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Lubin–Tate Deformation Spaces and Fields of
Norms

par Annie CARTER et Matthias STRAUCH

Résumé. On construit une tour de corps à partir des anneaux Rn qui para-
métrisent les couples (X,λ), où X est une déformation d’un groupe formel
fixé X de dimension un et de hauteur h, muni d’une structure de Drinfeld λ de
niveau n. On choisit des idéaux principaux premiers pn | (p) de Rn de manière
compatible, et on considère le corps K ′

n obtenu en localisant Rn en pn et en
passant au corps des fractions de la complétion. En prenant le compositum
Kn = K ′

nK0 de K ′
n et de la complétion K0 d’une certaine extension non-

ramifiée de K ′
0, on obtient la tour de corps (Kn)n pour laquelle on démontre

qu’elle est ’strictly deeply ramified’ au sens de Scholl. Quand h = 2, on étudie
la question de savoir s’il s’agit d’une tour kummérienne.

Abstract. We construct a tower of fields from the rings Rn which parame-
trize pairs (X,λ), where X is a deformation of a fixed one-dimensional formal
group X of finite height h, together with a Drinfeld level-n structure λ. We
choose principal prime ideals pn | (p) in each ring Rn in a compatible way and
consider the field K ′

n obtained by localizing Rn at pn and passing to the field
of fractions of the completion. By taking the compositum Kn = K ′

nK0 of K ′
n

with the completion K0 of a certain unramified extension of K ′
0, we obtain

a tower of fields (Kn)n which we prove to be strictly deeply ramified in the
sense of Scholl. When h = 2 we also investigate the question of whether this
is a Kummer tower.

1. Introduction
In this paper we study a tower K• of complete discrete valuation fields

of characteristic zero and residue field of characteristic p > 0:
(1.1) K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · ·
The fields Kn are defined in terms of torsion points of the universal defor-
mation of a formal group X of dimension one and height h > 0 over Fp. The
extensionKn/K0 is Galois with Gal(Kn|K0) ' (Z/pn)×n(Z/pn)h−1. When
h = 1 we have X = Ĝm, and Kn = Q̆p(µpn), where Q̆p = W (Fp)[1/p] is the
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completion of the maximal unramified extension of Qp. If h > 1 the residue
field of K0 is a separable (infinite) Galois extension of Fp ((u1, . . . , uh−1))
and thus imperfect.

Our starting point is the paper [8] of A.J. Scholl in which he develops a
theory of norm fields for certain towers of fields (Kn)n which he calls strictly
deeply ramified,1 and whose residue fields are not necessarily perfect. Our
first result is:

Theorem 1.1.1. The tower 1.1 is strictly deeply ramified in the sense of
A.J. Scholl.

By the general theory of [8], the tower 1.1 therefore gives rise to a com-
plete discretely valued field of norms E of characteristic p whose ring of
integers is

OE = lim←−
n

OKn/pOKn ,

where the transition maps are the p-power maps. The field of norms may
then be used to study representations of Gal(K0|K0) over fields of charac-
teristic p.

In order to study p-adic representations of the absolute Galois group of
K0, it is important to know whether the field of norms E lifts to characteris-
tic zero in a way that is compatible with the action of Γ = Gal(K∞|K0) and
Frobenius (where, as usual, K∞ =

⋃
nKn). If that is the case, then one can

describe p-adic representations of Gal(K0|K0) in terms of (φ,Γ)-modules.
While we do not settle here the question whether our norm field E lifts

to characteristic zero (in a way that is compatible with the action of Γ
and Frobenius), we investigate if K• is a Kummer tower. By this we mean
that there are elements t1, . . . , th−1 ∈ K0 such that for all n ≥ 0 one has
Kn = K0(µpn , pn√

t1, . . . , pn√
th−1). Scholl shows in [8, §2.3], that the field of

norms associated to a Kummer tower lifts to characteristic zero.
In order to explain the result that we have in this direction, we need

to briefly sketch the construction of the tower 1.1; cf. Section 2.2 for more
details. Let Rn be the ring which represents (isomorphism classes of) triples
(X, ι, λ), where (X, ι) is a deformation of X and λ : p−nZ/Z → X[pn] is
a Drinfeld level-n structure. The ring R0 is non-canonically isomorphic to
W (Fp)[[u1, . . . , uh−1]], and Rn[1/p]/R0[1/p] is an unramified Galois exten-
sion of rings with Galois group isomorphic to GLn(Z/pnZ). Set p0 = pR0.
For n > 0 let pn ∈ Rn be a prime ideal of height one which has the property
that pn+1 divides pn in Rn+1, for all n ≥ 0. Let R′n be the completion of the
localization (Rn)pn (with respect to the topology defined by the maximal
ideal), and K ′n = Frac(R′n) the field of fractions of R′n. Let K ′n,u ⊆ K ′n be
the largest subfield which is unramified over K ′0, and put K̃0 =

⋃
nK

′
n,u.

1We refer to the body of the paper for the discussion of this concept.
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Then define K0 to be the p-adic completion of K̃0 and define Kn = K ′nK0
to be the composition of K ′n and K0. We have only investigated the ques-
tion whether K• = (Kn)n is a Kummer tower when h = 2. In this case, we
have

Theorem 1.1.2. Let h = 2 and let K• = (Kn)n be the tower as defined
above.

(i) For every n ≥ 0 there is an element tn ∈ K0 such that Kn =
K0
(
µpn , pn√

tn
)
.

(ii) If p > 2, there does not exist an element t ∈ K̃0 such that for all
sufficiently large n one has Kn = K0

(
µpn , pn√

t
)
.

Our method of proof leaves open the possibility that there is an element
t ∈ K0 such that Kn = K0

(
µpn , pn√

t
)
for all n ≥ 0. However, even if K•

fails to be a Kummer tower, it might still be possible that the norm field
E lifts to characteristic zero (together with Galois action and Frobenius),
but we do not have positive evidence with regard to this problem.

The motivation to consider the tower of fields K• stems from the fact
that, for ` 6= p, the `-adic étale cohomology of the rigid analytic spaces
associated to the formal schemes Spf(Rn) realizes the `-adic local Langlands
correspondence for GLh(Qp), as was shown by M. Harris and R. Taylor [5].
Furthermore, P. Scholze’s work [9] shows that the p-adic cohomology of the
Lubin–Tate tower carries information about the conjectural p-adic (local)
Langlands correspondence. The tower K• comes equipped with an action of
a maximal parabolic subgroup in GLh(Zp) and with an action of the group
of elements of norm one in the division algebra D of invariant 1

h , and these
actions commute with each other. More generally, it is possible to consider
a whole family of towers of fields Kv,•, indexed by points v ∈ Ph−1(Qp),
and this family of fields carries an action of GLh(Zp) × O×D. The original
motivation behind the present paper is to clarify the meaning of those group
actions on this family of towers, and their associated norm fields, and this
article provides the first step in this direction.

Remark 1.1.3. The tower of fields (K ′n)n and the field K ′∞ =
⋃
n≥0K

′
n

have also been studied in [6] (where K ′n is denoted Ln), but the objective
in loc. cit. is quite different in that it is concerned with the composite field

K ′∞.K
′
0

(
µp∞ , u

1/p∞
1 , . . . , u

1/p∞
h−1

)
.

In particular, the fields Kn do not appear in loc. cit., and the question
whether the tower K• is strictly deeply ramified is not addressed in there.

Acknowledgements. We are grateful to the referee for carefully reading
our paper and for several helpful remarks which resulted in improvements
in a number of places.
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2. Deformations with level structures and the tower of fields K•

2.1. Formal modules, deformations, and level structures. We briefly
recall some facts about deformations of formal O-modules and level struc-
tures, following [3, §§1 and 4].

We fix a finite extension F/Qp with ring of integers O = OF , uniformizer
π, and residue field kF = O/(π) of cardinality q. Let Ŏ be the completion
of the maximal unramified extension of O. The residue field of Ŏ is an
algebraic closure of kF which we denote by kF . We also fix a formal O-
module X of dimension one and finite F -height h ≥ 1 over kF . Up to
isomorphism there is only one formal O-module over kF of given F -height
h [3, 1.7]. Given a formal O-module X over some ring R we denote by
[ · ]X : O → EndR(X) the corresponding ring homomorphism.

By C we denote the category of Ŏ-algebras R with the following proper-
ties:

(i) R is a complete, local, noetherian ring, whose maximal ideal we
denote by mR;

(ii) the structure homomorphism Ŏ → R is local;
(iii) the canonical field homomorphism kF = Ŏ/πŎ → R/mR is an

isomorphism.
Morphisms in C are local homomorphisms of Ŏ-algebras.
By a deformation of X over R ∈ ob(C), we mean a pair (X, ι) consisting of

a formal O-moduleX over R, together with an isomorphism ι : X '−→ X⊗R
R/mR. Two deformations (X1, ι1) and (X2, ι2) are defined to be isomorphic
if there is an isomorphism f : X1 → X2 of formal O-modules over R such
that (f ⊗R/mR) ◦ ι1 = ι2. In that case we write f : (X1, ι1) '−→ (X2, ι2).

Let (X, ι) be a deformation of X. We fix a coordinate T on X, and using
T , we equip the maximal ideal mR with the structure of an O-module. Let
n denote a positive integer. A structure of level n on X is an O-module
homomorphism

λ :
(
π−nO/O

)h −→ mR

such that the power series [π]X(T ) is divisible by∏
α∈(π−1O/O)h

(T − λ(α)) .

Remark 2.1.1. A structure of level zero is, by definition, the unique ho-
momorphism from the trivial group (π0O/O)h to mR. In the definition of
DefX,n below, the datum of λ can be ignored when n = 0.

Let (X1, ι1) and (X2, ι2) be two deformations of X, and let λi be a level-
n structure on Xi for i = 1, 2. The triples (X1, ι1, λ1) and (X2, ι2, λ2) are
defined to be isomorphic if there is an isomorphism f : (X1, ι1) '−→ (X2, ι2)
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of deformations satisfying f ◦ λ1 = λ2. Define the functor
DefX,n : C −→ Sets

by associating to R ∈ ob(C) the set of isomorphism classes of triples
(X, ι, λ), where (X, ι) is a deformation of X and λ is a level-n structure onX.
For n′ ≥ n, the restriction of any level-n′ structure λ′ onX to

(
π−nO/O

)h ⊆(
π−n

′O/O
)h is a level-n structure. We thus get a natural transformation

DefX,n′ → DefX,n. Moreover, we have a right action of GLh(O/(πn)) on the
functor DefX,n which is defined by [X, ι, λ].g = [X, ι, λ ◦ g], where [X, ι, λ]
denotes the isomorphism class of the triple (X, ι, λ).

Parts (i)–(iii) of the following result are due to V.G. Drinfeld [3, 4.2, 4.3],
and part (iv) has been shown in [12, 2.1.2].

Theorem 2.1.2.
(i) For every n ≥ 0 the functor DefX,n is representable, i.e., there is

an Ŏ-algebra Rn ∈ ob(C) and an isomorphism of functors

DefX,n
'−→ HomC(Rn,−) .

(ii) The ring Rn in (i) is a regular local ring. For all n′ ≥ n the ring
homomorphism Rn → Rn′ (induced by the natural transformation
DefX,n′ → DefX,n) is finite and flat.

(iii) The ring R0 is (non-canonically) isomorphic to Ŏ[[u1, . . . , uh−1]].
(iv) The ring extension Rn[1/π]/R0[1/π] is Galois with Galois group

isomorphic to GLh(O/(πn)). (The left action of this group on Rn
is induced by its right action on the functor DefX,n.)

Remarks 2.1.3.
(i) When F = Qp, hence O = Zp, part (iii) is due to Lubin and Tate [7],

which is why the formal scheme Spf(R0) (or its rigid analytic generic
fiber) is called a Lubin–Tate deformation space. More generally, the
formal schemes Spf(Rn) (or their rigid analytic generic fibers) are
also called Lubin–Tate deformation spaces.

(ii) Let [Xuniv, ιuniv] ∈ DefX,0(R0) be the element which corresponds
to the identity map idR0 ∈ HomC(R0, R0). Then Xuniv is called the
universal deformation of X. Furthermore, consider the isomorphism
class of triples [Xuniv, ιuniv, λuniv

n ] ∈ DefX,n(Rn) corresponding to
the identity map idRn ∈ HomC(Rn, Rn). The map λuniv

n is called
the universal level-n structure. Moreover, for n′ ≥ n, the restriction
of λuniv

n′ to (π−nO/O)h ⊆
(
π−n

′O/O
)h is equal to the composition

of λuniv
n with the inclusion mRn ↪→ mRn′ .

(iii) In the following we will often consider the action of GLh(O) on Rn
which is induced by the canonical map GLh(O) → GLh(O/(πn)),
and we write g.a for the image of a ∈ Rn under the action of
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g ∈ GLh(O), and we write g.A for the image of a subset A ⊆ Rn
under the action of g.

(iv) When h = 1 the universal deformation Xuniv is, up to isomorphism,
the unique lift of X to Ŏ. This implies the well-known fact that all
Lubin–Tate formal groups for O (i.e., one-dimensional O-modules
of F -height one over O) become isomorphic over Ŏ, cf. [10, §3.7,
Lem. 1]. Let LTO be any Lubin–Tate formal group for O, and let Fn
be the extension of F generated by the πn-torsion points of LTO.
This is a purely ramified extension of degree (q − 1)qn−1, and the
composite field F̆n := Fn.F̆ , where F̆ = Ŏ[1/π], does not depend on
the choice of LTO. When h = 1, the ring Rn is the ring of integers
of F̆n.

2.2. Construction of the tower of fields K•.

2.2.1. Sequences of prime ideals. The construction which we are going to
perform depends on the choice of a sequence p• = (pn)n>0 of ideals pn ⊆ Rn
with the following properties

(i) For all n > 0 the ideal pn is a prime ideal of height one.
(ii) p1|(π) in R1, and pn+1|pn in Rn+1 for all n > 0.

In the following we set p0 := πR0. We note that any prime ideal of height
one of Rn is a principal ideal, because Rn is a regular local ring, hence a
unique factorization domain. Put R∞ =

⋃
n≥0Rn.

2.2.2. Note that the group GLh(O) acts on the set of all such sequences p•:
if g ∈ GLh(O), and if p• = (pn)n is such a sequence, then g.p• = (g.pn)n is
another such sequence. We call α = (α1, . . . , αh) ∈ (π−nO/O)h primitive if
α is not divisible by π, i.e., α 6∈ (π−(n−1)O/O)h. Denote by (π−nO/O)hprim ⊆
(π−nO/O)h the set of primitive elements. Note that the group of units
(O/(πn))× acts on (π−nO/O)hprim, and let Pn = (π−nO/O)hprim/(O/(πn))×
be the set of orbits under this group. We denote by [α] ∈ Pn the orbit of
α ∈ (π−nO/O)hprim. We also call v = (v1, . . . , vh) ∈ Oh primitive if it is not
divisible by π, we let Ohprim be the subset of primitive vectors, and denote,
as usual, by Ph−1(O) = Ohprim/O× the set of orbits under the action of O×,
and we denote by [v] its class in Ph−1(O).

Most statements of the following proposition have already been shown
in the literature, but as we use them later on, we repeat them here. For
elements x, y ∈ Rn we write x ∼ y if x and y are associate, i.e., there is
u ∈ R×n such that y = ux.
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Proposition 2.2.3. Let n be a positive integer.
(i) Let α1, . . . , αh ∈ (π−nO/O)h be a basis of (π−nO/O)h over O/(πn).

Then (
λuniv
n (α1), . . . , λuniv

n (αh)
)

is a regular system of parameters for Rn. Moreover, Rn is generated
as an R0-algebra by λuniv

n (α1), . . . , λuniv
n (αh).

(ii) For every α ∈ (π−nO/O)hprim, the element λuniv
n (α) is a prime ele-

ment of Rn.
(iii) For 0 6= α ∈ (π−nO/O)h and a ∈ (O/(πn))×, one has λuniv

n (aα) ∼
λuniv
n (α). Moreover, for α, β ∈ (π−nO/O)hprim one has λuniv

n (α) ∼
λuniv
n (β) if and only if [α] = [β] in Pn.

(iv) For β ∈ (π−nO/O)hprim, and α ∈ (π−(n+1)O/O)hprim, the prime el-
ement λuniv

n+1(α) divides λuniv
n (β) in Rn+1 if and only if [πα] = [β]

in Pn.
(v) Let F̆n/F̆ be as in 2.1.3(iv). Then there is an embedding of Ŏ-

algebras OF̆n
↪→ Rn.

(vi) Let $n ∈ OF̆n
be a uniformizer. One has

$n ∼
∏

[α]∈Pn

λuniv
n (α) .

(vii) For β ∈ (π−nO/O)hprim we have the following prime factorization
of λuniv

n (β):

λuniv
n (β) ∼

∏
[α]∈Pn+1,[πα]=[β]

λuniv
n+1(α)q .

(viii) For every [v] ∈ Ph−1(O) the sequence of ideals
(
(λuniv
n (π−nv +

Oh))
)
n>0 satisfies the conditions in 2.2.1.

(ix) Conversely, for every sequence of prime ideals (pn)n>0 as in 2.2.1
there is a unique [v] ∈ Ph−1(O) such that (λuniv

n (π−nv +Oh)) = pn
for all n > 0.

Proof. (i). The first statement is contained in [3, 4.3]. For the second
statement let S ⊆ Rn be the subring generated over R0 by the elements
λuniv
n (α1), . . . , λuniv

n (αh).

Claim. Rn/mR0Rn is a finite-dimensional kF -vector space generated by
finitely many monomials in the λuniv

n (αi).
Proof of the Claim. To see this, consider for any t ≥ 1 the exact sequence
of vector spaces over R0/mR0 = kF :

0 −→ (mR0 .Rn + (mRn)t)/(mR0 .Rn + (mRn)t+1)
−→ Rn/(mR0 .Rn + (mRn)t+1) −→ Rn/(mR0 .Rn + (mRn)t) −→ 0.
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Note that the term on the left is a quotient of mt
Rn
/mt+1

Rn
, and is thus

generated by finitely many monomials in the λuniv
n (αi). For t = 1 the

term on the right is equal to the residue field of Rn, which is equal to
the residue field of R0 (which is kF ). Using induction on t we see that
Rn/(mR0 .Rn + (mRn)t) is generated by finitely many monomials in the
λuniv
n (αi). Next, because mR0Rn is mRn-primary2 there is a t > 0 such

that mt
Rn
⊂ mR0Rn, by [1, 7.16], and for such a t we have Rn/(mR0 .Rn +

(mRn)t) = Rn/mR0Rn. �

In particular, Rn = S + mR0Rn. Hence Rn = S by a corollary of
Nakayama’s Lemma.

(ii). Follows easily from (i), cf. [13, 4.2(i)].

(iii). We fix a coordinate T on Xuniv. Then the multiplication by a ∈ O on
Xuniv is given by a power series [a]Xuniv(T ) = aT + T 2P (T ) with a power
series P (T ) ∈ R0[[T ]]. If a is a unit in O, then we see that [a]Xuniv(x)/x =
a+ xP (x) is a unit in Rn for all non-zero x ∈ mRn . It follows that

λuniv
n (aα) = [a]Xuniv

(
λuniv
n (α)

)
= λuniv

n (α) ·
[a]Xuniv

(
λuniv
n (α)

)
λuniv
n (α)

is associate to λuniv
n (α). This shows that λuniv

n (α) ∼ λuniv
n (β) if [α] = [β] in

Pn. The converse is in [13, 4.2(i)].

(iv). Suppose [πα] = [β]. By (iii) we have λuniv
n (β) ∼ λuniv

n (πα), and

λuniv
n (πα) = λuniv

n+1(πα) = [π]Xuniv

(
λuniv
n+1(α)

)
= λuniv

n+1(α)·
[π]Xuniv

(
λuniv
n+1(α)

)
λuniv
n+1(α)

,

hence λuniv
n+1(α) divides λuniv

n (πα) in Rn+1. Therefore, (λuniv
n+1(α)) ∩ Rn ⊃

(λuniv
n (πα)). Since R0 is integrally closed, the going-down theorem [1, 5.16]

is applicable and implies that the height of the prime ideal (λuniv
n+1(α)) ∩

Rn must be equal to the height of (λuniv
n+1(α)) which is one. This implies

(λuniv
n+1(α)) ∩Rn = (λuniv

n (πα)).
Now suppose λuniv

n+1(α) divides λuniv
n (β) in Rn+1. Then, using the same

argument as above, we have (λuniv
n+1(α)) ∩ Rn = (λuniv

n (β)). On the other
hand, we have just seen that (λuniv

n+1(α)) ∩ Rn = (λuniv
n (πα)). Therefore,

λuniv
n (β) ∼ λuniv

n (πα). Now we use (iii) to conclude.

(v) and (vi). These assertions are in [13, 3.4, 4.2(ii)].
2Because Rn is noetherian, mR0Rn has a primary decomposition

⋂
i
qi [1, 7.13], where each

qi is a primary ideal, which in turn implies that pi = √qi a prime ideal in Rn. Therefore, R0 ∩ pi

contains mR0 , which is maximal in R0. The prime ideal pi is then maximal in Rn [1, 5.3], i.e.,
pi = mRn . Hence mR0Rn is mRn -primary [1, 4.3].
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(vii). We apply statement (vi) twice, for n and for n+ 1, and obtain:∏
[β]∈Pn

λuniv
n (β) ∼ $n ∼ $q

n+1 ∼
∏

[α]∈Pn+1

λuniv
n+1(α)q

=
∏

[β]∈Pn

∏
[α]∈Pn+1,[πα]=[β]

λuniv
n+1(α)q .

Assertion (vii) follows now from statement (iv).

(viii). In F̆1 we have π ∼ $q−1
1 , and thus π ∼

∏
[α]∈P1 λ

univ
1 (α)q−1, by (vi).

This shows the first condition in 2.2.1. The second condition now follows
from statement (iv).

(ix). As we have seen in the proof of (viii), any principal prime ideal p1 of
R1 dividing (π) must be generated by one of λ1(α1) for a unique [α1] ∈
P1. By (vii), any principal prime ideal pn+1 of Rn+1 dividing (λn(αn)),
with αn ∈ Pn, must be generated by an element λn+1(αn+1) with αn+1 ∈
Pn+1 and [παn+1] = [αn]. One can choose elements α̃n ∈ π−nOh such that
α̃n + Oh = αn and πα̃n+1 + Oh = αn. It is easily seen that the limit
v = limn→∞ π

nα̃n exists and is an element in Ohprim, and π−nv +Oh = αn
for all n > 0. This proves statement (ix). �

Corollary 2.2.4. The prime ideals of height one of R∞ =
⋃
nRn lying over

(π) are naturally parametrized by elements in Ph−1(O), and the action of
GLh(O) on the set of those prime ideals of R∞ is transitive.

Proof. This is an immediate consequence of 2.2.3(viii) and (ix). �

Convention 2.2.5. In the remainder of this section we will describe certain
Galois groups. Their description will involve terms like 1 + πmO/(πn) or
1 + πmMh−1(O/(πn)), for n ≥ m ≥ 0. When m = 0 we will interpret these
terms as meaning (O/(πn))× and GLh−1(O/(πn)), respectively.

2.2.6. The fields Kn. We denote by Kn and K∞ the fields of fractions of
Rn and R∞, respectively. Furthermore, we let e1 = (1, 0, . . . , 0), . . . , eh =
(0, . . . , 0, 1) be the standard generators of Oh.

Corollary 2.2.7.
(i) For every σ ∈ Gal(Kn | K0) there is a unique matrix (ai,j)1≤i,j,≤h ∈

GLh(O/(πn)) such that for all j = 1, . . . , h:

σ
(
λuniv
n (π−nej +Oh)

)
= [a1,j ]Xuniv

(
λuniv
n (π−ne1 +Oh)

)
+Xuniv . . .

. . .+Xuniv [ah,j ]Xuniv

(
λuniv
n (π−neh +Oh)

)
The map γ : Gal(Kn | K0) → GLh(O/(πn)) defined thus is an iso-
morphism.
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(ii) For varying n ≥ m ≥ 0, the isomorphism γ in (i) is compatible with
the obvious transition maps

Gal(Kn | K0) −→ Gal(Km | K0) ,
GLh(O/(πn)) −→ GLh(O/(πm)) ,

and thus induces an isomorphism Gal(K∞ | K0) '−→ GLh(O).
(iii) For n ≥ m ≥ 0, the isomorphism γ in (i) induces an isomorphism

Gal(Kn | Km) '−→ 1 + πmMh(O/(πn)) .

Proof. (i). Recall that by 2.1.2(iv) the action of GLh(O/(πn)) on the func-
tor DefX,n induces an action of this group on Rn, which is trivial on R0,
and such that the resulting map

GLh(O/(πn)) −→ Gal(Rn[1/π] | R0[1/π])
is an isomorphism of groups. As Rn is a regular local ring, it is integrally
closed, and is thus the integral closure of R0 in Kn. Hence Rn[1/π] is the
integral closure of R0[1/π] in Kn [1, 5.12]. A Galois automorphism of Kn
over K0 is trivial on R0[1/π], and hence maps Rn[1/π] to itself. Therefore,
the canonical map

Gal(Rn[1/π] | R0[1/π]) −→ Gal(Kn | K0)
is an isomorphism. This map is given explicitly as follows.

Recall the isomorphism of functors DefX,n → HomC(Rn,−) from 2.1.2(i),
which we will here denote by ψ. Given an Ŏ-algebra R in C and a triple
[X, ι, λ] ∈ DefX,n(R), we have ψR([X, ι, λ]) = α : Rn → R if and only if
[X, ι, λ] = [Xuniv⊗Runiv

0 ,αR, (Xuniv⊗R0 kF→Xuniv⊗Runiv
0 ,ᾱR/mR)◦ι, α◦λ] ,

where α : Rn → R/mR is the morphism induced by α. To g ∈ GLh(O/(πn))
we associate the natural transformation φg : DefX,n → DefX,n given by
sending [X, ι, λ] ∈ DefX,n(R) to [X, ι, λ ◦ g]. As ψ is an isomorphism of
functors, there is a morphism γg : Rn → Rn in the category C such that
the diagram

DefX,n
ψ
��

φg // DefX,n
ψ
��

HomC(Rn,−)
γ∗g // HomC(Rn,−)

is commutative. An analogous diagram exists for any n′ ≤ n and these
commutative diagrams, for n and n′ ≤ n, form a commutative cube. Since
the map φg induced on DefX,0 is the identity, it follows that γg is the identity
on R0.

We can evaluate the functors in the commutative diagram above on Rn
and use the fact that ψRn([Xuniv, ιuniv, λuniv

n ]) = idRn to obtain ψRn([Xuniv,



Lubin–Tate Deformation Spaces and Fields of Norms 443

ιuniv, λuniv
n ◦g]) = γg, which is equivalent to [Xuniv, ιuniv, λuniv

n ◦g] = [Xuniv,
ιuniv, γg ◦ λuniv

n ] (because γg is the identity on R0). By the definition of the
equivalence relation on triples (cf. the paragraph before 2.1.2), there is an
isomorphism f : (Xuniv, ιuniv)→ (Xuniv, ιuniv) of (rigidified) formal groups
over Rn such that f ◦ λuniv

n ◦ g = γg ◦ λuniv
n . This implies that f induces

that identity on Xuniv ⊗R0 kF , and must hence be the identity. Therefore,
we have γg ◦ λuniv = λuniv ◦ g. The assertion now follows from the fact that
λuniv
n is a homomorphism of groups (π−nO/O)h → (mRn ,+Xuniv).

(ii), (iii). These statements are an easy consequence of the first. �

2.2.8. The fields K ′n. In the following it will be convenient to fix a particular
sequence of primes pn satisfying 2.2.1, namely the sequence corresponding
to the first standard basis vector v = e1 = (1, 0, . . . , 0) by 2.2.3(viii), i.e.,
pn = (πn) where πn = λuniv

n (π−ne1 + Oh). Let R′n be the completion of
the localization (Rn)pn (with respect to the topology defined by the max-
imal ideal) and denote by K ′n = Frac(R′n) its field of fractions. The field
extension K ′n | K ′0 is finite and Galois and Gal(K ′n | K ′0) is the decomposi-
tion group of the prime ideal pn, cf. [11, Ch. II, §3, Cor. 4]. Let k′n be the
residue field of K ′n. Let k′n,sep ⊆ k′n be the separable closure of k′0 in k′n. Set
K ′∞ =

⋃
n≥0K

′
n.

Corollary 2.2.9. The ramification index of the extension K ′n | K ′0 is

e(K ′n | K ′0) = (q − 1)qn−1.

Proof. In the proof of 2.2.3(viii) we have shown π ∼
∏

[α]∈P1 λ
univ
1 (α)q−1,

which shows that e(K ′1 | K ′0) = q − 1. For n > 0 it follows from 2.2.3(vii)
that e(K ′n+1 | K ′n) = q. �

Proposition 2.2.10.
(i) R′n is generated over R′0 by λuniv

n (π−ne1+Oh), . . . ,λuniv
n (π−neh+Oh),

and the residue field k′n of K ′n is generated over k′0 by the images of
λuniv
n (π−ne2 +Oh), . . . , λuniv

n (π−neh +Oh).
(ii) The isomorphism γ : Gal(Kn | K0) '−→ GLh(O/(πn)) in 2.2.7 in-

duces an isomorphism

Gal(K ′n | K ′0)

'−→



a1,1 a1,2 · · · a1,h
0
... A′

0


∣∣∣∣∣∣∣∣∣
a1,1 ∈ (O/πnO)×,
a1,j ∈ O/(πn) for j > 1,
A′ ∈ GLh−1(O/(πn))

 ,
which we again denote by γ.
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(iii) Let I(K ′n | K ′0) ⊆ Gal(K ′n | K ′0) be the inertia subgroup. Then the
isomorphism γ in (ii) maps I(K ′n | K ′0) isomorphically onto the sub-
group

a1,1 a1,2 · · · a1,h
0
... Ih−1
0


∣∣∣∣∣∣∣∣∣
a1,1 ∈ (O/πnO)×,
a1,j ∈ O/(πn) for j > 1

 ,
where Ih−1 is the (h−1)×(h−1)-identity matrix. Furthermore, the
residue field extension k′n | k′0 is normal and the subextsion k′n,sep | k′0
is Galois. The isomorphism γ in (ii) induces an isomorphism
Aut(k′n | k′0) = Gal(k′n,sep | k′0) '−→ GLh−1(O/(πn)).

(iv) For any n ≥ m ≥ 0, the isomorphism γ in (ii) induces an isomor-
phism

Gal(K ′n | K ′m)

'



a1,1 a1,2 · · · a1,h
0
... A′

0


∣∣∣∣∣∣∣∣∣
a1,1 ∈ (1 + πmO)/(1 + πnO),
a1,j ∈ (πm)/(πn) for j > 1,
A′ ∈ Ih−1 + πmMh−1(O/(πn))

 .
(v) The isomorphism γ in (ii) induces, for every m ∈ N, an isomor-

phism

Gal(K ′∞ | K ′m)

'



a1,1 a1,2 · · · a1,h
0
... A′

0


∣∣∣∣∣∣∣∣∣
a1,1 ∈ 1 + πmO,
a1,j ∈ πmO for j > 1,
A′ ∈ Ih−1 + πmMh−1(O)

 .
Proof. (i). Follows from 2.2.3(i).

(ii). This is statement [14, 4.1(ii)]. The integer n (resp. m, resp. h) in this
reference corresponds to h (resp. n, resp. 1) here. The universal Drinfeld
level structure is denoted by φ in loc. cit., and the ideal p1,m of loc. cit.
corresponds to the ideal (πn) considered here.

(iii). This is statement [14, 4.1(iii)]. It is a general fact that the residue
field extension k′n | k′0 is normal (and the extension k′n,sep | k′0 is therefore
Galois), and that the map from Gal(K ′n | K ′0)/I(K ′n | K ′0) to the automor-
phism group Aut(k′n | k′0) is an isomorphism, cf. [2, Ch. 5, §2.2, Thm. 2].

(iv). Follows straightforwardly from the isomorphism in (ii).
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(v). It follows from 2.2.7 that, for fixed m, the isomorphism in (iv) is com-
patible with the natural transition maps on both sides, as n varies. Passing
to the projective limit shows the assertion. �

2.2.11. The fields K̃n and Kn. For ` ∈ N let K ′`,u ⊆ K ′` be the maximal
subextension of K ′` | K ′0 which is unramified over K ′0. The residue field of
K ′`,u is the separable closure k′`,sep of k′0 in k′`. Set K̃0 =

⋃
`≥0K

′
`,u, and

define K0 to be the π-adic completion of K̃0. For n ≥ 0, put
K̃n = K ′nK̃0 and Kn = K ′nK0 .

The fields K̃n and Kn are discretely valued and Kn is complete. Denote by
An (resp. Ãn) the ring of integers of Kn (resp. K̃n) and by kn (resp. k̃n) its
residue field. As completion does not affect the residue field, the canonical
map k̃n → kn is an isomorphism.
Remark 2.2.12. For n ≥ m ≥ 0 the extension K̃n | K̃m is Galois of finite
degree, and K̃n is also a Galois extension of any of the fields K ′`,u (this
extension is of infinite degree). Similarly, the extension Kn | Km is Galois
of finite degree.3

Proposition 2.2.13.
(i) For `′ ≥ n ≥ ` ≥ m ≥ 0, the isomorphism γ in 2.2.10(ii) induces

an isomorphism

Gal(K ′nK ′`′,u | K ′mK ′`,u)

'



a1,1 a1,2 · · · a1,h
0
... A′

0


∣∣∣∣∣∣∣∣∣
a1,1 ∈ (1 + πmO)/(1 + πnO),
a1,j ∈ (πm)/(πn) for j > 1,
A′ ∈ Ih−1 + π`Mh−1(O/(π`′))

 ,
which we again denote by γ. This isomorphism is compatible with
the natural transition maps on both sides as `′ ≥ n ≥ ` ≥ m vary.

(ii) For any n and ` the isomorphism γ in (i) induces an isomorphism

Gal(K̃n | K ′`,u)

'



a1,1 a1,2 · · · a1,h
0
... A′

0


∣∣∣∣∣∣∣∣∣
a1,1 ∈ (O/(πn))×,
a1,j ∈ O/(πn) for j > 1,
A′ ∈ Ih−1 + π`Mh−1(O))

 .
(iii) For any n ≥ m the isomorphism γ in (i) induces an isomorphism

Gal(K̃n | K̃m) ' 1 + πmO/(πn) n ((πm)/(πn))h−1 ,

3If h > 1, the p-adically complete field Kn is presumably not algebraic over any of the fields
K′m (m ≤ n), K̃m (m ≤ n), or K′`,u (any `).
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(iv) For all n ≥ m ≥ 0, the extension Kn | Km is Galois and the re-
striction map Gal(Kn | Km) → Gal(K̃n | K̃m) is an isomorphism.
We thus have [Kn : Km] = q(n−m)h, if m > 0, and [Kn : K0] =
(q − 1)qnh−1.

(v) For all n ≥ 1 one has [kn : kn−1] = qh−1.

Proof. (i). We consider K ′nK ′`′,u as a subfield of K ′`′ . Then we have the
short exact sequence

1 −→ Gal(K ′`′ | K ′nK ′`′,u) −→ Gal(K ′`′ | K ′0) −→ Gal(K ′nK ′`′,u | K ′0) −→ 1 .

Consider σ ∈ Gal(K ′`′ | K ′0) and write

γ(σ) =


a1,1 a1,2 · · · a1,h
0
... A′

0


with a1,1 ∈ O/(π`

′), a1,j ∈ O/(π`
′), for j > 1, and A′ ∈ GLh−1(O/(π`′). For

σ to act trivially on K ′nK ′`′,u it must, in particular, act trivially on K ′`′,u.
By 2.2.10(iii), the matrix A′ must therefore be the identity matrix. Since
K ′n is generated by the elements λuniv

n (π−nej + Oh), for j = 1, . . . , h, we
must also have a1,1 ∈ 1 + (πn)/(π`′) and a1,j ∈ (πn)/(π`′) for j > 1. This
proves the assertion when ` = m = 0. Using similar arguments we see that
the subgroup Gal(K ′nK ′`′,u | K ′mK ′`,u) of Gal(K ′nK ′`′,u | K ′0) is mapped by γ
to the group as stated.

(ii). This follows from (i) when we take m = 0 and when pass to the
projective limit as `′ →∞.

(iii). This statement follows from (ii) when we take the projective limit
(which is just an intersection) as `→∞.

(iv). The extension K ′n | K ′0 is Galois, and so is the extension Kn =
K ′nK0 | Km = K ′mK0 that we obtain by taking the composite fields with
K0. The restriction map Gal(Kn | Km) → Gal(K̃n | K̃m) is injective, be-
cause if σ ∈ Gal(Kn | Km) acts trivially on K̃n, which is dense in Kn

(for the p-adic topology), then it acts trivially on Kn. But this map is
also surjective because any Galois automorphism in Gal(K̃n | K̃m) extends
continuously to an automorphism of Kn over Km, because K̃n is dense
in Kn.

(v). By (iii) and (iv) we have [Kn : K0] = (q − 1)qn(h−1)+n−1 for all
n ≥ 1. For the ramification index we have e(Kn | K0) = e(K̃n | K̃0) =
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e(K ′n | K ′0) = (q − 1)qn−1; cf. 2.2.9, since K0 is the completion of the un-
ramified extension K̃0 of K ′0. It follows that [kn : k0] = qn(h−1), from which
we conclude that [kn : kn−1] = qh−1. �

3. Strictly deeply ramified towers
In the rest of this paper we will only consider the tower K• constructed

in Section 2 when O = Zp. In particular, we have
q = p and π = p .

In the following we will always write p instead of q, when using formulas
from the preceding section (involving cardinalities), but we keep writing π
instead of p when referring to the uniformizer of O = Zp.

The reason for restricting our attention to the case of Zp is because of the
way the theory of strictly deeply ramified towers of fields has been developed
by Scholl. We note, however, that Scholl’s theory can be generalized to a
setting which would allow us to work here with the ring of integers O of a
finite extension of Qp, cf. [8, 2.3.1].

For i = 1, . . . , h we put Yn,i = λuniv
n (p−nei + Zhp); we consider these as

elements of An. Recall that, with this definition, πn = Yn,1 (cf. 2.2.8).
Recall that we denote by kn the residue field of Kn = K ′nK0 (cf. 2.2.11),

and by k′n the residue field of K ′n (cf. 2.2.8). By 2.2.3 the elements Yn,1, . . . ,
Yn,h form a system of parameters of Rn, and generate Rn as R0-algebra.
Therefore, k′n = Frac(Rn/πnRn) is generated by

yn,i := Yn,i mod pn , i = 2, . . . , h ,
over k′0.

Proposition 3.1.1. For all n ≥ 1 and i = 1, . . . , h, the minimal polynomial
of Yn,i over Kn−1 is

Qi(T ) = Qn,i(T ) =
∏
a∈Fp

(T − (Yn,i +Xuniv [a]Xuniv(Y1,1))) ,

and has coefficients in An−1, except if n = 1 = i, in which case

Q1,1(T ) =
∏

a∈Fp, a 6=−1
(T − (Y1,1 +Xuniv [a]Xuniv(Y1,1))) .

For 2 ≤ i ≤ h, the reduction of Qn,i modulo the maximal ideal (πn−1) of
An−1 is T p − ypn,i.

Proof. We only treat the case n > 1; the case n = 1 is very similar (with
the obvious modifications). By 2.2.13(iii) and (iv), the Galois group of
Kn/Kn−1 is isomorphic to the group

(1 + πn−1O)/(1 + πnO) n (πn−1O/πnO)h−1 ,
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and the Galois action is given by the formula in 2.2.7. This means the
Galois conjugates of Yn,i are the elements

Yn,i +Xuniv [aπn−1]Xuniv(Yn,1)

for a ∈ Fp. This shows that the minimal polynomial of Yn,i over Kn−1 is

Qi(T ) =
∏
a∈Fp

(T − (Yn,i +Xuniv [aπn−1]Xuniv(Yn,1))) .

Since all roots are in An, the coefficients of this polynomial are in An ∩
Kn−1 = An−1.

The universal formal group law, as any one-dimensional formal group
law, has the property that

T1 +Xuniv T2 = T1 + T2 + T1T2 · ( · )

This implies that Qn,i(T ) ≡
∏
a∈Fp

(T − (Yn,i mod πn)) = T p− ypn,i mod πn.
As the coefficients of Qn,i are in An−1, we also have Qn,i(T ) mod πn−1 =
T p − ypn,i. �

Proposition 3.1.2.
(i) The residue field kn is generated as a field over kn−1 by the elements

yn,2, . . . , yn,h, and {yi2n,2 · · · y
ih
n,h | 0 ≤ ij ≤ p−1} is a basis of kn over

kn−1.
(ii) The elements Yn,1, . . . , Yn,h generate An as an algebra over An−1,

and An is a free An−1-module with basis

{Y i1
n,1 · · ·Y

ih
n,h | ∀ j ∈ {1, . . . , h} : 0 ≤ ij ≤ p− 1} ,

except if n = 1 in which case A1 is free over A0 with basis

{Y i1
n,1 · · ·Y

ih
n,h | ∀ j ∈ {1, . . . , h} : 0 ≤ i1 ≤ p− 2, 0 ≤ ij ≤ p− 1 for j > 1}.

Proof. (i). Recall that K0 is the p-adic completion of K̃0. Since K ′n is finite
over K ′0, it follows that Kn is also the p-adic completion of K̃n = K ′nK̃0. By
definition, K̃0 =

⋃
`≥0K

′
`,u, cf. 2.2.11, and we thus have K̃n =

⋃
`≥0K

′
nK
′
`,u.

Because the residue field does not change after passing to the completion,
the residue field kn of Kn is equal to the residue field of K̃n, and the
residue field of K̃n is the union of the residue fields of the K ′nK ′`,u. By
definition, K ′`,u is unramified over K ′0 and its residue field is the separable
closure k′`,sep of k′0 in k′`. By [4, 2.4.8] the residue field of the composite field
K ′nK

′
`,u is thus equal to k′nk′`,sep, the composition of the residue fields. The

union of these fields is then k′nk0. By the remark before 3.1.1, the field k′n
is generated over k′n−1 by yn,i, 2 ≤ i ≤ h, and kn is thus generated over
kn−1 by those same elements. By 3.1.1, these elements are of degree ≤ p,
and because [kn : kn−1] = ph−1, cf. 2.2.13(v), they are indeed of degree p.
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(ii). We observe that An−1 is a local ring with maximal ideal πn−1An−1.
Since πn−1An = πpnAn = Y p

n,1An (except if n = 1 in which case π0A1 =
pA1 = πp−1

1 A1), we have a filtration

0 ⊆ (πp−1
n )/(πpn) ⊆ . . . ⊆ (πn)/(πpn) ⊆ An/(πpn) = An/πn−1An

(and similarly when n = 1, when we replace πpn by πp−1
1 ).

Claim. An/πn−1An is generated as kn−1-algebra by the set {Y n,i |1≤ i≤h},
where Y n,i denotes the image of Yn,i ∈ An modulo πn−1.

Proof of the Claim. We show by descending induction on i that for 1≤ i≤ p
(resp. 1 ≤ i ≤ p− 1 if n = 1) the map

(3.1) kn−1[X2, . . . , Xh] −→ (πin)/(πn−1) ,

induced by
Xj 7→ πinYn,j mod πn−1 , 2 ≤ j ≤ h ,

is surjective. When i = p (or i = p − 1 if n = 1) there is nothing to
show. Given x ∈ (πi−1

n )/(πn−1), write x = πi−1
n y mod πn−1 with y ∈ An.

Using part (i) we can write y = f + πnz with f ∈ An−1[Yn,2, . . . , Yn,h] and
z ∈ An. Therefore, x = πi−1

n f + πinz mod πn−1. Applying our induction
hypothesis to z, we see that πinz is in the image of the map 3.1. This proves
the surjectivity of 3.1 in the case i− 1 instead of i. �

By 3.1.1, the degree of Yn,1 over An−1 is p (resp. p − 1, if n = 1). Thus
the kn−1-vector space An/πn−1An is generated by

{Y i1
n,1 · · ·Y

ih
n,h | ∀ j ∈ {1, . . . , h} : 0 ≤ ij ≤ p− 1}

(if n = 1 then it suffices that i1 ≤ p − 2). By Nakayama’s Lemma, this
generating set can be lifted to a generating set of An as an An−1-module,
which is to say that An is generated by the set

{Y i1
n,1 · · ·Y

ih
n,h | ∀ j ∈ {1, . . . , h} : 0 ≤ ij ≤ p− 1}

(if n = 1 then it suffices that i1 ≤ p − 2) as an An−1-module. It is a
general fact that An is free over An−1 of degree [Kn : Kn−1] = ph (resp.
[K1 : K0] = (p − 1)ph−1), cf. [11, Ch. II, §2, Prop. 3], and those elements
must then be basis of An as An−1-module. �

Proposition 3.1.3. For every n ≥ 0 we have [kn : kpn] = ph−1. Therefore,
each field Kn is a d-big local field in the sense of Scholl [8, 1.1] with d = h−1.

Proof. Recall that k′0 = FracFp[[u1, . . . , uh−1]]. Thus the extension k′0/(k′0)p
has degree ph−1, because it is generated by the elements u1, . . . , uh−1, each
of which is of degree p over (k′0)p and thus totally inseparable over (k′0)p.
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Because k′n,sep/k
′
0 is separable, so is (k′n,sep)p/(k′0)p. The fields (k′n,sep)p and

k′0 are thus linearly disjoint over (k′0)p. This implies that

[k′0(k′n,sep)p : (k′0)p] = ph−1[(k′n,sep)p : (k′0)p]
= ph−1[k′n,sep : k′0] = [k′n,sep : (k′0)p]

and thus k′n,sep = (k′n,sep)pk′0. Recall that k0 =
⋃
n k
′
n,sep. By what we have

just shown, k0 =
⋃
n(k′n,sep)pk′0 = kp0k

′
0. As kp0 is separable over (k′0)p and k′0

is totally inseparable over (k′0)p, these fields are linearly disjoint over (k′0)p,
and we thus have

[k0 : kp0] = [kp0 ⊗(k′0)p k′0 : kp0] = [k′0 : (k′0)p] = ph−1 .

Suppose towards induction that kn−1/k
p
n−1 has degree ph−1. By 2.2.13(v),

the extension kn/kn−1 has degree ph−1, and via the isomorphism x 7→ xp,
we conclude that the extension kpn/k

p
n−1 also has degree ph−1. By 3.1.2 we

have
kpn = (kn−1(yn,2, . . . , yn,h))p = kpn−1(ypn,2, . . . , y

p
n,h) .

By 3.1.1, the reduction of the minimal polynomial of Yn,i over Kn−1 to
kn−1 is equal to T p − ypn,i, and thus ypn,i ∈ kn−1 for each i. It follows that
kpn = kpn−1(ypn,2, . . . , y

p
n,h) ⊆ kn−1. As both have the same degree over kpn−1,

we must have kpn = kn−1. It then follows that [kn : kpn] = [kn : kn−1] =
ph−1. �

We recall the definition of a strictly deeply ramified tower.

Definition 3.1.4 ([8, 1.3]). Let d be a non-negative integer, and let
L• = (L0 ⊆ L1 ⊆ L2 ⊆ . . . )

be a tower of d-big local fields. The tower L• is called strictly deeply ramified
if there exists an integer n0 ≥ 0 and an ideal ξ ⊆ OLn0

with 0 < vp(ξ) ≤ 1
such that the following condition holds: for every n ≥ n0 the extension
Ln/Ln−1 has degree pd+1, and there exists a surjection

ΩOLn/OLn−1
� (OLn/ξOLn)d+1 .

We now arrive at our first goal, namely the proof of Result 1.1.1.

Proposition 3.1.5. The tower (Kn)n is strictly deeply ramified.

Proof. By 2.2.13, we have [Kn : Kn−1] = ph for n ≥ 2. It remains to
show that for all n ≥ 2, there exists a surjection ΩAn | An−1 → (An/πAn)h.
By 3.1.1, the minimal polynomial of Yn,i over Kn−1 is

Qn,i(T ) =
∏
a∈Fp

(T − (Yn,i +Xuniv [aπn−1]Xuniv(Yn,1))) ,
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which has coefficients in An−1. It then follows that[ d
dT Qn,i

]
(Yn,i) =

∑
a∈Fp

∏
b 6=a

(Yn,i − (Yn,i +Xuniv [b]Xuniv(Y1,1)))

=
∏
b 6=0

(Yn,i − (Yn,i +Xuniv [b]Xuniv(Y1,1)))

=
∏
b 6=0

(Yn,i − (Yn,i + b̃π1 + b̃π1Yn,i · ( · )))

=
∏
b 6=0

(−b̃π1)(1 + Yn,i · ( · )) ,

where ( · ) is an element of An and b̃ is a representative of b in Zp. As
−b̃(1 + Yn,i( · )) is a unit, and K1/K0 has ramification index p− 1, we have
| d
dTQn,i(Yn,i)| = |π

p−1
1 | = |π|. In particular,

(3.2)
[ d

dT Qn,i
]

(Yn,i) ∈ πAn .

We now show that ΩAn/An−1 is a free An/πAn-module of rank h. As
Qn,i(Yn,i) = 0, we have

0 = d
(
Qi(Yn,i)

)
=
[ d

dT Qn,i
]

(Yn,i) · dYn,i = επdYn,i ,

for some unit ε ∈ An. Therefore πdYn,i = 0. Because the elements Yn,i gen-
erate An as an algebra over An−1, the dYn,i generate ΩAn/An−1 as a module
over An. Hence we have shown that π annihilates ΩAn/An−1 , and ΩAn/An−1
is thus a module over An/πAn. By the definition of the polynomials Qn,i,
the map

θ : An−1[T1, . . . , Th]/(Qn,1(T1), . . . , Qn,h(Th)) −→ An , Ti 7−→ Yn,i ,

is well defined, and by 3.1.2 it is surjective. By 3.1.1 the domain of θ is a free
An−1-module of degree [Kn : Kn−1], and so is the target of θ. Therefore, θ
is an isomorphism of An−1-algebras.

Let θ̃ be the composition of
An−1[T1, . . . , Th] −→ An−1[T1, . . . , Th]/(Qn,1(T1), . . . , Qn,h(Th))

and θ. By 3.2 we have θ
( d

dTi
Qn,i(Ti)

)
∈ πAn. This implies that the map

An−1[T1, . . . , Th]
d

dTi−→ An−1[T1, . . . , Th] θ̃−→ An −→ An/πAn

factors via An−1[T1, . . . , Th]/(Qn,1(T1), . . . , Qn,h(Th)) ∼= An and induces a
An−1-linear derivation ∂i : An → An/πAn. By the universal property of
ΩAn/An−1 , there is a unique An-linear map ψi : ΩAn/An−1 → An/πAn such
that ∂i(a) = ψi(da) for all a ∈ An.
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Suppose that in ΩAn/An−1 we have a relation
∑
ajdYn,j = 0 for some

aj ∈ An/πAn. Applying ψi to this equation we find 0 =
∑
ajψi(dYn,j) = ai.

Thus ΩAn/An−1 is a free module over An/πAn, with basis dYn,1, . . . ,dYn,h.
The tower (Kn)n is thus strictly deeply ramified. �

4. Is the Lubin–Tate Tower a Kummer tower?
In this section we investigate whether the Lubin–Tate tower of fields

introduced above is a Kummer tower (as recalled in the introduction). We
will only consider the case when the formal group X has height 2.

In this section we use the following convention. When we study group
cohomology, we let a group G act on a abelian group A from the left:
G× A→ A, (g, a) 7→ g · a. Furthermore, we write a 1-cocycle c on G with
values in A as g 7→ cg, i.e., cg is the value of c on g ∈ G. The cocyle c then
satisfies cgh = g · ch + cg.

4.1. Preliminaries on Galois cohomology. We begin by recalling the
following elementary result:

Lemma 4.1.1 ([15, 6.2.2]). Let U = 〈u〉 be a cyclic group of order d, and
let M be an abelian U -module. There exists a canonical isomorphismm ∈M

∣∣∣∣∣∣
d−1∑
j=1

ujm = 0

/{um−m |m ∈M}
−→ H1(U,M)

m 7−→

c(m)ui =
i−1∑
j=0

uj ·m

.
Furthermore, if the action of U on M is trivial and dM = 0, then there
exists a canonical isomorphism M ' H1(U,M).

Corollary 4.1.2. Suppose p > 2. Let U = (Z/pnZ)× and M = µpn. The
group U acts on M by setting u · ζ = ζu. Then H1(U,M) = 0.

Proof. It is well known (and easy to prove) that the group (Z/pnZ)× is
isomorphic to µp−1 × Z/pn−1Z (if p is odd), and it is thus itself cyclic of
order d = (p − 1)pn−1. Let u ∈ Z \ pZ be such that u + pnZ ∈ U is
a generator. Since u 6≡ 1 mod p, we have p - u − 1. On the other hand,
pn | ud − 1, so for all ζ ∈ µpn , we have

d−1∏
j=0

ζu
j = ζ(ud−1)/(u−1) = 1 ,

and so ζ ∈ µpn

∣∣∣∣∣∣
d−1∏
j=0

uj · ζ = 1

 = M .
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On the other hand, as p - u− 1, we have u− 1 ∈ (Z/pnZ)×, so
{ζu−1 | ζ ∈ µpn} = M .

Thus by Lemma 4.1.1, we have H1(U,M) = 0. �

Proposition 4.1.3. Let µ be a finite cyclic group of order k which we will
write multiplicatively. Put U = (Z/kZ)× and E = Z/kZ, and let G = UnE
be the semi-direct product of U with E, with multiplication given by

(u1, e1) · (u2, e2) = (u1u2, u1e2 + e1) ,
where x denotes the class of x ∈ Z modulo k. The group G acts on µ via
U , with (u, e) · ζ = ζu for (u, e) ∈ G = (Z/kZ)×nZ/kZ, ζ ∈ µ. Then there
exists a split exact sequence

1 −→ H1(U, µ) −→ H1(G,µ) −→ µ→ 1,
where the splitting is given by mapping an element ζ ∈ µ to the cohomology
class of the 1-cocycle c̃(ζ)(ū,ē) = ζe. Further, if k = pn for some prime
p > 2, then H1(G,µ) ' µ.

Proof. We begin with the inflation-restriction exact sequence
0 −→ H1(U, µ) −→ H1(G,µ) −→ H0(U,H1(E,µ)) ,

cf. [15, 6.8.3]. As E acts trivially on µ, we have, by Lemma 4.1.1,H1(E,µ) '
µ, where the element ζ ∈ µ corresponds to the cocycle c(ζ)ē = ζe, where
e ∈ E = Z/kZ. The group U acts on H1(E,µ) by

(u · c(ζ))ē = u · c(ζ)
u−1e

= (ζu−1e)u = ζe = c(ζ)ē ,

which is to say that the action of U on H1(E,µ) is trivial. Thus
H0(U,H1(E,µ)) = H1(E,µ) ' µ .

Define the splitting map as in the statement of the proposition. We check
that it satisfies the cocycle condition:
c̃(ζ)(ū1,ē1)(ū2,ē2) = c̃(ζ)(ū1ū2,ū1ē2+ē1) = ζu1e2+e1 = (c̃(ζ)(ū2,ē2))u1 · c̃(ζ)(ū1,ē1).

It is straightforward to check that the map µ → H1(G,µ), ζ 7→ c̃(ζ), is a
group homomorphism and that it is a right inverse for the map H1(G,µ)→
µ. Finally, if k = pn, then by Corollary 4.1.2 we have H1(U, µ) = 0, and
thus H1(G,µ) ' µ. �

Proposition 4.1.4. Let k be a positive integer. Suppose L/K is a Galois
extension of fields with Galois group G = U n E, where U = (Z/kZ)×
and E = Z/kZ, and the multiplication in G is given by (u1, e1) · (u2, e2) =
(u1u2, u1e2 + e1), where x = x mod k. Suppose L contains a primitive k-th
root of unity (and therefore all k-th roots of unity), and suppose G acts on
the group µk of k-th roots of unity by (u, e) · ζ = ζu. Then there exists a
t ∈ K× such that L = K(µk, t1/k).
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Proof. Let M = LE . Then Gal(L |M) = E is cyclic of order k. As E acts
trivially on µk, we have µk ⊆ M . By Kummer theory, L/M is a Kummer
extension of the form L = M(t1/k) for some t ∈M×. We now want to show
that one can find such an element t already in K.

It suffices to show that there exists a t ∈ K× which is a k-th power
in L, t = sk, on which the Galois group acts by (u, e) · s = ζes for some
primitive k-th root of unity ζ, since in this case [M(s) : M ] = |E|, and thus
M(s) = L.

Consider the exact sequence of G-modules

1 −→ µk −→ L× −→ (L×)k → 1.

From this we get the sequence of cohomology groups

H0(G,L×) −→ H0(G, (L×)k) −→ H1(G,µk) −→ H1(G,L×).

But the zero-th cohomology group on the left is just K×, and by Hilbert’s
Theorem 90 the group H1(G,L×) is trivial, so we obtain the sequence

K× −→ (L×)k ∩K× −→ H1(G,µk) −→ 1 .

In particular, the map (L×)k∩K× → H1(G,µk) is surjective. As in Propo-
sition 4.1.3, the map (u, e) 7→ ζe is a 1-cocycle, and we have a group homo-
morphism

µk −→ H1(G,µk) , ζ 7−→ c̃(ζ) = [(u, e) 7→ ζe] .

Suppose that there exists a ξ ∈ µk such that ξe = ξu−1 for all (u, e) ∈ G,
i.e., the map (u, e) 7→ ξe is a 1-coboundary. Then ξ1 = ξ1−1 = 1. Thus the
map ζ 7→ c̃(ζ) is injective.

Let ζ be a primitive k-th root of unity. As the map (L×)k ∩ K× →
H1(G,µk) is surjective, there exists a t ∈ (L×)k ∩K× which maps to the
1-cocycle c̃(ζ). Let s′ ∈ L× be such that (s′)k = t. By definition, under the
map

(L×)k ∩K× = H0(G, (L×)k)→ H1(G,µk) ,

the element t maps to the cohomology class of the 1-cocyle
[
g 7→ g(s′)

s′

]
(g ∈ G). Thus c̃(ζ) and

[
g 7→ g(s′)

s′

]
must be equal up to a coboundary[

g 7→ g(ξ)
ξ

]
, for some ξ ∈ µk. That is to say: g(s

′)
s′ = g(ξ)

ξ · c̃(ζ)g for all g ∈ G.

Putting s = s′ξ−1 we still have sk = t and g(s)
s = c̃(ζ)g for all g ∈ G, i.e.,

(ū,ē)(s)
s = ζe, which is equivalent to (u, e)(s) = ζe · s. Hence, as mentioned

above, s generates L over K(µk). �
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4.2. Applications to the Lubin–Tate tower. In this section we con-
sider the fields Kn and K̃n constructed in Section 2.2.11, but we assume
throughout that O = Zp and h = 2. The following is Result 1.1.2(i) of the
introduction.

Corollary 4.2.1. The extension Kn/K0 is a Kummer extension, i.e., there
is a tn ∈ K0 such that Kn = K0(µpn , pn√

tn). The same is true for K̃n/K̃0.

Proof. By Proposition 2.2.13, Kn/K0 and K̃n/K̃0 are both Galois exten-
sions with Galois group (Z/pnZ)× n Z/pnZ. Let Q̆p be the completion of
the maximal unramified extension of Qp. It has been shown in [13, Cor. 3.4]
that the field K ′n contains Q̆p(µpn), which is a Lubin–Tate extension for the
multiplicative formal group over Q̆p. Since K ′n ⊆ K̃n ⊆ Kn, both fields Kn

and K̃n contain µpn . By loc. cit., the action of

Gal(K ′n | K ′0) '
{
ga,b,d :=

(
a b
0 d

) ∣∣∣∣ a, d ∈ (Z/pnZ)× , b ∈ Z/pnZ
}
,

cf. 2.2.10, on µpn is given by ga,b,d.ζ = ζad, ζ ∈ µpn . The subgroup
Gal(K̃n | K̃0) = Gal(Kn |K0) of Gal(K ′n |K ′0) consists precisely of those
ga,b,d with d = 1. Therefore, elements ga,b,1 ∈ Gal(K̃n | K̃0) = Gal(Kn |K0)
act on ζ ∈ µpn as ga,b,1.ζ = ζa. We are thus in the situation of Proposi-
tion 4.1.4 from which our assertion follows. �

4.2.2. We now turn to the question whether the tower K• is a Kummer
tower. As mentioned in the introduction, K• being a Kummer means that
there is a t ∈ K0 such that for every n ≥ 0, one has Kn = K0(µpn , pn√

t).
Our methods, however, are such that we can only investigate this question
under the restriction that t lies in the field K̃0, of which K0 is the p-adic
completion. The point is that the K̃n/K

′
0 are Galois extensions whereas

K0/K
′
0 is not, cf. 2.2.12, and our methods are tied to the fact that K̃n/K

′
0

is a Galois extension.4
Recall the field K ′`,u ⊆ K ′` which is the maximal unramified subextension

of K ′`/K ′0, cf. 2.2.11. We have, by definition, K̃0 =
⋃
m≥0K

′
`,u, and K̃n =

K̃0K
′
n. We recall from 2.2.13(ii) that the universal Drinfeld basis induces

an isomorphism

Gn,` := Gal(K̃n | K ′`,u)

'
{(

a b
0 d

) ∣∣∣∣ a ∈ (Z/pnZ)× , b ∈ Z/pnZ , d ∈ 1 + p`Zp
}
,

4A more sophisticated approach might possibly give the stronger result about the non-
existence of such a t in K0 (and not only in K̃0), but we do not know how to do this.
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where 1 + p`Zp is to be interpreted as Z×p when ` = 0. In the remainder of
this paper we use the notation ga,b,d =

(
a b
0 d
)
, as in the proof of 4.2.1.

Proposition 4.2.3. Suppose p > 2. The group Gn,` = Gal(K̃n | K ′`,u) acts
on µpn ⊆ K ′n ⊆ K̃n by ga,b,d · ζ = ζad for ζ ∈ µpn. Furthermore,

H1(Gn,`, µpn) ' {ζ ∈ µpn | ∀ d ∈ 1 + p`Zp : ζd2 = ζ } .
If ` > 0 or p > 3, then H1(Gn,`, µpn) = µpmin{n,`}. If p = 3 and ` = 0 then
H1(Gn,`, µpn) = µpmin{n,1}.

Proof. As we have already recalled in the proof of Proposition 4.2.1, the
first assertion about the action of Gn,` on µpn is [13, Cor. 3.4]. Let

Gn := Gal(K̃n | K̃0) = {ga,b,d ∈ Gn,` | d = 1} ' (Z/pnZ)× n Z/pnZ ;
cf. 2.2.13(iii). Then Gn is a normal subgroup of Gn,`. Put D = Gn,`/Gn '
1 + p`Zp. Since µGn

pn = {1}, it follows from the inflation-restriction se-
quence [15, 6.8.3] that

H1(Gn,`, µpn) ' H0(D,H1(Gn, µpn)) .
By Proposition 4.1.3, we have H1(Gn, µpn) ' µpn , where ζ ∈ µpn corre-
sponds to the class of c(ζ)ga,b,1 = ζb. The projection Gn,` � D has the
section D → Gn,`, d 7→ d̃ := g1,0,d. Then d̃−1ga,b,1d̃ = ga,bd,1, and so

(d̃ · c(ζ))ga,b,1 = d̃ · c(ζ)d̃−1ga,b,1d̃
= d̃ · c(ζ)ga,bd,1 = d̃ · ζbd = ζbd

2
.

Thus the cocycle is fixed by D if and only if ζd2 = ζ for all d ∈ 1 + p`Zp.
Suppose in the following that this is the case.

Case ` > 0. Then (1 + p`Zp)2 = 1 + p`Zp (as we assume p > 2), and hence
ζ ∈ µp` ∩ µpn = µpmin{n,`} .

Case p > 3 and ` = 0. Then there is d ∈ Z×p such that p - d2 − 1 (e.g.,
d = 2), and hence ζ = 1.

Case p = 3 and ` = 0. Then p | d2 − 1 for all d ∈ Z×p and p2 - d2 − 1 for
some d ∈ Z×p (e.g. d = 2). Hence ζ ∈ µp ∩ µpn = µpmin{n,1} . �

Remark 4.2.4. In the proof given above we have used the hypothesis
p > 2 when applying 4.1.3, and 4.1.3 in turn relies on 4.1.2, where this
hypothesis is also made. If one strengthened 4.1.3 and 4.1.2 by including
results pertaining to the case p = 2 (which would certainly be possible),
then one should also be able to obtain a description of H1(Gn,`, µpn) in the
case p = 2.

Lemma 4.2.5. The action of Gn,` = Gal(K̃n | K ′`,u) on K̃n extends by
continuity to an action on Kn, and H0(Gn,`,Kn) = K ′`,u.
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Proof. As the Galois automorphisms in Gn,` are p-adically continuous, they
extend uniquely to the p-adic completion Kn of K̃n. Consider the tauto-
logical exact sequence

1 −→ Gn = Gal(K̃n | K̃0) −→ Gn,` = Gal(K̃n | K ′`,u)

−→ D := Gal(K̃0 | K ′`,u) −→ 1 .

Recall that the canonical map Gal(Kn | K0)→ Gal(K̃n | K̃0) is an isomor-
phism, by Proposition 2.2.13(iv). We therefore have

H0(Gn,`,Kn) = H0(D,H0(Gn,Kn)
)

= H0(D,K0
)
.

Recall that K0 is, by definition, the p-adic completion of K̃0, cf 2.2.11.
Recall also that we defined k̃0 =

⋃
n k
′
n,sep to be the residue field of K̃0

(which is also the residue field of K0) (cf. 2.2.11). The field k̃0 is a Galois
extension of k′`,sep whose Galois group is canonically isomorphic to D '
1 + p`Zp. If we put K ′′0 = H0(D,K0), then group D acts trivially on K ′′0 ,
and it therefore also acts trivially on its residue field, which must then be
k′`,sep. The field K ′′0 is therefore a discretely valued complete subfield of K0
with residue field k′0 and must then be equal to K ′0. �

Proposition 4.2.6. Suppose p > 2. There is no t ∈ K̃0 such that for all
sufficiently large n� 0 one has Kn = K0(µpn , pn√

t).

Proof. Suppose on the contrary that such a t ∈ K̃0 exists. Then it is
contained in some subfield K`,u ⊆ K̃0. We may increase ` and assume
henceforth that ` > 0, and we choose n > `. By 4.2.5, the action of
Gn,` = Gal(K̃n | K ′`,u) on K̃n extends by continuity to an action on Kn.
We can thus consider the 1-cocycle

Gn,` −→ µpn , s 7−→ s
(
t1/p

n)
/t1/p

n
.

Because H1(Gn,`, µpn) = µp` , cf. 4.2.3, the map s 7→ (s(t1/pn)/t1/pn)p` is a
coboundary, so there exists a ζ ∈ µpn such that

s
(
t1/p

n−`)
/t1/p

n−` = s(ζ)/ζ .

If s ∈ Gal(K̃n | K`,u(µpn)), then we further have s(t1/pn−`)/t1/pn−` = 1.
Using 4.2.5 again, we conclude that t1/pn−` ∈ K`,u(µpn). It then follows
that [K ′`,u(µpn , t1/p

n) : K ′`,u(µpn)] ≤ p`, and thus[
K0
(
µpn , t1/p

n) : K0
]
≤
[
K`,u

(
µpn , t1/p

n) : K`,u

]
≤ (p− 1)pn−1p` .

But [Kn : K0] = (p − 1)pn−1pn. Thus there cannot exist such an element
t ∈ K̃0. �
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