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Degree bounds for projective division fields
associated to elliptic modules with a trivial

endomorphism ring

par Alina Carmen COJOCARU et Nathan JONES

Résumé. Soient k un corps global, A un anneau de Dedekind avec Quot(A) =
k et K un corps de type fini. Pour les courbes elliptiques et les modules de
Drinfeld M définis sur K et ayant un anneau d’endomorphismes trivial (où
k = Q et A = Z dans le premier cas et k est un corps de fonctions global et
A son anneau des fonctions régulières en dehors d’un idéal premier fixé dans
le second cas), nous nous intéressons au sous-corps engendré par les points
de a-torsion associé à un idéal non nul a � A et à son sous-corps maximal
fixé par les automorphismes scalaires. En utilisant une approche unifiée, nous
prouvons les meilleures estimations possibles pour le degré de ce dernier corps
sur K en termes de la norme |a|.

Abstract. Let k be a global field, let A be a Dedekind domain with
Quot(A) = k, and let K be a finitely generated field. Using a unified ap-
proach for both elliptic curves and Drinfeld modules M that are defined over
K and that have a trivial endomorphism ring, with k = Q, A = Z in the
former case and with k a global function field, A its ring of functions regular
away from a fixed prime in the latter case, we prove, for any nonzero ideal
a � A, best possible estimates in the norm |a| for the degree over K of the
subfield of the a-division field of M fixed by the scalars.

1. Introduction

In the theory of elliptic modules (elliptic curves and Drinfeld modules)
division fields play a fundamental role; their algebraic properties (e.g.,
ramification, degree, and Galois group structure) are intimately related
to properties of Galois representations and are essential to global and lo-
cal questions about elliptic modules themselves. Among the subfields of
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the division fields of an elliptic module, those fixed by the scalars are of
special significance. For example, as highlighted in [1, Chapter 5] and [5,
Section 3], in the case of an elliptic curve E defined over Q and a posi-
tive integer a, the subfield Ja of the a-division field Q(E[a]) fixed by the
scalars of Gal(Q(E[a]/Q)) ≤ GL2(Z/aZ) is closely related to the modu-
lar curve X0(a) which parametrizes cyclic isogenies of degree a between
elliptic curves; indeed, Ja may be interpreted as the splitting field of the
modular polynomial Φa(X, j(E)) (see [16, Section 69] and [9, Section 11.C]
for the properties of the modular polynomials Φa(X,Y )). The arithmetic
properties of the family of fields (Ja)a≥1 are closely related to properties
of the reductions E(mod p) of E modulo primes p, including the growth
of the order of the Tate–Shafarevich group of the curve E(mod p) when
viewed as constant over its own function field (see [5]) and the growth of
the absolute discriminant of the endomorphism ring of the curve E(mod p)
when viewed over the finite field Fp (see [6]). An essential ingredient when
deriving properties about E(mod p) from the fields Ja is the growth of the
degrees [Ja : Q]. The goal of this article is to prove best possible estimates
in a for the degrees of such fields in the unified setting of elliptic curves and
Drinfeld modules with a trivial endomorphism ring.

To state our main result, we proceed as in [2, pp. 1–2] and fix: k a global
field, A a Dedekind domain with Quot(A) = k, K a finitely generated field
(i.e. K is finitely generated over its prime field), and M a (GK , A)-module
of rank r ≥ 2, where GK = Gal(Ksep/K) denotes the absolute Galois
group of K. Specifically, by definition, a (GK , A)-module of rank r ≥ 2
is an A-module M endowed with a continuous GK-action that commutes
with the A-action and having the property that, for any ideal 0 6= a � A,
the a-division submoduleM [a] := {x ∈M : αx = 0 ∀ α ∈ a} has A-module
structure M [a] 'A (A/a)r.

The (GK , A)-module structure on M gives rise to a compatible system
of Galois representations ρa : GK → GLr(A/a) and to a continuous repre-
sentation ρ : GK → GLr(Â), where Â := lim←−a�A

A/a. Associated to these
representations we have the a-division fields Ka := (Ksep)Ker ρa , for which
we distinguish the subfields Ja fixed by the scalars {λIr : λ ∈ (A/a)×} ∩
Gal(Ka/K)} (with Gal(Ka/K) viewed as a subgroup of GLr(A/a)).

Denoting by ρ̂a : GK → PGLr(A/a) the composition of the representa-
tion ρa with the canonical projection GLr(A/a)→ PGLr(A/a), we observe
that Ja = (Ksep)Ker ρ̂a and we deduce that

[Ja : K] ≤ |PGLr(A/a)| .

Our main result provides a lower bound for [Ja : K] of the same order of
growth as |PGLr(A/a)|, as follows:
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Theorem 1.1. We keep the above setting and assume that

(1.1)
∣∣GLr(Â) : ρ(GK)

∣∣ <∞.
Then, for any ideal 0 6= a�A,

(1.2) |a|r2−1 �M,K [Ja : K] ≤ |a|r2−1,

where |a| := |A/a|.

By specializing the above general setting to elliptic curves and to Drinfeld
modules, we obtain:

Corollary 1.2. Let K be a finitely generated field with charK = 0 and
let E/K be an elliptic curve over K with EndK(E) ' Z. Then, for any
integer a ≥ 1, the degree [Ja : K] of the subfield Ja of the a-division field
Ka := K(E[a]) fixed by the scalars of Gal(K(E[a])/K) satisfies

(1.3) a3 �E,K [Ja : K] ≤ a3.

Corollary 1.3. Let k be a global function field, let ∞ be a fixed place of k,
let A be the ring of elements of k regular away from ∞, let K be a finitely
generated field which is also an A-field with A-charK = 0 (i.e. k ⊆ K),
and let ψ : A → K{τ} be a (generic) Drinfeld A-module over K of rank
r ≥ 2 with EndK(ψ) ' A. Then, for any ideal 0 6= a�A, the degree [Ja : K]
of the subfield Ja of the a-division field Ka := K(ψ[a]) fixed by the scalars
of Gal(K(ψ[a])/K) satisfies

(1.4) |a|r2−1 �ψ,K [Ja : K] ≤ |a|r2−1.

The proof of Theorem 1.1 relies on consequences of assumption (1.1), on
applications of Goursat’s Lemma, as well as on vertical growth estimates
for open subgroups of GLr. Specializing to elliptic curves and to Drinfeld
modules, assumption (1.1) is essentially Serre’s Open Image Theorem [15]
and, respectively, Pink–Rütsche’s Open Image Theorem [13]. Variations
of these open image theorems also hold for elliptic curves and Drinfeld
modules with nontrivial endomorphism rings. While these complementary
cases are treated unitarily in [2] when investigating the growth of torsion,
when investigating the growth of [Ja : K] they face particularities whose
treatment we relegate to future work.

We emphasize that the upper bound in Theorem 1.1 always holds and
does not necessitate assumption (1.1). In contrast, the lower bound in The-
orem 1.1 is intimately related to assumption (1.1). Indeed, one consequence
of (1.1) is that there exists an ideal a(M,K)�A, which (a priori) depends on
M and K and which has the property that, for any prime ideal l - a(M,K),
Gal(Jl/K) ' PGLr(A/l). Then, for such an ideal l, the lower bound in (1.2)
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follows immediately. The purpose of Theorem 1.1 is to prove similar lower
bounds for all ideals a�A.

The dependence of the lower bound in (1.2) on M (which also includes
dependence on r) and on K is an important topic related to the uniform
boundedness of the torsion of M ; while we do not address it in the present
paper, we refer the reader to [2] and [12] for related discussions and for
additional references.

The fields Ja play a prominent role in a multitude of problems, such
as in deriving non-trivial upper bounds for the number of non-isomorphic
Frobenius fields associated to an elliptic curve and, respectively, to a Drin-
feld module (see [3] and [4]); in investigating the discriminants of the en-
domorphism rings of the reduction of an elliptic curve and, respectively, of
a Drinfeld module (see [6] and [8]); and in proving non-abelian reciprocity
laws for primes and, respectively, for irreducible polynomials (see [7], [10],
and [11]). For such applications, an essential piece of information is the
growth of the degree [Ja : K] as a function of the norm |a|. For example,
Corollary 1.2 is a key ingredient in proving that, for any elliptic curve E/Q
with EndQ(E) ' Z, provided the Generalized Riemann Hypothesis holds
for the division fields of E, there exists a set of primes p of natural density
1 with the property that the absolute discriminant of the imaginary qua-
dratic order EndFp(E) is as close as possible to its natural upper bound;
see [6, Theorem 1]. Similarly, Corollary 1.3 is a key ingredient in proving
that, denoting by Fq the finite field with q elements and assuming that q is
odd, for any generic Drinfeld module ψ : Fq[T ] → Fq(T ){τ} of rank 2 and
with EndFq(T )(ψ) ' Fq[T ], there exists a set of prime ideals p � Fq[T ] of
Dirichlet density 1 with the property that the norm of the discriminant of
the imaginary quadratic order EndFp(ψ) is as close as possible to its natural
upper bound; see [8, Theorem 6]. We expect that Theorem 1.1 will be of
use to other arithmetic studies of elliptic modules.

Notation. In what follows, we use the standard �, �, and � notation:
given suitably defined real functions h1, h2, we say that h1 � h2 or h2 � h1
if h2 is positive valued and there exists a positive constant C such that
|h1(x)| ≤ Ch2(x) for all x in the domain of h1; we say that h1 � h2 if
h1, h2 are positive valued and h1 � h2 � h1; we say that h1 �D h2 or
h2 �D h1 if h1 � h2 and the implied �-constant C depends on priorly
given data D; similarly, we say that h1 �D h2 if the implied constant in
either one of the �-bounds h1 � h2 � h1 depends on priorly given data
D. We also use the standard divisibility notation for ideals in a Dedekind
domain. In particular, given two ideals a, b, we write a | b∞ if all the prime
ideal factors of a are among the prime ideal factors of b (with possibly
different exponents). Further notation will be introduced over the course of
the paper as needed.
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2. Goursat’s Lemma and variations
In this section we recall Goursat’s Lemma on fibered products of groups

(whose definition we also recall shortly) and detail the behavior of such
fibered products under intersection.

Lemma 2.1 (Goursat’s Lemma). Let G1, G2 be groups and for i ∈ {1, 2}
denote by πi : G1 × G2 → Gi the projection map onto the i-th factor. Let
G ≤ G1 × G2 be a subgroup and assume that π1(G) = G1, π2(G) = G2.
Then there exist a group Γ and a pair of surjective group homomorphisms
ψ1 : G1 → Γ, ψ2 : G2 → Γ such that

G = G1 ×ψ G2 := {(g1, g2) ∈ G1 ×G2 : ψ1(g1) = ψ2(g2)}.

Proof. See [14, Lemma 5.2.1]. �

We callG1×ψG2 the fibered product of G1 and G2 over ψ := (ψ1, ψ2). The
next lemma details what happens when we intersect such a fibered product
with a subgroup of the form H1 ×H2 defined by subgroups H1 ≤ G1 and
H2 ≤ G2.

It is clear that

(H1 ×H2) ∩ (G1 ×ψ G2)
= H1 ×ψ H2 := {(h1, h2) ∈ H1 ×H2 : ψ1(h1) = ψ2(h2)}.

However, this representation does not specify the restricted common quo-
tient inside Γ. In particular, it can be the case that the fibered product
H := H1 ×ψ H2 does not satisfy πi(H) = Hi for each i ∈ {1, 2}. The
following lemma clarifies this situation.

Lemma 2.2. Let G1, G2 be groups, let ψ1 : G1 → Γ, ψ2 : G2 → Γ
be surjective group homomorphisms onto a group Γ, and let G1 ×ψ G2 be
the associated fibered product. Furthermore, let H1 ≤ G1, H2 ≤ G2 be
subgroups. Define the subgroup

ΓH := ψ1(H1) ∩ ψ2(H2) ≤ Γ.
Then
(2.1) (H1 ×H2) ∩ (G1 ×ψ G2) =

(
H1 ∩ ψ−1

1 (ΓH)
)
×ψ

(
H2 ∩ ψ−1

2 (ΓH)
)

and the canonical projection maps
π1 : (H1 ∩ ψ−1

1 (ΓH))×ψ (H2 ∩ ψ−1
2 (ΓH)) −→ H1 ∩ ψ−1

1 (ΓH),
π2 : (H1 ∩ ψ−1

1 (ΓH))×ψ (H2 ∩ ψ−1
2 (ΓH)) −→ H2 ∩ ψ−1

2 (ΓH)
are surjective.

Proof. We first establish (2.1). Since the containment “⊇” is immediate, we
only need to establish “⊆.” Let (h1, h2) ∈ (H1 ×H2)∩(G1 ×ψ G2), i.e. h1 ∈
H1, h2 ∈ H2, and ψ1(h1) = ψ2(h2). From the definition of ΓH , it follows that
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ψ1(h1) = ψ2(h2) ∈ ΓH . Thus (h1, h2) ∈ (H1∩ψ−1
1 (ΓH))×ψ (H2∩ψ−1

2 (ΓH)),
establishing (2.1).

To see why the projection map
(2.2) π1 : H1 ∩ ψ−1

i (ΓH) −→ H1 ∩ ψ−1
1 (ΓH)

is surjective, fix h1 ∈ H1 ∩ ψ−1
1 (ΓH) and set γ := ψ1(h1) ∈ ΓH . By

the definition of ΓH , we find h2 ∈ H2 with ψ2(h2) = γ. Thus (h1, h2) ∈
(H1 ∩ ψ−1

1 (ΓH))×ψ (H2 ∩ ψ−1
2 (ΓH)) and π1(h1, h2) = h1, proving the sur-

jectivity of π1 in (2.2). The surjectivity of π2 is proved similarly. �

3. Proof of Theorem 1.1
In this section we prove Theorem 1.1. We will make use of the following

notation:
G := ρ(GK) ≤ GLr(Â);

for any ideal 0 6= a�A, we write
G(a) := ρa(GK) ≤ GLr(A/a);

for any subgroup H ≤ GLr(A/a), we write
ScalH := H ∩ {αIr : α ∈ (A/a)×}.

With this notation, we see that Ja = K(E[a])ScalG(a) .
To prove the theorem, let 0 6= a � A be a fixed arbitrary ideal. The

proof of the upper bound is an immediate consequence to the injection
Gal(Ja/K) ↪→ PGLr(A/a) defined by ρ̂a. Indeed, using that

|PGLr(A/a)| = 1
|(A/a)×| |GLr(A/a)| ,

|(A/a)×| = |a|
∏
p|a

(
1− 1
|p|

)
,

and

|GLr(A/a)| = |a|r2 ∏
p|a

p prime

(
1− 1
|p|

)(
1− 1
|p|2

)
. . .

(
1− 1
|p|r

)

(see [2, Lemma 2.3, p. 1244] for the latter), we obtain that

[Ja : K] ≤ |PGLr(A/a)| = |a|r2−1 ∏
p|a

p prime

(
1− 1
|p|2

)
. . .

(
1− 1
|p|r

)
≤ |a|r2−1.

The proof of the lower bound relies on several consequences to assump-
tion (1.1), as well as on applications of Goursat’s Lemma 2.1 and its vari-
ation Lemma 2.2, as detailed below.
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Thanks to (1.1), there exists an ideal m = mM,K �A such that

(3.1) G = π−1(G(m)),

where π : GLr(Â) → GLr(A/m) is the canonical projection. We take m
to be the smallest such ideal with respect to divisibility and we write its
unique prime ideal factorization as m =

∏
pvp(m)‖m pvp(m), where each expo-

nent satisfies vp(m) ≥ 1.
With the ideal m in mind, we write the arbitrary ideal a uniquely as

(3.2) a = a1a2,

where

a1 | m∞,(3.3)
gcd(a2,m) = 1.(3.4)

For future use, we record that

(3.5) gcd(a1, a2) = 1.

We also write the ideal a1 uniquely as

a1 = a1,1 a1,2,

where a1,1 =
∏

pep‖a1
ep>vp(m)

pep and a1,2 =
∏

pfp‖a1
fp≤vp(m)

pfp . Note that

gcd(a1,1, a1,2) = 1,(3.6)
a1,1 | m∞(3.7)

and

(3.8) a1,2 | m.

Under the isomorphism of the Chinese Remainder Theorem, we deduce
from (3.1) that

(3.9) G(a) ' G(a1)×GLr(A/a2)

and, consequently, that there exist group isomorphisms

ScalG(a) ' ScalG(a1)×ScalGLr(A/a2),(3.10)
G(a)/ ScalG(a) ' (G(a1)/ ScalG(a1))× PGLr(A/a2).(3.11)

Next, applying Lemma 2.1 to the groups G = G(a1), G1 = G(a1,1), and
G2 = G(a1,2), we deduce that there exist a group Γ and surjective group
homomorphisms ψ1 : G(a1,1) → Γ, ψ2 : G(a1,2) → Γ, which give rise to a
group isomorphism

(3.12) G(a1) ' G(a1,1)×ψ G(a1,2).



102 Alina Carmen Cojocaru, Nathan Jones

Furthermore, applying Lemma 2.2 to the subgroups H1 = ScalG(a1,1) and
H2 = ScalG(a1,2), we deduce that there exists a group isomorphism

(3.13)
(
ScalG(a1,1)×ScalG(a1,2)

)
∩
(
G(a1,1)×ψ G(a1,2)

)
'
(
ScalG(a1,1) ∩ψ−1

1 (ΓScal)
)
×ψ

(
ScalG(a1,2) ∩ψ−1

2 (ΓScal)
)
,

where
ΓScal := ψ1

(
ScalG(a1,1)

)
∩ ψ1

(
ScalG(a1,2)

)
≤ Γ.

From (3.11) we derive that

(3.14) [Ja : K] =
∣∣G(a)/ScalG(a)

∣∣ =
∣∣G(a1)/ ScalG(a1)

∣∣ · |PGLr(A/a2)| .

Then, using (3.12) and (3.13), we derive that∣∣G(a1)/ ScalG(a1)
∣∣

=
∣∣G(a1,1)×ψ G(a1,2)

∣∣∣∣(ScalG(a1,1)×ScalG(a1,2)
)
∩G(a1)

∣∣
=

∣∣G(a1,1)×ψ G(a1,2)
∣∣∣∣(ScalG(a1,1) ∩ψ−1

1 (ΓScal)
)
×ψ

(
ScalG(a1,2) ∩ψ−1

2 (ΓScal)
)∣∣

=
∣∣G(a1,1)

∣∣∣∣ScalG(a1,1) ∩ψ−1
1 (ΓScal)

∣∣ ·
∣∣ΓScal

∣∣
|Γ| ·

∣∣G(a1,2)
∣∣∣∣ScalG(a1,2) ∩ψ−1

2 (ΓScal)
∣∣

=
∣∣G(a1,1)

∣∣∣∣ScalG(a1,1) ∩ψ−1
1 (ΓScal)

∣∣ ·
∣∣ψ1
(
ScalG(a1,1)

)
∩ ψ2

(
ScalG(a1,2)

)∣∣
|Γ|(3.15)

·
∣∣G(a1,2)

∣∣∣∣ScalG(a1,2) ∩ψ−1
2 (ΓScal)

∣∣ .
Recalling (3.8), we deduce that the last two factors above are bounded,

from above and below, by constants depending on m, hence on M and K:

(3.16)
∣∣ψ1
(
ScalG(a1,1)

)
∩ψ2

(
ScalG(a1,2)

)∣∣
|Γ| ·

∣∣G(a1,2)
∣∣∣∣ScalG(a1,2) ∩ψ−1

2 (ΓScal)
∣∣ �M,K 1.

It remains to analyze the first factor in (3.15). For this, consider the
canonical projection

π1,1 : GLr(A/a1,1) −→ GLr(A/ gcd(a1,1,m))

and, upon recalling (3.1), observe that

(3.17) G(a1,1) = π−1
1,1(G(gcd(a1,1,m)))

and

(3.18) Kerπ1,1 ⊆ Kerψ1.
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Thus the subgroups G(a1,1) ≤ GLr(A/a1,1) and G(gcd(a1,1,m)) ≤
GLr(A/ gcd(a1,1,m)), together with the group Γ, fit into a commutative
diagram

G(a1,1)

ψ1
'' ''

π1,1 // // G(gcd(a1,1,m))
ρ
����

Γ
in which the vertical map ρ is some surjective group homomorphism
and the horizontal map π1,1|G(a1,1) is

(
|a1,1|

| gcd(a1,1,m)|

)r2

to 1. Furthermore,
the subgroups ψ−1

1 (ΓScal) ∩ ScalG(a1,1) ≤ ScalGLr(A/a1,1) ' (A/a1,1)× and
ρ−1(ΓScal) ∩ ScalG(gcd(a1,1,m)) ≤ ScalGLr(A/ gcd(a1,1,m)) ' (A/ gcd(a1,1,m))×,
together with the group ΓScal, fit into the commutative diagram

ψ−1
1 (ΓScal) ∩ ScalG(a1,1)

ψ1
++ ++

π1,1 // // ρ−1(ΓScal) ∩ ScalG(gcd(a1,1,m))

ρ
����

ΓScal

in which the horizontal map π1,1|ψ−1
1 (ΓScal)∩ScalG(a1,1)

is |a1,1|
| gcd(a1,1,m)| to 1. We

deduce that

(3.19) |G(a1,1)| =
(

|a1,1|
| gcd(a1,1,m)|

)r2

|G(gcd(a1,1,m))| �M,K |a1,1|r
2

and

(3.20)
∣∣ψ−1

1 (ΓScal) ∩ ScalG(a1,1)
∣∣

= |a1,1|
| gcd(a1,1,m)|

∣∣ρ−1(ΓScal) ∩ ScalG(gcd(a1,1,m))
∣∣ �M,K |a1,1|.

Putting together (3.14), (3.15), (3.16), (3.19), and (3.20), we obtain that

(3.21) [Ja : K] �K |a1,1|r
2−1 |PGLr(A/a2)| .

To conclude the proof, observe that

|PGLr(A/a2)| = |a2|r
2−1 ∏

p|a2
p prime

(
1− 1
|p|2

)
. . .

(
1− 1
|p|r

)

≥ |a2|r
2−1 ∏

p
p prime

(
1− 1
|p|2

)
. . .

(
1− 1
|p|r

)

�r,K |a2|r
2−1,
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which, combined with (3.21), (3.2) and (3.8), gives

[Ja : K] �K
|a1|r

2−1

|a1,2|r2−1 |PGLr(A/a2)| �r,K
|a1a2|r

2−1

|a1,2|r2−1 �M,K |a|r
2−1.

4. Proof of Corollaries 1.2 and 1.3
First, consider the setting of Corollary 1.2: K is a finitely generated field

with charK = 0 and E/K is an elliptic curve over K with EndK(E) ' Z.
This is the specialization of the setting of Theorem 1.1 to k = Q, A = Z,
K as above, and M = E(K), as we now explain.

We recall that an elliptic curve E/K is a smooth, projective curve over
K, of genus 1, and with a given K-rational point that we call O. From the
theory of elliptic curves, we know that the set E(K) of K-rational points on
E has a Z-module structure and is endowed with a continuous GK-action
that commutes with the Z-action. We also know that, for any non-zero
integer a, the set of a-division points on E, E[a] := {P ∈ E(K) : aP = O},
is a Z-module satisfying the Z-module isomorphism E[a] 'Z (Z/aZ)2. Thus,
the elliptic curve E/K gives rise to a (GK ,Z)-module E(K) of rank 2,
in the sense of Breuer’s definition given in [2, pp. 1–2]. In this setting,
assumption (1.1) of Theorem 1.1 holds thanks to an extension of Serre’s
Open Image Theorem for non-CM elliptic curves over number fields [15,
Théorème 3, p. 299] to non-CM elliptic curves over finitely generated fields
of characteristic zero, as explained in [2, Theorem 3.2, p. 1248]. Corollary 1.2
follows.

Next, consider the setting of Corollary 1.3: k is a global function field with
field of constants Fq, ∞ is a fixed place of k, A is the ring of elements of k
regular away from∞, K is a finitely generated A-field with charK = char k
and A-charK = 0, and ψ : A → K{τ} is a (generic) Drinfeld A-module
over K of rank r ≥ 2 with EndK(ψ) ' A. This is the specialization of the
setting of Theorem 1.1 to k, A, K as above, and to M = ψ(K), as we now
explain.

We recall that an A-field is a pair (K, δ), where K is a field that contains
Fq and δ : A→ K is an Fq-algebra homomorphism. The kernel of δ is called
the A-characteristic of K; it is either (0), in which case we say that K has
generic A-characteristic and write that A-charK = 0, or is a non-zero prime
ideal p of A, in which case we say that K has finite A-characteristic and
write that A-charK = p. Thus, in our setting, K is a field that contains
A. We recall that K{τ} denotes the skew-symmetric polynomial ring in
τ over K, that is, K{τ} :=

{∑
0≤i≤n ciτ

i : n ≥ 0, c0, . . . , cn ∈ K
}
, with

the multiplication rule τc = cqτ for all c ∈ K. We recall that a Drinfeld
A-module over K of rank r ≥ 2 is an Fq-algebra homomorphism ψ : A →
K{τ}, a 7→ ψa, where =ψ 6⊆ K and the differentiation map D : K{τ} → K,
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D
(∑

0≤i≤n ciτ
i
)

= c0, satisfies D(ψa) = δ(a) for all a ∈ A. The rank of ψ is
the unique positive integer r for which degτ (ψa) = r deg a for all a ∈ A.

For our given generic DrinfeldA-module overK of rank r, ψ : A→ K{τ},
the field K acquires an A-module structure defined by ψ, which we denote
by ψ(K). From the theory of Drinfeld modules, we know that GK acts
continuously on ψ(K) and that this action commutes with the A-action.
Furthermore, we know that for any non-zero ideal 0 6= a � A, the set of
a-division elements on ψ(K), ψ[a] := {λ ∈ K : ψa(λ) = 0 ∀ a ∈ a}, is
an A-module satisfying the A-module isomorphism ψ[a] 'A (A/a)r. Thus,
the A-Drinfeld module ψ gives rise to the (GK , A)-module ψ(K) of rank
r, in the sense of Breuer’s definition given in [2, pp. 1–2]. In this setting,
assumption (1.1) of Theorem 1.1 holds thanks to Pink–Rütsche’s Open
Image Theorem for Drinfeld modules [13, Theorem 0.1, p. 883]; see also [2,
Section 3.1, p. 1247] for a related application of this theorem in a setting
like ours. Corollary 1.3 follows.
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