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On the flat cohomology of binary norm forms

par Rony A. BITAN et Michael M. SCHEIN

Résumé. Soit O un ordre d’indice m dans l’ordre maximal d’un corps de
nombres quadratique k = Q(

√
d). Soit Od,m le Z-groupe orthogonal de la

forme norme associée qd,m. Nous décrivons la structure de l’ensemble pointé
H1

fl(Z,Od,m), qui classifie les formes quadratiques isomorphes à qd,m pour
la topologie plate. Gauss a classifié les formes quadratiques de discriminant
fondamental et montré que la composée d’une Z-forme de discriminant ∆k

avec elle-même est dans le genre principal. En utilisant le langage cohomolo-
gique, nous étendons ces résultats aux formes de certains discriminants non
fondamentaux.

Abstract. Let O be an order of index m in the maximal order of a quadratic
number field k = Q(

√
d). Let Od,m be the orthogonal Z-group of the associated

norm form qd,m. We describe the structure of the pointed set H1
fl(Z,Od,m),

which classifies quadratic forms isomorphic (properly or improperly) to qd,m in
the flat topology. Gauss classified quadratic forms of fundamental discriminant
and showed that the composition of any binary Z-form of discriminant ∆k

with itself belongs to the principal genus. Using cohomological language, we
extend these results to forms of certain non-fundamental discriminants.

1. Introduction
Let q be an integral binary quadratic form, namely a map q : Z2 → Z

represented by a symmetric matrix Bq satisfying q(x, y) = (x, y)Bq(x, y)t =
ax2 +bxy+cy2, where a, b, c ∈ Z. For brevity we write q = (a, b, c). Schemes
defined over SpecZ are underlined, whereas the underline is omitted for
their generic fibers. Any change of variables by A ∈ GL2(Z) gives rise
to an isomorphic form q′ = q ◦ A represented by the congruent matrix
Bq′ = ABqA

t. In particular, if q = q ◦ A, then A is called an isometry of
q. It is called proper if A ∈ SL2(Z). The discriminant of q is the integer
∆(q) = b2 − 4ac = −4 det(Bq); it is independent of the choice of the basis
of Z2 since det(A) = ±1 for any A ∈ GL2(Z). Given an integer n ∈ Z,
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a natural and very classical problem is to describe the set of equivalence
classes
(1.1) cl+(n) := {q : ∆(q) = n}

/
SL2(Z).

Consider the quadratic number field k = Q(
√
d), where d 6∈ {0, 1} is a

square-free integer. Denote its discriminant by ∆k and the norm map by
Nr : k× → Q×. Fixing an integral basis {1, ω} of the ring of integers Ok,
associate to k the norm Z-form qd(x, y) := Nr(x+yω). Then ∆(qd) = ∆k is
a fundamental discriminant. As Ok is a Dedekind domain, its narrow ideal
class group Ik/P+

k coincides with its (narrow) Picard group Pic+(Ok). If d <
0, write cl+(∆(qd))′ for the restriction of cl+(∆(qd)) to only positive definite
forms, namely those for which a, c > 0. If d > 0, define cl+(∆(qd))′ =
cl+(∆(qd)). Gauss, in his Disquisitiones Arithmeticae [18], proved that there
is a bijection cl+(∆(qd))′ ∼= Pic+(Ok) of pointed sets given explicitly by

(1.2) [(a, b, c)] 7→
[〈
a,
b− F

√
d

2

〉]
, where F =

{
2 d ≡ 2, 3 (mod 4)
1 d ≡ 1 (mod 4).

The main aim of this paper is to describe the sets
cl(n) := {q : ∆(q) = n}

/
GL2(Z),

in terms of geometric invariants of orders in quadratic number fields. This
extends the question considered by Gauss in three ways: we consider all
quadratic forms, and not only the positive definite ones; we consider all
isometries, and not only proper ones; we consider discriminants n that are
not fundamental.

A modern perspective on these classical ideas, used in the 1980’s by
Ono [30] for number fields and extended by Morishita [28] to general global
fields, identifies cl+(∆(qd)) with H1

fl(Z,O+
d ), where O+

d is the special or-
thogonal group of qd. This flat cohomology, which a priori is a pointed set
but is an abelian group since O+

d is commutative, classifies all integral bi-
nary forms that are isomorphic to qd in the flat (i.e. fppf) topology modulo
proper isometries. Analogously, the first Nisnevich cohomology set classifies
forms in the principal genus of qd. Recall that two integral binary forms
are said to be isomorphic in the flat topology if for every prime p they are
isomorphic over some finite flat extension of Zp. We extend this approach
to arbitrary quadratic orders O ⊆ Ok and obtain a classification, in terms
of the Picard group PicO, of isomorphism classes (not just proper isomor-
phism classes) of integral forms that are isomorphic in the flat topology to
the norm form associated with O.

1.1. Organization of the paper. We briefly describe the structure of
the paper and point out its main results. Sections 2 and 3 recall the basic
notions we will use, most notably a Z-modelN of a norm Q-torus associated
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to an order. Section 4 defines the orthogonal and special orthogonal groups
Oq and O+

q associated to a quadratic form q. If q is degenerate over Z, the
orthogonal group Oq need not be flat over Z. Thus we work instead with Õq,
the schematic closure in Oq of the generic fiber. We obtain an identification
(Lemma 4.5) of the special orthogonal group of a norm form of an order O
(with respect to a fixed Z-basis of O) with N . Finally, we let Od,m denote
the unique order of index m in the maximal order of k = Q(

√
d) and fix

Z-bases of the orders Od,m. There is a natural bifurcation into two cases:
either the norm form qd,m := qOd,m

is diagonal for a suitable choice of basis
(Case (II)) or not (Case (I)). Case (I) holds when d ≡ 1 mod 4 and m is
odd, whereas Case (II) covers all other instances.

Section 5, the heart of the paper, starts by determining (Proposition 5.1)
the structure of the quotient Õqd,m

/O+
qd,m

, which is always a finite flat
group scheme of order two. The proof is short and relies on the theory
of finite flat group schemes. For comparison, in an appendix to the pa-
per we provide a more classical proof that writes down defining poly-
nomials of Õqd,m

and O+
qd,m

. We then turn to studying the pointed set
H1

fl(Z,Oqd,m
) = H1

fl(Z, Õqd,m
). In Case (I) it is canonically identified with

H1
fl(Z,O+

qd,m
), whereas in Case (II) it also contains classes of forms of dis-

criminant −∆(qd,m). This is shown in Proposition 5.5 and Lemma 5.6,
respectively. From this we can study the sets cl(n) for many discriminants
n. The following is the content of Propositions 5.17 and 5.18:

Proposition 1.1. Let D ∈ Z be an integer such that D ≡ 0 mod 4 or
D ≡ 1 mod 4. Suppose further that D is not a perfect square and not of the
form D = −3 · 4m for some m ≥ N0. Then

cl(D) =
{
cl+(D) = H1

fl(Z,O+
q ) : D ≡ 1 mod 4

cl+(D)/ ∼= H1
fl(Z,O+

q )/ ∼ : D ≡ 0 mod 4,
where the explicit quadratic form q is the norm form of a quadratic order
with respect to one of our explicit bases, and the equivalence relation ∼ is
given by [ax2 + bxy + cy2] ∼ [ax2 − bxy + cy2].

The relation stated here between quadratic forms and flat cohomology
fails for discriminants of the form −3 · 4m; see Remark 5.16. Along the way
we study a number of explicit examples. For any square-free d 6= 0, 1 we
show in Theorem 5.19 that

cl+(∆Q(
√
d)) ∼= {±1}µ(d) × Pic+(Ok), where µ(d) =

{
1 d < 0
0 d > 0.

This is a straightforward extension of Gauss’ proper classification to all
forms, not just the positive definite ones. More generally, our analysis of
Case (II) leads to an extension of the classification to many cases in which
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4D is not a fundamental discriminant. Theorem 5.21, another classical the-
orem that we prove with new methods, states that if D is any integer that
is not a perfect square and not of the form D = −3 · 4m, then

cl+(4D) ∼= {±1}ε̃(D) × Pic(Z[
√
D]),

where

ε̃(D) =
{

0 D > 0 and Nr(Z[
√
D]×) = {±1}

1 otherwise.

Note that Z[
√
D] is not in general a Dedekind domain. Theorem 5.21 re-

mains true for discriminants of the form −3·4m, but our proof does not work
in that case. Recall that k = Q(

√
d). In Proposition 5.22, we express the

cardinality |H1
fl(Z,OqOk

)| in terms of the narrow class numbers of Q(
√
d)

and Q(
√
−d). Finally, we show in Corollary 5.24 under some hypotheses

on the form qd,m, that any O+
qd,m

-torsor, tensored with itself, belongs to
the principal genus of qd,m. This may be viewed as an extension, in the
language of cohomology, of another classical theorem of Gauss.

Acknowledgements. The authors would like to thank J. Bernstein,
B. Conrad, P. Gille, B. Kunyavskĭı, and B. Moroz for valuable discussions
concerning the topics of the present article. They are grateful to the anony-
mous referee for a very careful reading of the paper and helpful comments
that have clarified the exposition.

2. Preliminaries
Let k/Q be a finite Galois extension with Galois group Γ = Gal(k/Q) and

degree n = [k : Q]. Let Gm and GLn denote the multiplicative and general
linear Z-groups, respectively. Recall that an order in Ok is a subring that
has the maximal rank n as a Z-lattice. Fix a Z-basis Ω = {ω1, . . . , ωn} for
an order OΩ ⊆ Ok. The Weil restriction of scalars RΩ = ResOΩ/Z(Gm) is
an n-dimensional Z-group that admits an isomorphism ρ : RΩ(Z) ' O×Ω [5,
§7.6]. The natural action of ρ(RΩ(Z)) on OΩ yields a canonical embedding
of RΩ in Aut(OΩ) = GL(OΩ), depending only on the order OΩ and not
on the Z-basis Ω. The choice of Ω provides an embedding ι : RΩ ↪→ GLn.
The composition of ι with the determinant gives a map RΩ → Gm that
we abusively denote1 det. Then Nr(α) = det(ι(ρ−1(α))) for all α ∈ O×Ω ,
where Nr : k× → Q× is the usual norm map; see Exercise 9(c) of [6, §II.5].

1Note that the map det depends only on the orderOΩ and not on the choice of basis Ω. Indeed,
the constructions of this and the following two sections, up to the explicit matrix realizations
of (4.2) and (4.4), are independent of the choice of Ω.
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We get a short exact sequence of commutative Z-group schemes where the
quotient map is faithfully flat in the sense of [22, 0.6.7.8]:

(2.1) 1→ NΩ → RΩ
det−−→ Gm → 1.

The generic fibers of the elements of this sequence are the norm torus
N = Res(1)

k/Q(Gm), the Weil torus R = Resk/Q(Gm), and the multiplicative
Q-groupGm, respectively. Their fibers at any prime p are denoted by (NΩ)p,
(RΩ)p and (Gm)p, respectively, while their reductions are overlined. We
omit the subscript Ω when OΩ is the maximal order Ok.

While Gm and RΩ are smooth over SpecZ, the kernel NΩ need not be
smooth, in that it may have a non-reduced reduction at some prime. How-
ever, NΩ is flat over SpecZ. Indeed, RΩ and Gm are smooth and hence
regular and Cohen-Macaulay. By the Miracle Flatness Theorem [27, Theo-
rem 23.1], it suffices to check that all geometric fibers of NΩ = ker[RΩ

det−−→
Gm] have dimension [k : Q] − 1. The map (RΩ)p

detp−−→ (Gm)p induced by
det in the reduction of (2.1) is surjective for all p. Thus NΩ is flat over
SpecZ, and instead of using étale cohomology we restrict ourselves to flat
cohomology.

Applying flat cohomology to (2.1) gives rise to a long exact sequence of
pointed sets; see [21, III, Prop. 3.3.1(i)]:

(2.2) 1→ NΩ(Z)→ RΩ(Z) ∼= O×Ω
Nr−→ {±1} → H1

fl(Z, NΩ)
→ H1

fl(Z, RΩ)→ H1
fl(Z,Gm) = PicZ = 0.

Now OΩ is finite and torsion-free over Z, hence flat. By Shapiro’s Lemma
[16, XXIV, Prop. 8.2], we have H1

fl(Z, RΩ) ∼= H1
fl(OΩ,Gm,OΩ) = PicOΩ.

Thus (2.2) can be rewritten as

(2.3) 1→ {±1}/Nr(O×Ω)→ H1
fl(Z, NΩ)→ Pic(OΩ)→ 1.

The maximal order Ok is a Dedekind domain whose Picard group coincides
with the ideal class group of k. The set {±1}/Nr(O×k ) is equal to the zero-
Tate cohomology set H0

T (Γ,O×k ) [30, Ex. 1]. Thus, in the case OΩ = Ok,
we deduce an isomorphism of finite groups

(2.4) H1
fl(Z, N)/H0

T (Γ,O×k ) ∼= PicOk.

If n is odd, then Nr(−1) = (−1)n = −1. Therefore H1
fl(Z, N) ∼= PicOk and

it follows that

(2.5) hk = |H1
fl(Z, N)|.

In the quadratic case n = 2, we have k = Q(
√
d) for some square-free

integer d 6∈ {0, 1}. If OΩ is the maximal order Ok, we set hd and Nd to be
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the class number hk and the Z-group N , respectively. Then (2.3) implies
that
(2.6) |H1

fl(Z, Nd)| = hd · 2ε(d),

where [30, §5, Ex. 2]:

ε(d) =
{

0 d > 0 and Nr(O×k ) = {±1}
1 otherwise.

(2.7)

Let Pic+(Ok) be the narrow class group of k and let h+
d denote its cardinal-

ity. Then h+
d = hd unless d > 0 and Nr(O×k ) = {1}, in which case h+

d = 2hd.
Now (2.6) implies

|H1
fl(Z, Nd)| = h+

d · 2
µ(d), µ(d) :=

{
1 d < 0
0 d > 0.

(2.8)

Hence computing the narrow class number h+
d is equivalent to determining

|H1
fl(Z, Nd)|.

3. The class set of the norm torus
LetG be an affine flat group scheme defined over SpecZ with generic fiber

G. We denote by Gp the Zp-scheme obtained from G by the base change
SpecZp → SpecZ. For a global field F , recall that the adelic group G(AF )
is the restricted product of the groups G(Fv), where Fv is the completion
of F at a place v. We write G(A) for G(AQ). As in [4, §1.2], consider its
subgroup G(A∞) = G(R)×

∏
pG(Zp).

Definition 3.1. The class set of G is the set of double cosets Cl∞(G) :=
G(A∞)\G(A)/G(Q). This set is finite ([4, Thm. 5.1]) and its cardinality,
denoted h(G), is called the class number of G.

Definition 3.2. Let S be a finite set of places in Q. The first Tate–
Shafarevich set of G over Q relative to S is

X1
S(Q, G) := ker

H1(Q, G)→
∏
v/∈S

H1(Qv, Gv)

 .
When S = ∅, we simply write X1(Q, G).

As G is affine, flat and of finite type, Y. Nisnevich has shown [29,
Thm. I.3.5] that it admits an exact sequence of pointed sets

(3.1) 1→ Cl∞(G)→ H1
fl(Z, G)→ H1(Q, G)×

∏
p

H1
fl(Zp, Gp)

whose left exactness reflects the fact that Cl∞(G) is the set of Z-forms of G
that are isomorphic to G over Q and over Zp for all p. If H1

fl(Zp, Gp) injects
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into H1(Qp, Gp) for all p, then, as in [29, Cor. I.3.6], the sequence (3.1)
simplifies to

(3.2) 1→ Cl∞(G)→ H1
fl(Z, G)→ H1(Q, G).

More precisely, there is an exact sequence of pointed sets (cf. [20, Cor. A.8])

(3.3) 1→ Cl∞(G)→ H1
fl(Z, G)→ B → 1

in which

B =
{

[γ] ∈ H1(Q, G) : ∀ p, [γ ⊗ Zp] ∈ Im
(
H1

fl(Zp, Gp)→ H1(Qp, Gp)
)}
.

Let k/Q be a finite Galois extension as in the previous section. Let p
be a rational prime, and let P be a prime of k dividing p. Write Qp and
kP for the localizations of Q at p and of k at P , respectively, noting that
kP is independent of the choice of P , up to isomorphism. Observe that
k ⊗Q Qp

∼= krP , where r is the number of primes of k dividing p. The norm
map Nr : k → Q induces a map Nr : k⊗QQp → Qp; under the isomorphism
above this corresponds to the product of the norm maps NkP /Qp

on the
components. Similarly, Ok ⊗Z Zp ' OrkP

. Write UP for O×kP
.

Fix a Z-basis Ω of an order OΩ as in the previous section, and assume
that Nr((RΩ)p(Zp)) = Z×p ∩NkP /Qp

(k×P ) for all p. Note that the assumption
always holds if OΩ is the maximal order of k, since then (RΩ)p(Zp) = U rP .
See Example 5.25 for another case where it holds. Applying flat cohomology
to the short exact sequence of flat Zp-groups

1→ (NΩ)p → (RΩ)p → (Gm)p → 1

yields the exact and functorial sequence

1→ (NΩ)p(Zp)→ (RΩ)p(Zp)
Nr−→ Z×p → H1

fl(Zp, (NΩ)p)→ 1,

since H1
fl(Zp, (RΩ)p) is the Picard group of a product of local rings and thus

vanishes. We deduce an isomorphism H1
fl(Zp, (NΩ)p) ∼= Z×p /Nr((RΩ)p(Zp)).

Applying Galois cohomology to the short exact sequence of Qp-groups

1→ Np → Rp → (Gm)p → 1

gives rise to the exact sequence of abelian groups

1→ Np(Qp)→ Rp(Qp) ∼= (k×P )r Nr−→ Q×p → H1(Qp, Np)→ 1,

where the rightmost term vanishes by Hilbert’s Theorem 90. Hence we
may again deduce a functorial isomorphismH1(Qp, Np) ∼= Q×p /NkP /Qp

(k×P ).
Note that UP is compact and thus NkP /Qp

(UP ) is closed in Q×p . By our
assumption on OΩ:

(3.4) H1
fl(Zp, Np) ∼= Z×p/Nr((RΩ)p(Zp)) ↪→ Q×p/NkP /Qp

(k×P ) ∼= H1(Qp,Np).
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Proposition 3.3. Suppose that [k : Q] is prime and that Nr((RΩ)p(Zp)) =
Z×p ∩ NkP /Qp

(k×P ) for all p. Let Sr be the set of primes dividing ∆k. Then
there is an exact sequence of abelian groups (compare with formula (5.3)
in [28]):

1→ Cl∞(NΩ)→ H1
fl(Z, NΩ)→X1

Sr∪{∞}(Q, N)→ 1.

Proof. Since H1
fl(Zp, (NΩ)p) embeds into H1(Qp, Np) for any prime p

by (3.4), the Z-group scheme NΩ admits the exact sequence (3.3), in
which the terms are abelian groups as NΩ is commutative. The pointed set
Cl∞(NΩ) is in bijection with the first Nisnevich cohomology setH1

Nis(Z,NΩ)
(cf. [29, I, Thm. 2.8]), which is a subgroup of H1

fl(Z, NΩ) because any Nis-
nevich cover is flat. Hence the first map is an embedding. Since k/Q has
prime degree and so is necessarily abelian, at any prime p the local Artin
reciprocity law implies that

np = |Gal(kP /Qp)| = [Q×p : NkP /Qp
(k×P )] = |H1(Qp, Np)|.

Furthermore, since [k : Q] is prime, any ramified place p is totally rami-
fied, so [Z×p : Z×p ∩ Nkp/Qp

(UP )] = np [24, Thm. 5.5]. Together with (3.4)
this means that H1

fl(Zp, Np) coincides with H1(Qp, Np) at ramified primes
and vanishes elsewhere. Thus the set B of (3.3) consists of classes [γ] ∈
H1(Q, N) whose fibers vanish at unramified places. This means that B =
X1

Sr∪{∞}(Q, N), where Sr is the set of ramified primes of k/Q. �

Remark 3.4. The group B = X1
Sr∪{∞}(Q, N) embeds in the group

H1(Q, N) by definition. But H1(Q, N) ∼= Q×/Nr(k×), so B has exponent
dividing n.

4. Norm forms of orders in quadratic number fields
4.1. Orthogonal groups. Throughout the rest of this article we will
assume that k is a quadratic number field, so that k = Q(

√
d), where

d 6∈ {0, 1} is a square-free integer. Recall that a binary integral quadratic
form is a homogeneous polynomial of order two in two variables with coef-
ficients in Z:

q : Z2 → Z; q(x, y) = ax2 + bxy + cy2, a, b, c ∈ Z.

The form q is represented by the symmetric 2 × 2 matrix Bq =
(

a b/2
b/2 c

)
satisfying q(x, y) = (x, y)Bq(x, y)t. We denote q by the triple (a, b, c) and
set ∆(q) = b2 − 4ac. Consider the symmetric bilinear form

B̃q(u, v) = q(u+ v)− q(u)− q(v),
for u, v ∈ Z2. Set disc(q) to be the determinant of the matrix

B̃q(ei, ej)1≤i,j≤2,



On the flat cohomology of binary norm forms 535

where e1 = (1, 0) and e2 = (0, 1). We say that q is non-degenerate over a
Z-algebra R if disc(q) is invertible in R. In particular, q is non-degenerate
over Z when disc(q) = ±1 (cf. [13, §2]). It is easily checked that this matrix
is 2Bq, thus ∆(q) = −4 det(Bq) = −disc(q). We assume ∆(q) 6= 0, so
q is non-degenerate over Q. Observe that q is degenerate over Z unless
q(x, y) = ±xy. Two integral forms q and q′ are said to be isomorphic over
a Z-algebra R if there exists an R-isometry from one form to the other,
namely a matrix A ∈ GL2(R) such that q ◦ A = q′. If detA = 1, then we
say that A gives a proper isomorphism over R between q and q′.

Definition 4.1 ([13, p. 303]). Let V be a free Z-module of rank two and
q : V → Z a quadratic form with disc(q) 6= 0. The orthogonal group of the
quadratic lattice (V, q) is the affine Z-group

Oq = {A ∈ GL(V ) : q ◦A = q}.

Since (V, q) is not assumed to be non-degenerate over Z, we note that
Oq may fail to be Z-flat for fiber-jumping reasons [14, §2]. We are thus led
to restrict our attention to the closed subscheme Õq ⊂ Oq defined as the
schematic closure in Oq of the generic fiber. Since (V, q) is non-degenerate
over Q, and the characteristic of Q is not 2, we may define the special
orthogonal subgroup of the generic fiber Oq = Oq ⊗Z Q naively as

O+
q = ker[Oq

det−−→ µ2].
The analogous definition over Z is more subtle but is not limited to the
non-degenerate case.

Definition 4.2 ([14, Def. 2.8]). The special orthogonal group O+
q of a qua-

dratic lattice (V, q) is the schematic closure of O+
q inside Oq (or, equiva-

lently, inside Õq). As Z is Dedekind it is flat. Indeed, the coordinate ring of
the schematic closure, in a Z-scheme, of an affine subscheme of the generic
fiber is clearly torsion-free, hence flat over Z.

Remark 4.3. The Q-group Oq is smooth. Its open subgroup O+
q is

smooth and connected [12, Thm. 1.7(1)] and is the unique such subgroup
[12, Prop. 3.2]. By the correspondence between flat closed subschemes of
Oq and closed subschemes of Oq [23, Prop. 2.8.1], O+

q is the unique flat and
closed subgroup of Oq whose generic fiber is O+

q .

Definition 4.4. Let Ω = {ω1, ω2} ⊂ Ok be a basis of a quadratic order
OΩ ⊆ Ok. The norm form associated to Ω is the integral quadratic form

qΩ(x, y) := Nr(xω1 + yω2).

Let OΩ denote the orthogonal group of qΩ. The choice of the basis Ω
specifies an isomorphism of Z-modules r : Z2 ∼→ OΩ given by r(x, y) =
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xω1 + yω2. In turn, as we observed at the beginning of Section 2, the map
r induces an embedding ι : RΩ ↪→ GL2.

Lemma 4.5. Let Ω be a basis of the quadratic order OΩ ⊆ Ok. Then
O+

Ω = NΩ as subgroup schemes of GL(OΩ).

Proof. Over Q, consider the map qΩ = Nr ◦r : Q2 → Q. For any b ∈ RΩ
and (x, y) ∈ Z2 one has

ι(b) ·
(
x

y

)
= r−1

(
b · r

(
x

y

))
.

If b ∈ NΩ = ker(Nr : RΩ → Gm,Q) and we also use b to denote multiplication
by b in OΩ, then Nr ◦b = Nr. We obtain an inclusion of Q-groups:

O+
Ω = {A ∈ SL2 : qΩ ◦A = qΩ}
⊇ {b ∈ NΩ : qΩ ◦ ι(b) = qΩ} = {b ∈ NΩ : qΩ ◦ r−1 ◦ b · r = qΩ}
= {b ∈ NΩ : Nr ◦b · r = Nr ◦r} = {b ∈ NΩ : Nr ◦b = Nr} = NΩ.

Since O+
Ω and NΩ are both one-dimensional tori, the inclusion is an equality.

Hence O+
Ω and NΩ are Z-flat closed subgroups of OΩ with the same generic

fiber O+
Ω = NΩ. Such an object is unique by Remark 4.3, so O+

Ω = NΩ. �

Remark 4.6. Since the norm subgroup NΩ is clearly normal in GL(OΩ),
an immediate consequence of Lemma 4.5 is that O+

Ω is a normal subgroup
scheme of OΩ.

We note that for the particular bases Ω used in the sequel, Lemma 4.5
can be checked explicitly; see Remark A.3.

4.2. Orders in quadratic fields. Recall that k = Q(
√
d). For every

m ∈ N, the maximal order Ok contains a unique order Od,m of index m. If
{1, ω} is any Z-basis of Ok, then Od,m is spanned by {1,mω}. We fix the
convenient Z-basis Ωd,m = {1, ωd,m} of Od,m, where

ωd,m =


1+m

√
d

2 : d ≡ 1 mod 4, m odd
m
2
√
d : d ≡ 1 mod 4, m even

m
√
d : d ≡ 2, 3 mod 4.

Henceforth we denote by qd,m the associated norm form qΩd,m
. We also

set qd = qd,1. Define

(4.1) cd,m =


1−m2d

4 : d ≡ 1 mod 4, m odd
m2d

4 : d ≡ 1 mod 4, m even
m2d : d ≡ 2, 3 mod 4

and note that cd,m is always an integer. For simplicity in long expressions,
we will sometimes drop the subscripts and write c for cd,m; this should
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cause no confusion. We also write Od,m for Oqd,m
, Õd,m for Õd,m, etc. We

say that we are in
Case (I) if d ≡ 1 mod 4 and m is odd, and in
Case (II) otherwise.

Then

(4.2) qd,m =
{

(1, 1, cd,m) : Case (I)
(1, 0,−cd,m) : Case (II).

and Bqd,m
=


(

1 1/2
1/2 cd,m

)
: Case (I)(

1 0
0 −cd,m

)
: Case (II).

Hence

Nd,m := NΩd,m
=
{

SpecZ[x, y]/(x2 + xy + cd,my
2 − 1) : Case (I)

SpecZ[x, y]/(x2 − cd,my2 − 1) : Case (II).
(4.3)

The integral matrix realization ι(Nd,m(Z)) is given by

Ad =


(

x y
−cd,my x+y

)
, det = 1 : Case (I)( x y

cd,my x
)
, det = 1 : Case (II).

(4.4)

For any pair (d,m), the integral model Nd,m has the generic fiber

Nd,m = Nd,m ⊗Z Q = SpecQ[x, y]/(x2 − dy2 − 1).

Note that Nd,m is independent of m.

5. The flat cohomology of the orthogonal group of a norm form
5.1. A quotient map. The special orthogonal subgroup O+

d,m is a flat
closed normal subgroup of Od,m by Remarks 4.3 and 4.6. Since SpecZ is one-
dimensional, the fppf quotient Od,m/O+

d,m is representable by [1, Thm. 4.C]
and thus has the structure of an affine Z-group scheme. However, this quo-
tient is not flat. Instead, we consider the quotient Q

d,m
= Õd,m/O+

d,m, which
is flat over Z because Õd,m is. Our first goal in this section is to determine
the structure of Q

d,m
, for which we will use the theory of finite flat group

schemes. An alternative proof, by means of explicitly writing out defining
equations, is presented in an appendix at the end of the paper.

Recall that there are only two finite Z-groups of order two, up to isomor-
phism, namely Z/2 = SpecZ[t]/(t2 − t) and µ2 = SpecZ[t]/(t2 − 1); see,
for instance, the Corollary on p. 21 of [32] for a proof of this fact. These
two Z-groups are locally isomorphic everywhere except at (2), in which
case µ2 ⊗Z F2 contains one nilpotent point while Z/2⊗Z F2 is reduced and
contains two points.
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Proposition 5.1. Let d 6= 0, 1 be square-free and m ∈ N. Then, as Z-group
schemes,

Õd,m/O+
d,m '

{
Z/2 : Case (I)
µ2 : Case (II).

Proof. Recall from Definition 4.1 that for any quadratic form q, an isometry
A ∈ Oq satisfies q ◦ A = q and hence ABqAt = Bq. Taking determinants
of both sides, we find that (detBq)((detA)2 − 1) = 0. In particular, if q is
non-degenerate over Q, then any A ∈ Õq satisfies (detA)2 − 1 = 0. Hence
the determinant induces a morphism of group schemes det : Õq → µ2.

Since Õd,m is a Z-scheme defined by the polynomial (detA−1)(detA+1),
among others, it is the scheme-theoretic union of the closed Z-subschemes
of matrices of determinant 1 and −1. The former of these is O+

d,m, and we
denote the latter by O−d,m. The left translation action on Õd,m of

( 1 0
1 −1

)
in

Case (I) and of
( 1 0

0 −1
)
in Case (II) interchanges the subschemes O+

d,m and
O−d,m. Hence all fibers of Qd,m have rank two, and we conclude that Q

d,m
is

a finite flat affine Z-group scheme of order two. Thus it is isomorphic either
to Z/2 or to µ2. To distinguish between the two possibilities, it suffices
to determine Q

d,m
⊗Z F2. Since the reduction of diag(1,−1) modulo 2 is

the same as that of the identity matrix, we see that Q
d,m
⊗Z F2 contains

only one point in Case (II). In Case (I), on the other hand, it is apparent
from (4.4) and Lemma 4.5 that the reduction modulo 2 of the matrix

( 1 0
1 −1

)
does not lie in that of Nd,m(Z) = O+

d,m(Z). Thus Q
d,m
⊗ZF2 has two points

in this case. We conclude that Q
d,m

= Z/2 in Case (I) and Q
d,m

= µ2 in
Case (II), as claimed. �

5.2. Twisted forms. In this section we briefly recall the construction of
a twisted form (in the fppf topology) of a flat group scheme G defined
over SpecR, where R is a unital commutative ring. From now on, we refer
to the fppf topology as the flat topology. A representative P of a class
in H1

fl(R,G), i.e. a G-torsor, gives rise to the affine R-group scheme PG
given by the quotient of P ×R G by the G-action s · (p, g) = (ps−1, sgs−1).
This is an inner form of G, called the twist of G by P . It is isomorphic
to G in the flat topology, and the map Q 7→ PQ where Q is any G-torsor,
defines a bijection of pointed sets θP : H1

fl(R,G) → H1
fl(R, PG); see [31,

§2.2, Lem. 2.2.3, and the nearby Ex. 1 and 2].
Remark 5.2. Fix a quadratic Z-form q of arbitrary rank with automor-
phism group Aut(q) := Oq defined over SpecZ. Any Oq-torsor, for the
flat topology, is of the form P = Iso(q, q′), where q′ is a quadratic Z-form
isomorphic to q in the flat topology. This is a special case of a general
framework due to Giraud; see [8, Prop. 2.2.4.5] for details. It follows that
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Oq′ is an inner form of Oq, namely its twist by P . In terms of the classi-
fication of Oq-torsors by cohomology classes, this corresponds to changing
the distinguished base point of H1

fl(Z,Oq).

Remark 5.3. For any flat, i.e. torsion-free, Z-algebra R the inclusion
Õq(R) ⊆ Oq(R) of R-points is an equality. This implies a canonical iso-
morphism of pointed sets H1

fl(Z, Õq) = H1
fl(Z,Oq). In the sequel we identify

these sets without further comment.

Lemma 5.4. Let POq be the twisted form of Oq by an O+
q -torsor P and

let Q := Õq/O+
q . Then the following are equivalent:

(1) The push-forward map H1
fl(Z,O+

q ) i∗−→ H1
fl(Z, Õq) is injective.

(2) The quotient map P Õq(Z) π−→ Q(Z) is surjective for any [P ] ∈
H1

fl(Z,O+
q ).

(3) The Q(Z)-action on H1
fl(Z,O+

q ) is trivial.

Proof. By the correspondence discussed above between quadratic Z-forms
and Oq-torsors, the inner form POq of Oq is the orthogonal group of some
quadratic Z-form q′. Consider the commutative diagram with exact rows
(cf. [21, Lem. III.3.3.4])

Õq(Z) π // Q(Z) // H1
fl(Z,O+

q )

∼= θP

��

i∗ // H1
fl(Z, Õq)

θP
∼=
��

P Õq(Z)
P π // Q(Z) // H1

fl(Z, PO+
q )

i′∗ // H1
fl(Z, P Õq),

where the top row arises by applying flat cohomology to the sequence 1→
O+
q → Õq → Q → 1, whereas the bottom row comes from the analogous

sequence for q′ and the maps θP are the induced twisting bijections defined
above.

(1)⇔ (2). The map i∗ is injective if any class [P ] of O+
q -torsors is the unique

pre-image of i∗([P ]) ∈ H1
fl(Z, Õq) = H1

fl(Z,Oq). By commutativity of the
diagram, this is equivalent to the distinguished point in H1

fl(Z, PO+
q ) being

the unique pre-image of its image, for any choice of a twisted form PO+
q of

O+
q , i.e. to the triviality of ker(i′∗) for any O+

q -torsor P . By exactness of the
rows, this is condition (2).

(1)⇔ (3). By [21, Prop. III.3.3.3(iv)], i∗ induces an injection ofH1
fl(Z,O+

q )/
Q(Z) into H1

fl(Z, Õq). Thus i∗ : H1
fl(Z,O+

q ) → H1
fl(Z, Õq) is injective if and

only if Q(Z) acts on H1
fl(Z,O+

q ) trivially. �
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5.3. Case (I). Recall that Case (I) means that d ≡ 1 mod 4 and m is odd.
In this case the quotient Õd,m/O+

d,m is Z/2 by Proposition 5.1, the quotient
map being the Dickson morphism Dqd,m

.

Proposition 5.5. In Case (I), there is an equality of abelian groups
H1

fl(Z, Nd,m) = H1
fl(Z,Od,m).

Proof. Applying flat cohomology to the short exact sequence of flat Z-
schemes

1→ O+
d,m → Õd,m → Q

d,m
→ 1

gives rise to a long exact sequence of pointed sets

(5.1) Õd,m(Z)→Q
d,m

(Z)→H1
fl(Z,O+

d,m) i∗→H1
fl(Z,Od,m) δ→H1

fl(Z, Q
d,m

).

We will show that i∗ is an isomorphism; the claim then follows by
Lemma 4.5. Since Z/2 is smooth, the rightmost term in (5.1) coincides
with H1

ét(Z,Z/2) by [2, Corollaire VIII.2.3], which classifies étale quadratic
covers of Z (cf. [26, Chap. III, Prop. 4.1.4]). As no such non-trivial cover
exists, δ is trivial, and i∗ is surjective.

To prove that i∗ is injective, it suffices by Lemma 5.4 to show that the
map P Õd,m(Z)→ Z/2(Z) is surjective for all [P ] ∈ H1

fl(Z,O+
d,m). This is true

when [P ] is the distinguished class, since we verified explicitly in the course
of the proof of Proposition 5.1 that Dqd,m

: Õd,m(Z)→ Z/2(Z) is surjective.
In fact, this implies that the determinant map Õd,m(Z) → µ2(Z) = {±1}
is surjective on Z-points. In general, PO+

d,m is an inner form of O+
d,m by

Remark 5.2, and thus it is a conjugate of O+
d,m by some M ∈ GL2(R) for

a finite flat extension R/Z. But PO+
d,m is the special orthogonal group of

a quadratic Z-form q and Oq = MOd,mM
−1. Conjugation preserves the

determinant, so Õq(Z) det→ µ2(Z) is surjective, and hence so is Dq : Õq(Z)→
Z/2(Z). �

5.4. Case (II). In this case, we know from Proposition 5.1 that the deter-
minant map induces an isomorphism Õd,m/O+

d,m ' µ2. The relevant bit of
the long exact sequence (5.1) is:

H1
fl(Z,O+

d,m) i∗→ H1
fl(Z,Od,m)

disc
� H1

fl(Z, µ2) ∼= {±1}.

Here disc, which assigns to any class [q] ∈ H1
fl(Z,Od,m) the sign of

the discriminant of q, is surjective because [(1, 0, cd,m)], [(1, 0,−cd,m)] ∈
H1

fl(Z,Od,m); observe that (1, 0, cd,m) becomes isomorphic to (1, 0,−cd,m)
over Z[

√
−1] by the isometry A = diag(1,

√
−1).
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Lemma 5.6. Suppose that Case (II) holds, so q = (1, 0,−cd,m), i.e.
q(x, y) = x2 − cd,my2. Then

(5.2) H1
fl(Z,Od,m) = H1

fl(Z,O+
d,m)/µ2(Z)

∐
H1

fl(Z,O+
(1,0,cd,m))/µ2(Z),

where the non-trivial element of µ2(Z) maps [(a, b, c)] to [(a,−b, c)].

Proof. The action of the non-trivial element of µ2(Z)={±1} onH1
fl(Z,O+

d,m)
is described by [21, Rmq. III.3.3.2]. The pre-image of−1 under det : Õq,m →
µ2 is O−d,m := diag(1,−1)O+

d,m. A twisted form of O+
d,m by some O+

d,m-torsor
is O+

q′ where q′ is of discriminant 4cd,m. Then the action of −1 on O+
q′ is a

twist by O−d,m, which is equivalent to the twist of q′ = (a, b, c) by diag(1,−1)
to (a,−b, c):(

1 0
0 −1

)(
a b/2
b/2 c

)(
1 0
0 −1

)t
=
(

a −b/2
−b/2 c

)
.

Observe that Õd,m may be realized as a semi-direct product O+
d,m o µ2 by

means of the section x 7→ diag(1, x) of the quotient map Õd,m
det→ µ2. By [19,

Lem. 2.6.3], this implies the claimed decomposition

(5.3) H1
fl(Z,Od,m) = H1

fl(Z, Õd,m)

= H1
fl(Z,O+

(1,0,cd,m))/µ2(Z)
∐

H1
fl(Z,O+

(1,0,−cd,m))/µ2(Z),

where the quotients are taken modulo the equivalence relation given by the
action of µ2(Z) on each group as above. Indeed, the twisted form (1, 0, cd,m)
of discriminant −4cd,m corresponds to the non-trivial µ2-torsor represented
by {t2 = −1}, which splits over Z[

√
−1] and is represented by(

1 0
0
√
−1

)(
1 0
0 −cd,m

)(
1 0
0
√
−1

)t
=
(

1 0
0 cd,m

)
. �

Corollary 5.7. Each of the groups H1
fl(Z,O+

d,m) and H1
fl(Z,O+

(1,0,cd,m)) is
entirely embedded in H1

fl(Z,Od,m) if and only if it satisfies one (hence all)
of the conditions of Lemma 5.4.

Remark 5.8. Although the groups Õd,m and Õ(1,0,cd,m) are not isomor-
phic, Lemma 5.6 provides the same decomposition of H1

fl(Z,Od,m) as of
H1

fl(Z,O(1,0,cd,m)). Hence these two pointed sets are in bijection with each
other. Observe that

Õ(1,0,cd,m) =


Õ−d,m/2 : d ≡ 1 mod 4, m even
Õ−d,m : d ≡ 2 mod 4
Õ−d,2m : d ≡ 3 mod 4.
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Example 5.9. In this and the subsequent examples in this section, we
set N ′d = Nd,2 for brevity. The set H1

fl(Z, N11) contains 2h11 = 2 classes
{[±(1, 0,−11)]}; see Lemma 5.19 below. Each of these classes is a sepa-
rate µ2(Z)-orbit. However, H1

fl(Z, N ′−11) contains six classes by [7, p. 20];
see the table in Example 5.13 below. Precisely, we have H1

fl(Z, N ′−11) =
{[±(1, 0, 11)], [±(3,±2, 4)]}. The pairs (3,±2, 4) and (−3,±2,−4) coincide
in H1

fl(Z,O11). Thus |H1
fl(Z,O11)| = 2 + 4 = 6.

Our next aim is to use Lemma 5.6 to study PicZ[
√
d] even in cases where

Z[
√
d] is not the maximal order of a number field and thus need not be a

Dedekind domain. As a preliminary, we record the following exercise in
algebraic number theory.

Lemma 5.10. Let d be any integer. The ring Z[
√
d] has a unique prime

ideal containing 2.

Proof. The case d ∈ {0, 1} is obvious, so we assume that it does not
hold. We may assume without loss of generality that d is square-free. If
d ≡ 2, 3 (mod 4), then Z[

√
d] = Od is a Dedekind domain and 2 ramifies

in Q(
√
d), so that 2Od = p2, where p is the unique prime ideal of Od

dividing (2). Now suppose that d ≡ 1 (mod 4). Then Od/Z[
√
d] is an inte-

gral extension of rings, so by [27, Thm. 9.3] any prime ideal of Z[
√
d] has

the form Z[
√
d] ∩ p, where p is a prime ideal of Od. If d ≡ 5 (mod 8),

then 2 is inert in Q(
√
d). Thus 2Od is prime and is the unique prime

ideal of Od containing 2; this implies our claim by the previous obser-
vation. If d ≡ 1 (mod 8), then 2Od = p1p2 = p1 ∩ p2 for distinct prime
ideals p1 and p2 of Od. Hence Z[

√
d] ∩ p1 and Z[

√
d] ∩ p2 each contain

I = Z[
√
d] ∩ 2Od = {a + b

√
d : a ≡ b (mod 2)}. Since I has index 2 in

the ring Z[
√
d] and thus is a maximal ideal, it is the unique prime ideal of

Z[
√
d] containing 2. �

Proposition 5.11. Let d ≡ 3 (mod 4). Set η(d) = 1 if d ≡ 3 (mod 8) and
one of the following two conditions holds:

• d > 3
• d < 0 and O×−d ⊂ Z[

√
−d].

Otherwise, set η(d) = 0. Then |PicZ[
√
−d]| = 3η(d)h−d.

Proof. Observe that −d ≡ 1 mod 4, and thus Z[
√
−d] = O−d,2. We write Ω

for Ω−d,2 = {1,
√
−d}.

The claim is clear if d = −1, so suppose that d ≡ 3 (mod 4) and d 6= −1.
By Lemma 4.5, the special orthogonal group N−d,2 is equal to O+

Ω . Set
k′ = Q(

√
−d). We relate the Picard groups of OΩ = Z[

√
−d] and O−d,1 =

Ok′ = Z[1+
√
−d

2 ] by studying their localizations. For any prime ideal p of
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OΩ, let Op be the localization of OΩ at p, and let (Ok′)p be the integral
closure of Op in Ok′ . Then [25, Thm. 5.6] provides an exact sequence of
abelian groups

(5.4) 1→ O×Ω
ϕ→ O×k′ →

⊕
p

(Ok′)×p /O×p → PicOΩ → PicOk′ → 1.

Here the direct sum in the middle runs over the prime ideals of OΩ. Let F
denote the conductor of Ok′/OΩ. By [25, Prop. 6.2] we have the following
isomorphism for any p:

(5.5) (Ok′)×p /O×p ∼= ((Ok′)p/F · (Ok′)p)×
/

(Op/FOp)×.

Since OΩ = Z + 2Ok′ , the conductor is F = 2Ok′ . It is a maximal ideal of
OΩ; since localization at any prime commutes with factorization modulo
F , we have (Op/FOp)× = (OΩ/FOΩ)×p = F×2 = 1. Moreover, we see that
(Ok′)×p ∼= O×p if 2 6∈ p, so such places make no contribution to the direct
sum in (5.4). It remains therefore to compute (Ok′)×q for the unique (by
Lemma 5.10) place q containing 2, where Ok′ denotes the reduction of Ok′
modulo F . Note that OΩ/F ' F2 and that c = 1+d

4 is odd if d ≡ 3 (mod 8)
and even if d ≡ 7 (mod 8). If c̄ ∈ F2 is the image of c, then it follows
from (4.4) that

(Ok′)×q ∼= (R−d(F2))q =
{

(A−d)q =
(
a c̄b
b a+b

)
: a, b ∈ F2, det(A−d) 6= 0

}
∼=
{
Z/3 d ≡ 3 (mod 8)
1 d ≡ 7 (mod 8).

This holds also when d = −1. We deduce from (5.4) that if d ≡ 7 (mod 8),
then PicOΩ ' PicO−d. If d ≡ 3 (mod 8), then (5.4) implies that

(5.6) |Pic(OΩ)|
h−d

= 3
|coker(ϕ)| .

If d 6= 3, the unit groups O×Ω and O×k′ contain the same roots of unity.
Moreover, if d > 0, these groups have no free part, hence |coker(ϕ)| = 1.
If d = 3, then clearly |coker(ϕ)| = 3. If d < 0, then the free parts of both
O×Ω and O×k′ have rank 1, and coker(ϕ) = [〈ε〉 : 〈εm〉] = m, where ε is a
fundamental unit of k′ and εm is a generator of O×Ω . Note that m|3 by (5.4),
so that m = 3 or m = 1. Both cases do arise. The case m = 1 occurs, for
instance, when d = −37 and d = −101; see sequence A108160 in the On-
Line Encyclopedia of Integer Sequences. Hence, recalling the definition of
η(d) from the statement of this claim, we may rewrite (5.6) as

|Pic(OΩ)|
h−d

= 3η(d). �
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Remark 5.12. If the norm map Nr attains the value −1 for an element
of O×Ω , it does so for a generator of its free part. As m is odd, this implies
that Nr(O×k′) = Nr(O×Ω). Recalling that N ′d = Nd,2, we conclude by (2.3)
and Corollary 5.11 that

(5.7)
|H1

fl(Z, N ′−d)|
|H1

fl(Z, N−d)|
= |PicZ[

√
−d]|

h−d
= 3η(d).

Example 5.13. We tabulate the following data from [7]: see p. 19 for the
second and fourth columns and p. 20 for the third, noting that, as the
forms obtained are definite, the number of total classes is twice the number
of positive classes by Proposition 5.21 below.

0 < d ≡ 3 (mod4) h−d |H1
fl(Z, N ′−d)| |H1

fl(Z, N−d)| c−d,1 = 1+d
4

3 1 2 2 1
7 1 2 2 2
11 1 6 2 3
15 2 4 4 4
19 1 6 2 5
23 3 6 6 6

Example 5.14. Let d = −5. Then (Ok′)×(2)/O
×
(2)
∼= Z/3 by the argument

preceding (5.6). A generator of the free part of O×k′ is ε = ω = 1+
√

5
2 . Let

Ω = {1,
√

5}. The embedding ϕ : OΩ → Ok′ induces the embedding of
NΩ(Z) in N5(Z) given by the integral matrix realization of (4.4), namely
the group homomorphism

ϕ :
(
x 5y
y x

)
7→
(
x− y 2y

2y x+ y

)
.

Since Nr(ε) = −1, a generator of the free part of N5(Z) is u = ( 1 1
1 2 ),

corresponding to ε2 = 1 + ω, while a generator of N ′5(Z) is z = ( 9 20
4 9 ),

corresponding to ε6 = 9 + 4
√

5. Hence

ϕ(z) =
(

5 8
8 13

)
= u3,

so that |coker(ϕ)| = 3. This means that η(d) = 0 in Proposition 5.11, and
|Pic(Z[

√
5])| = h5.

Recall from (1.1) that the set cl+(n) classifies quadratic forms of discrim-
inant n up to proper isometry. The next lemma relates cl+(n) to the flat
cohomology of special orthogonal groups.

Lemma 5.15. Let d be any integer that is not a perfect square and not of
the form d = −3 · 4m for any m ∈ N0, and set q(x, y) = x2 − dy2. Then
cl+(4d) = H1

fl(Z,O+
q ).
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Proof. Note that ∆(q) = 4d need not be a fundamental discriminant. The
equivalence relations in cl+(4d) and in H1

fl(Z,O+
q ) are defined similarly, so

we only need to show that the two sets of representatives coincide. Indeed,
those in H1

fl(Z,O+
q ) are obtained by (local) proper isometries of q, resulting

in the same discriminant ∆(q). Conversely, we claim that any quadratic
Z-form q′ of rank 2 with ∆(q′) = ∆(q) is diagonalizable over Zp for any
prime p, thus is isomorphic to q in the fppf topology. This is true for all odd
primes p by [9, Thm. 8.3.1]. If p = 2, then by the explicit form of the Jordan
Decomposition Theorem [9, Lem. 8.4.1] q′ is isomorphic over Z2 to a direct
product of forms of rank at most 2, where the possible components of rank
2 are of the form 2exy or 2e(x2 +xy+ y2) for e ∈ N0; note that [9] uses the
classical definition of integral forms, requiring that b be even. None of these
has discriminant 4d for an integer d satisfying our hypotheses. Hence q′ is
diagonalizable over Z2. Moreover, by Lemma 5.6 a local isometry between
q and q′ can be taken to be proper, as they share the same discriminant.
So any Z-form with discriminant ∆(q) is properly isomorphic to q in the
flat topology. This completes the proof. �

Remark 5.16. We justify the exclusion of discriminants of the form−3·4m,
for m ≥ 1, in the hypotheses of Lemma 5.15 by noting that the lemma
is false in those cases. Indeed, the form (2m, 2m−1, 2m) has discriminant
−3 · 4m, but one readily checks that it is not isometric to (1, 0, 3 · 4m−1)
over any finite flat extension of Z2. Thus the class [(2m, 2m−1, 2m)] appears
in cl+(−3 ·4m) but not in H1

fl(Z,O+
(1,0,3·4m−1)). Indeed, PicZ[

√
−3] is trivial;

see, for instance, [15, Exercise 7.9]. It follows from (2.3) and Lemma 4.5
that |H1

fl(Z,O+
(1,0,3))| = 2; alternatively, see the data of Example 5.13. Thus

H1
fl(Z,O+

(1,0,3)) = {[±(1, 0, 3)]}.

5.5. Applications to the classification of binary quadratic forms.
Having studied Cases (I) and (II) separately, we gather together our results.
First we determine the structure of cl(D) for many integers D.

Proposition 5.17. Let D 6= −3 be an integer such that D ≡ 1 mod 4 and
D is not a perfect square. Set q(x, y) = x2 + xy + ((1 − D)/4)y2. Then
cl(D) = cl+(D) = H1

fl(Z,O+
q ).

Proof. The same argument as in the proof of Lemma 5.15 shows that
cl+(D) = H1

fl(Z,O+
q ). Write D = dm2, where d ≡ 1 mod 4 is square-free

and m is odd. Then q = qd,m. Moreover, by Lemma 4.5 and Proposition 5.5
we have H1

fl(Z,O+
q ) = H1

fl(Z, Nd,m) = H1
fl(Z,Od,m). Thus any quadratic

form that is improperly isomorphic to q is also properly isomorphic to q,
hence cl(D) = cl+(D). �
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Proposition 5.18. Let D be any integer that is not a perfect square and
not of the form D = −3 · 4` for any ` ∈ N0. Set q(x, y) = x2 −Dy2. Then
cl(4D) = H1

fl(Z,O+
q )/µ2(Z), where the non-trivial element of µ2(Z) maps

[(a, b, c)] to [(a,−b, c)].

Proof. We have cl+(4D) = H1
fl(Z,O+

q ) by Lemma 5.15. The description
of the structure of H1

fl(Z,Oq) provided by Lemma 5.6 shows that the only
proper isomorphism classes of forms of discriminant 4D that are improperly
isomorphic to each other are those in the same orbit of the µ2(Z)-action. �

Recall that k = Q(
√
d). As noted in the introduction, Gauss proved in

his Disquisitiones Arithmeticae [18] that the elements of cl+(∆(qd)), namely
proper isomorphism classes of forms of discriminant ∆k, are parametrized
by Pic+(Ok). See, for instance, [17, Thm. 58] for an exposition of this result.

If d < 0, Gauss’ classification of forms of discriminant ∆Q(
√
d) treats only

the positive definite forms, namely those for which a, c > 0. The following
claim completes the proper classification.

Theorem 5.19. If d 6∈ {0, 1} is a square-free integer, then

cl+(∆(qd)) = H1
fl(Z,O+

d ) ∼= {±1}µ(d)×Pic+(Ok), where µ(d) =
{

1 d < 0
0 d > 0.

Proof. By Lemma 4.5 we have H1
fl(Z, Nd) = H1

fl(Z,O+
d ), and the latter

properly classifies the integral quadratic forms that are isomorphic to qd
for the flat topology, thus of discriminant ∆k. So if d > 0, then H1

fl(Z, Nd)
injects into cl+(∆k) = cl+(∆(qd)), which is in bijection with Pic+(Ok)
by the classical theorem of Gauss mentioned above. Since H1

fl(Z, Nd) and
Pic+(Ok) have the same cardinality by (2.8), we have obtained a natural
bijection between them.

If d < 0, however, then Pic+(Ok) classifies only the positive definite
forms; see the proof of [17, Thm. 58]. The subset H1

fl(Z, Nd)+ of classes of
positive forms injects into Pic+(Ok) = PicOk as above. If [q] ∈ H1

fl(Z, Nd),
then the isometry diag(

√
−1,
√
−1) shows that [−q] belongs to H1

fl(Z,Od).
Thus if d ≡ 1 (mod 4), then [−q] ∈ H1

fl(Z, Nd) by Proposition 5.5. This
remains true also in the case d ≡ 2, 3 (mod 4) by the decomposition of
Lemma 5.6, since disc(−q) = ∆k. Furthermore, since q realizes only non-
negative values and −q realizes non-positive values, the two forms q and −q
cannot be Z-equivalent. Since every definite form is positive or negative, we
have {±1} ×H1

fl(Z, Nd)+ = H1
fl(Z, Nd), and we have just shown that this

injects into {±1}×Pic+(Ok) = cl+(∆(qd)). Again by (2.8), these sets have
the same cardinality, so our injection is a bijection. �

Remark 5.20. Let D ≡ 2, 3 mod 4 be square-free, and consider a form
q = (a, b, c) of discriminant 4D. We show by a simple calculation that the
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composition of q with its opposite form (a,−b, c) lies in the trivial class of
cl+(4D). It suffices, via the bijection of (1.2), to show that the product of
the corresponding ideal classes in Pic+(OQ(

√
D)) is principal. The following

ideal I is a representative of this product:

I =
(
a,
b

2 −
√
D

)(
a,
b

2 +
√
D

)
=
(
a2, a

(
b

2 +
√
D

)
, a

(
b

2 −
√
D

)
,
b2

4 −D
)
.

Since 4D = disc(q) = b2 − 4ac, we have b2

4 − D = ac, which shows that
I ⊆ (a). On the other hand, since 4D is a fundamental discriminant, it is
easy to see that gcd(a, b, c) = 1 (i.e. q is primitive). This implies that a is
an integral linear combination of a2, ab, ac ∈ I. It follows that (a) ⊆ I, and
hence I = (a) is principal. Thus opposite forms represent inverse classes
in Pic+(OQ(

√
D)). By Lemma 5.15, Proposition 5.18, and Theorem 5.19 we

conclude that

cl(4D) ∼= {±1}µ(D) × Pic+(OQ(
√
D))/(x ∼ x

−1)

and we deduce that cl(4D) inherits an abelian group structure from
Pic+(OQ(

√
D)) if and only if exp(Pic+(OQ(

√
D))) ≤ 2.

The following statement generalizes the result of Gauss mentioned above
to cases in which 4d is not a fundamental discriminant, and, when d < 0,
to forms that need not be positive definite. It is also classical; see, for
instance, [15, Exercise 7.23]. We prove it by modern methods, at the price
of ruling out discriminants of the form −3 ·4`. The theorem remains true in
this case, but Remark 5.16 shows that our cohomological argument must
be modified in order to treat it. If D is an integer that is not a perfect
square, then define

ε̃(D) =
{

0 D > 0 and Nr(Z[
√
D]×) = {±1}

1 otherwise.
(5.8)

Theorem 5.21. For any integer D that is not a perfect square and not of
the form D = −3 · 4` for any ` ∈ N0, there is a bijection

cl+(4D) ∼= {±1}ε̃(D) × Pic(Z[
√
D]).

Moreover, if d 6∈ {0, 1,−3} is square-free, then

cl+(4d) ∼= {±1}ε(d) × Pic(Z[
√
d]).

Proof. Since D is not a perfect square, it may be written uniquely in the
form D = d(m′)2, where d 6= 0, 1 is square-free and m′ ∈ N. Set m = 2m′
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if d ≡ 1 mod 4 and m = m′ otherwise. Observe that Z[
√
D] = Od,m and

qd,m = (1, 0,−D). Consider the exact sequence (2.3) for the basis Ωd,m:

1→ {±1}/Nr(O×d,m)→ H1
fl(Z, Nd,m)→ PicZ[

√
D]→ 1.

The group H1
fl(Z, Nd,m) is equal to H1

fl(Z,O+
d,m) by Lemma 4.5, and hence

is identified with cl+(4D) by Lemma 5.15. The first part of our claim is
immediate. For the second part, there is nothing further to prove if d ≡
2, 3 mod 4; in this case, ε(d) = ε̃(d) by definition. If d ≡ 1 mod 4 is square-
free, then we observed in Remark 5.12 that Nr(Z[

√
D]×) = Nr(O×d ), so

again ε(d) = ε̃(d). This concludes the proof. �

Proposition 5.22. For a square-free integer d 6∈ {0, 1} let md be the num-
ber of pairs [(a,±b, c)] which are distinct in cl+(∆(qd)), and let ld be the
number of such pairs in cl+(−∆(qd)). Let h+

d be the narrow class number
of Q(

√
d). Then

|H1
fl(Z,Od)| =


2µ(d)h+

d d ≡ 1 (mod 4)
2µ(d)h+

d + 2µ(−d)h+
−d −md − ld d ≡ 2 (mod 4)

2µ(d)h+
d + 2µ(−d) · 3η(d)h+

−d −md − ld d ≡ 3 (mod 4).

Proof. If d ≡ 1 (mod 4) then |H1
fl(Z,Od)| = |H1

fl(Z, Nd)| = h+
d · 2µ(d), where

the first equality is Proposition 5.5 and the second comes from (2.8). Other-
wise, use Lemma 5.6 and notice that if d ≡ 2 (mod 4), then −d ≡ 2 (mod 4)
as well, so N ′−d = N−d. On the other hand, if d ≡ 3 (mod 4), then −d ≡
1 (mod 4), and the claim follows. �

Remark 5.23. Let d ≡ 2 mod 4 be square-free. Then |H1
fl(Z,Od)| =

|H1
fl(Z,O−d)| by Lemma 5.6. However, we see from Proposition 5.22 that

this observation does not readily imply any relation between the class num-
bers hd and h−d. Indeed, the class numbers of real and imaginary quadratic
fields behave very differently. For instance, it is well known that only nine
imaginary quadratic fields have class number one, but the Cohen–Lenstra
heuristics [11] suggest that this should be true of infinitely many real qua-
dratic fields.

5.6. On the principal genus theorem. Theorem 5.19 also implies an-
other classical result of Gauss: the principal genus theorem. Recall that
k = Q(

√
d), with d 6∈ {0, 1} square-free. Then for any binary quadratic

form of discriminant ∆k, the composition of q with itself belongs to the
principal genus, namely the genus of the norm form qd. Under the iden-
tification of Lemma 5.15, composition of quadratic forms corresponds to
multiplication in the abelian group H1

fl(Z,O+
d ); we refer the reader to the

discussion in [26, §V.7.3] for details.
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Corollary 5.24. Let d 6∈ {0, 1} be square-free and m ≥ 0. Suppose that
H1

fl(Zp, (O+
d,m)p) embeds in H1(Qp, (O+

d,m)p) for any prime p. For any class
[q] ∈ H1

fl(Z,O+
d,m), the class [q ⊗ q] belongs to the principal genus.

Proof. To alleviate the notation, we write N for Nd,m. Since H1
fl(Zp, Np)

injects into H1(Qp, Np) for any p by assumption, by (3.2) and Lemma 4.5
we obtain

Cl∞(O+
d,m) = Cl∞(N) = ker[H1

fl(Z, N)→ H1(Q, N)],

showing that Cl∞(O+
d,m) is the principal genus of q. Moreover, the quotient

H1
fl(Z, N)/Cl∞(N) = X1

Sr∪{∞}(Q, N) has exponent 2 by Proposition 3.3
and Remark 3.4 whose hypotheses are satisfied thanks to our assumptions.
Recall that N is commutative, so that H1

fl(Z, N) is an abelian group. Thus
for any class [q] ∈ H1

fl(Z, Nd), the class of the tensor product q ⊗ q lies in
Cl∞(N) = Cl∞(O+

d,m). �

Example 5.25. The hypotheses of Corollary 5.24 were shown to hold for all
O+
d,1 in (3.4). They also hold in the case of O+

d,2 where d ≡ 1 (mod 4), i.e. for
the norm form qd,2 = (1, 0,−d) corresponding to the order Z[

√
d]. Indeed, if

p | d then the embedding follows from qd,2 being of simple degeneration and
multiplicity one (cf. [3, Cor. 3.8]). If p - d and p is odd, it follows from (O+

d,2)p
being reductive (see the proof of [10, Prop. 3.14]). If p = 2, then (O+

d,2)p is
not smooth, yet the embedding holds since all forms in H1

fl(Z2, (O+
d,2)2) are

diagonalizable as in the proof of Proposition 5.15. Hence [q⊗q] ∈ Cl∞(O+
d,2).

Remark 5.26. Proposition 3.3 shows that Cl∞(Nd,m) is embedded as a
subgroup ofH1

fl(Z, Nd,m). If d 6= −3, then the latter group is a disjoint union
of classes of integral quadratic binary forms of discriminant ∆(qd,m) of all
genera. This embedding holds for any twisted form of qd,m, hence, under
the hypotheses of Corollary 5.24, the quotient H1

fl(Z, Nd,m)/Cl∞(Nd,m) '
X1

Sr∪{∞}(Q, Nd,m) is in bijection with the set of proper genera of qd,m. Thus
there are 2|Sr|−1 such proper genera, as was initially proved by Gauss; see
also [30, §5, Example 2] and [33, Cor. 16].

Appendix A. Some explicit presentations of group schemes
In this section we will write down equations cutting out the algebraic

groups Õd,m and O+
d,m and use them to provide an explicit proof of Propo-

sition 5.1, which describes their quotient.

Lemma A.1. Let d 6= 0, 1 be square-free and m ∈ N, and define the ideal
Id,m ⊂ Z[α, β, γ, δ, t] of a polynomial ring in five variables as follows. In
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Case (I), set

Id,m = (α2 + αβ + cd,mβ
2 − 1, 2αγ + αδ + βγ + 2cd,mβδ − 1,

γ2 + γδ + cd,mδ
2 − cd,m, (αδ − βγ)t− 1, u2 − u),

where cd,m was defined in (4.1) and u = 1− αγ − βγ − cd,mβδ.
In Case (II), define Id,m = (α2 − cd,mβ2 − 1, αγ − cd,mβδ, γ2 − cd,mδ2 +

cd,m, (αδ − βγ)t− 1, t2 − 1).
Then Õd,m = SpecZ[α, β, γ, δ, t]/Id,m.

Proof. We first treat Case (II), in which qd,m(x, y) = x2 − cy2; we write c
for cd,m for brevity. Consider the matrix

A =
(
α β
γ δ

)
.

The identity qd,m ◦A = qd,m amounts to

qd,m = (αx+γy)2−c(βx+δy)2 = (α2−cβ2)x2+(2αγ−2cβδ)xy+(γ2−cδ2)y2.

Equating the coefficients of x2, xy, and y2, and noting that A must be
invertible, we obtain
Od,m = SpecZ[α, β, γ, δ, t]/(α2−cβ2−1, αγ−cβδ, γ2−cδ2+c, (αδ−βγ)t−1).

Observe that the identity c((αδ−βγ)2−1) = 0 is satisfied in Od,m. This can
be seen by taking determinants in the matrix equation ABqd,m

At = Bqd,m

corresponding to the condition qd,m ◦A = qd,m; alternatively, we leave it as
an exercise for the reader to deduce this identity from the equations cutting
out Od,m. Therefore, (αδ − βγ)2 − 1 = 0 (or, equivalently, t2 − 1 = 0), in
Õd,m. One now checks explicitly that the ring Z[α, β, γ, δ, t]/(α2 − cβ2 −
1, αγ − cβδ, γ2 − cδ2 + c, (αδ − βγ)t − 1, t2 − 1) is torsion-free, and this
implies the claim in Case (II).

Now suppose that we are in Case (I), i.e. that d ≡ 1 mod 4 and m is odd.
Then qd,m = x2 +xy+ cy2. In this case, the condition qd,m ◦A = qd,m gives

qd,m = (αx+ γy)2 + (αx+ γy)(βx+ δy) + c(βx+ δy)2

= (α2 +αβ+ cβ2)x2 + (2αγ+αδ+βγ+ 2cβδ)xy + (γ2 + γδ+ cδ2)y2.

Hence we obtain

Od,m = SpecZ[α, β, γ, δ, t]/(α2 + αβ + cβ2 − 1,
2αγ + αδ + βγ + 2cβδ − 1, γ2 + γδ + cδ2 − c, (αδ − βγ)t− 1).

By similar considerations to the previous case, the identity c((αδ − βγ)2 −
1) = 0 holds in Od,m. Set u = 1−αγ−βγ− cβδ. Then one of the equations
cutting out Od,m may be written as 2u = αδ−βγ+1. Hence c((2u−1)2−1) =
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4c(u2 − u) = 0 in Od,m, and thus u2 − u = 0 in Õd,m. Since the ring
Z[α, β, γ, δ, t]/Id,m is torsion-free, the claim follows. �

Corollary A.2. Let d 6= 0, 1 be square-free and m ∈ N. Maintaining the
notation of Lemma A.1, we have

O+
d,m =

{
SpecZ[α, β, γ, δ, t]/(Id, u− 1) : Case (I)
SpecZ[α, β, γ, δ, t]/(Id, t− 1) : Case (II).

Proof. In all cases, the identity t = 1 is immediate from the definition of
O+
d,m. In Case (I), this implies that the identity 2u− 1 = 1 holds in O+

d,m,
and hence so does u = 1. We leave the verification that these rings are
torsion-free to the reader. �

Remark A.3. It is an instructive exercise to verify Lemma 4.5 for the bases
Ωd,m by showing that the map x 7→ α, y 7→ β is an explicit isomorphism of
commutative rings between the coordinate ring of Nd,m and that of O+

d,m.

With the previous results in hand, we can give an explicit proof of Propo-
sition 5.1.

Proposition. Let d 6= 0, 1 be square-free and m ∈ N. Then

Õd,m/O+
d,m '

{
Z/2 : Case (I)
µ2 : Case (II).

Proof. The claim follows straightforwardly from the explicit presentations
obtained in Lemma A.1 and Corollary A.2. In the course of the proofs of
those statements, we showed that the relation (αδ − βγ)2 − 1 = 0 always
holds in Õd,m. Hence the determinant induces a map det : Õd,m → µ2
corresponding to the ring homomorphism Z[t]/(t2−1)→ Z[α, β, γ, δ, t]/Id,m
sending t to αδ − βγ.

Now suppose we are in Case (II). If R is a Z-algebra, then the sequence
of groups

1→ O+
d,m(R)→ Õd,m(R) det→ µ2(R)→ 1

is exact. Indeed, the only part of this statement not immediate from Lem-
ma A.1 is the surjectivity of the determinant, obtained by observing that
if x ∈ µ2(R), then diag(x, 1) ∈ Õd,m(R).

In Case (I), on the other hand, the determinant need not be surjective.
To see this, recall from the proof of Lemma A.1 that if A ∈ Õd,m(R), then
detA = 2u−1 for u = 1−αγ−βγ−cd,mβδ ∈ R, following our usual notation
for matrix elements. Now consider the Z-algebra R = Z[t]/(t2− 1); it is, in
fact, faithfully flat over Z of finite presentation. Observe that t ∈ µ2(R),
but there is no u ∈ R such that 2u − 1 = t. Thus the determinant map
Õd,m(R)→ µ2(R) is not surjective.
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Instead, consider the map D : Õd,m → Z/2 corresponding to the ring
homomorphism Z[t]/(t2 − t) → Z[α, β, γ, δ, t]/Id,m sending t to 1 − αγ −
βγ− cd,mβδ. This notation reflects that D is the Dickson morphism Dqd,m

;
cf. [13, (C.2.2)]. We claim that

1→ O+
d,m(R)→ Õd,m(R) D→ Z/2(R)→ 1

is an exact sequence of groups for any Z-algebra R. Indeed, if x ∈ Z/2(R),
then

Ax =
(

1 0
1− x 2x− 1

)
∈ Õd,m(R)

satisfies D(Ax) = x, so ψ is surjective. It follows from Corollary A.2 that
kerD = O+

d,m(R). �

References
[1] S. Anantharaman, “Schémas en groupes, espaces homogènes et espaces algébriques sur une

base de dimension 1”, Bull. Soc. Math. Fr. 33 (1973), p. 5-79.
[2] M. Artin, A. Grothendieck & J.-L. Verdier (eds.), Théorie des Topos et Cohomologie

Étale des Schémas (SGA 4), Lecture Notes in Mathematics, Springer, 19721973.
[3] A. Auel, R. Parimala & V. Suresh, “Quadric surface bundles over surfaces”, Doc. Math.

Extra vol. (2015), p. 31-70.
[4] A. Borel, “Some finiteness properties of adele groups over number fields”, Publ. Math.,

Inst. Hautes Étud. Sci. 16 (1963), p. 5-30.
[5] S. Bosch, W. Lütkebohmert & M. Raynaud, Néron Models, Springer, 1990.
[6] N. Bourbaki, Éléments de mathématique, Algèbre commutative, Hermann, 1972.
[7] D. A. Buell, Binary Quadratic Forms, Classical Theory and Modern Computations,

Springer, 1989.
[8] B. Calmès & J. Fasel, “Groupes Classiques”, in Autour des schémas en groupes. Vol. II,

Panoramas et Synthèses, vol. 46, Société Mathématique de France, 2015, p. 1-133.
[9] J. W. S. Cassels, Rational Quadratic Forms, London Mathematical Society Monographs,

vol. 13, Academic Press Inc., 1978.
[10] V. Chernousov, P. Gille & A. Pianzola, “A classification of torsors over Laurent poly-

nomial rings”, Comment. Math. Helv. 92 (2017), no. 1, p. 37-55.
[11] H. Cohen & H. W. Lenstra, “Heuristics on class groups of number fields”, in Number

theory (Noordwijkerhout 1983), Lecture Notes in Mathematics, vol. 1068, Springer, 1983,
p. 33-62.

[12] B. Conrad, “Math 252. Properties of orthogonal groups”, lecture notes available at http:
//math.stanford.edu/~conrad/252Page/handouts/O(q).pdf.

[13] ———, “Reductive group schemes”, in Autour des schémas en groupes. Vol. I, Panoramas
et Synthèses, vol. 42-43, Société Mathématique de France, 2014, p. 93-444.

[14] ———, “Non-split reductive groups over Z”, in Autour des schémas en groupes. Vol. II,
Panoramas et Synthèses, vol. 46, Société Mathématique de France, 2015, p. 193-253.

[15] D. A. Cox, Primes of the form x2 + ny2. Fermat, class field theory, and complex multipli-
cation, Pure and Applied Mathematics, John Wiley & Sons, 2013.

[16] M. Demazure & A. Grothendieck (eds.), Séminaire de géométrie algébrique du Bois
Marie 1962–64. Schémas en groupes (SGA 3). Tome I: Propriétés générales des schémas
en groupes, 2nd ed., Documents Mathématiques, vol. 7, Société Mathématique de France,
2011.

[17] A. Fröhlich & M. J. Taylor, Algebraic Number Theory, Cambridge Studies in Advanced
Mathematics, vol. 27, Cambridge University Press, 1990.

[18] C. F. Gauss, Disquisitiones Arithmeticae, 1801.

http://math.stanford.edu/~conrad/252Page/handouts/O(q).pdf
http://math.stanford.edu/~conrad/252Page/handouts/O(q).pdf


On the flat cohomology of binary norm forms 553

[19] P. Gille, “Sur la classification des schémas en groupes semi-simples”, in Autour des schémas
en groupes. Vol. III, Panoramas et Synthèses, vol. 47, Société Mathématique de France, 2015,
p. 39-110.

[20] P. Gille & A. Pianzola, “Isotriviality and étale cohomology of Laurent polynomial rings”,
J. Pure Appl. Algebra 212 (2008), no. 4, p. 780-800.

[21] J. Giraud, Cohomologie non abélienne, Grundlehren der Mathematischen Wissenschaften,
vol. 179, Springer, 1971.

[22] A. Grothendieck, “Éléments de géométrie algébrique: I. Le langage des schémas”, Publ.
Math., Inst. Hautes Étud. Sci. 4 (1960), p. 5-228.

[23] ———, “Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes
de schémas, Seconde partie”, Publ. Math., Inst. Hautes Étud. Sci. 24 (1965), p. 5-231,
rédigés avec la collaboration de J. Dieudonné.

[24] M. Hazewinkel, “Local class field theory is easy”, Adv. Math. 18 (1975), p. 148-181.
[25] J. Klüners & S. Pauli, “Computing residue class rings and Picard groups of orders”, J.

Algebra 292 (2005), no. 1, p. 47-64.
[26] M.-A. Knus, Quadratic and Hermitian Forms over Rings, Grundlehren der Mathematischen

Wissenschaften, vol. 294, Springer, 1991.
[27] H. Matsumura, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics,

vol. 8, Cambridge University Press, 1989.
[28] M. Morishita, “On S-class number relations of algebraic tori in Galois extensions of global

fields”, Nagoya Math. J. 124 (1991), p. 133-144.
[29] Y. Nisnevich, “Étale Cohomology and Arithmetic of Semisimple Groups”, PhD Thesis,

Harvard University (USA), 1982.
[30] T. Ono, “On some class number relations for Galois extensions”, Nagoya Math. J. 107

(1987), p. 121-133.
[31] A. N. Skorobogatov, Torsors and Rational Points, Cambridge Tracts in Mathematics,

vol. 144, Cambridge University Press, 2001.
[32] J. Tate & F. Oort, “Group schemes of prime order”, Ann. Sci. Éc. Norm. Supér. 3 (1970),

p. 1-21.
[33] W. C. Waterhouse, “Composition of norm-type forms”, J. Reine Angew. Math. 353 (1984),

p. 85-97.

Rony A. Bitan
Afeka, Tel Aviv Academic College of Engineering
Tel Aviv 6910717, Israel
E-mail: ronyb@afeka.ac.il

Michael M. Schein
Department of Mathematics
Bar-Ilan University
Ramat Gan 5290002, Israel
E-mail: mschein@math.biu.ac.il

mailto:ronyb@afeka.ac.il
mailto:mschein@math.biu.ac.il

	1. Introduction
	1.1. Organization of the paper
	Acknowledgements

	2. Preliminaries
	3. The class set of the norm torus
	4. Norm forms of orders in quadratic number fields
	4.1. Orthogonal groups
	4.2. Orders in quadratic fields

	5. The flat cohomology of the orthogonal group of a norm form
	5.1. A quotient map
	5.2. Twisted forms
	5.3. Case (I)
	5.4. Case (II)
	5.5. Applications to the classification of binary quadratic forms
	5.6. On the principal genus theorem

	Appendix A. Some explicit presentations of group schemes
	References

