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A graph arising in the Geometry of Numbers

par Wolfgang M. SCHMIDT et Leonhard SUMMERER

Résumé. La géometrie paramétrique des nombres a permis de visualiser les
propriétés d’approximation simultanée d’une collection de nombres réels à
travers le graphe combiné des fonctions de certains minimas successifs. Beau-
coup d’inégalités entre les exposants classiques d’approximation simultanée
peuvent être déduits de ces graphes. En particulier, les graphes dits réguliers
sont parmis les plus importants, notamment pour les cas extrêmes de cer-
taines de ces inégalités. Le but de cet article est de définir et de construire la
notion de graphes réguliers dans le contexte d’approximation pondérée.

Abstract. The parametric geometry of numbers has allowed to visualize the
simultaneous approximation properties of a collection of real numbers through
the combined graph of the related successive minima functions. Several in-
equalities among classical exponents of simultaneous approximation can be
guessed by a study of these graphs; in particular the so called regular graph
is of major importance as it provides an extremal case for some of these in-
equalities. The aim of this paper is to define and construct an analogue of the
regular graph in the case of weighted simultaneous approximation.

1. Introduction

We will first explain how certain graphs arise from Diophantine approxi-
mation and the Geometry of Numbers. Yet our construction of such graphs,
beginning in Section 2, will not require specific knowledge of these topics.

Diophantine approximation deals with simultaneous approximation to
linear forms. Given n = l + m with positive l,m, Dirichlet’s Theorem in
the classical case asserts that for linear forms fj(x) = ξj1x1 + · · · + ξjlxl,
(1 ≤ j ≤ m) with real coefficients ξji and variables x = (x1, . . . , xl), there
are non-zero points
(1.1) (x1, . . . , xl, y1, . . . , ym) ∈ Zn

with
|xi| ≤ eqm (1 ≤ i ≤ l),

|fj(x)− yj | ≤ e−lq (1 ≤ j ≤ m).
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The points
(x1, . . . , xl, f1(x)− y1, . . . , fm(x)− ym)

with (1.1) form a lattice Λ ⊆ Zn of covolume 1, and the box B(q) of points
η = (η1, . . . , ηn) with

|ηi| ≤ eqm (1 ≤ i ≤ l),
|ηl+j | ≤ e−lq (1 ≤ j ≤ m)

has volume 2n, so that by Minkowski’s first theorem on convex bodies, B(q)
contains a non-zero lattice point, i.e. a point of Λ.

Recently Diophantine approximation with weights has gained increased
attention (see [1, 3, 10]): in this more general setup we are given non-
negative numbers α1, . . . , αl, β1, . . . , βm, not all zero, with

(1.2) α1 + · · ·+ αl = β1 + · · ·+ βm.

The box B(q), more precisely B(α,β)(q) now, consisting of the points η
having

|ηi| ≤ eαiq (1 ≤ i ≤ l),
|ηl+j | ≤ e−βjq (1 ≤ j ≤ m)

again has volume 2n, hence contains a non-zero point of every lattice Λ of
covolume 1. In Minkowski’s terminology, the first minimum with respect to
Λ and B(q) is ≤ 1.

Let Λ be given and denote Minkowski’s successive minima with respect
to Λ and B(q) by λ1(q), . . . , λn(q). The parametric Geometry of Numbers
deals with these minima as functions of the parameter q ≥ 0. However it
is easier to work with their logarithms Li(q) = log λi(q) for 1 ≤ i ≤ n. A
system of functions L1, . . . , Ln arising from Λ and

(1.3) ν := (α1, . . . , αl,−β1, . . . ,−βm),

will be called a (Λ,ν)-system and the union of their graphs will be called
a (Λ,ν)-graph. The functions of a (Λ,ν)-system already behave well, but
not very well. For instance, by Minkowski’s second theorem,

− logn! ≤ L1(q) + · · ·+ Ln(q) ≤ 0,

but we wished that the sum was identically zero.
We therefore introduce ν-systems as n-tuples of functions P1(q), ..., Pn(q)

defined for q ≥ 0, which are continuous, satisfy P1 ≤ P2 ≤ · · · ≤ Pn and
P1(0) = · · · = Pn(0) = 0. Moreover, each Pi is piecewise linear, with only
finitely many linear pieces in any interval with positive end points, and
slopes among α1, . . . , αl,−β1, . . . ,−βm. Moreover in every interval where
each Pi is linear, the slopes of P1, P2, . . . , Pn will be the above numbers in
some order. Hence P1(q) + · · ·+ Pn(q) = 0 by (1.2).
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A ν-system will be called proper if for each q > 0 and i with 1 ≤ i ≤ n
having Pi(q) < Pi+1(q), the sum of the slopes of P1 . . . , Pi to the left of q
does not exceed the sum of the slopes of P1, . . . , Pi to the right of q.

The union of the graphs of P1, . . . , Pn will be called a ν-graph. A ν-
system and its graph is regular if the graph is invariant under some map
η 7→ τη with τ > 1.

D. Roy in important work [6] showed that in the classical case (i.e. when
ν = (m,−1, . . . ,−1︸ ︷︷ ︸

m

)), given any (Λ,ν)-system there is a proper ν-system

having

(1.4) |Li(q)− Pi(q)|, (1 ≤ i ≤ n)

bounded independently of q. Conversely, given a proper ν-system, there
is a lattice Λ such that (1.4) is bounded. This result allows to have op-
timal transference inequalities between various exponents of Diophantine
approximation. Further progress was made by A. Das, L. Fishman, D. Sim-
mons and M. Urbański in [2] by showing that the above relations between
(Λ,ν)-systems and proper ν-systems hold for the classical case in general.
They used this to provide a variational principle that allows to estimate the
Hausdorff dimension of many types of sets determined by Diophantine ap-
proximation. Finally, Conjecture 2.3 of [8] says that the above relationship
between (Λ,ν)-systems and proper ν-systems holds for weighted Diophan-
tine approximation as well. Whenever this holds, many questions of Dio-
phantine approximation, which play in Rn, can be reduced to questions on
graphs in R2. An application regarding Diophantine approximation spectra
may be found in [7].

In studying ν-graphs it will be important to know many examples. In [9]
a regular graph for the classical case had been presented which provides
an example for a system where the optimal bound for the ratio between
ordinary and uniform exponents of Diophantine approximation is attained
as was established in [4, 5]. Our goal here will be to construct regular ν-
graphs in the general, i.e. the weighted, case.

Acknowledgments. The authors want to thank the referee for the careful
study of the manuscript and their useful comments.

2. Construction of regular graphs

Set k = lcm(l,m). Given ρ = (ρ1, . . . , ρk) with each ρi > 1, we will
build a regular graph G = G(ν,ρ) depending on the parameters ν and
ρ. Our construction will depend on the ordering within {α1, . . . , αl} and
{β1, . . . , βm}.
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Set σ0 = 1, σr = ρ1 . . . ρr for 1 ≤ r ≤ k and τ = σk = ρ1 . . . ρk. For every
t ∈ Z,

τ t = τ tσ0 < τ tσ1 < · · · < τ tσk = τ t+1.

The points at,bt ∈ R2 with t ∈ Z of [8] will be replaced by k-tuples
(at0,at1, . . . ,atk−1) and (bt0,bt1, . . . ,btk−1), where for 0 ≤ r < k

(2.1) atr = τ tσr(1, ur) and btr = τ tσr(1, vr)
for some numbers u0, u1, . . . , uk−1 and v0, v1, . . . , vk−1. Observe that for
given r, the points atr will lie on a line Lr of slope ur emanating from the
origin, and the points btr on a lineMr of slope vr.

When sk ≤ r < (s + 1)k for some s ∈ Z, so that r = sk + h with
0 ≤ h < r, set ρr = ρh, ur = uh, vr = vh and σr = τ sσh. For instance, when
k ≤ r < 2k, we have σr = τσh = ρ1ρ2 . . . ρkρ1ρ2 . . . ρh. We again define
atr,btr by (2.1) and note that for r = sk + h we obtain
(2.2) atr = τ sath, btr = τ sbth.

We write αr = αi if r ≡ i (mod l) with 1 ≤ i ≤ l and βr = βj if r ≡ j
(mod m) with 1 ≤ j ≤ m. Notice that r ≡ r′ (mod k) implies r ≡ r′

(mod l) and r ≡ r′ (mod m), so that we obtain the same pair i, j for r and
r′. Therefore when k < lm, we only need r in 0 ≤ r < k. Further denote
line segments with end points a,b by [a,b] and set for 0 ≤ r < k

Atr = [atr,btr+l], Btr = [btr,atr+m].

Theorem 2.1. Let G be the union of 0 and of all the line segments Atr,
Btr with 0 ≤ r < k and t ∈ Z. There are unique k-tuples of numbers
(u0, u1, . . . , uk−1) and (v0, v1, . . . , vk−1) such that each Atr has slope αr+1,
each Btr has slope −βr+1 and G = G(ν,ρ) is a regular ν-graph.

Before we proceed with the proof of Theorem 2.1 we indicate the principle
of construction of such a graph in the case (l,m) = (3, 2) in the interval
[τ t, τ t+1] for some t ∈ Z.

Proof. Let us first assume l,m to be relatively prime. Going from atr with
0 ≤ r < k to btr+l via Atr, and then via Btr+l to atr+n (look at the bold line
segments for r = 0 in the picture), denoted by

atr
At

r−→ btr+l
Bt

r+l−→ atr+n,
(note that r + l, r + n may exceed k − 1) the ordinate will change by

(2.3) αr+1(τ tσr+l − τ tσr)− βr+l+1(τ tσr+n − τ tσr+l)
= τ tσr(αr+1(ψlr − 1)− βr+l+1(ψnr − ψlr)),

where ψsr = ρr+1ρr+2 . . . ρr+s (the superscript indicates the number of
factors).
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(note that r + l, r + n may exceed k − 1) the ordinate will change by
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tσr+l−τ tσr)− βr+l+1(τ

tσr+n − τ tσr+l) = τ tσr(αr+1(ψ
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n
r − ψl

r)),

where ψs
r = ρr+1ρr+2 · · · ρr+s (the superscript indicates the number of factors).

On the other hand, the ordinate at atr+n − atr is

τ tσr+nur+n − τ tσrur = τ tσr(ψ
n
r ur+n − ur),

so that comparison with (2.3) and division by τ tσr yields

(2.4) ur − χrur+n = −Ur,

with χr := ψn
r and

(2.5) Ur = αr+1(ψ
l
r − 1)− βr+l+1(ψ

n
r − ψl

r).

These equations hold for 0 ≤ r < k, and yield k linear relations for u0, . . . , uk−1.
In a similar way, considering the path

bt
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B
t
r−→ atr+m

A
t
r+m−→ bt

r+n,

we obtain

(2.6) vr − χrvr+n = −Vr,

4

Figure 1.

On the other hand, the ordinate at atr+n − atr is

τ tσr+nur+n − τ tσrur = τ tσr(ψnr ur+n − ur),

so that comparison with (2.3) and division by τ tσr yields

(2.4) ur − χrur+n = −Ur,

with χr := ψnr and

(2.5) Ur = αr+1(ψlr − 1)− βr+l+1(ψnr − ψlr).

These equations hold for 0 ≤ r < k, and yield k linear relations for
u0, . . . , uk−1.

In a similar way, considering the path

btr
Bt

r−→ atr+m
At

r+m−→ btr+n,

we obtain

(2.6) vr − χrvr+n = −Vr,

with

(2.7) Vr = −βr+1(ψmr − 1) + αr+m+1(ψnr − ψmr ).
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As l,m are relatively prime by assumption, so are n, k. By (2.4) for r,
r + n, r + 2n we have

ur = −Ur + χrur+n

= −Ur − χrUr+n + χrχr+nur+2n

= −Ur − χrUr+n − χrχr+nUr+2n + χrχr+nχr+2nur+3n

= · · · .
Continuing in this way we obtain after k steps:

(2.8) ur = −Ur − χrUr+n − · · · − (χrχr+n . . . χr+(k−2)n)Ur+(k−1)n

+ (χrχr+n . . . χr+(k−1)n)ur+kn.

But ur+kn = ur, and its coefficient in (2.8) is
χrχr+n . . . χr+(k−1)n = χ0χ1 . . . χk−1 = τn

since our subscripts are residue classes modulo k, and since n, k are coprime,
r, r+n, . . . , r+ (k− 1)n runs through all these classes, and in view of χh =
ρh+1 . . . ρh+n, each ρi occurs in n of the numbers χ0, . . . , χk−1. Therefore
(2.8) is

(2.9) (τn − 1)ur = Ur +
k−1∑
j=1

(χrχr+n . . . χr+(j−1)n)Ur+jn.

The analogous equation for vr, with U0, U1, . . . , Uk−1 replaced by V0, V1,
. . . , Vk−1 yields

(2.9′) (τn − 1)vr = Vr +
k−1∑
j=1

(χrχr+n . . . χr+(j−1)n)Vr+jn.

In combination with (2.5) and (2.7) this gives

ur = 1
τn − 1

k−1∑
j=0

(
αr+1+jn(ψjn+l

r − ψjnr )(2.10)

− βr+1+l+jn(ψ(j+1)n
r − ψjn+l

r )
)
,

vr = 1
τn − 1

k−1∑
j=0

(
αr+1+m+jn(ψ(j+1)n

r(2.10′)

− ψjn+m
r )− βr+1+jn(ψjn+m

r − ψjnr )
)

and the ui, vi are uniquely determined by ρ and the ordered set of weights.
Note that in every interval [τ tσi

, τ tσi+1 ] the graph G determined by the
values of ui resp. vi, 0 ≤ i < k, given by (2.10) resp. (2.10′) consists of n line
segments having slopes α1, . . . , αl,−β1, . . . ,−βm in some order. Thus G will
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be the union of the graphs of n functions P1 ≤ P2 ≤ · · · ≤ Pn, where in each
interval [τ tσi

, τ tσi+1 ] the slopes will be α1, . . . , αl and −β1, . . . ,−βm in some
order. Since Atr and Btr+l are joined at btr+l for 0 ≤ r < k, all the functions
P1, . . . , Pn are continuous. Finally, G is regular by (2.2), concluding the
proof of Theorem 2.1 in the case (l,m) = 1.

In the next section, we will still assume k, l to be relatively prime and
complete the proof in Section 4 in the case (l,m) > 1.

3. On proper graphs

Our regular graph G(ν,ρ) is proper if vr ≥ ur for 0 ≤ r < k, as it is the
case for the graph depicted in Figure 1. Moreover we have

Proposition 3.1. With
Ω := max

i,j
{αi + βj}; ω := min

i,j
{αi + βj} for 1 ≤ i ≤ l and 1 ≤ j ≤ m.

and assuming that
(3.1) ω > 0.
we have: G(ν,ρ) is proper provided

(3.2) ψnr + 1
ψlr + ψmr

≥ Ω
ω

for any r ∈ {0, . . . , k − 1}.

Proof: By (2.5), (2.7) vr ≥ ur for 0 ≤ r < k certainly holds if

(3.3) αr+m+1(ψnr −ψmr )−αr+1(ψlr−1)+βr+l+1(ψnr −ψlr)−βr+1(ψmr −1) ≥ 0
for each r. Now by definition of ω we have

(αr+m+1 + βr+l+1)ψnr + (αr+1 + βr+1) ≥ ω(ψnr + 1)
and likewise, by definition of Ω:

(αr+m+1 + βr+1)ψmr + (αr+1 + βr+l+1)ψlr ≤ Ω(ψmr + ψlr).
Thus (3.3) holds for each r provided

ω(ψnr + 1) ≥ Ω(ψlr + ψmr ) for r = 0, . . . , k − 1.
In view of (3.1) this yields exactly (3.2) as claimed.

Note that from (3.3) it easily follows that for given ν = (α,β), hence
given Ω/ω, the graph G(ν,ρ) is certainly proper if each ρi is sufficiently
large. In the case when m = 1, β1 = l we have ψnr = τρr+1, ψmr = ρr+1,
ψlr = τ and αr+m+1 = αr+2, so that (3.3) becomes

αr+2(τ − 1)ρr+1 − αr+1(τ − 1) + l(τ − 1)(ρr+1 − 1) ≥ 0,
which is the same as

(αr+2 + l)ρr+1 − (αr+1 + l) ≥ 0.
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• ρi =
3
√
2 for i = 1, . . . , 6, hence τ = 4,

• α = (1/2, 1, 3/2), β = (2, 1).

We restrict the picture to the part with q in the interval [τ0, τ1] = [1, 4]. It is plain to see that this
graph is proper as any b0

r = σr(1, vr) lies above the corresponding a0r = σr(1, ur), so that vr > ur.

Figure 2
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4 The case when l, m are not coprime

We now finally assume k, l to have greatest common factor d > 1, so that k = lm/d. We set
n′ = n/d, k′ = k/d = lm/d2 and note that n′, k′ are coprime. Given a residue class f modulo d,
the line segments

(4.1) At
r,Bt

r with r ≡ f( mod d)

have endpoints ats,b
t
w with s ≡ w ≡ f( mod d) and slopes αt

r+1,−βt
r+1. The union of 0 and the

line segments (4.1) is a graph Gf , and G is the union of G1, . . . ,Gd. With νf ∈ R
n′

having the

7

Figure 2.

Replacing r by r − 1, a simple sufficient condition for being proper is

ρr ≥
αr + l

αr+1 + l
for r = 1, . . . , l.

We conclude this section by showing in Figure 2 the example of our
regular, proper graph G(α,β,ρ) obtained for the parameters

• l = 3, m = 2,
• ρi = 3√2 for i = 1, . . . , 6, hence τ = 4,
• α = (1/2, 1, 3/2), β = (2, 1).

We restrict the picture to the part with q in the interval [τ0, τ1] = [1, 4]. It
is plain to see that this graph is proper as any b0

r = σr(1, vr) lies above the
corresponding a0

r = σr(1, ur), so that vr > ur.
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4. The case when l,m are not coprime

We now finally assume k, l to have greatest common factor d > 1, so
that k = lm/d. We set n′ = n/d, k′ = k/d = lm/d2 and note that n′, k′ are
coprime. Given a residue class f modulo d, the line segments

(4.1) Atr,Btr with r ≡ f (mod d)

have endpoints ats,btw with s ≡ w ≡ f (mod d) and slopes αtr+1,−βtr+1.
The union of 0 and the line segments (4.1) is a graph Gf , and G is the union
of G1, . . . ,Gd. With νf ∈ Rn′ having the components αi,−βj with i ≡ j ≡ f
(mod d), the graph Gf is a νf -graph, i.e. it is like a ν-graph, except that the
associated functions P f1 , . . . , P

f
n′ will in every interval where each of them

is linear, have the components of νf as slopes in some order. Thus when γf
is the sum of these components, we will have P f1 (q) + · · ·+ P fn′(q) = γfq.

Now let us go back to (2.4). Note that when h runs through the residue
classes modulo k′, then f + dh runs through the residue classes modulo
k that are congruent to f (mod d). Furthermore, ufh := uf+dh will run
through the slopes ur belonging to Gf . With Ufh := Uf+hd, χfh := χf+hd,
(2.4) yields

(4.2) ufh − χ
f
hu

f
h+n′ = −Ufh .

In analogy to (2.8) we have

(4.3) ufh = −Ufh − χ
f
hU

f
h+n′ − χfhχ

f
h+n′U

f
h+2n′ − . . .

− (χfhχ
f
h+n′ . . . χ

f
h+(k′−2)n′)Ufh+(k′−1)n′

+ (χfhχ
f
h+n′ . . . χ

f
h+(k′−1)n′)ufh+k′n′

with subscripts modulo k′. We have k′n′ ≡ 0 (mod k)′ so that ufh+k′n′ = ufh,
with coefficient χfhχ

f
h+n′ . . . χ

f
h+(k′−1)n′ = χfhχ

f
h+1 . . . χ

f
h+(k′−1), since with

n′, k′ coprime, 0, n′, . . . , (k′−1)n′ runs through all the residue classes mod-
ulo k′. Each ρi is a factor of n′ of the numbers χf0 , . . . , χ

f
k′−1 so that this

coefficient is τn′ . Therefore (4.3) gives

(4.4) (τn′ − 1)ufh = Ufh +
k′−1∑
j=1

(χfhχ
f
h+n′ . . . χ

f
h+(j−1)n′)Ufh+jn′ .

An analogous relation holds for vfh = vf+dh.
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