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Ramanujan–Bernoulli numbers as moments of
Racah polynomials

par Frédéric CHAPOTON

Résumé. Il est connu que les nombres de Bernoulli sont les moments d’une
famille de polynômes orthogonaux. On obtient des énoncés semblables pour
une autre suite de nombres rationnels, qui ont d’autres similarités avec les
nombres de Bernoulli.

Abstract. The classical sequence of Bernoulli numbers is known to be the
sequence of moments of a family of orthogonal polynomials. The same state-
ment is obtained for another sequence of rational numbers, which is similar
in many ways to the Bernoulli numbers.

Introduction
Let us consider the following sequence of rational numbers

(R+
n )n≥0 = 1, 1

3 ,
1
30 ,−

1
105 ,

1
210 ,−

1
231 ,

191
30030 ,

− 29
2145 ,

2833
72930 ,−

140051
969969 , . . .

and the almost identical companion sequence

(R−n )n≥0 = 1,−1
6 ,

1
30 ,−

1
105 ,

1
210 ,−

1
231 ,

191
30030 ,

− 29
2145 ,

2833
72930 ,−

140051
969969 , . . .

that differs only by the second term. These sequences are very close to the
classical sequence of Bernoulli numbers, but not so well known.

The sequence R− seems to have first appeared, in a slightly implicit
way and up to an easy power of 2, in an article of Ludwig Seidel from
1877 [9], as the main diagonal of the difference table of the Bernoulli num-
bers. This diagonal is highlighted using a bold font in the table given there
on page 181. Seidel proves that the two diagonals below and above the main
diagonal in the same table are essentially given by the same sequence, up
to multiplication by 2.
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Later, the first terms of the sequence R− appeared explicitly in one
of Srinivasa Ramanujan’s notebooks (written between 1903 and 1914), as
giving, up to a simple factor, the first coefficients in an unusual asymp-
totic expansion for the harmonic numbers into powers of the inverse of the
triangular numbers

(n+1
2
)
. This is displayed in Bruce Berndt’s edition of

Ramanujan’s notebooks as the number (9) of [1, Ch. 38]). It can also be
noted that the first term of this asymptotic expansion of Ramanujan was
obtained by Ernesto Cesàro in 1885 in [2]. The first complete proof that the
sequence R− describes this full asymptotic expansion was given by Mark
Villarino in [11], where an historical account can be found.

The sequence R− has been considered again in 2005 by Kwang-Wu
Chen [7], from a point of view close to that of Seidel. He obtained a func-
tional equation and a continued fraction for their generating series. We will
be more precise about his results later in Section 2.

The sequence R+ has recently surfaced in a very different algebraic con-
text [3, 4] related to the notion of pre-Lie algebra. There is a complete
algebraic theory of tree-indexed series, very similar to usual power series
in one variable, but where monomials are indexed by finite rooted trees.
These tree-indexed series can be multiplied (in a non-associative way) but
also composed (in an associative way). One can therefore consider the group
of tree-indexed series that are invertible for the composition. This group
contains a special element A with rational coefficients, which is a kind of
tree-exponential and has very simple coefficients. Its inverse Ω has more
subtle and interesting coefficients, among which the Bernoulli numbers Bn

for corollas and the numbers R+
n for another sequence of rooted trees.

After these works on tree-indexed series, it has been understood in [5]
that the sequence R+ also appears in the values at negative integers of some
kind of non-standard L-function. More details will be given in Section 3.

The main aim of the present article, apart from advertising the sequences
R+ and R−, is to describe a new relationship between these sequences
and the moments of some classical families of hypergeometric orthogonal
polynomials, namely Racah polynomials (in some extended sense). This
relationship in particular implies nice corollaries about continued fractions
and Hankel determinants, by the general theory of orthogonal polynomials.
We will not say more about this, because the exact statements can be easily
reconstructed.

This is very similar to the known relationship between the Bernoulli
numbers and another family of hypergeometric orthogonal polynomials,
namely Hahn polynomials. This is therefore still another way in which the
sequence R+ is comparable with the Bernoulli numbers.

One word about terminology: there does not seem to be any accepted
name for the sequences R− and R+. The name “median Bernoulli numbers”
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is used for the diagonal of the difference table of Bernoulli numbers, which
differs from R− by powers of 2. We propose that the name of “Ramanujan–
Bernoulli numbers” may be suitable for the sequence R− itself.

Let us end this introduction by some open questions.
First, it seems that the sequence R− alternates in sign. To the best of

our knowledge, this is not yet proved. It is also expected that the associated
non-standard L-function considered in Section 3 has a simple zero between
consecutive negative integers.

There may exist q-analogues for some of the results of this article, in
the spirit of the continued fractions for the q-Bernoulli numbers of Carlitz
studied in [6], but they have so far remained elusive.

One can also wonder, in a very wild speculation, if there is, for the
sequences R+ or R−, something like the relationship between Bernoulli
numbers and the algebraic K-theory of the ring of integers.

1. Definitions
1.1. Sequences R− and R+. Let us now give the formal definition of
R− and R+.

Let us first introduce the classical Bernoulli numbers Bn, defined by

(1.1) t

et − 1 =
∑
n≥0

Bn
tn

n! .

Define a linear form Ψ on the vector space Q[x] of polynomials in one
variable x with rational coefficients, by
(1.2) Ψ(xn) = Bn,

for all n ≥ 0.
The sequence R+ is defined by

(1.3) R+
n = Ψ

((
x+ 2

2

)n)
,

and the companion sequence R− by

(1.4) R−n = Ψ
((

x+ 1
2

)n)
,

for all n ≥ 0. For example,

R+
6 = 191

30030 = 1− 9
2 + 49

8 −
157
32 + 8989

2688 −
157
128 + 245

1408 −
691

174720 .

and
R−6 = 191

30030 = 1
2688 −

1
128 + 25

1408 −
691

174720 .

The fact that R+
n and R−n are the same except when n = 1 follows from

the next lemma.
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Lemma 1.1. For every n 6= 1, Ψ(xn(x+ 1)n) = Ψ((x+ 1)n(x+ 2)n).

Proof. The case n = 0 is trivial, so that one can assume n ≥ 2. Let us
compute the difference

((x+ 1)(x+ 2))n − (x(x+ 1))n = 2(x+ 1)n

 n∑
k=0

k≡1(2)

(
n

k

)
(x+ 1)n−k

 .
This is a linear combination of odd powers of (x+ 1), excluding x+ 1. The
image by Ψ therefore vanishes, because the involved Bernoulli numbers are
zero. �

1.2. Racah’s orthogonal polynomials. The orthogonal polynomials of
Racah are defined by (see [8, §1.2]):

(1.5) Rn(λ(x) ; α, β, γ, δ) = 4F3

(−n, n+α+β+ 1,−x, x+ γ+ δ+ 1
α+ 1, β+ δ+ 1, γ+ 1 ; 1

)
,

where λ(x) = x(x+ γ + δ + 1) and using the standard notation for hyper-
geometric functions. The parameters α, β, γ and δ will remain implicit in
all the notations.

A word of warning is required here. Racah polynomials are usually con-
sidered under the additional diophantine condition that
(1.6) α+ 1 = −N or β + δ + 1 = −N or γ + 1 = −N
for some integer N ≥ 0. Under this condition, the polynomials Rn are
defined only for n = 0, . . . , N and orthogonal with respect to a discrete
finite measure. In this article, we will only consider parameters where the
condition (1.6) does not hold. In this case, the polynomials Rn can be
defined for every n ≥ 0, by the same two-term recurrence formula. One
can therefore use this recurrence to define the linear form on the space
of polynomials that plays the rôle of the measure. The fact that these
polynomials are orthogonal under this linear form follows from the classical
Favard’s theorem, as stated for example in [10, Ch. 1, Th. 9]. Extending
the usual meaning, one will still call them Racah polynomials.

Using the usual Pochhammer symbol (x)k = x(x+ 1) · · · (x+ k− 1), the
hypergeometric series above is given explicitly by the finite sum

(1.7)
n∑

k=0

(−n)k(n+ α+ β + 1)k(−x)k(x+ γ + δ + 1)k

(α+ 1)k(β + δ + 1)k(γ + 1)kk! .

The polynomials Rn are not monic in general. Setting

(1.8) Rn(x) = (n+ α+ β + 1)n

(α+ 1)n(β + δ + 1)n(γ + 1)n
pn(x),

one obtains the corresponding family of monic orthogonal polynomials.
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As explained above, by the general theory of orthogonal polynomials
and in particular by Favard’s lemma, there exists a unique linear form Λ
on the vector space of polynomials in x such that Λ(1) = 1 and Λ(pn) = 0
for n > 0. Then the moments of the family of orthogonal polynomials are
given by Λ(xn) for n ≥ 0.

Note that the linear form Λ is also characterized by Λ(1) = 1 and
Λ(Rn) = 0 for n > 0. Hence there is no need to consider the monic or-
thogonal polynomials.

2. Main theorems
In this section, we will state five similar theorems, saying that some

sequences are the sequences of moments of some specific families of Racah
polynomials.

Theorem 2.1. The numbers (2nR−n )n≥0 are the moments of the orthogonal
polynomials Rn of parameters (α, β, γ, δ) = (0,−1/2, 0, 0).

Proof. We want to prove that

µn = Λ(xn) = Ψ(xn(x+ 1)n) = 2nR−n ,

for all n ≥ 0. By the characterisation of the linear form Λ, one just needs
to check that Ψ(Rn(x(x+1)) does vanish when n > 0 and takes the value 1
at n = 0. The second point is clear because R0 = 1. We can use the explicit
hypergeometric expression (1.7) at the given parameters:

Rn(x(1 + x)) =
n∑

k=0

(−n)k(n+ 1/2)k(−x)k(x+ 1)k

(1/2)kk!3 .

Applying Ψ and using Lemma A.1 (see the appendix) with parameters
(d, e, i, j) = (k, k, k − 1, k) gives

n∑
k=0

(−n)k(n+ 1/2)k

(1/2)kk!(2k + 1) = 2F1

(−n, n+ 1/2
3/2 ; 1

)
,

which is indeed 0 for every n ≥ 1 by the Chu–Vandermonde identity. �

We could get rid, in this theorem and the next four ones, of the factor
2n in the sequences of moments, by scaling the variable in the orthogonal
polynomials. Using the classical relationship between orthogonal polyno-
mials, continued fractions and Hankel determinants (see for example [6]),
one can deduce from the previous theorem (and similarly for the next four
theorems) a nice continued fraction for the ordinary generating series of
the sequence R−, and an explicit factorisation of the Hankel determinants
made from R−. Both these results have been proved before by Kwang-Wu
Chen in [7, §5], without the connection with orthogonal polynomials.
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Theorem 2.2. The numbers (2nR−n+1/R
−
1 )n≥0 are the moments of the

orthogonal polynomials Rn of parameters (α, β, γ, δ) = (−1/2, 1, 0, 0).

Proof. We want to prove that

µn = Λ(xn) = 1
2R−1

Ψ(xn+1(x+ 1)n+1) = 2nR−n+1/R
−
1 ,

for all n ≥ 0. By the characterisation of the linear form Λ, one just needs
to compute

Ψ(x(x+ 1)Rn(x(x+ 1))),
whose value at n = 0 is 2R−1 . We can use the explicit hypergeometric
expression (1.7) at the given parameters:

Rn(x(x+ 1)) =
n∑

k=0

(−n)k(n+ 3/2)k(−x)k(x+ 1)k

(1/2)k(k + 1)!k!2 ,

and therefore

x(x+ 1)Rn(x(x+ 1)) = −
n∑

k=0

(−n)k(n+ 3/2)k(−x− 1)k+1(x)k+1
(1/2)k(k + 1)!k!2 .

Applying Ψ and using Lemma A.1 with parameters (d, e, i, j) = (k+1, k+1,
k − 1, k) gives

−
n∑

k=0

(−n)k(n+ 3/2)k

(1/2)kk!(2k + 3)(2k + 1) = (−1/3) 2F1

(−n, n+ 3/2
5/2 ; 1

)
,

which is once again 0 for every n ≥ 1 by the Chu–Vandermonde identity. �

Theorem 2.3. The numbers (2nR+
n+1/R

+
1 )n≥0 are the moments of the

orthogonal polynomial Rn of parameters (α, β, γ, δ) = (0, 1/2, 0,−2).

Proof. We want to prove that

µn = Λ(xn) = 1
2R+

1
Ψ((x+ 1)n+1(x+ 2)n+1) = 2nR+

n+1/R
+
1 ,

for all n ≥ 0. By the characterisation of the linear form Λ, one just needs
to compute

Ψ((x+ 1)(x+ 2)Rn((x+ 1)(x+ 2))),

whose value at n = 0 is 2R+
1 . We can use the explicit hypergeometric

expression (1.7) at the given parameters:

Rn(x(x− 1)) =
n∑

k=0

(−n)k(n+ 3/2)k(−x)k(x− 1)k

(−1/2)kk!3 ,
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and therefore

(x+ 1)(x+ 2)Rn((x+ 1)(x+ 2))

=
n∑

k=0

(−n)k(n+ 3/2)k(x+ 1)(x+ 2)(−x− 2)k(x+ 1)k

(−1/2)kk!3 .

Applying Ψ and using Lemma A.2 (see the appendix) at k gives

−2
n∑

k=0

(−n)k(n+ 3/2)k

(−1/2)kk!(2k + 3)(2k + 1)(2k − 1) = (2/3) 2F1

(−n, n+ 3/2
5/2 ; 1

)
,

which is once again 0 for every n ≥ 1 by the Chu–Vandermonde identity. �

Recall that R+
n = R−n for every n ≥ 2 by Lemma 1.1. The two following

statements therefore also hold with R− replacing R+.

Theorem 2.4. The numbers (2nR+
n+2/R

+
2 )n≥0 are the moments of the

orthogonal polynomials Rn of parameters (α, β, γ, δ) = (−1/2, 2, 1,−1).

Proof. We want to prove that

µn = Λ(xn) = 1
4R+

2
Ψ((x+ 1)n+2(x+ 2)n+2) = 2nR+

n+2/R
+
2 ,

for all n ≥ 0. By the characterisation of the linear form Λ, one just needs
to compute

Ψ((x+ 1)2(x+ 2)2Rn((x+ 1)(x+ 2))),
whose value at n = 0 is 4R+

2 . We can use the explicit hypergeometric
expression (1.7) at the given parameters:

Rn((x+ 1)(x+ 2)) =
n∑

k=0

(−n)k(n+ 5/2)k(−x− 1)k(x+ 2)k

(1/2)k(k + 1)!2k! ,

and therefore

(x+ 1)2(x+ 2)2Rn((x+ 1)(x+ 2))

= −
n∑

k=0

(−n)k(n+ 5/2)k(x+ 1)(x+ 2)(−x− 2)k+1(x+ 1)k+1
(1/2)k(k + 1)!2k! .

Applying Ψ to this expression and using Lemma A.2 at k + 1 gives

2
n∑

k=0

(−n)k(n+ 5/2)k

(1/2)kk!(2k + 1)(2k + 3)(2k + 5) = (2/15) 2F1

(−n, n+ 5/2
7/2 ; 1

)
,

which is once again 0 for every n ≥ 1 by the Chu–Vandermonde identity. �
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Theorem 2.5. The numbers (2nR+
n+3/R

+
3 )n≥0 are the moments of the or-

thogonal polynomials Rn of parameters (α, β, γ, δ) = (2, 1/2, 2, 0) evaluated
at x− 2.

Proof. We want to prove that

µn = Λ(xn) = 1
8R+

3
Ψ((x+ 1)n+3(x+ 2)n+3) = 2nR+

n+3/R
+
3 ,

for all n ≥ 0. The linear form Λ is characterized by the conditions

Λ(Rn(x− 2)) = 0

for all n > 0 and 1 for n = 0. We must therefore compute

Ψ((x+ 1)3(x+ 2)3Rn((x+ 1)(x+ 2)− 2)),

whose value at n = 0 is 8R+
3 .

Because x(x+ 3) = (x+ 1)(x+ 2)− 2, one can use the explicit hyperge-
ometric expression (1.7) at the given parameters:

Rn(x(x+ 3)) =
n∑

k=0

(−n)k(n+ 7/2)k(−x)k(x+ 3)k

(3/2)k(3)k(3)kk! ,

and therefore

(x+ 1)3(x+ 2)3Rn(x(x+ 3))

= 4
n∑

k=0

(−n)k(n+ 7/2)k(x+ 1)(x+ 2)(−x− 2)k+2(x+ 1)k+2
(3/2)k(k + 2)!2k! .

Applying Ψ to this expression and using Lemma A.2 at k + 2 gives

−8
n∑

k=0

(−n)k(n+ 7/2)k

(3/2)kk!(2k + 3)(2k + 5)(2k + 7) = (−8/105) 2F1

(−n, n+ 7/2
9/2 ; 1

)
,

which is once again 0 for every n ≥ 1 by the Chu–Vandermonde identity. �

Up to the same factor of 2n, the sequence of polynomials in the variable
u defined by

(2.1) Ψ(((x+ u)(x+ 1− u))n) = Ψ((x(x+ 1) + u(1− u))n)

can also be realised as a sequence of moments, by shifting by u(1− u) the
variable in the orthogonal polynomials used in Theorem 2.1.
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3. Values of a non-standard L-function
Let us consider the following analytic function

(3.1) L2(s) =
∑
n≥0

n+ 3/2(n+2
2
)s .

This has been studied in [5], as the special case P =
(x+2

2
)
of the series

(3.2) LP (s) =
∑
n≥0

P ′(n)
P (n)s

attached to polynomials with no roots at positive integers.
The formula (3.2) is convergent in the right half-plane <(s) > 1. It is

known that LP admits an analytic continuation to a meromorphic function
on the entire complex plane, with only a simple pole at 1 with residue 1.
Moreover, the values of LP at negative integers are rational numbers,
given by

LP (1− n) = −Ψ (Pn) /n,
for all integers n ≥ 1. Here Ψ is the linear form defined in Section 1.1.

Therefore, the numbers R+
n are closely tied with values of L2 at negative

integers:
(3.3) L2(1− n) = −R+

n /n,

for all integers n ≥ 1.
Let us conclude this section by a short remark on the analytic contin-

uation of the functions LP , already proved in [5]. Here we give another
sketch of argument for the analytic continuation to a barely larger right
half-plane, similar to a classical argument for the zeta function, and useful
for numerical computations.

Let us define a polynomial A(n) by the properties that A(0) = 1 and
(3.4) A(n+ 1)−A(n) = P ′(n)
for all n ≥ 0. Then

(3.5) LP (s)− 1
s− 1 =

∞∑
n=0

P ′(n)
P (n)s

−
∫ ∞

1
x−sdx

can be rewritten as

(3.6)
∞∑

n=0

∫ A(n+1)

A(n)

1
P (n)s

dx−
∞∑

n=0

∫ A(n+1)

A(n)
x−sdx.

Collecting the terms, one gets

(3.7)
∞∑

n=0

∫ A(n+1)

A(n)

(
P (n)−s − x−s) dx.
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The integral inside this sum can be rewritten as

(3.8) P (n)1−s
∫ A(n+1)/P (n)

A(n)/P (n)
(1− y−s)dy.

Let us assume that P has degree d. ThenA has also degree d and the same
leading coefficient. Therefore both bounds in (3.8) tend to 1 as n tends to
infinity. The integral is therefore O(n−2) and the full term is O(nd(1−s)−2).
It follows that the sum (3.7) is convergent when <(s) > 1− 1/d.

Appendix A. Evaluation lemmas
This appendix contains two useful lemmas on the values of the linear

form Ψ on specific families of polynomials.

Lemma A.1. For all integers d ≥ 0, e ≥ 0, 0 ≤ i ≤ d− 1 and 0 ≤ j ≤ e,

(A.1) Ψ
((
−x+ i

d

)(
x+ j

e

))
= (−1)d+e−i−j−1 1

(d+ e+ 1)
( d+e

i+j+1
) .

Proof. This follows directly from the known fact (see [5, Eq. (3.9)]) that,
for all integers 0 ≤ i ≤ d and 0 ≤ j ≤ e,

�(A.2) Ψ
((

x+ i

d

)(
x+ j

e

))
= (−1)d+e−i−j 1

(d+ e+ 1)
( d+e

d−i+j

) .
Lemma A.2. For k ≥ 0, there holds

(A.3) Ψ
((

x+ 2
2

)(
−x− 3 + k

k

)(
x+ k

k

))
= − 1

(2k + 3)(2k + 1)(2k − 1)

Proof. Note that the left-hand side of (A.3) is equal to

(A.4) (−1)kΨ
((

x+ 2
2

)(
x+ 2
k

)(
x+ k

k

))
.

Let us start by expanding the first product of binomials as(
x+ 2

2

)(
x+ 2
k

)
=

∑
2≤`≤4

(
2

`− 2

)(
k

`− 2

)(
x+ `

2 + k

)
,

by a general formula (see [5, Eq. (2.2)]). Then (A.4) becomes

(−1)k
∑

2≤`≤4

(
2

`− 2

)(
k

`− 2

)
Ψ
((

x+ `

2 + k

)(
x+ k

k

))
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which can be evaluated using (A.2) as∑
2≤`≤4

(−1)`

( 2
`−2
)( k

`−2
)

(3 + 2k)
(2+2k

`

) .
This can be expanded and simplified into the right-hand side of (A.3). �
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