed and p - φ(N).
Theorem C (See Corollary 4.9 and Theorem 4.10). Suppose ρ0 is un-
obstructed, p - φ(N) and ` is a prime such that ` - Np, p - `2 − 1 and
χi|GQ`

= ωp for some i ∈ {1,−1}. Then:

(1) Rpd,`
ρ̄0 ' W (F)[[X1, X2, X3, X4]]/(X4f) for some non-zero element

f ∈W (F)[[X1, X2, X3, X4]],
(2) Moreover if p2 - `p−1 − 1, then

Rpd,`
ρ̄0 'W (F)[[X1, X2, X3, X4]]/(X4X2).

Remark 1.3. The hypotheses that ρ0 is unobstructed, p - `2 − 1 and
χi|GQ`

= ωp for some i ∈ {1,−1} of Theorem C make sure that the hy-
potheses of Theorem B are satisfied. The hypotheses that ρ0 is unobstructed
and p - φ(N) imply that Rpd

ρ̄0 'W (F)[[X,Y, Z]]. Moreover, combining these
hypotheses with p2 - `p−1 − 1, we get a set of generators of the cotangent
space of Rpd,`

ρ̄0 . All this information is then combined with Theorem A to
prove Theorem C.

The case p | ` + 1 turns out to be different from the other cases which
also happens in [11] and [8].
Theorem D (see Theorem 4.13, Theorem 4.19, Corollary 4.20). Suppose
ρ0 is unobstructed, p - φ(N) and ` is a prime such that ` - Np, p ‖ ` + 1
and χ|GQ`

= ωp. Then

(Rpd,`
ρ̄0 )red ' F[[X,Y, Z,X1, X2]]/(X1X2, X1Y,X2Y ).

Moreover, both Rpd,`
ρ̄0 and Rpd,`

ρ̄0 are not local complete intersection rings.

Remark 1.4. The hypotheses that ρ0 is unobstructed and p - φ(N) imply
that Rpd

ρ̄0 ' W (F)[[X,Y, Z]]. Moreover, combining these hypotheses with
p ‖ `+ 1, we get a set of generators of the cotangent space of Rpd,`

ρ̄0 . All this
information is crucially used to prove Theorem D.

Recall that Mazur’s conjecture ([19]) predicts that the mod p universal
deformation ring of an absolutely irreducible 2-dimensional representation
of GQ,Np over some finite extension of Fp has Krull dimension 3. This
also implies that the mod p universal deformation ring is always a local
complete intersection ring. From the theorem above, we find examples of
mod p universal pseudo-deformation rings of Krull dimension 3 which are
not local complete intersection rings. On the other hand, in [6], Bleher and
Chinburg found examples of absolutely irreducible representations of pro-
finite groups such that the corresponding universal deformation rings (in
the sense of Mazur) are not locally complete intersection rings.
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Finally, as an application, we prove an R = T theorem for big p-adic
Hecke algebras and pseudo-deformation rings in Section 5 similar to the
ones proved by Böckle in [10] (see Theorem 5.3 and Corollary 5.5 for more
details). We also give examples where the hypotheses of our “big” R = T
theorem are satisfied.

1.3. Outline of the proof of main results. Since χ1 6= χ2, it fol-
lows, from [3] and [2], that a pseudo-representation (t, d) : G → R lifting
(tr(ρ0),det(ρ0)) arises from a representation of G taking values in a faithful
Generalized Matrix Algebra (GMA) A =

(
R B
C R

)
over R. The assumption

dim(H1(G,χi)) = 1 for some i ∈ {1,−1} implies that A can be chosen
in such a way that B is generated by at most 1 element as an R-module.
Moreover, if G = GQ,Np or GQ,N`p and ρ0 is unramified at `, then this
representation is tamely ramified at `.

Now if B is a free R-module of rank 1 (i.e. the annihilator of B is (0)),
then it follows that A is isomorphic to a subalgebra of M2(R) which means
(t, d) arises from a representation over R. Faithfulness of A implies that this
is equivalent to the annihilator of the ideal I := m′(B ⊗ C) ⊂ R, obtained
by multiplication of B and C, being (0). Note that I is the reducibility
ideal of (t, d) (in the sense of [3]).

Now if R is an integral domain and (t, d) is not reducible, then it means
I 6= (0) and hence, the previous paragraph implies that (t, d) arises from a
representation over R. Since dim(H1(G,χi)) = 1, it follows, after changing
the basis if necessary, that this representation is a deformation of a fixed
reducible, non-split representation ρx0 whose semi-simplification is ρ0. On
the other hand, if (t, d) is reducible, then we construct, using results and
techniques of [22], a deformation of ρx0 to R which gives rise to (t, d). This
proves the first part of Theorem A.

To prove the second part of Theorem A, we first use its hypotheses along
with [23, Theorem 3.3.1] to prove that Rpd

ρ̄0 is a quotient of a power series
ring by an ideal generated by at most 2 elements. This description, along
with some commutative algebra, is then used to prove that the annihila-
tor of the reducibility ideal of the universal mod p pseudo-deformation of
(tr(ρ0),det(ρ0)) is trivial. Combining this with the discussion above gives
the second part of Theorem A.

Note that Theorem A relates certain quotients of Rpd
ρ̄0 with the corre-

sponding quotients of the deformation ring of ρx0 . We use the results of
Section 2.5 to conclude that these relations hold in the setting of Galois
groups appearing in Theorem B and combine them with [8, Theorem 4.7]
to prove Theorem B.

To prove the first part of Theorem C, we combine results of Section 2.5,
second part of Theorem A, the relation between the tame inertia group
and the Frobenius at ` and some basic commutative algebra to prove that
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Rpd,`
ρ̄0 is isomorphic to the universal deformation ring of ρx0 for GQ,N`p. The

result then follows from [8, Theorem 4.7] and [9, Theorem 2.4]. To prove the
second part of Theorem C, we first find a set of generators of the cotangent
space of Rpd,`

ρ̄0 . Combining this with the relation between the tame inertia
group and the Frobenius at ` and the first part of Theorem C yields the
theorem.

The proof of Theorem D is carried out in several steps. We first find
a set of generators of the cotangent space of Rpd,`

ρ̄0 and then use the rela-
tion between the tame inertia group and the Frobenius at ` to prove that
(Rpd,`

ρ̄0 )red is a quotient of F[[X,Y, Z,X1, X2]]/(X1X2, X1Y,X2Y ). We then
prove that Rpd,`

ρ̄0 has at least 3 distinct prime ideals P0, P1 and P2 such that
Rpd,`
ρ̄0 /Pj ' F[[x, y, z]] for all 0 ≤ j ≤ 2 from which the first part of Theo-

rem D follows. Note that GMAs play a crucial role in obtaining the results
mentioned above. We then use the GMA corresponding to the universal
mod p pseudo-representation deforming (tr(ρ0), det(ρ0)) and the relation
between the tame inertia group and the Frobenius at ` to get some rela-
tions satisfied by the generators of the cotangent space of Rpd,`

ρ̄0 found above.
We then use some basic commutative algebra and first part of Theorem D
to prove the second part of Theorem D.

1.4. Wayfinding. In Section 2, we collect definitions and background re-
sults that we use in the rest of the article. In Section 2.1, we introduce the
pseudo-deformation rings which we will be working with throughout the
article. In Section 2.2, we introduce the notion of Generalized Matrix Alge-
bras (GMAs) and collect results which will be used in the rest of the article.
In Section 2.3, we introduce the notion of reducible pseudo-representations
and study its properties. In Section 2.4, we review the definition and prop-
erties of the deformation ring of a reducible, non-split representation. In
Section 2.5, we prove some additional results for Galois groups which will
be used later. In Section 3, we analyze when a pseudo-representation arises
from a representation. In Section 4, we study how the pseudo-deformation
ring changes after enlarging the set of ramifying primes. In Section 5, we
apply results from Section 4 to prove an R = T theorem and also give some
examples where the hypotheses of the theorem are satisfied.

1.5. Notations and conventions. For a pro-finite group G, we will use
the following convention: all the representations, pseudo-representations,
cohomology groups and Exti groups of G that we will work with are as-
sumed to be continuous unless mentioned otherwise. Given a representa-
tion ρ of G defined over F, we denote by dim(H i(G, ρ)), the dimension of
H i(G, ρ) as a vector space over F.

For a prime q, denote by GQq the absolute Galois group of Qq and by
Iq, the inertia group at q. Denote the Frobenius element at q by Frobq. For
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an integer M , denote by GQ,Mp the Galois group of the maximal algebraic
extension of Q unramified outside {primes q : q | Mp} ∪ {∞} over Q and
fix an embedding iq,M : GQq → GQ,Mp. For a fixed M , such an embedding
is well defined upto conjugacy.

For a representation ρ of GQ,Mp denote by ρ|GQq the representation ρ ◦
iq,M of GQq . Moreover, for an element g ∈ GQq , we denote ρ(iq,M (g)) by
ρ(g). If ρ|Iq factors through the tame inertia quotient of Iq, then, given
an element g in the tame inertia group at q, we write ρ(g) for ρ(iq,M (g′))
where g′ is any lift of g in GQq . For a pseudo-representation (t, d) of GQ,Mp

denote by (t|GQq , d|GQq ) the pseudo-representation (t◦ iq,M , d◦ iq,M ) of GQq .
We denote the mod p cyclotomic character of GQ,Mp by ωp. For a prime

q, we will also denote ωp|GQq by ωp by abuse of notation. For a finite field
F, we denote the ring of its Witt vectors by W (F) and we will denote the
Teichmuller lift of an element a ∈ F to W (F) by â.

For a local ring R with residue field F, denote by tan(R) the tangent
space of R and denote by dim(tan(R)) the dimension of tan(R) as a vector
space over F.

Acknowledgments. I would like to thank Carl Wang-Erickson for helpful
correspondence regarding [23] and the Introduction section of this article.
I would also like to thank Gabor Wiese, Anna Medvedovsky and John
Bergdall for many helpful conversations. I would like to thank the anony-
mous referee for many useful comments and suggestions which helped in
improving the exposition. Most of this work was done when the author was
a postdoc at the University of Luxembourg.

2. Preliminaries

Even though we are primarily interested in the deformation rings of
Galois pseudo-representations, we are going to take a slightly more general
approach in this and the next section. To be precise, instead of GQ,Np and
odd ρ0, we are going to consider a pro-finite group G which satisfies the
finiteness condition Φp given by Mazur in [19, Section 1.1] and a continuous
representation ρ0 : G→ GL2(F) such that ρ0 = χ1 ⊕ χ2 with χ1 6= χ2 and
χ = χ1/χ2.

Most of the results that we state/prove in this section are well known.

2.1. Pseudo-deformation rings. We now introduce the universal defor-
mation rings of pseudo-representations i.e. pseudo-deformation rings with
which we will be studying for the rest of the article. Let C be the category
whose objects are local complete noetherian rings with residue field F and
the morphisms between the objects are local morphisms of W (F)-algebras.
Let C0 be the full sub-category of C consisting of local complete noetherian
F-algebras with residue field F.
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Now ρ0 is a 2-dimensional representation of G over F. This means that
(tr(ρ0),det(ρ0)) : G → F is a 2-dimensional pseudo-representation of G
over F. Let Dρ̄0 be the functor from C to the category of sets which
sends an object R of C with maximal ideal mR to the set of continuous
pseudo-representations (t, d) of G to R such that t (mod mR) = tr(ρ0)
and d (mod mR) = det(ρ0). Let Dρ̄0 be the restriction of Dρ̄0 to the sub-
category C0.

From [12], it follows that the functors Dρ̄0 and Dρ̄0 are representable by
objects of C and C0, respectively. Let Rpd

ρ̄0 and Rpd
ρ̄0 be the local complete

noetherian rings with residue field F representing Dρ̄0 and Dρ̄0 , respec-
tively. So we have Rpd

ρ̄0 /(p) ' R
pd
ρ̄0 . Let (tuniv, duniv) be the universal pseudo-

representation of G to Rpd
ρ̄0 deforming (tr(ρ0), det(ρ0)). Let (T univ, Duniv) be

the universal pseudo-representation of G toRpd
ρ̄0 deforming (tr(ρ0), det(ρ0)).

As p is odd, it follows that a 2-dimensional pseudo-representation (t, d)
of G to an object R of C is determined by t which is a pseudo-character
of dimension 2 in the sense of Rouquier ([21]) (see [4, Section 1.4]). Indeed
if p is odd and (t, d) : G → R is a 2-dimensional pseudo-representation,
then d(g) = t(g)2−t(g2)

2 for all g ∈ G. So, in this case, the theory of pseudo-
representations is same as the theory of pseudo-characters.

Hence, it follows that Rpd
ρ̄0 (resp. Rpd

ρ̄0 ) is the universal deformation ring
and T univ (resp. tuniv) is the universal pseudo-character of the pseudo-
character tr(ρ0) in the category C (resp. C0). Therefore, for simplicity, we
will be working with the residual pseudo-character tr(ρ0) and the universal
pseudo-characters T univ and tuniv deforming tr(ρ0) instead of working with
the corresponding pseudo-representations.

Denote the pseudo-character obtained by composing tuniv with the sur-
jective map Rpd

ρ̄0 → (Rpd
ρ̄0 )red by tuniv,red and the pseudo-character obtained

by composing T univ with the surjective map Rpd
ρ̄0 → (Rpd

ρ̄0 )red by T univ,red.
We will frequently specialize to the case where G = GQ,Np and ρ0 is

odd. However, even after specializing to this case, we will keep using the
notation introduced above unless mentioned otherwise.

2.2. Reminder on Generalized Matrix Algebras (GMAs). In this
subsection, we recall some standard definitions and results about General-
ized Matrix Algebras which will be used frequently in the rest of the article.
From now on, we will use the abbreviation GMA for Generalized Matrix
Algebra. Our main references for this section are [2, Section 2.2] (for GMAs
of type (1, 1)), [2, Section 2.3] (for topological GMAs) and [3, Chapter 1]
(for the general theory of GMAs). For more information, we refer the reader
to them.
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We first recall the definition of a topological Generalized Matrix Algebra
of type (1, 1). Let R be a complete noetherian local ring with maximal
ideal mR and residue field F. So R is a topological ring under the mR-adic
topology which we fix from now on. Let A =

(
R B
C R

)
be a topological GMA

of type (1, 1) over R. This means the following:
(1) B and C are topological R-modules,
(2) An element of A is of the form

(
a b
c d

)
with a, d ∈ R, b ∈ B and

c ∈ C,
(3) There exists a continuous morphism m′ : B ⊗R C → R of R-

modules such that for all b1, b2 ∈ B and c1, c2 ∈ C, m′(b1⊗ c1)b2 =
m′(b2 ⊗ c1)b1 and m′(b1 ⊗ c1)c2 = m′(b1 ⊗ c2)c1.

So A is a topological R-algebra with the addition given by(
a1 b1
c1 d1

)
+
(
a2 b2
c2 d2

)
=
(
a1 + a2 b1 + b2
c1 + c2 d1 + d2

)
,

the multiplication given by(
a1 b1
c1 d1

)
·
(
a2 b2
c2 d2

)
=
(
a1a2 +m′(b1 ⊗ c2) a1b2 + d2b1

d1c2 + a2c1 d1d2 +m′(b2 ⊗ c1)

)
and the topology given by the topology on R, B and C.

For the rest of this article, GMA means topological GMA unless men-
tioned otherwise. By abuse of notation, we will always denote by m′ the
multiplication map B ⊗R C → R for any GMA and any R. From now on,
given a pro-finite group G and a GMA A, a representation ρ : G → A∗

means a continuous homomorphism from G to A∗ unless mentioned other-
wise. If ρ : G → A∗ is a representation, then we denote the R-submodule
of A generated by ρ(G) by R[ρ(G)]. Note that R[ρ(G)] is a subalgebra of
A. If ρ : G → A∗ is a representation such that ρ(g) =

(
ag bg
cg dg

)
for every

g ∈ G, then we define tr(ρ) : G→ R by tr(ρ)(g) := ag + dg. For a topologi-
cal R-module B, we denote by HomR(B/mRB,F) the set of all continuous
R-module homomorphisms from B/mRB to F.

Definition 2.1. Let A =
(
R B
C R

)
be a GMA with the map m′ : B⊗RC → R

giving the multiplication in A. We say that A is faithful if the following
conditions hold:

(1) If b ∈ B and m′(b⊗ c) = 0 for all c ∈ C, then b = 0,
(2) If c ∈ C and m′(b⊗ c) = 0 for all b ∈ B, then c = 0.

Definition 2.2. We say that A′ is an R-sub-GMA of A if there exists an R-
submodule B′ of B and an R-submodule C ′ of C such that m′(B′⊗C ′) ⊂ R
and A′ =

(
R B′

C′ R

)
i.e. A′ =

{(
a b
c d

)
∈ A : b ∈ B′, c ∈ C ′

}
(see [2, Section 2.2]

for the definitions of sub-GMA and R-sub-GMA). Note that A′ is a sub-
algebra of A and hence, a GMA over R.
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Definition 2.3. Let R be an object of C and t : G → R be a pseudo-
character deforming tr(ρ0). We will say that t is reducible if there exists
characters η1, η2 : G→ R∗ such that t = η1 + η2 and ηi is a deformation of
χi for i = 1, 2.
Lemma 2.4. Let R be a complete noetherian local ring with maximal ideal
mR and residue field F. Let t : G → R be a pseudo-character deforming
tr(ρ0). Then, there exists a faithful GMA A =

(
R B
C R

)
and a representation

ρ : G→ A∗ such that
(1) For g ∈ G, if ρ(g) =

(
ag bg
cg dg

)
, then ag ≡ χ1(g) (mod mR), dg ≡

χ2(g) (mod mR) and t(g) = ag + dg (i.e. t = tr(ρ)),
(2) m′(B ⊗R C) ⊂ mR, where m′ is the map giving the multiplication

in A,
(3) R[ρ(G)] = A,
(4) B and C are finitely generated R-modules,
(5) the minimal number of generators of B as an R-module is at most

dim(H1(G,χ)) and the minimal number of generators of C as an
R-module is at most dim(H1(G,χ−1)),

(6) t (mod I) is reducible, where I := m′(B ⊗ C).
Proof. As χ1 6= χ2, ρ0 is residually multiplicity free. We have assumed that
G satisfies the finiteness condition. Hence, the existence of A and ρ with the
properties (1)–(4) follows from parts (i), (v), (vii) of [2, Proposition 2.4.2].
To prove part (6), observe that agg′ ≡ agag′ (mod I) and dgg′ ≡ dgdg′
(mod I).

The proof of part (5) of the lemma is same as that of [3, Theorem 1.5.5].
We only give a brief summary here. Given f ∈ HomR(B/mRB,F), we get
a morphism of R-algebras f∗ : A→M2(F), such that

f∗
((

a b
c d

))
=
(
a (modmR) f(b)

0 d (modmR)

)
.

From the first assumption, it follows that the restriction of f∗ to ρ(G) is
an extension of χ2 by χ1 and hence, an element f̃∗ of H1(G,χ) (see proof
of [3, Theorem 1.5.5] for more details). So we get a linear map j :
HomR(B/mRB,F) → H1(G,χ) sending f to f̃∗. Since R[ρ(G)] = A, we
get that the map j is injective. Hence, Nakayama’s lemma gives the asser-
tion about the number of generators of B. The assertion about the number
of generators of C follows similarly. �

Remark 2.5. It follows, from parts (5) and (6) of Lemma 2.4, that if
H1(G,χi) = 0 for some i ∈ {1,−1}, then T univ is reducible and hence, it
arises from a 2-dimensional G-representation over Rpd

ρ̄0 .
Thus, from Lemma 2.4, we see that a pseudo-character t : G → R de-

forming tr(ρ0) arises from a representation over R if the GMA found in
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Lemma 2.4 corresponding to the tuple (G, t,R) is isomorphic to a subalge-
bra of M2(R).

Lemma 2.6. Let A =
(
R B
C R

)
be a faithful GMA over R and ρ : G → A∗

be a representation. Then:
(1) If y ∈ R is an element such that either yB = 0 or yC = 0, then

ym′(B ⊗ C) = 0,
(2) If B is a free R-module of rank 1, then there exists an R-algebra

isomorphism φ between A and the R-subalgebra of M2(R) given by(
R R

m′(B⊗C) R

)
such that φ(tr(ρ(g))) = tr(ρ(g)) for every g ∈ G.

Proof.

(1). Note that m′ : B ⊗ C → R is a map of R-modules. Hence, for every
y ∈ R, b ∈ B and c ∈ C, m′(yb ⊗ c) = m′(b ⊗ yc) = ym′(b ⊗ c). The first
part follows immediately from this.

(2). Fix a generator γ of B. This choice gives us an R-module isomorphism
fγ : B → R such that b = fγ(b)γ for every b ∈ B. Consider the map
f̃ : A → A′ which sends

(
a b
c d

)
∈ A to

(
a fγ(b)

m′(γ⊗c) d

)
. It is easy to check,

using the facts that the multiplication map m′ : B ⊗R C → R is R-linear
and fγ(b)m′(γ ⊗ c) = m′(b ⊗ c), that f̃ is a continuous homomorphism of
R-algebras. Note that if a ∈ A, then tr(a) = tr(f̃(a)). This finishes the
proof of the second part. �

When R is reduced, it turns out that any GMA representation comes
“very close” to being a true representation. To be precise, every GMA
representation over a reduced ring comes from a true representation over
its total fraction field. We record this as a formal result below.

Lemma 2.7. Let R be a reduced complete noetherian local ring with max-
imal ideal mR and residue field F. Let K be the total fraction field of R. If
A =

(
R B
C R

)
is a faithful GMA, then there exist fractional ideals B′ and C ′

of K and R-module isomorphisms φ : B → B′ and ψ : C → C ′ such that
(1) For all b′ ∈ B′ and c′ ∈ C ′, b′.c′ ∈ R, where . denotes the multipli-

cation in K,
(2) If A′ =

(
R B′

C′ R

)
⊂M2(K), then A′ is an R-sub-algebra of M2(K),

(3) The map Φ : A→ A′ given by Φ
((
a b
c d

))
=
(

a φ(b)
ψ(c) d

)
is an isomor-

phism of R-algebras.

Proof. This follows directly from [3, Proposition 1.3.12]. �

2.3. Reducibility properties of pseudo-characters. We will now de-
fine a reducible pseudo-character and study properties of it. We begin by
computing tangent space dimension of Rpd

ρ̄0 under some hypothesis.
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Lemma 2.8. Suppose H2(G, 1) = 0. Let
k = dim(H1(G, 1)),m = dim(H1(G,χ)) and n = dim(H1(G,χ−1)).

Then dim(tan(Rpd
ρ̄0 )) = 2k +mn.

Proof. Recall that Ext1
G(η, δ) ' H1(G, δ/η) and Ext2

G(η, η) ' H2(G, 1) for
any continuous characters η, δ : G → F×. Now the lemma directly follows
from [1, Theorem 2] (see also [4, Proposition 20]). �

Lemma 2.9. If J is an ideal of Rpd
ρ̄0 such that tuniv (mod J) = tr(ρ0), then

J is the maximal ideal of Rpd
ρ̄0 .

Proof. Let f : Rpd
ρ̄0 � Rpd

ρ̄0 /J be the natural surjective homomorphism. Let
g : Rpd

ρ̄0 → Rpd
ρ̄0 /J be the morphism obtained by composing the natural

surjective morphism Rpd
ρ̄0 → F with the map F → Rpd

ρ̄0 /J giving the F-
algebra structure on Rpd

ρ̄0 /J . As t
univ (mod J) = tr(ρ0), we see that f ◦

tuniv = g ◦ tuniv. Hence, by the universality of Rpd
ρ̄0 , we get that f = g.

Therefore, we get that J is the maximal ideal of Rpd
ρ̄0 . �

Before proceeding further, we introduce some more notation. Let Gab

denote the continuous abelianization of G.

Lemma 2.10. Let J be an ideal of Rpd
ρ̄0 such that tuniv (mod J) is reducible.

If H2(G, 1) = 0 and dim(H1(G, 1)) = k, then dim(tan(Rpd
ρ̄0 /J)) ≤ 2k and

the Krull dimension of Rpd
ρ̄0 /J is at most 2k.

Proof. Denote Rpd
ρ̄0 /J by R and tuniv (mod J) by t′ for the rest of the proof.

Suppose t′ = χ̃1 + χ̃2, where χ̃1, χ̃2 : G→ R∗ are characters deforming χ1
and χ2, respectively.

As H2(G, 1) = 0 and dim(H1(G, 1)) = k, we see that lim←−iG
ab/(Gab)pi '∏k

i=1 Zp. Let {g1, . . . , gk} be a set of topological generators of the abelian
pro-p group lim←−iG

ab/(Gab)pi . For all 1 ≤ i ≤ k, there exist xi, yi ∈ R such
that χ̃1(gi) = χ1(gi)(1 + xi) and χ̃2(gi) = χ2(gi)(1 + yi). Let I be the ideal
of R generated by the set {x1, . . . , xk, y1, . . . , yk}.

Since {g1, . . . , gk} is a set of topological generators of lim←−iG
ab/(Gab)pi ,

we see that t′ (mod I) = tr(ρ0). So, by Lemma 2.9, the kernel of the natural
surjective map Rpd

ρ̄0 → R/I is the maximal ideal of Rpd
ρ̄0 and hence, I is the

maximal ideal of R. This proves the claim about dim(tan(R)). The claim
about the Krull dimension of R follows directly from dim(tan(R)) ≤ 2k. �

Remark 2.11. Comparing Lemma 2.10 and Lemma 2.8, we see that if
H2(G, 1) = 0, H1(G,χ) 6= 0 and H1(G,χ−1) 6= 0, then tuniv is not re-
ducible.
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Remark 2.12. Note that Lemma 2.10 is also true when H2(G, 1) 6= 0
but we don’t prove it here as we will mostly restrict ourselves to the case
H2(G, 1) = 0 in what follows.

2.4. Deformation rings of reducible non-split representations. We
have ρ0 = χ1 ⊕ χ2 for some distinct characters χ1, χ2 : G → F×. Let
χ = χ1/χ2. Thus, χ : G → F× is a non-trivial character. For a non-zero
element x ∈ H1(G,χ), denote by ρx the corresponding representation of
G. So ρx : G → GL2(F) is such that ρx =

(
χ1 ∗
0 χ2

)
where ∗ corresponds

to x. Similarly, for a non-zero element y ∈ H1(G,χ−1), denote by ρy the
corresponding representation of G.

Let x ∈ H1(G,χi) with i ∈ {1,−1} be a non-zero element. Denote by
Rdef
ρ̄x the universal deformation ring of ρx in the category C in the sense of

Mazur ([19]). Note that, for a non-zero x ∈ H1(G,χi) with i ∈ {1,−1},
the centralizer of the image of ρx is exactly the set of scalar matrices as
χ 6= 1. Hence, the existence of Rdef

ρ̄x follows from [19] and [20]. Let Rdef
ρ̄x

be the universal deformation ring of ρx in characteristic p. So we have
Rdef
ρ̄x /(p) ' Rdef

ρ̄x . Let ρ
univ
x : G → GL2(Rdef

ρ̄x ) be the universal deformation
of ρx.

We will frequently specialize to the case whereG = GQ,Np. However, even
after specializing to this case, we will keep using the notation introduced
above unless mentioned otherwise.

Lemma 2.13. Let x ∈ H1(G,χi), with i ∈ {1,−1}, be a non-zero element.
Let dim(H1(G,χi)) = m, dim(H1(G,χ−i)) = n and dim(H1(G, 1)) = k.
Then dim(H1(G, ad(ρx))) = dim(tan(Rdef

ρ̄x )) ≤ m+ n+ 2k − 1.

Proof. Recall that dim(tan(Rdef
ρ̄x )) = dimH1(G, ad(ρx)) (see [19]). As p is

odd, ad(ρx) = 1 ⊕ ad0(ρx). We have the following two exact sequences of
G-modules:

(1) 0→ χi → ad0(ρx)→ V → 0,
(2) 0→ 1→ V → χ−i → 0.

So, from the second short exact sequence, we get

dim(H1(G,V )) ≤ dim(H1(G, 1)) + dim(H1(G,χ−i)) = k + n.

Since dim(H0(G,V )) = 1, the exact sequence of cohomology groups arising
from the first short exact sequence gives

dim(H1(G, ad0(ρx))) ≤ dim(H1(G,V )) + dim(H1(G,χi))− 1.

Combining these two inequalities, we get that dim(H1(G, ad0(ρx))) ≤ k +
m+ n− 1.
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Since

dim(H1(G, ad(ρx))) = dim(H1(G, ad0(ρx))) + dim(H1(G, 1)),

we get that dim(H1(G, ad(ρx))) ≤ 2k +m+ n− 1. �

Lemma 2.14. Suppose dim(H1(G,χ)) = 1. Then for any non-zero x, x′ ∈
H1(G,χ), Rdef

ρ̄x ' R
def
ρ̄x′

.

Proof. As dim(H1(G,χ)) = 1, if x, x′ ∈ H1(G,χ) are both non-zero, then
x′ = ax for some non-zero a ∈ F. Therefore, by conjugating ρx by the
matrix ( a 0

0 1 ), we get ρx′ . Hence, we see that Rdef
ρ̄x ' R

def
ρ̄x′

. �

Note that given any non-zero element x ∈ H1(G,χi) with i ∈ {1,−1},
one has a map Ψx : Rpd

ρ̄0 → R
def
ρ̄x induced by the trace of ρuniv

x . We now
recall a result due to Kisin ([18, Corollary 1.4.4(2)]) on the nature of the
map Ψx:

Lemma 2.15. If dim(H1(G,χi)) = 1 for some i ∈ {1,−1} and x ∈
H1(G,χi) is a non-zero element, then the map Ψx : Rpd

ρ̄0 → R
def
ρ̄x is surjec-

tive.

2.5. Some additional results for Galois groups. We now turn our
attention to the case when G = GQ,Mp for some integer M and state some
results which will be used later. Throughout this subsection, we assume
that N is an integer not divisible by p, ρ0 : GQ,Np → GL2(F) is odd and
ρ0 = χ1 ⊕ χ2 where χi : GQ,Np → F× is a character for i = 1, 2.

2.5.1. Dimension of certain Galois cohomology groups. We begin
by computing dimension of certain Galois cohomology groups. These com-
putations will be used later mainly to compute dimensions of tangent spaces
of deformation and pseudo-deformation rings.

Lemma 2.16. Let ` be a prime such that ` - Np. Let χ : GQ,Np → F× be
an odd character. Then, the following holds:

(1) If p - φ(N), then dim(H1(GQ,Np, 1))=1 and dim(H2(GQ,Np, 1))=0,
(2) dim(H2(GQ,Np,χ))=dim(H1(GQ,Np,χ))−1 and dim(H1(GQ,Np,χ))

> 0,
(3) If dim(H1(GQ,Np, χ)) = 1 and χ|GQ`

= ωp, then dim(H1(GQ,N`p, χ))
= 2,

(4) If dim(H1(GQ,Np, χ)) = 1 and χ|GQ`
6= ωp, then dim(H1(GQ,N`p, χ))

= 1,
(5) dim(H1(GQ,N`p, χ))− dim(H1(GQ,Np, χ)) ≤ 1.
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Proof. As we have assumed p - φ(N) in the first part, the Kronecker–
Weber theorem implies that dim(H1(GQ,Np, 1)) = 1. So, from the global
Euler characteristic formula, we get H2(GQ,Np, 1) = 0 which proves the
first part.

Since χ is assumed to be odd, the global Euler characteristic formula
implies that dim(H1(GQ,Np, χ)) − dim(H2(GQ,Np, χ)) = 1 which means
dim(H1(GQ,Np, χ)) > 0. This proves the second part.

If χ = ωp, then by Kummer theory, dim(H1(GQ,Np, ωp)) = 1+ number
of distinct primes dividing N (see the proof of [13, Proposition 24] and the
remark after it). Thus, dim(H1(GQ,N`p, ωp)) = 1 + dim(H1(GQ,Np, ωp)).
Therefore, if dim(H1(GQ,Np, ωp)) = 1, then N = 1. Thus, we get that
dim(H1(GQ,N`p, ωp)) = 2 in this case. This proves the third part for χ = ωp.

If χ 6= ωp and χ is odd, then, by the Greenberg–Wiles version of the
Poitou–Tate duality ([24, Theorem 2]), we see that dim(H1(GQ,Np, χ)) =
dim(H1

0 (GQ,Np, χ
−1ωp)) + 1 +

∑
q|Np dim(H0(GQq , χ

−1ωp|GQq )), where

H1
0 (GQ,Np, χ

−1ωp) = ker(H1(GQ,Np, χ
−1ωp) −→

∏
q|Np

H1(GQq , χ
−1ωp|GQq )).

Therefore, we get that

dim(H1(GQ,N`p, χ))−dim(H1(GQ,Np, χ)) ≤ dim(H0(GQ` , χ
−1ωp|GQ`

)) ≤ 1

which proves the last part of the lemma.
Now from the equality above, we see that if dim(H1(GQ,Np, χ)) = 1,

then H1
0 (GQ,Np, χ

−1ωp) = 0 and hence, H1
0 (GQ,N`p, χ

−1ωp) = 0. Hence, we
get dim(H1(GQ,N`p, χ))−dim(H1(GQ,Np, χ)) = dim(H0(GQ` , χ

−1ωp|GQ`
)).

This finishes the proof of the remaining part of the lemma. �

Lemma 2.17. Suppose p - φ(N). Let ` be a prime such that ` - Np and
p - ` − 1. Let ρ : GQ,Np → GL2(F) be an odd representation such that
EndGQ,Np(ρ) = F. Then, the following holds:

(1) dim(H2(GQ,Np, ad(ρ))) = dim(H1(GQ,Np, ad(ρ)))− 3,
(2) If p | ` + 1, dim(H1(GQ,Np, ad(ρ))) = 3 and ρ|GQ`

= η ⊕ ωpη, then
dim(H1(GQ,N`p, ad(ρ))) = 5.

Proof. As ρ is assumed to be odd and EndGQ,Np(ρ) = F, the first part of
the lemma follows directly from the global Euler characteristic formula.

To prove the second part of the lemma, observe that

dim(H1(GQ,Np, ad0(ρ))) = 2

because we are assuming p - φ(N) and dim(H1(GQ,Np, ad(ρ))) = 3. Now, by
the Greenberg–Wiles version of the Poitou–Tate duality ([24, Theorem 2]),
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we get that

dim(H1(GQ,Np, ad0(ρ)))
≥ dim(H1

0 (GQ,Np, (ad0(ρ))∗ ⊗ ωp)) + dim(H1(G∞, ad0(ρ)))
− dim(H0(G∞, ad0(ρ))) + dim(H1(GQp , ad0(ρ)))
− dim(H0(GQp , ad0(ρ))) + dim(H0(GQ, ad0(ρ)))
− dim(H0(GQ, (ad0(ρ))∗ ⊗ ωp)),

where H1
0 (GQ,Np, (ad0(ρ))∗ ⊗ ωp) is

ker(H1(GQ,Np, (ad0(ρ))∗ ⊗ ωp) −→
∏
q|Np

H1(GQq , (ad0(ρ))∗ ⊗ ωp|GQq )).

(1) Note thatH0(GQ, ad0(ρ)) = 0. As ρ is odd, dim(H0(G∞, ad0(ρ))) =
1. As |G∞| = 2 and p > 2, we have H1(G∞, ad0(ρ)) = 0,

(2) Suppose dim(H0(GQ, (ad0(ρ))∗⊗ωp)) = k′. By the local Euler char-
acteristic formula,

dim(H1(GQp , ad0(ρ)|GQp ))− dim(H0(GQp , ad0(ρ)|GQp ))

= 3 + dim(H0(GQp , (ad0(ρ))∗ ⊗ ωp|GQp )) ≥ 3 + k′.

Hence, we get that

dim(H1(GQ,Np, ad0(ρ)))
≥ 3 + k′ − 1− k′ + dim(H1

0 (GQ,Np, (ad0(ρ))∗ ⊗ ωp))
= 2 + dim(H1

0 (GQ,Np, (ad0(ρ))∗ ⊗ ωp)).

As dim(H1(GQ,Np, ad0(ρ))) = 2, we get thatH1
0 (GQ,Np, (ad0(ρ))∗⊗ωp) = 0.

Hence, we get that for any prime `, dim(H0(GQ` , (ad0(ρ))∗ ⊗ ωp|GQ`
)) +

dim(H1(GQ,Np, ad0(ρ))) = dim(H1(GQ,N`p, ad0(ρ))). Now let ` be a prime
such that ` ≡ −1 (mod p) and ρ|GQ`

= η ⊕ ωpη. In this case ωp|GQ`
=

ω−1
p |GQ`

. Therefore, ad0(ρ)|GQ`
' 1 ⊕ ωp|GQ`

⊕ ωp|GQ`
and we get that

dim(H1(GQ,N`p, ad0(ρ))) = dim(H1(GQ,Np, ad0(ρ))) + 2 = 2 + 2 = 4. As
p - φ(N`), we have dim(H1(GQ,N`p, ad(ρ))) = 5. �

2.5.2. GMA results for GQ,N`p. We now view ρ0 as a representation
of GQ,N`p for some prime ` - Np. We will state results which will be used
later while analyzing how pseudo-deformation rings change after allowing
ramification at an additional prime. For a prime `, denote by ˜̀ the Teich-
muller lift of ` (mod p) in Zp. So `/˜̀∈ 1 + pZp. Recall that, for α ∈ F, we
denoted its Teichmuller lift in W (F) by α̂.
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Lemma 2.18. Let R be a complete noetherian local ring with maximal ideal
mR and residue field F. Let ` be a prime such that ` - Np and χ|GQ`

6= 1.
Let t : GQ,N`p → R be a pseudo-character deforming tr(ρ0). Let g` be a
lift of Frob` in GQ`. Then, there exists a faithful GMA A =

(
R B
C R

)
and

a representation ρ : GQ,N`p → A∗ satisfying the properties of Lemma 2.4
such that

(1) t = tr(ρ) and ρ(g`) =
(

̂χ1(Frob`)(1+a) 0
0 ̂χ2(Frob`)(1+d)

)
,

(2) R[ρ(GQ`)] is a sub R-GMA of A,
(3) ρ|I` factors through the Zp-quotient of the tame inertia group at `.

Moreover, if `/˜̀ is a topological generator of 1 + pZp, the map Rpd,`
ρ̄0 → R

induced by t is surjective and J is an ideal of R such that t (mod J) is
reducible, then the ideal generated by p, a, d and J is the maximal ideal
of R.
Proof. Since ρ0 is assumed to be odd, we get that χ1 6= χ2 and ρ0 is
residually multiplicity free. We know that GQ,N`p satisfies the finiteness
condition. Moreover, we are assuming that χ|GQ`

6= 1 which means ρ0(g`)
has distinct eigenvalues. The existence A and ρ satisfying properties of
Lemma 2.4 and the first part of the lemma follow from parts (i), (iii), (v)
and (vii) of [2, Proposition 2.4.2]. As ̂χ1(Frob`)(1 + a) 6≡ ̂χ2(Frob`)(1 + d)
(mod mR), the claim that R[ρ(GQ`)] is a sub R-GMA of A follows from [2,
Lemma 2.4.5].

To prove the third part of the lemma, let K0 be the maximal exten-
sion of Q unramified outside the set of primes dividing N`p and ∞. So
GQ,N`p = Gal(K0/Q). Let K be the extension of Q fixed by ker(ρ0). So K
is a sub-extension of K0 and ` is unramified in K. By [12, Lemma 3.8], the
pseudo-character t factors through GQ,N`p/H, where H ⊂ Gal(K0/K) is
the smallest closed normal subgroup of GQ,N`p such that Gal(K0/K)/H is
a pro-p quotient of Gal(K0/K).

Let g ∈ H. As t factors through GQ,N`p/H, we get t(xg) = t(x) for all x ∈
GQ,N`p. Thus, we have tr(ρ(g′g)) = tr(ρ(g′)) for all g′ ∈ GQ,N`p. Let A =(
R B
C R

)
and ρ(g) =

(
a b
c d

)
. As R[ρ(GQ,N`p)] = A, we get tr

((
a′ b′

c′ d′

)
·
(
a b
c d

))
=

tr
((

a′ b′

c′ d′

))
for all

(
a′ b′

c′ d′

)
∈ A. Putting a′ = 1 and b′ = c′ = d′ = 0 gives

us a = 1. Putting d′ = 1 and b′ = c′ = a′ = 0 gives us d = 1. Putting
b′ = a′ = d′ = 0, we get m′(b ⊗ c′) = 0 for all c′ ∈ C. So faithfulness of
A implies b = 0. Similarly, putting c′ = a′ = d′ = 0 gives us c = 0 which
proves that ρ(g) is identity.

As ` is unramified in K, we get that I` ⊂ Gal(K0/K). Therefore, we see
that ρ|I` factors through the Zp-quotient of the tame inertia group at `.

We will now prove the remaining part of the Lemma. Let I be the ideal
of R generated by p, a, d and J and t′ = t (mod I). Suppose ψ1, ψ2 :
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GQ,N`p → (R/I)∗ are characters deforming χ1 and χ2 such that t′ = ψ1+ψ2.
As a, d ∈ I, we get that t′(g`) = χ1(Frob`) + χ2(Frob`) and t′(g`)2−t′(g2

` )
2 =

χ1χ2(Frob`). On the other hand, we have t′(g`) = ψ1(g`) + ψ2(g`) and
t′(g`)2−t′(g2

` )
2 = ψ1ψ2(g`). Therefore, ψ1(g`) and ψ2(g`) are roots of the poly-

nomial f(x) = x2 − (χ1(Frob`) + χ2(Frob`))x + χ1χ2(Frob`) ∈ R/I[x]. As
χ|GQ`

6= 1, χ1(Frob`) 6= χ2(Frob`). Hence, from Hensel’s lemma, we get
that ψi(g`) = χi(Frob`) for i = 1, 2.

Thus, for i = 1, 2, ψi is a deformation of χi with ψi(g`) = χi(Frob`).
As p - ` − 1, both ψ1 and ψ2 are unramified at `. Since p - φ(N`) and
`/˜̀ is a topological generator of 1 + pZp, it follows that the image of g`
in lim←−iG

ab
Q,N`p/(Gab

Q,N`p)p
i ' Zp is a topological generator of lim←−iG

ab
Q,N`p/

(Gab
Q,N`p)p

i . Therefore, it follows, from [19, Section 1.4], that ψ1 = χ1 and
ψ2 = χ2. Thus, we have t′ = tr(ρ0). Since the map Rpd,`

ρ̄0 → R induced by t
is surjective, we get, from Lemma 2.9, that I is the maximal ideal of R. �

Lemma 2.19. Suppose dim(H1(GQ,Np, χ)) = dim(H1(GQ,Np, χ
−1)) = 1.

Let ` be a prime such that ` ≡ −1 (mod p) and χ|GQ`
= ωp|GQ`

. Let R be a
complete noetherian local ring with maximal ideal mR and residue field F.
Let t : GQ,N`p → R be a pseudo-character deforming tr(ρ0). Let A =

(
R B
C R

)
be the GMA associated to t in Lemma 2.18 and ρ : GQ,N`p → A∗ be the
corresponding representation given by Lemma 2.18. Let i` be a topological
generator of the Zp-quotient of I` and suppose ρ(i`) =

(
a b
c d

)
. Then:

(1) Both B and C are generated by at most 2 elements,
(2) There exist b′ ∈ B and c′ ∈ C such that B and C are generated by
{b, b′} and {c, c′} as R-modules, respectively.

Proof. As dim(H1(GQ,Np, χ)) = dim(H1(GQ,Np, χ
−1)) = 1, p | ` + 1 and

χ|GQ`
= ωp|GQ`

, Lemma 2.16 implies that

dim(H1(GQ,N`p, χ)) = dim(H1(GQ,N`p, χ
−1)) = 2.

The first part of the lemma now follows from part (5) of Lemma 2.4.
By Lemma 2.18, ρ(i`) is well defined and ρ(I`) is topologically gen-

erated by ρ(i`). Let j1 : HomR(B/mRB,F) → H1(GQ,N`p, χ) and j2 :
HomR(C/mRC,F) → H1(GQ,N`p, χ

−1) be the injective maps obtained in
the proof of part (5) of Lemma 2.4. Let y be an element of the subspace
HomR(B/R.b + mRB,F) of HomR(B/mRB,F). So, j1(y) is an element of
H1(GQ,N`p, χ) such that j1(y)(I`) = 0 i.e. j1(y) is unramified at `. Thus,
j1(y) lies in the image of the injective map H1(GQ,Np, χ)→ H1(GQ,N`p, χ).
Hence, dim(HomR(B/R.b + mRB,F)) ≤ dim(H1(GQ,Np, χ)) = 1, There-
fore, by Nakayama’s lemma, B/R.b is generated by at most 1 element. By
the same logic, we also get that C/R.c is generated by at most 1 element.
So if B = R.b, then we can take b′ = 0. Otherwise, B/R.b is generated by
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one element and let b′ be a lift of its generator in B. Thus, {b, b′} generates
B in both the cases. The lemma for C and c follows similarly. �

3. Comparison between Rpd
ρ0

and Rdef
ρx

In this section, we will explore the question of determining when the
universal pseudo-character T univ comes from a representation defined over
Rpd
ρ̄0 . We do this by first assuming the existence of such a representation

to study its implications. Then, we will study if the necessary conditions
found this way are sufficient for the existence of such a representation and
its consequences for the relationship between Rpd

ρ̄0 and Rdef
ρ̄x . Note that,

from Remark 2.5, we already know that T univ comes from a representation
if either H1(G,χ) or H1(G,χ−1) is 0. Hence, for the rest of the article,
we are going to assume that both H1(G,χ) and H1(G,χ−1) are non-zero.
Note that, when G = GQ,Np and ρ0 is odd, this assumption is satisfied by
Lemma 2.16. In the last subsection, we state the implications of the main
results found in the general scenario for the case G = GQ,Np.

3.1. Necessary condition for tuniv to come from a representation.
The existence of a representation over Rpd

ρ̄0 with trace T univ implies that
tuniv is the trace of a representation defined over Rpd

ρ̄0 . We will first assume
the existence of a representation over Rpd

ρ̄0 with trace tuniv to relate the rings
Rpd
ρ̄0 and Rdef

ρ̄x . Specifically, we will compare the dimensions of their tangent
spaces to get the necessary conditions for the existence of the required
representation. This will give us a necessary condition for T univ to be the
trace of a representation.

Proposition 3.1. Suppose H2(G, 1) = 0. If there exists a continuous rep-
resentation

ρ : G→ GL2(Rpd
ρ̄0 )

such that tr(ρ) = tuniv, then
either dim(H1(G,χ)) = 1 or dim(H1(G,χ−1)) = 1.

Proof. From Lemma 2.8, we know that dim(tan(Rpd
ρ̄0 )) = 2k+mn. Asm 6= 0

and n 6= 0, dim(tan(Rpd
ρ̄0 )) > 2k. Let m be the maximal ideal of Rpd

ρ̄0 .
Suppose there exists a continuous representation ρ : G→ GL2(Rpd

ρ̄0 ) such
that tr(ρ) = tuniv. Let ρ be its reduction modulo m. As tr(ρ) = tr(ρ0), it
follows, from the Brauer–Nesbitt theorem, that ρ is isomorphic over F to
either ρ0 or ρx for some x ∈ H1(G,χ) or H1(G,χ−1) with x 6= 0.

Suppose ρ ' ρ0. So, by changing the basis if necessary, we can assume
that ρ = ρ0. For g ∈ G, let ρ(g) =

(
ag bg
cg dg

)
. Therefore, we see that bg,

cg ∈ m, ag ≡ χ1(g) (mod m) and dg ≡ χ2(g) (mod m). Thus, we get two



210 Shaunak V. Deo

characters χ̃1, χ̃2 : G → (Rpd
ρ̄0 /m

2)∗ such that tuniv (mod m2) = tr(ρ)
(mod m2) = χ̃1 + χ̃2, χ̃1(g) = ag (mod m2) and χ̃2(g) = dg (mod m2).

By Lemma 2.10, we get that dim(tan(Rpd
ρ̄0 /m

2)) ≤ 2k. But this contra-
dicts the fact that dim(tan(Rpd

ρ̄0 )) > 2k. So we conclude that ρ 6' ρ0.
Thus, ρ ' ρx for some x ∈ H1(G,χi) with i ∈ {1,−1} and x 6= 0. So, by

changing the basis if necessary, we can assume that ρ = ρx. This means that
ρ is a deformation of ρx and hence, there exists a continuous morphism φx :
Rdef
ρ̄x → Rpd

ρ̄0 . Moreover, φx is surjective as the elements tuniv(g) = tr(ρ(g))
with g ∈ G are topological generators of Rpd

ρ̄0 as a local complete F-algebra
([12, Remark 3.5]). So, in particular, dim(tan(Rdef

ρ̄x )) ≥ dim(tan(Rpd
ρ̄0 )).

From Lemma 2.13, we know that dim(tan(Rdef
ρ̄x )) ≤ 2k +m+ n− 1. So,

we get that 2k+m+n−1 ≥ 2k+mn which implies that 0 ≥ (m−1)(n−1).
Therefore, we conclude that either m = 1 or n = 1. �

Remark 3.2. Proposition 3.1 also follows from [1, Theorem 4].
Remark 3.3. It is not clear how to prove Proposition 3.1 when H2(G, 1) 6=
0 by employing the techniques used above or [1, Theorem 4]. This is primar-
ily because one can not determine the exact dimension of tan(Rpd

ρ̄0 ) using [1,
Theorem 2] when H2(G, 1) 6= 0.

3.2. Existence of the representation over (Rpd
ρ0

)red. We will now
explore whether the necessary condition for T univ to be the trace of a rep-
resentation defined over Rpd

ρ̄0 obtained in Proposition 3.1 is sufficient or not.
We begin by proving that any deformation of tr(ρ0) to a domain comes from
a representation when dim(H1(G,χi)) = 1 for some i ∈ {1,−1}.

Note that we do not need the hypothesis thatH2(G, 1) = 0 for the results
proved in this subsection.
Proposition 3.4. Suppose there exists an i∈{1,−1} such that H2(G,χi) =
0 and dim(H1(G,χi)) = 1. For such an i, fix a non-zero x ∈ H1(G,χi).
Let P be a prime of Rpd

ρ̄0 . Then there exists a representation ρ : G →
GL2(Rpd

ρ̄0 /P ) such that ρ is a deformation of ρx and tr(ρ) = T univ (mod P ).

Proof. Without loss of generality, assume dim(H1(G,χ)) = 1, H2(G,χ) =
0. For the rest of the proof, denote Rpd

ρ̄0 /P by R and T univ (mod P ) by t.
Let K be the fraction field of R and m be the maximal ideal of R.

Suppose t is not reducible. Let A =
(
R B
C R

)
be the faithful GMA obtained

for the pseudo-character t : G→ R in Lemma 2.4 and ρ be the correspond-
ing representation. By Lemma 2.7, we can take A to be an R-subalgebra of
M2(K).

As t is not reducible, we have B, C 6= 0. Hence, by Part (5) of Lemma 2.4,
B is generated by 1 element over R. As B is a non-zero fractional ideal of
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the fraction field K of R, it follows that the annihilator of B is 0. So B is
a free module of rank 1 over R. Hence, by second part of Lemma 2.6, we
get a representation ρ′ : G → GL2(R) such that tr(ρ′) = tr(ρ) = t and ρ′
(mod m) = ρx0 for some non-zero x0 ∈ H1(G,χ). As dim(H1(G,χ)) = 1,
for any non-zero x ∈ H1(G,χ), ρx ' ρx0 . Hence, given a non-zero x ∈
H1(G,χ), we can conjugate ρ′ by a suitable matrix to get a deformation of
ρx with trace t.

Now suppose t is reducible. So we have t = χ̃1 + χ̃2 where χ̃i is a de-
formation of χi for i = 1, 2. Let χ̃ = χ̃1χ̃

−1
2 . For every n > 0, denote χ̃

(mod mn) : G → (R/mn)∗ by χn. This makes R/mn into a G-module for
every n > 0. So χ1 = χ. For every n > 0, the natural map R→ R/mn is a
map of G-modules and it induces a map fn : H1(G, χ̃)→ H1(G,χn). These
maps induce a map f : H1(G, χ̃)→ lim←−nH

1(G,χn). As H0(G,χn) = 0 for
all n > 0, we get, by [22, Corollary 2.2] and its proof, that the natural map
f is an isomorphism.

Now, for every n > 0, the natural exact sequence 0 → mn/mn+1 →
R/mn+1 → R/mn → 0 is an exact sequence of discrete G-modules. As
the modules are discrete, we get an exact sequence H1(G,R/mn+1) →
H1(G,R/mn)→ H2(G,mn/mn+1) from the exact sequence of cohomology
groups (see [22, Section 2] for more details). Note that H1(G,R/mn+1) =
H1(G,χn+1) and H1(G,R/mn) = H1(G,χn). As χn+1 (mod m/mn+1) =
χ, we see that H2(G,mn/mn+1) ' H2(G,χ)⊕r for some r > 0. There-
fore, H2(G,mn/mn+1) = 0 which means the map H1(G,R/mn+1) →
H1(G,R/mn) is surjective for every n > 0. Therefore, the natural map
H1(G, χ̃)→ H1(G,χ) is surjective.

Given a non-zero x ∈ H1(G,χ), there exists a x̃ ∈ H1(G, χ̃) such that
f1(x̃) = x. Therefore, the representation ρ : G → GL2(R) given by ρ(g) =(
χ̃1(g) χ̃2(g)x̃(g)

0 χ̃2(g)

)
is a deformation of ρx with trace t. �

Theorem 3.5. Suppose there exists an i ∈ {1,−1} such that H2(G,χi) = 0
and dim(H1(G,χi)) = 1. Fix such an i and let x ∈ H1(G,χi) be a non-zero
element. Then the map Ψx : Rpd

ρ̄0 → R
def
ρ̄x induces an isomorphism between

(Rpd
ρ̄0 )red and (Rdef

ρ̄x )red.

Proof. Without loss of generality, suppose dim(H1(G,χ)) = 1 and
H2(G,χ) = 0. Let x ∈ H1(G,χ) be a non-zero element and let P be a
prime ideal of Rpd

ρ̄0 . From Proposition 3.4, there is a representation ρ : G→
GL2(Rpd

ρ̄0 /P ) deforming ρx such that tr(ρ) = T univ (mod P ). Hence, there
exists a map f : Rdef

ρ̄x → R
pd
ρ̄0 /P such that ρ = f ◦ ρuniv

x . Hence, we have
f ◦ tr(ρuniv

x ) = T univ (mod P ). Recall that Ψx ◦ T univ = tr(ρuniv
x ). Hence,

from the universal property of Rpd
ρ̄0 , it follows that the natural surjective
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map Rpd
ρ̄0 → R

pd
ρ̄0 /P is same as f ◦Ψx. Hence, ker(Ψx) ⊂ P for every prime

P of Rpd
ρ̄0 . This finishes the proof of the theorem. �

3.3. Existence of the representation over Rpd
ρ0
. It is natural to ask if

the non-reduced version of Theorem 3.5 is true or not. In order to get an idea
about the answer, we will now study if there exists a representation over
Rpd
ρ̄0 with trace tuniv. We first prove a lemma about the structure of Rpd

ρ̄0 :

Lemma 3.6. Suppose H2(G, 1) = 0 and dim(H1(G,χi)) = 1 for some i ∈
{1,−1}. For such an i, let dim(H1(G,χ−i)) := m, dim(H2(G,χ−i)) := m′

and dim(H2(G,χi)) := n′. Let dim(H1(G, 1)) := k. Then,

Rpd
ρ̄0 ' F[[X1, . . . , Xm+2k]]/I,

where I is an ideal of F[[X1, . . . , Xm+2k]] generated by at most m′ + mn′

elements.

Proof. By [23, Theorem 3.3.1], we see that Rpd
ρ̄0 is a quotient of a cer-

tain ring R1
D by an ideal I generated by at most k0 elements, where

k0 =
∑2
j=1 dim(Ext2

G(χj , χj)) + dim(Ext2
G(χ1, χ2)). dim(Ext1

G(χ2, χ1)) +
dim(Ext2

G(χ2, χ1)). dim(Ext1
G(χ1, χ2)).

Recall that Ext2
G(η, δ) ' H2(G, δ/η) for any characters η, δ : G → F×

and we have assumed H2(G, 1) = 0. Therefore, we see that k0 =
∑2
j=1 0 +

(m′).1 +m.n′ = m′ +mn′.
The ring R1

D is defined in [23, Definition 3.2.3]. From the definition, we
see that R1

D is a quotient of the power series ring in m0 variables over F,
where

m0 =
2∑
i=1

dim(Ext1
G(χi, χi)) + dim(Ext1

G(χ1, χ2)) dim(Ext1
G(χ2, χ1)).

By [23, Fact 3.2.6], the Krull dimension of R1
D is

∑
1≤i,j≤2 dim(Ext1

G(χi, χj))
+ 1 − 2. Since we are assuming that dim(H1(G,χi)) = 1 for some i ∈
{1,−1} and dim(Ext1

G(χ1, χ1)) = dim(Ext1
G(χ2, χ2)) = k, we get thatm0 =

2k + m and the Krull dimension of R1
D is 2k + m. Hence, we have R1

D '
F[[X1, . . . , X2k+m]]. This completes the proof of the lemma. �

We are now ready to prove an improvement of Theorem 3.5.

Theorem 3.7. Suppose H2(G, 1) = 0. Suppose there exists an i ∈ {1,−1}
such that dim(H1(G,χi)) = 1, H2(G,χi) = 0, dim(H1(G,χ−i)) ∈ {1, 2, 3}
and dim(H2(G,χ−i)) < dim(H1(G,χ−i)). Then, there exists a represen-
tation ρ : G → GL2(Rpd

ρ̄0 ) such that tr(ρ) = tuniv and for any non-zero
x ∈ H1(G,χi), Rpd

ρ̄0 ' R
def
ρ̄x .
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Proof. Without loss of generality, assume dim(H1(G,χ)) = 1. So we have

dim(H1(G,χ−1)) ∈ {1, 2, 3}. Let A =
(
Rpd
ρ̄0

B

C Rpd
ρ̄0

)
be the GMA attached

to the pseudo-character tuniv : GQ,Np → Rpd
ρ̄0 in Lemma 2.4 and let ρ

be the corresponding representation. Define Iρ̄0 := m′(B ⊗
Rpd
ρ̄0
C). So, by

Lemma 2.6, if y ∈ Rpd
ρ̄0 and y.B = 0 then y.Iρ̄0 = 0.

Suppose dim(H1(G, 1)) := k and dim(H1(G,χ−1)) := m. Then, by
Lemma 3.6,

Rpd
ρ̄0 ' F[[X1, X2, . . . , Xm+2k]]/I,

where I is an ideal of F[[X1, X2, . . . , Xm+2k]] whose minimal number of
generators is at most dim(H2(G,χ−1)). Note that, by assumption, m−1 ≥
dim(H2(G,χ−1)). As m 6= 0, it follows from Lemma 2.8 and Lemma 2.10,
that dim(tan(Rpd/Iρ̄0)) < dim(tan(Rpd

ρ̄0 )) and hence, Iρ̄0 6= (0). Therefore,
B and C are non-zero.

Let y ∈ Rpd
ρ̄0 be such that y.Iρ̄0 = 0 in Rpd

ρ̄0 . Let ỹ be a lift of y in
F[[X1, X2, . . . , Xm+2k]] and denote by Ĩ the inverse image of Iρ̄0 in
F[[X1, X2, . . . , Xm+2k]]. So we have ỹ.Ĩ ⊂ I. Let us denote the power se-
ries ring F[[X1, . . . , Xm+2k]] by R for the rest of the proof.

By Lemma 2.10, we know that if P is a prime ideal of R containing Ĩ,
then its height is at least m. Suppose ỹ 6∈ I. Then, it follows that the ideal
Ĩ of R consists of zero-divisors for R/I. Hence, it is contained in the union
of primes associated to the ideal I. It follows, from the prime avoidance
lemma ([15, Lemma 3.3]), that Ĩ is contained in some prime associated to
I. Now, we will do a case by case analysis.

Suppose I = (0). Since Ĩ 6= (0), ỹ.Ĩ ⊂ I implies ỹ = 0 and hence, y = 0.
Suppose I = (α) for some non-zero α ∈ R. This means m is either 2

or 3 as minimal number of generators of I is at most m − 1. As α 6= 0,
it follows that α is a regular element in R. Note that R is a regular local
ring and hence, a Cohen–Macaulay ring ([15, Corollary 18.17]). Therefore,
every prime associated to (α) is minimal over it and hence, has height 1
([15, Corollary 18.14]). As the height of any prime ideal of R containing Ĩ is
at least 2, it can not be contained in any prime associated to (α). Therefore,
we get that ỹ ∈ (α) which means y = 0.

Suppose I = (α, β) with α - β and β - α. In this case m = 3 as minimal
number of generators of I is at most m−1. Now, R is regular local ring and
hence, a UFD (see [15, Theorem 19.19]). Let f be a gcd of α and β. Let α′
and β′ ∈ R be such that f.α′ = α, f.β′ = β. Hence, α′ and β′ are co-prime.
By the argument given in the previous case, we get that if ỹ.Ĩ ∈ I, then
f | ỹ. Let ỹ′ = ỹ/f ∈ R. So ỹ′ ∈ R and ỹ′.Ĩ ⊂ (α′, β′).
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Suppose ỹ′ 6∈ (α′, β′). Then, by the argument given above, Ĩ is contained
in some prime associated to (α′, β′).

As α′ and β′ are co-prime, it follows that α′, β′ is a regular sequence
in R. Using [15, Corollary 18.14] again, we see that every prime associated
to (α′, β′) is minimal over it and hence, has height 2. As the height of any
prime ideal of R containing Ĩ is at least 3, it can not be contained in any
prime associated to (α′, β′). Hence, we get contradiction. So we get that
ỹ′ ∈ (α′, β′) which means ỹ ∈ (α, β) and y = 0.

So, in both cases, we have y = 0 which means the annihilator ideal of B
is (0).

As we are assuming dim(H1(G,χ)) = 1, it follows, from Part (5) of
Lemma 2.4, that B is generated by at most one element over Rpd

ρ̄0 . On the
other hand, we know B is non-zero which means B is generated by one
element over Rpd

ρ̄0 . This, combined with the fact that annihilator of B is
(0), implies that B is a free Rpd

ρ̄0 -module of rank 1. Now second part of
Lemma 2.6 gives a representation ρ : G→ GL2(Rpd

ρ̄0 ) with tr(ρ) = tuniv.
Moreover, from the second part of Lemma 2.6, we see that ρ′ is a defor-

mation of ρx for some non-zero x ∈ H1(G,χ). Therefore, it induces a map
ψ′x : Rdef

ρ̄x → Rpd
ρ̄0 . So we get a map ψ′x ◦ψx : Rpd

ρ̄0 → Rpd
ρ̄0 . Now for all g ∈ G,

ψ′x ◦ ψx(tuniv(g)) = ψ′x(tr(ρuniv
x (g))) = tr(ρ′(g)) = tuniv(g). Therefore, the

universal property of Rpd
ρ̄0 implies that ψ′x ◦ ψx is just the identity map.

Hence, ψx is injective which means ψx is an isomorphism. This proves the
theorem. �

Remark 3.8. More generally, if we remove the assumption dim(H1(G,χ−i))
∈ {1, 2, 3}, the proof of Theorem 3.7 still works if we know that Rpd

ρ̄0 is iso-
morphic to a quotient of F[[X1, . . . , X2k+m]] by an ideal I such that the
height of any prime associated to I is at most m − 1. In particular, the
proof works if I is generated by at most 2 elements. Note that if m ≥ 6
and I is generated by at most 2 elements, then the Krull dimension of Rpd

ρ̄0

is ≥ 4. In [7, Section 4], there are examples of Rdef
ρ̄x having arbitrary large

Krull dimension. So the possibility that I is generated by 2 elements cannot
be ruled out even when m ≥ 6.

Remark 3.9. Without the assumption dim(H1(G,χ−i)) ∈ {1, 2, 3}, we
know that Rpd

ρ̄0 ' F[[X1, . . . , Xm+2k]]/I, where I is an ideal generated by at
most m − 1 elements. If I is generated by at least 3 elements and we do
not know that the height of any prime associated to I is at most m− 1,
then we can not use the method of the proof of Theorem 3.7. To be precise,
the analysis of the annihilator of B breaks down. The main reason of this
breakdown is the following: if the minimal number of generators of an ideal
I of the ring F[[X1, . . . , Xm+2k]] is at least 3 and at most m − 1, then
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for y ∈ F[[X1, . . . , Xm+2k]], yP ⊂ I for a prime ideal of height m does
not necessarily imply that y ∈ I. For example, consider the ideal I =
(xu2, yv2, x2u − y2v) in F[[x, y, u, v, z, w]] with m = 4 and k = 1. Now,
xyuv 6∈ I but {xyuv.x, xyuv.y, xyuv.u, xyuv.v} ⊂ I. However, if we can
prove that the annihilator of B is (0), then the proof of Theorem 3.7 would
imply the existence of such a representation.

3.4. Existence of the representation over Rpd
ρ0
. In this subsection,

we will turn our attention to the characteristic 0 deformation ring Rpd
ρ̄0 to

see if we can extend Theorem 3.7 in characteristic 0 to prove the existence
of a representation over Rpd

ρ̄0 with trace T univ.

Proposition 3.10. Suppose H2(G, 1) = 0 and p is not a zero-divisor in
Rpd
ρ̄0 . Suppose there exists an i ∈ {1,−1} such that dim(H1(G,χi)) = 1,

H2(G,χi) = 0 and dim(H2(G,χ−i)) < dim(H1(G,χ−i)). Fix such an i and
let x ∈ H1(G,χi) be a non-zero element. If dim(H1(G,χ−i)) ∈ {1, 2, 3},
then there exists a representation τ : GQ,Np → GL2(Rpd

ρ̄0 ) such that tr(τ) =
T univ. As a consequence, the map Ψx : Rpd

ρ̄0 → R
def
ρ̄x is an isomorphism.

Proof. Without loss of generality, assume dim(H1(G,χ)) = 1. Let A =(
Rpd
ρ̄0
B

C Rpd
ρ̄0

)
be the GMA attached to the pseudo-character T univ : G→ Rpd

ρ̄0

in Lemma 2.4. From Lemma 2.6 and the proof of Theorem 3.7, we see that
it is sufficient to prove that the annihilator of B is (0).

Suppose m′(B ⊗Rpd
ρ̄0
C) = Iρ̄0 . Suppose y ∈ R

pd
ρ̄0 , yB = 0 and y 6= 0. So,

by Lemma 2.6, we get yIρ̄0 = 0. Let I be the image of the ideal (p, Iρ̄0)
in Rpd

ρ̄0 /(p) and y be the image of y in Rpd
ρ̄0 /(p). Hence, we get yI = 0. By

Lemma 2.10 and Part (6) of Lemma 2.4, it follows that if P is a prime of
Rpd
ρ̄0 minimal over I, then dim(Rpd

ρ̄0 /P ) ≤ 2k, where dim(H1(G, 1)) := k.
Now from the proof of Theorem 3.7 it follows that y = 0.

Hence, we see that y ∈ (p). As y 6= 0, there exists a positive integer k0
such that y = pk0y′ with y′ 6∈ (p). Since p is not a zero divisor in Rpd

ρ̄0 ,
it follows that y′Iρ̄0 = 0. As y′ 6= 0, the argument given in the previous
paragraph implies y′ ∈ (p) and hence, gives us a contradiction. Therefore,
we get y = 0. This means that Iρ̄0 6= (0).

This, along with the fact dim(H1(G,χ)) = 1, implies that B is free Rpd
ρ̄0 -

module of rank 1. Following the proof of Theorem 3.7 from here, we get a
representation with trace T univ and see that Ψx is an isomorphism for all
non-zero x ∈ H1(G,χ). �

Finally, we now give a result which will be used in the next section.
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Proposition 3.11. Suppose H2(G, 1) = 0. Suppose there exists an i ∈
{1,−1} such that dim(H1(G,χi)) = 1, H2(G,χi) = 0, dim(H1(G,χ−i)) ∈
{1, 2, 3} and dim(H2(G,χ−i)) < dim(H1(G,χ−i)). Let x ∈ H1(G,χi) be
a non-zero element. If p is not a zero-divisor in Rdef

ρ̄x , then the map Ψx :
Rpd
ρ̄0 → R

def
ρ̄x is an isomorphism.

Proof. We have the following commutative diagram:

Rpd
ρ̄0 Rdef

ρ̄x

Rpd
ρ̄0 Rdef

ρ̄x

Ψx

f1 f2

ψx

Here the vertical maps f1 and f2 are the morphisms induced by tuniv and
ρuniv
x , respectively. Now, ker(f1) is the ideal generated by p in Rpd

ρ̄0 , while
ker(f2) is the ideal generated by p in Rdef

ρ̄x . By Theorem 3.13, ψx is an
isomorphism. So ker(ψx ◦ f1) = ker(f1) = (p). As ψx ◦ f1 = f2 ◦ Ψx, it
follows that ker(f2 ◦Ψx) = (p). Thus ker(Ψx) ⊂ (p).

Let h ∈ ker(Ψx). So h ∈ (p). Suppose h 6= 0. As Rpd
ρ̄0 is a complete local

ring, ∩n≥1(pn) = (0). Therefore, we have h = pn0h′ where n0 ≥ 1 is an
integer, h′ ∈ Rpd

ρ̄0 and h′ 6∈ (p). Thus, h′ 6∈ ker(Ψx) and hence, Ψx(h′) 6= 0.
But Ψx(h) = 0. So we get Ψx(h) = Ψx(pn0 .h′) = pn0 .Ψx(h′) = 0. Thus,
we get that p is a zero-divisor in Rdef

ρ̄x which contradicts our assumption.
Therefore, it follows that ker(Ψx) = (0). From Lemma 2.15, we know that
Ψx is surjective. Hence, it follows that Ψx is an isomorphism. �

3.5. Consequences for Galois groups. In this subsection, we list the
consequences of results proved in this section so far for GQ,Np. To be precise,
let N be an integer not divisible by p and ρ0 : GQ,Np → GL2(F) be an
odd, semi-simple, reducible representation. So there exist characters χ1, χ2 :
GQ,Np → F× such that ρ0 = χ1 ⊕ χ2 and χ1 6= χ2. Let χ = χ1χ

−1
2 . We will

now see the consequences of the main results of previous subsections in the
present setup.

Theorem 3.12. Suppose dim(H1(GQ,Np, χ
i)) = 1 for some i ∈ {1,−1}.

Fix such an i and let x ∈ H1(GQ,Np, χ
i) be a non-zero element. Then

the map Ψx : Rpd
ρ̄0 → R

def
ρ̄x induces an isomorphism between (Rpd

ρ̄0 )red and
(Rdef

ρ̄x )red.

Proof. This follows from Lemma 2.16 and Theorem 3.5. �

Theorem 3.13. Suppose p - φ(N) and dim(H1(GQ,Np, χ
i)) = 1 for some

i ∈ {1,−1}. Moreover, for such an i, assume that dim(H1(GQ,Np, χ
−i)) ∈
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{1, 2, 3}. Then, there exists a representation ρ : GQ,Np → GL2(Rpd
ρ̄0 ) such

that tr(ρ) = tuniv and for any non-zero x ∈ H1(GQ,Np, χ
i), Rpd

ρ̄0 ' R
def
ρ̄x .

Proof. The theorem follows from Lemma 2.16 and Theorem 3.7. �

Proposition 3.14. Suppose p - φ(N) and dim(H1(GQ,Np, χ
i)) = 1 for

some i ∈ {1,−1}. For such an i, assume that dim(H1(GQ,Np, χ
−i)) ∈

{1, 2, 3}. Let x ∈ H1(GQ,Np, χ
i) be a non-zero element. If p is not a zero-

divisor in either Rpd
ρ̄0 or Rdef

ρ̄x , then there exists a representation τ : GQ,Np →
GL2(Rpd

ρ̄0 ) such that tr(τ) = T univ and the map Ψx : Rpd
ρ̄0 → R

def
ρ̄x is an iso-

morphism.

Proof. Follows from Lemma 2.16 and Propositions 3.10 and 3.11. �

4. Increasing the ramification

From now on, we will focus on the case where G = GQ,Np and ρ0 is a
reducible, odd, semi-simple representation of GQ,Np. Let ` be a prime such
that ` - Np. As GQ,Np is a quotient of GQ,N`p, the representations ρx with
x ∈ H1(GQ,Np, χ

i) and i ∈ {1,−1} are also representations of GQ,N`p and
(tr(ρ0),det(ρ0)) is also a pseudo-representation of GQ,N`p. Let Rpd,`

ρ̄0 and
Rpd,`
ρ̄0 be the universal deformation rings of (tr(ρ0), det(ρ0)) considered as

a pseudo-representation of GQ,N`p in the categories C and C0, respectively.
For a non-zero x ∈ H1(GQ,Np, χ

i) with i ∈ {1,−1}, let Rdef,`
ρ̄x and Rdef,`

ρ̄x
be the universal deformation rings of ρx considered as a representation of
GQ,N`p in the categories C and C0, respectively.

We keep the notation from previous sections for GQ,Np. In this section,
we will study the relationship between Rpd,`

ρ̄0 (resp. Rpd,`
ρ̄0 ) and Rpd

ρ̄0 (resp.
Rpd
ρ̄0 ) using the results obtained in the previous section and results from [8].
Before proceeding further, let us establish some more notation. Let tuniv,`

be the universal pseudo-character from GQ,N`p to Rpd,`
ρ̄0 deforming tr(ρ0)

and T univ,` be the universal pseudo-character from GQ,N`p to Rpd,`
ρ̄0 deform-

ing tr(ρ0). Denote the pseudo-character obtained by composing tuniv,` with
the surjective map Rpd,`

ρ̄0 → (Rpd,`
ρ̄0 )red by (tuniv,`)red.

4.1. Comparison between Rpd,`
ρ0

and Rpd
ρ0
. We are now ready to com-

pare Rpd,`
ρ̄0 and Rpd

ρ̄0 . We begin with an easy case first.

Lemma 4.1. If p - `−1 and χ|GQ`
6= ωp|GQ`

, ω−1
p |GQ`

, 1, then Rpd,`
ρ̄0 ' Rpd

ρ̄0 .

Proof. From Lemma 2.18, there exists a faithful GMA Auniv over Rpd,`
ρ̄0

and a representation ρ : GQ,N`p → (Auniv)∗ such that Rpd,`
ρ̄0 [ρ(GQ,N`p)] =
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Auniv, tr(ρ) = T univ,` and Rpd,`
ρ̄0 [ρ(GQ`)] is a sub Rpd,`

ρ̄0 -GMA of Auniv. So

Rpd,`
ρ̄0 [ρ(GQ`)] =

(
Rpd,`
ρ̄0

B`

C` Rpd,`
ρ̄0

)
, where B` and C` are Rpd,`

ρ̄0 -submodules of

B and C, respectively and hence, both of them are finitely generated Rpd,`
ρ̄0 -

modules.
As χ|GQ`

6= ωp|GQ`
, ω−1

p |GQ`
,1, by local Euler characteristic formula, we

get that H1(GQ` , χ|GQ`
) = H1(GQ` , χ

−1|GQ`
) = 0. Therefore, we get, by

Part (5) of Lemma 2.4, that B` = C` = 0.
Thus, we get characters χ̃1, χ̃2 : GQ` → (Rpd,`

ρ̄0 )∗ such that ρ(g) =(
χ̃1(g) 0

0 χ̃2(g)

)
for all g ∈ GQ` . As p - ` − 1, we get, by local class field

theory, χ̃1(I`) = χ̃2(I`) = 1. So the pseudo-character tuniv,` factors through
GQ,Np. Hence, this induces a map f : Rpd

ρ̄0 → R
pd,`
ρ̄0 . Viewing T univ as a

pseudo-character of GQ,N`p gives us a map f ′ : Rpd,`
ρ̄0 → Rpd

ρ̄0 .
Now, for g ∈ GQ,Np, f(T univ(g)) = T univ,`(g′) for any lift g′ of g in

GQ,N`p. Thus, f ′◦f(T univ(g)) = f ′(T univ,`(g′)) = T univ(g) for all g ∈ GQ,Np.
Therefore, f ′ ◦ f is the identity map. On the other hand, for g ∈ GQ,N`p,
f ′(T univ,`(g)) = T univ(g′′), where g′′ is the image of g in GQ,Np. So f ◦
f ′(T univ,`(g)) = f(T univ(g′′)) = T univ,`(g) for every g ∈ GQ,N`p. Therefore,
we get that f ◦ f ′ is identity. Hence, f is an isomorphism. Thus, we get
Rpd
ρ̄0 ' R

pd,`
ρ̄0 . �

We now prove Theorem B.

Proof of Theorem B. As p - `2 − 1 and χ−i|GQ`
= ωp|GQ`

, we see, from
Lemma 2.16, that dim(H1(GQ,N`p, χ

i)) = 1 and dim(H1(GQ,N`p, χ
−i)) ≤

m + 1. Therefore, by Theorem 3.12, we have for any non-zero element
x ∈ H1(GQ,Np, χ

i), (Rpd
ρ̄0 )red ' (Rdef

ρ̄x )red and (Rpd,`
ρ̄0 )red ' (Rdef,`

ρ̄x )red. The
first part now follows from [8, Theorem 4.7].

If m ≤ 2, then dim(H1(GQ,N`p, χ
−i)) ≤ 3. Hence, in this case, by

Theorem 3.13, we have Rpd
ρ̄0 ' Rdef

ρ̄x and Rpd,`
ρ̄0 ' Rdef,`

ρ̄x for any non-zero
x ∈ H1(GQ,Np, χ

i). The second part now follows from [8, Theorem 4.7]. �

Note that Theorem B does not give a precise description of the relations
ri’s even if we know how ri’s look like. So it is natural to ask if one can get
results about the structure of Rpd,`

ρ̄0 which are more precise than the ones
obtained in Theorem B. We will focus on this question for the rest of the
article. However, we will restrict ourselves to the simplest case where ρ0 is
unobstructed which will be introduced in the next subsection.

4.2. Unobstructed pseudo-characters. We now introduce the notion
of unobstructed pseudo-representations. In this case, we know the precise
structure of Rpd

ρ̄0 and our primary goal is to determine the structure of
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Rpd,`
ρ̄0 as accurately as possible in this special scenario. Here we gather

some results which will be used later on.

Definition 4.2. We say that the pseudo-character associated to ρ0 (or by
abuse of notation ρ0) is unobstructed if

dim(H1(GQ,Np, χ)) = dim(H1(GQ,Np, χ
−1)) = 1.

Note that Vandiver’s conjecture implies that ρ0 is unobstructed if N = 1
(see [4, Theorem 22]). Moreover, [4, Theorem 22] also provides some exam-
ples of unobstructed ρ0 when N = 1. On the other hand, [14, Lemma 2.3]
gives necessary and sufficient conditions for ρ0 to be unobstructed. More-
over if ρ - φ(N) then, by Lemma 2.13, Lemma 2.16 and Lemma 2.17, we
know that dim(H1(GQ,Np, ad(ρx))) = 3 for any non-zero x ∈ H1(GQ,Np, χ

i)
with i ∈ {1,−1}. So we get the following result:

Lemma 4.3. Suppose p - φ(N) and ρ0 is unobstructed. Then, for a non-
zero x ∈ H1(GQ,Np, χ

i) with i ∈ {1,−1}, the map Ψx : Rpd
ρ̄0 → R

def
ρ̄x is an

isomorphism and both are isomorphic to W (F)[[X,Y, Z]].

Proof. Since ρ0 is odd and p - φ(N), we get, by the global Euler charac-
teristic formula, that H2(GQ,Np, 1) = H2(GQ,Np, χ) = H2(GQ,Np, χ

−1) =
H2(GQ,Np, ad(ρx)) = 0. Therefore, we get, from [9, Theorem 2.4], that
Rdef
ρ̄x 'W (F)[[X,Y, Z]]. The result now follows from Proposition 3.14. �

Lemma 4.4. Suppose ρ0 is unobstructed. Then, there exists a z ∈ Rpd
ρ̄0

such that T univ (mod (z)) is reducible.

Proof. Let A =
(
Rpd
ρ̄0

B

C Rpd
ρ̄0

)
be the GMA attached to T univ : G → Rpd

ρ̄0

(which is a pseudo-character) in Lemma 2.4. Since ρ0 is unobstructed,
Part (5) of Lemma 2.4 implies that both B and C are generated overRpd

ρ̄0 by
at most 1 element. The lemma now follows from Part (6) of Lemma 2.4. �

Recall that we already know that the pseudo-deformation ring does not
change after allowing ramification at a prime ` such that χ|GQ`

6= ωp, ω
−1
p , 1.

So we are not going to consider them anymore in the rest of the article.

4.3. Generators of the co-tangent space of Rdef ,`
ρx

. Now suppose ρ0
is unobstructed, p - φ(N) and ` is a prime such that ` - Np, p - ` − 1 and
χi|GQ`

= ωp for some i ∈ {1,−1}. For such an i, let x ∈ H1(GQ,Np, χ
−i)

be a non-zero element. Throughout this subsection, we are going to fix this
set-up without mentioning it again. We will now give a set of generators
for the co-tangent space of Rdef,`

ρ̄x .
We first fix some more notation. Fix a lift g` of Frob` in GQ` and fix a

topological generator i` of the unique Zp-quotient of the tame inertia group
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at `. Let ρuniv,`
x : GQ,N`p → GL2(Rdef,`

ρ̄x ) be a universal deformation of ρx
for GQ,N`p and let ρuniv

x : GQ,N`p → GL2(Rdef
ρ̄x ) be a universal deformation

of ρx for GQ,Np.
We now combine [8, Lemma 4.8] and [8, Lemma 4.9] to get the following:

Lemma 4.5. Suppose we are in the set-up fixed above. Then ρuniv,`
x |I` fac-

tors through the unique Zp-quotient of the tame inertia group at `. More-
over, after conjugation if necessary, we get

ρuniv,`
x (g`) =

(
χ̂1(g`)(1 + y) 0

0 χ̂2(g`)(1 + y′)

)

for some y, y′ ∈ Rdef,`
ρ̄x and

(1) If i = 1 and p - `+ 1, then ρuniv,`
x (i`) = ( 1 w

0 1 ) for some w ∈ Rdef,`
ρ̄x ,

(2) If i = −1 and p - `+1, then ρuniv,`
x (i`) = ( 1 0

w 1 ) for some w ∈ Rdef,`
ρ̄x ,

(3) If p | `+1, then ρuniv,`
x (i`) =

(√
1+uv u
v

√
1+uv

)
for some u, v ∈ Rdef,`

ρ̄x .

Viewing ρuniv
x as a representation of GQ,N`p, we get a map f : Rdef,`

ρ̄x →
Rdef
ρ̄x .

Lemma 4.6. The morphism f : Rdef,`
ρ̄x → Rdef

ρ̄x is surjective and ker(f) is
generated by the entries of the matrix ρuniv,`

x (i`)− Id.

Proof. Let J be the ideal of Rdef,`
ρ̄x generated by the entries of the matrix

ρuniv,`
x (i`) − Id and φ : Rdef,`

ρ̄x → Rdef,`
ρ̄x /J be the natural surjective map.

As ρuniv
x (i`) = Id, we get that J ⊂ ker(f) which gives us a map f ′ :

Rdef,`
ρ̄x /J → Rdef

ρ̄x such that f ′ ◦ φ = f . On the other hand, ρuniv,`
x (mod J)

is unramified at ` and hence, is a representation of GQ,Np. Thus it induces
a map g : Rdef

ρ̄x → R
def,`
ρ̄x /J such that g ◦ ρuniv

x = ρuniv,`
x (mod J). Now

f ′◦g◦ρuniv
x = ρuniv

x as representations of GQ,Np and g◦f ′◦ρuniv,`
x (mod J) =

ρuniv,`
x (mod J) as representations of GQ,N`p. Hence, we see that both f ′ ◦g

and g ◦ f ′ are identity maps. Hence, f ′ is an isomorphism which proves the
lemma. �

We are now ready to state the main result of this subsection.

Lemma 4.7. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a prime
such that ` - Np, p - ` − 1 and χi|GQ`

= ωp for some i ∈ {1,−1}.
For such an i, let x ∈ H1(GQ,Np, χ

−i) be a non-zero element. Moreover,
assume `/˜̀ is a topological generator of 1 + pZp. Suppose ρuniv,`

x (g`) =(
χ̂1(g`)(1+y) 0

0 χ̂2(g`)(1+y′)

)
. Then there exists an element z ∈ Rdef,`

ρ̄x such that

the ideal generated by p, y, y′, z and ker(f) is the maximal ideal of Rdef,`
ρ̄x .
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Proof. Let z0 ∈ Rpd
ρ̄0 be an element such that T univ (mod (z0)) is reducible.

Such an element exists by Lemma 4.4. By Lemma 4.3, the map Ψx : Rpd
ρ̄0 →

Rdef
ρ̄x is an isomorphism. Hence, tr(ρuniv

x ) (mod (Ψx(z0))) is reducible.
Viewing ρuniv

x as a representation of GQ,N`p, we get f ◦ρuniv,`
x = ρuniv

x . So

we have ρuniv
x (g`) =

(
χ̂1(g`)(1+f(y)) 0

0 χ̂2(g`)(1+f(y′))

)
.

Following the proof of the last part of Lemma 2.18, we get that the set
{p, f(y), f(y′),Ψx(z0)} generates the maximal ideal of Rdef

ρ̄x . By Lemma 4.6,
f is surjective. Hence, if z ∈ Rdef,`

ρ̄x is an element such that f(z) = Ψx(z0),
then the ideal generated by p, y, y′, z and ker(f) is the maximal ideal of
Rdef,`
ρ̄x . �

4.4. Structure of Rpd,`
ρ0

with unobstructed ρ0 and p - `2 − 1. As
we saw in Lemma 4.3, Rpd

ρ̄0 'W (F)[[X,Y, Z]] when ρ0 is unobstructed and
p - φ(N). In this sub-section, we are going to analyze how its structure
changes after allowing ramification at a prime ` such that ` - Np and
p - `2 − 1.

For a non-zero x ∈ H1(GQ,Np, χ
i) with i ∈ {1,−1}, let ρuniv,`

x : GQ,N`p →
GL2(Rdef,`

ρ̄x ) be the universal deformation of ρx over Rdef,`
ρ̄x .

Proposition 4.8. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a
prime such that p - `2 − 1, χi|GQ`

= ωp|GQ`
for some i ∈ {1,−1}. Then, for

any non-zero x ∈ H1(GQ,Np, χ
−i), Rpd,`

ρ̄0 ' Rdef,`
ρ̄x .

Proof. Without loss of generality, suppose χ|GQ`
= ωp|GQ`

. By Lemma 2.16,
we have dim(H1(GQ,N`p, χ)) = 2 and dim(H1(GQ,N`p, χ

−1)) = 1. So by
Proposition 3.14, it suffices to prove that p is not a zero divisor in Rdef,`

ρ̄x

for any non-zero x ∈ H1(GQ,Np, χ
−1).

By Lemma 2.8, dim(tan(Rpd,`
ρ̄0 )) = 4. By Theorem 3.7, Rpd,`

ρ̄0 ' Rdef,`
ρ̄x for

any non-zero x ∈ H1(GQ,Np, χ
−1). Hence, we have dim(H1(GQ,N`p, ad(ρx)))

= 4 for any non-zero x ∈ H1(GQ,Np, χ
−1). By Lemma 2.17, this means that

dim(H2(GQ,N`p, ad(ρx))) = 1. Therefore, by [9, Theorem 2.4], Rdef,`
ρ̄x '

W (F)[[X,Y, Z,W ]]/I where I is either (0) or a principal ideal of the power
series ring W (F)[[X,Y, Z,W ]].

Suppose p is a zero divisor in Rdef,`
ρ̄x . As W (F)[[X,Y, Z,W ]] is a regular

local ring, it is a UFD ([15, Theorem 19.19]). This means that I = (pf) for
some f ∈W (F)[[X,Y, Z,W ]]. Thus, we get Rdef,`

ρ̄x ' F[[X,Y, Z,W ]].
Fix a lift g` of Frob` in GQ` . From Lemma 4.5, we know that ρuniv,`

x (g`) =(
φ1 0
0 φ2

)
, ρuniv,`

x |I` factors through the Zp-quotient of the tame inertia group
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at ` and ρuniv,`
x (i`) = ( 1 w

0 1 ) for some w ∈ Rdef,`
ρ̄x . From the action of Frob`

on the tame inertia group at `, we see that (φ1/φ2 − `)w = 0.
If w = 0, then the universal deformation ρuniv,`

x factors through GQ,Np.
This would imply that Rdef,`

ρ̄x ' Rdef
ρ̄x which is not true as we know that

dim(tan(Rdef,`
ρ̄x )) = 4. Therefore, we see that w 6= 0. As Rdef,`

ρ̄x is an integral
domain, we get that φ1/φ2 = `.

By Lemma 4.7 and Lemma 4.6, it follows that there exists a z ∈ Rdef,`
ρ̄x

such that w, z and φ1 − χ1(Frob`) generate the maximal ideal of Rdef,`
ρ̄x

which contradicts the fact that dim(tan(Rdef,`
ρ̄x )) = 4. Hence, Rdef,`

ρ̄x 6'
F[[X,Y, Z,W ]] and p is not a zero-divisor in Rdef,`

ρ̄x . This finishes the proof
of the proposition. �

As a corollary, we get:

Corollary 4.9. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a prime
such that p - `2 − 1 and χi|GQ`

= ωp|GQ`
for some i ∈ {1,−1}. Then

Rpd,`
ρ̄0 ' W (F)[[X1, X2, X3, X4]]/(X4f) for some non-zero, non-unit f ∈

W (F)[[X1, X2, X3, X4]].

Proof. From the proof of Proposition 4.8, we see that

Rpd,`
ρ̄0 'W (F)[[X1, X2, X3, X4]]/I,

where I is a non-zero principal ideal contained in (p, (X1, X2, X3, X4)2).
Since the natural map Rpd,`

ρ̄0 → Rpd
ρ̄0 is surjective ([21, Proposition 6.1])

and Rpd
ρ̄0 ' W (F)[[X,Y, Z]], it follows that its kernel is a minimal prime of

Rpd,`
ρ̄0 and it is a principal ideal. This finishes the proof of the corollary. �

We will now prove an improvement of Corollary 4.9 in certain cases.

Theorem 4.10. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a prime
such that p - `2 − 1, χi|GQ`

= ωp|GQ`
for some i ∈ {1,−1} and `/˜̀ is a

topological generator of 1 + pZp. Then

Rpd,`
ρ̄0 'W (F)[[X1, X2, X3, X4]]/(X4X2).

Proof. Without loss of generality assume χ|GQ`
= ωp|GQ`

. By Proposi-
tion 4.8, we have Rpd,`

ρ̄0 ' Rdef,`
ρ̄x for any non-zero x ∈ H1(GQ,N`p, χ

−1).
Therefore, there exists a representation ρ : GQ,N`p → GL2(Rpd,`

ρ̄0 ) such that
tr(ρ) = T univ,`.

Fix a lift g` of Frob` in GQ` . From Lemma 4.5, we know that ρ(g`) =(
φ1 0
0 φ2

)
, ρ|I` factors through the Zp-quotient of the tame inertia group at

` and ρ(i`) = ( 1 w
0 1 ) for some w ∈ Rpd,`

ρ̄0 .
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From the proof of Proposition 4.8, we also get that w 6= 0 and w(φ1/φ2−
`) = 0 i.e. w(φ1 − `φ2) = 0. By Lemma 4.5, there exist y, y′ ∈ Rpd,`

ρ̄0

such that φ1 = χ̂1(g`)(1 + y) and φ2 = χ̂2(g`)(1 + y′). Now, φ1 − `φ2 =
χ̂1(g`) − `χ̂2(g`) + χ̂1(g`)y − `χ̂2(g`)y′ and χ̂1(g`) = ˜̀χ̂2(g`). As `/˜̀ is a
topological generator of 1 + pZp, it follows that 1 − `/˜̀ = pu for some
u ∈ Z∗p. Hence, χ̂1(g`)

−1
(φ1 − `φ2) = pu + y − (1 − pu)y′. So we have

w(pu+ y − (1− pu)y′) = 0.
By Lemma 4.7, there exists a z ∈ Rpd,`

ρ̄0 such that the set {p, y, y′, z, w}
generates the maximal ideal of Rpd,`

ρ̄0 . Therefore, the set {p, pu + y − (1 −
pu)y′, y, z, w} also generates the maximal ideal of Rpd,`

ρ̄0 . Hence, by [15,
Theorem 7.16(b)], we get a surjective map ψ : W (F)[[X,Y, Z,W ]] → Rpd,`

ρ̄0
sending X to pu+ y− (1− pu)y′, Y to y, Z to z and W to w. The relation
w(pu+ y − (1− pu)y′) = 0 implies that WX ∈ J := Ker(ψ).

By Corollary 4.9, it follows that Rpd,`
ρ̄0 ' W (F)[[X,Y, Z,W ]]/I where I

is a principal ideal. Therefore, J is also a principal ideal. We already have
WX ∈ J . Note that W (F)[[X,Y, Z,W ]] is a UFD (by [15, Theorem 19.19])
and both W , X are irreducible elements of it. Hence, J is either (W ), (X)
or (WX). Since dim(tan(Rpd,`

ρ̄0 )) = 4, J cannot be (W ) or (X). Hence,
Rpd,`
ρ̄0 'W (F)[[X,Y, Z,W ]]/(WX). �

Remark 4.11. By Theorem 4.10, we know that

Rdef,`
ρ̄x 'W (F)[[X,Y, Z,W ]]/(WX)

for a suitable ρx. It is not clear how to get this explicit structure of Rdef,`
ρ̄x

directly from [8, Theorem 4.7] or its proof.

4.5. Structure of Rpd,`
ρ0

with unobstructed ρ0 and p | ` + 1. We
now turn to the case where ρ0 is unobstructed and ` is a prime such that
` - Np and p | ` + 1. As we will see, this case is a bit more complicated
than the previous case. This is also the case in the study undertaken in [11]
and [8]. We begin by determining the explicit structure of Rdef,`

ρ̄x under
certain hypotheses.

Before proceeding further, we need a piece of notation. Let {hi : i ∈ Z,
i ≥ 0} be the set of polynomials in F[

√
1 + UV ] satisfying the recurrence

relation bi+1 − 2(
√

1 + UV )bi + bi−1 = 0 with h0 = 0 and h1 = 1 (see [11]
for more details). So {hi : i ∈ Z, i ≥ 0} ⊂ F[[U, V ]]. Note that h` ≡ `
(mod (UV )). For a non-zero x ∈ H1(GQ,Np, χ

i) with i ∈ {1,−1}, let τuniv,`
x :

GQ,N`p → GL2(Rdef,`
ρ̄x ) be the universal deformation of ρx.

Note that if p | `+ 1 but p2 - `+ 1, then `/˜̀ is a topological generator of
1 + pZp.
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Lemma 4.12. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a prime
such that p | `+ 1, p2 - `+ 1 and χ|GQ`

= ωp|GQ`
. Let x ∈ H1(GQ,Np, χ

i) be
a non-zero element for i ∈ {1,−1}. Then,

Rdef,`
ρ̄x ' F[[X,Y, Z, U, V ]]/(U((1+X)+h`(1+Y )), V ((1+Y )+h`(1+X))).

Proof. By Lemma 4.5, it follows that τuniv,`
x |I` factors through the Zp-

quotient of the tame inertia group at `, τuniv,`
x (i`) =

(√
1+uv u
v

√
1+uv

)
and

τuniv,`
x (g`) =

(
φ1 0
0 φ2

)
for a fixed lift g` of Frob` in GQ` . Note that there exist

m,n ∈ Rdef,`
ρ̄x such that φ1 = χ1(Frob`)(1 +m) and φ2 = χ2(Frob`)(1 + n).

By Lemma 4.7, there exists a z ∈ Rdef,`
ρ̄x such that the set {m,n, u, v, z}

generates the maximal ideal of Rdef,`
ρ̄x . Thus, by [15, Theorem 7.16(b)],

we have a surjective map φ : F[[X,Y, Z, U, V ]] → Rdef,`
ρ̄x of W (F)-algebras

sending X to m, Y to n, Z to z, U to u and V to v. Let J0 = ker(φ).
From the action of Frob` on the tame inertia group at `, we see that

(φ1/φ2 − h`)u = 0 and (φ2/φ1 − h`)v = 0. Note that, as p | ` + 1 and
χ|GQ`

= ωp|GQ`
, we have χ1(Frob`) = −χ2(Frob`). Therefore, we have ((1+

m)+h`(1+n))u = 0 and ((1+n)+h`(1+m))v = 0. So ((1+X)+h`(1+Y ))U ,
((1 + Y ) + h`(1 +X))V ∈ J0.

By Lemma 2.16, we know that dim(H1(GQ,N`p, ad(ρx))) = 5 which
means dim(H2(GQ,N`p, ad(ρx))) = 2. By [9, Theorem 2.4],

Rdef,`
ρ̄x ' F[[X1, X2, X3, X4, X5]]/J,

where J is generated by at most 2 elements and J ⊂ (X1, X2, X3, X4, X5)2.
Denote F[[X,Y, Z, U, V ]] by R and its maximal ideal (X,Y, Z, U, V ) by m0.
Therefore, J0 is generated by at most 2 elements and J0 ⊂ m2

0.
Note that h` ≡ ` (mod (UV )). Since p | ` + 1, we get ((1 + X) +

h`(1 + Y )) ≡ (X − Y ) (mod (UV )) and ((1 + Y ) + h`(1 +X)) ≡ (Y −X)
(mod (UV )). So (1 +X) + h`(1 + Y ), (1 + Y ) + h`(1 +X) ∈ m0 \m2

0. As
m0J0 ⊂ m3

0, we see that the images of the elements ((1 +Y ) +h`(1 +X))V
and ((1 + X) + h`(1 + Y ))U in J0/m0J0 are linearly independent over F.
As J0 is generated by at most 2 elements, the dimension of J0/m0J0 as a
vector space over F is at most 2. Hence, it follows, from Nakayama’s lemma,
that J0 = (((1 + Y ) + h`(1 +X))V, ((1 +X) + h`(1 + Y ))U). �

We now turn our attention to the problem of finding the structure of
Rpd,`
ρ̄0 when ρ0 is unobstructed, p | `+ 1 and χ|GQ`

= ωp. Note that in this
case, we have dim(H1(GQ,N`p, χ)) = dim(H1(GQ,N`p, χ

−1)) = 2. So this
case is different from the cases we have dealt with so far. Hence, we can not
use the results obtained so far. However, we can still use the technique of
comparing Rpd,`

ρ̄0 with the universal deformation rings of residually non-split
reducible representations.
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Theorem 4.13. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a prime
such that p | `+ 1, p2 - `+ 1 and χ|GQ`

= ωp|GQ`
. Then,

(Rpd,`
ρ̄0 )red ' F[[X,Y, Z, T1, T2]]/(T1T2, T1Z, T2Z).

We will first prove a series of lemmas which will be used to prove Theo-
rem 4.13.

Let P be a prime Rpd,`
ρ̄0 . Fix a lift g` of Frob` in GQ` . Let AP be the

GMA obtained in Lemma 2.18 for the tuple (Rpd,`
ρ̄0 /P, `, tuniv,` (mod P ), g`).

Let AP =
(
Rpd,`
ρ̄0

/P BP

CP Rpd,`
ρ̄0

/P

)
and ρP : GQ,N`p → A∗P be the corresponding

representation. By Part (3) of Lemma 2.18, we see that ρP |I` factors through
the Zp-quotient of the tame inertia group at `. Fix a generator i` of this
Zp-quotient. We will now use this notation throughout the paper.

Lemma 4.14. Suppose ` is a prime such that ` - Np, p - `−1 and χ|GQ`
6=

1. If P is a prime of Rpd,`
ρ̄0 , then tuniv,`(gh)− tuniv,`(g) ∈ P for all g ∈ GQ`

and h ∈ I`.

Proof. Let KP be the fraction field of Rpd,`
ρ̄0 /P . By Lemma 2.7, we can

choose AP to be a subalgebra of M2(KP ) (see [2, Lemma 2.2.2] as well).
By the action of Frob` on the tame inertia group by conjugation, we see
that ρP (i`) is conjugate to ρP (i`)`. So if a ∈ KP is an eigenvalue of ρP (i`),
then a` is also an eigenvalue of ρP (i`). As p - `− 1, det(ρP (I`)) = 1. Hence,
we get that either a` = a or a` = a−1 which means a is an m-th root of
unity for some m ∈ N. Since KP has characteristic p and i` is a generator
of the Zp-quotient of I`, it follows that 1 is the only eigenvalue of ρP (i`).

So there exists some Q ∈ GL2(KP ) such that QρP (i`)Q−1 = ( 1 w
0 1 )

for some w ∈ KP . Thus, QρP (I`)Q−1 = {( 1 n.w
0 1 ) : 0 ≤ n ≤ p − 1}.

As I` is normal in GQ` , we see that QρP (GQ`)Q−1 is a subgroup of the
group of upper triangular matrices in GL2(KP ). Hence, we conclude that
tr(ρP (gh)) − tr(ρP (g)) = 0 for all g ∈ GQ` and h ∈ I`. Since tuniv,`

(mod P ) = tr(ρP ), the lemma follows. �

Lemma 4.15. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a prime
such that p | ` + 1, p2 - ` + 1 and χ|GQ`

= ωp|GQ`
. Then (Rpd,`

ρ̄0 )red is a
quotient of F[[X,Y, Z,X1, X2]]/(X1Y,X2Y,X1X2).

Proof. Fix a lift g` of Frob` in GQ` . Let Ared =
(

(Rpd,`
ρ̄0

)red Bred

Cred (Rpd,`
ρ̄0

)red

)
be the

GMA for the tuple ((Rpd,`
ρ̄0 )red, `, (tuniv,`)red, g`) obtained in Lemma 2.18 and

ρred be the corresponding representation. Let K0 be the total fraction field
of (Rpd,`

ρ̄0 )red. By Lemma 2.7, we can take Bred and Cred to be the fractional
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ideals of K0 such that the map m′(Bred ⊗(Rpd,`
ρ̄0

)red C
red) coincides with the

multiplication in K0.
From Lemma 2.18, we know that ρred(g`) =

(
ared 0

0 dred

)
with ared and

dred not congruent modulo the maximal ideal of (Rpd,`
ρ̄0 )red. From Part (3)

of Lemma 2.18, it follows that ρred(I`) is topologically generated by ρred(i`)
which means ρred(GQ`) is topologically generated by ρred(g`) and ρred(i`).

Suppose ρred(i`) =
(
a b
c d

)
. From Lemma 4.14, we get that a + d = 2,

ad − bc = 1 and areda + dredd = ared + dred. If a = 1 + α and d = 1 − α,
then we have ared(1 + α) + dred(1 − α) = ared + dred. Simplifying, we get
α(ared − dred) = 0. As ared − dred ∈ ((Rpd,`

ρ̄0 )red)∗, we get α = 0. Hence,
a = d = 1 and bc = 0.

By Lemma 2.19, we see that Cred and Bred are generated by at most
two elements and there exists b′ ∈ Bred and c′ ∈ Cred such that {b, b′}
is a set of generators of Bred, while {c, c′} is a set of generators of Cred.
Let z = b′c′, x1 = bc′ and x2 = b′c. Now, ared = χ1(Frob`)(1 + a0) and
dred = χ2(Frob`)(1 + d0) for some a0, d0 ∈ mred where mred is the maximal
ideal of (Rpd,`

ρ̄0 )red.
By Lemma 2.4 and Lemma 2.18, the ideal generated by {a0, d0, z, x1, x2}

is mred. Thus, by [15, Theorem 7.16(b)], we get a surjective local morphism
of F-algebras g0 : F[[X,Y, Z,X1, X2]]→ (Rpd,`

ρ̄0 )red such that g0(X) = a0+d0,
g0(Y ) = a0 − d0, g0(Z) = z, g0(X1) = x1 and g0(X2) = x2.

Let I0 = ker(g0). As bc = 0, we get x1.x2 = bc′.b′c = 0. So X1X2 ∈ I0.
Note that, from the action of Frob` on the tame inertia group, we get
ρred(g`i`g−1

` ) = ρred(i`)`.
Now, ρred(g`i`g−1

` ) =
(

1 (ared/dred)b
(dred/ared)c 1

)
. As bc = 0, we have

ρred(i`)` =
( 1 `.b
`.c 1

)
. Thus, we have (ared/dred−`)b = 0 i.e. (ared−`.dred)b =

0 and (dred/ared−`)c = 0 i.e. (dred−`.ared)c = 0. As χ1(Frob`)/χ2(Frob`) =
ωp(Frob`) = `, we get (a0−d0)b = 0 and (d0−a0)c = 0. Thus, (a0−d0)x1 =
(a0 − d0)x2 = 0 and hence, Y X1, Y X2 ∈ I0. �

Lemma 4.16. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a prime
such that p | `+ 1, p2 - `+ 1 and χ|GQ`

= ωp|GQ`
. Then there exist distinct

prime ideals P0, P1 and P2 of Rpd,`
ρ̄0 such that dim(Rpd,`

ρ̄0 /(Pi)) ≥ 3 for
i = 0, 1, 2.

Proof. Fix a non-zero element x0 ∈ H1(GQ,Np, χ). Recall that we con-
structed an isomorphism φ : R := F[[X,Y, Z, U, V ]]/(U((1+X)+h`(1+Y )),
V ((1 + Y ) + h`(1 + X))) → Rdef,`

ρ̄x0
in Lemma 4.12 which sends images of

X, Y , U and V in R to x, y, u and v, respectively, where τuniv,`
x0 (i`) =(√

1+uv u
v

√
1+uv

)
and τuniv,`

x0 (g`) =
(
χ1(Frob`)(1+x) 0

0 χ2(Frob`)(1+y)

)
. Here i` is a
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topological generator of the Zp-quotient of the tame inertia group at ` and
g` is a lift of Frob` in GQ,N`p.

Hence, it follows that Q0 = (u, v), Q1 = (u, x − y) and Q2 = (v, x − y)
are 3 distinct primes ideals of Rdef,`

ρ̄x0
such that Rdef,`

ρ̄x0
/Qi ' F[[X,Y, Z]] for

i = 0, 1, 2.
Let g : Rpd,`

ρ̄0 → Rdef,`
ρ̄x0

be the map induced by tr(τuniv,`
x0 ). For i = 0, 1, 2,

we get a morphism gi : Rpd,`
ρ̄0 → Rdef,`

ρ̄x0
/Qi composing g with the natural

surjective morphism Rdef,`
ρ̄x0
→ Rdef,`

ρ̄x0
/Qi. Let Pi be ker(gi) for i = 0, 1, 2.

By Lemma 4.3 and Lemma 2.15, there is a surjective map f : Rdef,`
ρ̄x0
→

Rpd
ρ̄0 such that f ◦ tr(τuniv,`

x0 ) = tuniv and ker(f) = (u, v). So f ◦ g ◦ tuniv,` =
tuniv. Hence, by [21, Proposition 6.1], f ◦g : Rpd,`

ρ̄0 → Rpd
ρ̄0 is surjective. From

the definition of P0, we see that P0 = ker(f ◦ g). Since ρ0 is unobstructed
and p - φ(N), Lemma 4.3 implies that dim(Rpd,`

ρ̄0 /P0) = 3.
We will denote τuniv,`

x0 by ρ for the rest of the proof. From the description
of ρ(g`) and [2, Lemma 2.4.5], it follows that there exist ideals B and C of

Rdef,`
ρ̄x0

such that Rdef,`
ρ̄x0

[ρ(GQ,N`p)] =
(
Rdef,`
ρ̄x0

B

C Rdef,`
ρ̄x0

)
. As ρ is a deformation

of ρx0 , it follows that B = Rdef,`
ρ̄x0

.
Now let h := ( 1 1

0 1 ) ∈ Rdef,`
ρ̄x0

[ρ(GQ,N`p)]. Then tr(h.ρ(i`))−tr(h) = v.α for
some α ∈ (Rdef,`

ρ̄x0
)×. Observe that tr(h.ρ(i`))− tr(h) ∈ Im(g), tr(h.ρ(i`))−

tr(h) ∈ Q2 but tr(h.ρ(i`))− tr(h) 6∈ Q1. Hence, P1 6= P2.
From above, we know that the map g0 induces an isomorphismRpd,`

ρ̄0 /P0'
Rdef,`
ρ̄x0

/(u, v). Hence, the map η : Rpd,`
ρ̄0 → Rdef,`

ρ̄x0
/(u, v, x − y) obtained by

composing g with the natural map Rdef,`
ρ̄x0
→ Rdef,`

ρ̄x0
/(u, v, x− y) is a surjec-

tive map. Now, R0 := Rdef,`
ρ̄x0

/(u, v, x− y) ' F[[X,Y ]]. Denote the R0-valued
representation ρ (mod (u, v, x− y)) by ρ0.

Now, ρ(i`) (mod Q1) is a non-identity lower triangular matrix with di-
agonal entries 1. So if tuniv,` (mod P1) = tr(ρ) (mod Q1) is unramified at
`, then tr(ρ) (mod Q1) is reducible which means tr(ρ0) is also reducible.
However, ρ0(g`) =

(
χ1(Frob`)(1+α) 0

0 χ2(Frob`)(1+α)

)
for some α ∈ R0. So the

last part of Lemma 2.18 implies that (α) is the maximal ideal of R0 con-
tradicting the fact that R0 ' F[[X,Y ]]. Hence, tr(ρ) is not reducible which
means tuniv,` (mod P1) is not unramified at `.

On the other hand, ρ(i`) (mod Q2) is a non-identity upper triangular
matrix with diagonal entries 1. Then, using the logic of the previous para-
graph, we conclude that tuniv,` (mod P2) is not unramified at `. Therefore,
we get that P0 6⊂ Pi for i = 1, 2 which means P0, P1 and P2 are distinct.
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Note that ker(η) is a prime ideal of Rpd,`
ρ̄0 and P0 6= ker(η). Now Pi ⊂

ker(η) for i = 0, 1, 2. Hence, we conclude, using previous paragraph that
Pi 6= ker(η) for i = 1, 2.

Thus we conclude that all P0, P1 and P2 are proper subsets of ker(η). As
dim(Rpd,`

ρ̄0 / ker(η)) = 2 and Pi’s are prime ideals for i = 0, 1, 2, we get that
dim(Rpd,`

ρ̄0 /Pi) ≥ 3 for i = 1, 2. �

We are now ready to prove Theorem 4.13.

Proof of Theorem 4.13. From Lemma 4.15, we know that there exists a
surjective morphism g : F[[X,Y, Z,X1, X2]]→ (Rpd,`

ρ̄0 )red such that

(X1X2, X1Y,X2Y ) ⊂ ker(g).

We will denote ker(g) by I0 for the rest of the proof. For i = 0, 1, 2, let
P ′i be the kernel of the map gi : F[[X,Y, Z,X1, X2]] → Rpd,`

ρ̄0 /Pi obtained
by composing g with the surjective map (Rpd,`

ρ̄0 )red → Rpd,`
ρ̄0 /Pi. Here, the

primes Pi are the ones appearing in Lemma 4.16. Each P ′i is a prime of
F[[X,Y, Z,X1, X2]] containing I0 and in particular, (X1X2, Y X1, Y X2) ⊂ P ′i
for i = 0, 1, 2. So each P ′i contains one of the (Y,X1), (Y,X2) or (X1, X2).

Now, the Krull dimension of Rpd,`
ρ̄0 /Pi and hence, the Krull dimension

of F[[X,Y, Z,X1, X2]]/P ′i is at least 3 for i = 0, 1, 2. Therefore, every P ′i is
either (Y,X1), (Y,X2) or (X1, X2). Since P0, P1 and P2 are distinct prime
ideals of Rpd,`

ρ̄0 (by Lemma 4.16), P ′0, P ′1 and P ′2 are distinct prime ideals of
F[[X,Y, Z,X1, X2]]. Hence, we have

{P ′0, P ′1, P ′2} = {(Y,X1), (Y,X2), (X1, X2)}.

So I0 ⊂ P ′0 ∩ P ′1 ∩ P ′2 = (Y,X1) ∩ (Y,X2) ∩ (X1, X2).
Note that (Y,X2) ∩ (Y,X1) = (Y,X1X2). If Y f ∈ (X1, X2), then f ∈

(X1, X2) and hence, Y f ∈ (Y X1, Y X2). Therefore, (Y,X1X2)∩ (X1, X2) =
(Y X1, Y X2, X1X2). Hence, I0 ⊂ (Y X1, Y X2, X1X2). This implies that I0 =
(Y X1, Y X2, X1X2) and hence,

(Rpd,`
ρ̄0 )red ' F[[X,Y, Z,X1, X2]]/(Y X1, Y X2, X1X2). �

Remark 4.17. The proof of Theorem 4.13, description of the GMA Ared,
and [3, Proposition 1.7.4] together imply that there does not exists a rep-
resentation ρ : GQ,N`p → GL2((Rpd,`

ρ̄0 )red) such that tr(ρ) = (tuniv,`)red.

It is natural to ask if the same approach can give us the structure
of (Rpd,`

ρ̄0 )red as well. But the method does not work. More specifically,
Lemma 4.14 is not true for Rpd,`

ρ̄0 . Indeed, let x ∈ H1(GQ,Np, χ
i) be a non-

zero element with i ∈ {1,−1} and O be the ring of integers in the finite
extension of Qp obtained by attaching all the p-th roots of unity to Qp.
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Let ζp be a primitive p-th root of unity. It can be checked that there ex-
ists a W (F)-algebra morphism Rdef,`

ρ̄x = W (F)[[X,Y, Z, U, V ]]/(U((1 +X) +
h`(1 + Y )), V ((1 + Y ) + h`(1 + X))) → O[[Z]] sending both U and V to
ζp−ζ−1

p

2 , X and Y to 0 and Z to Z. Composing this map with the map
Rpd,`
ρ̄0 → Rdef,`

ρ̄x , we get a map f : Rpd,`
ρ̄0 → O[[Z]]. Observe that f ◦T univ,`|GQ`

is not reducible and ker(f) is a prime ideal. See [11, Section 3] for a sim-
ilar analysis. Thus, the ring Rpd,`

ρ̄0 has more than 3 minimal primes and
probably has a more complicated structure.

Corollary 4.18. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a prime
such that p | `+ 1, p2 - `+ 1 and χ|GQ`

= ωp|GQ`
. Then Rpd,`

ρ̄0 is not reduced
ring.

Proof. Lemma 2.8 and Lemma 2.16 imply dim(tan(Rpd,`
ρ̄0 )) = 6. Now the

corollary follows directly from Theorem 4.13. �

Though we do not determine the explicit structure of Rpd,`
ρ̄0 in this case,

we can still prove the following theorem:

Theorem 4.19. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a prime
such that p | `+ 1, p2 - `+ 1 and χ|GQ`

= ωp|GQ`
. Then Rpd,`

ρ̄0 is not a local
complete intersection ring.

Proof. We use a strategy similar to the one used in the proof of Theo-
rem 4.13. Namely, we first find a set of generators of the co-tangent space
of Rpd,`

ρ̄0 and then find the relations between them using GMAs. After as-
suming that Rpd,`

ρ̄0 is a local complete intersection ring, we will find a subset
of these relations which will generate all the relations in Rpd,`

ρ̄0 . But the de-
scription of this subset will give a contradiction to Theorem 4.13 which will
complete the proof.

Fix a lift g` of Frob` in GQ` . Let Apd =
(
Rpd,`
ρ̄0

Bpd

Cpd Rpd,`
ρ̄0

)
be the GMA

associated to the tuple (Rpd,`
ρ̄0 , `, tuniv,`, g`) in Lemma 2.18 and ρ : GQ,N`p →

(Apd)∗ be the corresponding representation. By Part (3) of Lemma 2.18,
ρ|I` factors through the Zp quotient of the tame inertia group at `. Suppose
ρ(i`) =

(
a b
c d

)
. By Lemma 2.18, we know that ρ(g`) =

(
a0 0
0 d0

)
.

Let I`ρ̄0 := m(Bpd ⊗
Rpd,`
ρ̄0

Cpd). From Lemma 2.19, it follows that there

exists b′ ∈ Bpd and c′ ∈ Cpd such that {b, b′} is a set of generators of Bpd,
while {c, c′} is a set of generators of Cpd. Thus, the ideal I`ρ̄0 is generated
by the set {m′(b⊗ c),m′(b′⊗ c),m′(b⊗ c′),m′(b′⊗ c′)}. Let z = m′(b′⊗ c′),
x1 = m′(b⊗ c′), x2 = m′(b′ ⊗ c) and x3 = m′(b⊗ c).
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Now, a0 = χ1(Frob`)(1+a′0) and d0 = χ2(Frob`)(1+d′0) for some a′0, d′0 ∈
m` where m` is the maximal ideal of Rpd,`

ρ̄0 . From last part of Lemma 2.18, we
see that the ideal generated by the set {a′0, d′0, z, x1, x2, x3} is m`. Thus, we
get a surjective local morphism of F-algebras g0 : F[[X,Y, Z,X1, X2, X3]]→
Rpd,`
ρ̄0 such that g0(X) = a′0 + d′0, g0(Y ) = a′0 − d′0, g0(Z) = z, g0(X1) = x1,

g0(X2) = x2 and g0(X3) = x3. Let J0 = ker(g0). Denote the maximal ideal
(X,Y, Z,X1, X2, X3) by m0 and F[[X,Y, Z,X1, X2, X3]] by R0. We know
that dim(tan(Rpd,`

ρ̄0 )) = 6. Hence, J0 ⊂ m2
0. Suppose R

pd,`
ρ̄0 is a local com-

plete intersection ring. The Krull dimension of Rpd,`
ρ̄0 is 3 by Theorem 4.13.

This means that J0 is generated by 3 elements.
Note that if g ∈ GQ` and ρ(g) =

(
ag bg
cg dg

)
, then we get two characters c1,

c2 : GQ` → (Rpd,`
ρ̄0 /(x3))∗ sending g to ag (mod (x3)) and dg (mod (x3)),

respectively. Moreover, c1 and c2 are deformations of χ1|GQ`
and χ2|GQ`

,
respectively. As p - ` − 1, this means that c1(I`) = c2(I`) = 1. So we have
a = 1 + x3a

′ and d = 1 + x3d
′.

From the action of the Frobenius on the tame inertia, we get that
ρ(g`i`g−1

` ) = ρ(i`)`. As x3 = m′(b ⊗ c), we see, by induction, that for a
positive integer n,

ρ(i`)n =
(

1 + x3a
′
n b(n+ x3b

′
n)

c(n+ x3c
′
n) 1 + x3d

′
n

)
for some a′n, b′n, c′n, d′n ∈ R

pd,`
ρ̄0 . Therefore, we get that(

a (a0/d0)b
(d0/a0)c d

)
=
(

1 + x3a
′
` b(`+ x3b

′
`)

c(`+ x3c
′
`) 1 + x3d

′
`

)
.

Thus, (a0/d0)b = b(`+x3b
′
`) implies thatm′((a0/d0−`−x3b

′
`)b⊗Cpd) = 0

and (d0/a0)c = c(` + x3c
′
`) implies that m′((d0/a0 − ` − x3c

′
`)c ⊗ Bpd) =

0. Therefore, we have x3(a0/d0 − ` − x3b
′
`) = 0, x1(a0/d0 − ` − x3b

′
`) =

0, x3(d0/a0 − ` − x3c
′
`) = 0 and x2(d0/a0 − ` − x3c

′
`) = 0. As p | ` +

1 and χ1(Frob`) = `χ2(Frob`), we get the following relations from the
relations above: there exists b′′, c′′ ∈ Rpd,`

ρ̄0 such that x3(a′0−d′0 +x3b
′′) = 0,

x1(a′0 − d′0 + x3b
′′) = 0, x3(d′0 − a′0 + x3c

′′) = 0 and x2(d′0 − a′0 + x3c
′′) = 0.

Thus, J0 contains the elements X3Y +X2
3q1, X1Y +X1X3q2 and −X2Y +

X2X3q3 for some q1, q2, q3 ∈ R0. As the minimum number of genera-
tors of J0 is 3, it follows, by Nakayama’s lemma, that J0/m0J0 is an F
vector space of dimension 3. Since m0J0 ⊂ m3

0, we see that the images
of X3Y + X2

3q1, X1Y + X1X3q2 and −X2Y + X2X3q3 inside J0/m0J0
are linearly independent over F. Therefore, they form an F-basis of the
vector space J0/m0J0. Hence, by Nakayama’s lemma, we get that J0 =
(X3Y +X2

3q1, X1Y +X1X3q2,−X2Y +X2X3q3).
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In particular, J0 ⊂ (X3, Y ). This implies that the Krull dimension of
Rpd,`
ρ̄0 is 4. However, we know that the Krull dimension of Rpd,`

ρ̄0 is 3. Hence,
we get a contradiction to the hypothesis that J0 is generated by 3 elements.
Therefore, Rpd,`

ρ̄0 is not a local complete intersection ring. �

Corollary 4.20. Suppose ρ0 is unobstructed and p - φ(N). Let ` be a prime
such that ` ≡ −1 (mod p), χ|GQ`

= ωp|GQ`
and −` is a topological generator

of 1 + pZp. Then Rpd,`
ρ̄0 is not a local complete intersection ring.

Proof. Since Rpd,`
ρ̄0 /(p) ' Rpd,`

ρ̄0 , we see, from Theorem 4.13, that the Krull
dimension of Rpd,`

ρ̄0 is either 3 or 4. As ρ0 is unobstructed and p - φ(N),
we know that Rpd

ρ̄0 ' W (F)[[X,Y, Z]]. We have surjective map Rpd,`
ρ̄0 →

Rpd
ρ̄0 induced from the surjection GQ,N`p → GQ,Np. Hence, the Krull di-

mension of Rpd,`
ρ̄0 is 4. As dim(tan(Rpd,`

ρ̄0 )) = 6, we know that Rpd,`
ρ̄0 '

W (F)[[X,Y, Z,X1, X2, X3]]/J for some ideal J of the power series ring
W (F)[[X,Y, Z,X1, X2, X3]]. If Rpd,`

ρ̄0 is a local complete intersection ring,
then J is generated by 3 elements. But this would imply that Rpd,`

ρ̄0 is a
local complete intersection ring which is not true by Theorem 4.19. Hence,
we see that Rpd,`

ρ̄0 is not a local complete intersection ring. �

5. Applications to Hecke algebras

In this section, we will use the results proved so far to determine the
structure of big p-adic Hecke algebras in some cases and prove “big” R = T
theorem in those cases. We begin by defining the big p-adic Hecke algebra.

Let Mi(N,W (F)) be the space of modular cuspforms of level Γ1(N) and
weight i with Fourier coefficients in W (F). We view it as a subspace of
W (F)[[q]] via q-expansions. Let M≤k(N,W (F)) :=

∑k
i=0Mi(N,W (F)) ⊂

W (F)[[q]]. Let TΓ1(N)
k be the W (F)-subalgebra of EndW (F)(M≤k(N,W (F)))

generated by the Hecke operators Tq and Sq for primes q - Np (see [16,
Definition 1.7, Definition 1.8] for the action of these Hecke operators on
q-expansions). Let TΓ1(N) := lim←−k T

Γ1(N)
k .

Given a modular form f , let Of be the ring of integers of the finite ex-
tension of Qp containing all the Fourier coefficients of f . Now suppose ρ0 is
modular of level N i.e. there exists an eigenform f of level Γ1(N) such that
the semi-simplification of the reduction of the p-adic Galois representation
attached to f modulo the maximal ideal of Of is ρ0. Then we get a max-
imal ideal mρ̄0 of TΓ1(N) corresponding to ρ0 (see [13, Section 1] and [4,
Section 1.2]). Let TΓ1(N)

ρ̄0 be the localization of TΓ1(N) at mρ̄0 . So TΓ1(N)
ρ̄0

is a complete noetherian local W (F)-algebra with residue field F (see [13,
Section 1] and [4, Section 1.2]).
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Let ` be a prime not dividing Np. After replacing N by N` everywhere
in the construction of TΓ1(N)

ρ̄0 , we get TΓ1(N`)
ρ̄0 . Thus we have a natural mor-

phism ψ : TΓ1(N`)
ρ̄0 → TΓ1(N)

ρ̄0 obtained by restriction of the Hecke operators
acting on the space of modular forms of level Γ1(N`) to the space of mod-
ular forms of level Γ1(N).
Proposition 5.1.

(1) There exists a pseudo-representation

(τΓ1(N), δΓ1(N)) : GQ,Np → TΓ1(N)
ρ̄0

deforming (tr(ρ0), det(ρ0)) such that
τΓ1(N)(Frobq) = Tq

for all primes q - Np and the morphism φ′ : Rpd
ρ̄0 → TΓ1(N)

ρ̄0 induced
from it is surjective.

(2) There exists a pseudo-representation (τΓ1(N`), δΓ1(N`)) : GQ,N`p →
TΓ1(N`)
ρ̄0 deforming (tr(ρ0),det(ρ0)) such that τΓ1(N`)(Frobq) = Tq

for all primes q - N`p and the morphism φ : Rpd,`
ρ̄0 → TΓ1(N`)

ρ̄0
induced from it is surjective.

(3) The natural morphism ψ : TΓ1(N`)
ρ̄0 → TΓ1(N)

ρ̄0 is surjective.
Proof. The first two parts follow from [13, Lemma 4] and [13, Section 2]. For
the last part, we view τΓ1(N) as a pseudo-character of GQ,N`p and denote it
by τ . We know that τΓ1(N)(Frobq) = Tq and that τΓ1(N`)(Frobq) = Tq for
all primes q - N`p. By Chebotarev density theorem, we know that the set
{Frobq : q - N`p} is dense in GQ,Np. Hence, we have ψ ◦ τΓ1(N`) = τ which
means ψ ◦ φ ◦ T univ,` = τ .

On the other hand, if f : Rpd,`
ρ̄0 → Rpd

ρ̄0 is the natural morphism obtained
by viewing T univ as pseudo-character of GQ,N`p, then φ′ ◦ f ◦ T univ,` = τ .
The universal property of Rpd,`

ρ̄0 implies that ψ ◦ φ = φ′ ◦ f . Therefore, the
surjectivity of φ′ implies the surjectivity of ψ. �

Remark 5.2. Suppose p - φ(N), ρ0 is modular of levelN and unobstructed.
Let ` be a prime such that ` - Np and χi|GQ`

= ωp for some i ∈ {1,−1}.
Moreover assume that either p - `2 − 1 or p | ` + 1 and p2 - ` + 1. Then
combining Proposition 5.1, Corollary 4.9, proof of Corollary 4.20 and the
Gouvêa–Mazur infinite fern argument ([16, Corollary 2.28]), we get that
TΓ1(N`)
ρ̄0 is equidimensional of Krull dimension 4. This proves [16, Conjec-

ture 2.9] in some special cases.
We say that an eigenform h of level N` lifts ρ0 if the semi-simplification

of the reduction of the p-adic Galois representation attached to it modulo
the maximal ideal of Oh is isomorphic to ρ0.
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Theorem 5.3. Suppose p - φ(N), ρ0 is modular of level N and unob-
structed. Let ` be a prime such that ` - Np, p - `2 − 1, χi|GQ`

= ωp|GQ`

for some i ∈ {1,−1} and `/˜̀ is a topological generator of 1 + pZp. Suppose
there exists an eigenform g of level Γ1(N`) lifting ρ0 which is new at `.
Then the surjective morphism φ : Rpd,`

ρ̄0 → TΓ1(N`)
ρ̄0 is an isomorphism and

TΓ1(N`)
ρ̄0 'W (F)[[X1, X2, X3, X4]]/(X2X4).

Proof. Without loss of generality, assume χ|GQ`
= ωp. Suppose φ is not an

isomorphism. By Theorem 4.10, we know that

Rpd,`
ρ̄0 'W (F)[[X1, X2, X3, X4]]/(X2X4).

By Gouvêa–Mazur infinite fern argument ([16, Corollary 2.28]), we know
that if P is a minimal prime of TΓ1(N`)

ρ̄0 , then TΓ1(N`)
ρ̄0 /P has Krull dimension

at least 4. Hence, we have TΓ1(N`)
ρ̄0 'W (F)[[X,Y, Z]].

As ρ0 is unobstructed and p - φ(N), it follows from [16, Corollary 2.28]
and Lemma 4.3, that φ′ : Rpd

ρ̄0 → TΓ1(N)
ρ̄0 is an isomorphism and both are

isomorphic to W (F)[[X,Y, Z]]. Therefore, we get that the surjective map
ψ : TΓ1(N`)

ρ̄0 → TΓ1(N)
ρ̄0 is an isomorphism.

By Lemma 4.5 and Proposition 4.8, there exists a representation ρ :
GQ,N`p → GL2(Rpd,`

ρ̄0 ) such that tr(ρ) = T univ,` and there exists a w ∈ Rpd,`
ρ̄0

such that ρ(I`) is the cyclic group generated by ( 1 w
0 1 ). Moreover, Lemma 4.6

implies that (w) is the kernel of the natural surjective map f : Rpd,`
ρ̄0 → Rpd

ρ̄0 .
As ψ ◦ φ = φ′ ◦ f and ψ is an isomorphism, we see that φ(w) = 0.

Let g be an eigenform of level Γ1(N`) lifting ρ0 which is new at `. So we
get a morphism φg : TΓ1(N`)

ρ̄0 → Og sending each Hecke operator to its g
eigenvalue. Let ρg : GQ,N`p → GL2(Og) be the p-adic Galois representation
attached to g. Let ρ′g = φg ◦ φ ◦ ρ. Then ρ′g : GQ,N`p → GL2(Og) is a
representation such that tr(ρ′g) = tr(ρg) and ρ′g is unramified at `. As ρg
is absolutely irreducible, we see, by Brauer–Nesbitt theorem, that ρg ' ρ′g
over Qp. This means ρg is unramified at ` contradicting the assumption
that g is new at `. Hence, φ is an isomorphism. �

As corollaries, we get:

Corollary 5.4. Suppose ρ0 is unobstructed, p - φ(N), the Artin conductor
of ρ0 divides N , χ2 is unramified at p and det(ρ0) = ψωk0−1

p with 2 < k0 < p

and ψ unramified at p. Let ` be a prime such that ` - Np, p - `2 − 1, `/˜̀ is
a topological generator of 1 + pZp and χ|GQ`

= ω−1
p |GQ`

. Then, we have:

Rpd,`
ρ̄0 ' TΓ1(N`)

ρ̄0 'W (F)[[X1, X2, X3, X4]]/(X2X4).
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Proof. From [14, Lemma 2.5], it follows that ρ0 is modular of level N and
by [14, Theorem B], we get the existence of an eigenform g of level Γ1(N`)
lifting ρ0 which is new at `. The corollary now follows from Theorem 5.3. �

Corollary 5.5. Suppose N = 1, ρ0 = 1 ⊕ ωkp for some odd 2 < k < p − 3
and ` is a prime such that ` - Np, p - `2 − 1 and p ‖ `k+1 − 1. Moreover
suppose either p is a regular prime or p does not divide Bk+1Bp−k, where
Bk is the k-th Bernoulli number. Then, we have:

Rpd,`
ρ̄0 ' TΓ1(`)

ρ̄0 'W (F)[[X1, X2, X3, X4]]/(X2X4).

Proof. Note that if ` 6≡ ±1 (mod p) and p ‖ `k+1−1, then p - `2−1 and `/˜̀
is a topological generator of 1 + pZp. If either p is regular or p - Bk+1Bp−k,
then either [4, Lemma 21] or [4, Theorem 22] implies that 1 + ωkp is an
unobstructed pseudo-character of GQ,p. Since p | `k+1−1, we have ωkp |GQ`

=
ω−1
p |GQ`

. The corollary now follows directly from Corollary 5.4. �

Remark 5.6. One can also use [5, Theorem 1] instead of Corollary 5.4 to
prove Corollary 5.5.
Examples. The hypotheses of Corollary 5.5 are satisfied in the following
cases:

(1) p = 13, ρ0 = 1⊕ ω3
p and ` ≡ 5 (mod 169),

(2) p = 17, ρ0 = 1⊕ ω3
p and ` ≡ 4 (mod 289),

(3) p = 37, ρ0 = 1⊕ ω3
p and ` ≡ 6 (mod 1369).

We now give some examples satisfying the hypotheses of Theorem 5.3
for ρ0 = 1⊕ ωp. Note that these cases are not covered in [14, Theorem A].
Let Ek be the Eisenstein series of weight k and for a modular form f ,
denote its n-th Fourier coefficient by an(f). We now consider Mi(N,Zp)
as a submodule of Zp[[q]] via q-expansions. Let Mi(N,Fp) be the image of
Mi(N,Zp) in Fp[[q]] under the reduction modulo p map Zp[[q]]→ Fp[[q]].
Lemma 5.7. Let p = 5, 7, 11 and ` be a prime such that ` 6≡ ±1 (mod p)
and p2 - `p−1 − 1. Then the tuple (p, `, 1 ⊕ ωp) satisfies the hypotheses of
Theorem 5.3.
Proof. By [4, Theorem 22], we know that 1 ⊕ ωp is unobstructed. So we
only need to check that there exists a newform of level Γ0(`) lifting ρ0.

Let f` := −Bp−1
4(p−1) (Ep−1(q) − Ep−1(q`)). Now f` ∈ Mp−1(`,Zp). Let f ` be

the image of f` in Mp−1(`,Fp). So we have F` := Θf ` ∈ M2p(`,Fp), where
Θ is the Ramanujan theta operator. Note that F` 6= 0.

Note that the action of the Hecke operators Tq for primes q 6= `, p and
U` on M2p(`,Zp) descends to M2p(`,Fp). Moreover, the action of Tp on
M2p(`,Fp) coincides with action of Up i.e. if f ∈ M2p(`,Fp) and f =∑
an(f)qn, then Tpf =

∑
apn(f)qn.
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By [17, Fact 1.6], it follows that for a prime q 6= `, p, TqF` = (1 + q)F`,
U`F` = F` and TpF` = 0. As all these Hecke operators commute with
each other, we get, by Deligne–Serre Lemma, that there exists a G` ∈
M2p(Γ0(`),Qp) such that:

(1) G` is an eigenform for U` and for all Tq where q 6= ` is a prime,
(2) Modulo the maximal ideal of OG` , its Tq eigenvalue reduces to 1+q

for q - p`, Tp eigenvalue reduces to 0 and U` eigenvalue reduces to 1.
Thus G` is an eigenform lifting 1 ⊕ ωp. As ` 6≡ 1 (mod p), the only

Eisenstein series of weight 2p and level Γ0(`) with U` eigenvalue 1 (mod p)
is E2p(q)− `2p−1E2p(q`). But the Tp eigenvalue of E2p(q)− `2p−1E2p(q`) is
1 + p2p−1. Hence, G` is a cuspform.

If p = 5, 7, then there are no cuspforms of weight 2p and level 1. Hence,
G` has to be a newform when p = 5, 7. Now suppose p = 11. Then the only
cusp eigenform of weight 22 and level 1 is ∆E10. As E10 ≡ 1 (mod 11),
∆E10 ≡ ∆ (mod 11). Let ρ∆ be the 11-adic Galois representation attached
to ∆. As τ(2) = −24 6≡ 3 (mod 11), it follows that the semi-simplification
of ρ∆ (mod 11) is not 1 ⊕ ωp. Hence, we see that ∆E10 6= G`. Hence, G`
has to be a newform when p = 11. This finishes the proof of the lemma. �
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