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On the spectrum of irrationality exponents of
Mahler numbers

par DzMITRY BADZIAHIN

RESUME. Nous considérons les fonctions de Mahler f(z) qui véri-fient I’équa-

tion fonctionnelle f(z) = gz;f(zd), ol 7318 est dans Q(2) et d > 2 est un

entier. Nous montrons que, pour tout entier b vérifiant |b| > 2, ou bien f(b) est
rationnel, ou bien son exposant d’irrationalité est rationnel. En outre, nous
déterminons la valeur exacte de exposant d’irrationalité de f(b) lorsque on
connait le développement en fraction continue de la fonction de Mahler f(z).
Cela améliore un résultat de Bugeaud, Han, Wen et Yao [6], qui ne donne
qu’une borne supérieure de cet exposant.

ABSTRACT. We consider Mahler functions f(z) which satisfy the functional
equation f(z) = ggz;f(zd) where % is in Q(z) and d > 2 is an integer.
We prove that, for any integer b with |b| > 2, either f(b) is rational or its
irrationality exponent is rational. We also compute the exact value of the
irrationality exponent of f(b) as soon as the continued fraction expansion of
the Mahler function f(z) is known. This improves the result of Bugeaud, Han,
Wen, and Yao [6] where only an upper bound of the irrationality exponent

was provided.

1. Introduction

Consider a Laurent series f(z) € Q((271)). It is called a Mahler function
if for any z inside its disc of convergence f satisfies an equation of the form

S Pi(2)f(z") = Q(2)
1=0

for some integers n > 1,d > 2 and polynomials Py, ..., P,,Q € F[z] with
PyP, # 0. The values f(b) for integers b inside the disc of convergence
of f are called Mahler numbers. In this paper we investigate the following
problem:

Problem A. Determine the set Ly of irrationality exponents of irrational
Mahler numbers.

Manuscrit regu le 13 novembre 2018, accepté le 15 juin 2019.
2010 Mathematics Subject Classification. 11J82, 05A15, 11B85.
Mots-clefs. Mahler functions, Mahler Numbers, Irrationality exponent, Hankel determinant.
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We will call the set Ly the spectrum of irrationality exponents of Mahler
numbers. Recall that the irrationality exponent u(€) of an irrational real
number ¢ is the supremum of real numbers p such that the inequality

_P
5q

has infinitely many rational solutions p/q. This is one of the most important
properties of real numbers which indicates how well £ is approached by
rationals. Note that by the classical Dirichlet approximation theorem we
always have p(§) > 2.

Similar questions have been recently asked by several authors. In 2008,
Bugeaud [4] proved that for any rational w > 2 there are infinitely many
automatic numbers whose irrationality exponent is equal to w. It is well
known [3] that automatic numbers are also Mahler numbers, therefore
Bugeaud’s result straightforwardly implies that L£,; contains all rational
numbers not smaller than two. Later in 2009, Adamczewski and Rivoal [1]
commented on that result with the following question:

<qg*

Problem B. Is it true that the irrationality exponent of an automatic
number is always a rational number?

Bugeaud, Krieger and Shallit [7] extended Problem A to the set of mor-
phic numbers. They showed that the spectrum of irrationality exponents of
morphic numbers, on top of Q, contains all Perron numbers greater than or
equal to 2. Recall that a Perron number is a positive real algebraic integer,
which is greater in absolute value than all of its conjugates. With respect
to this result the following problem was posed:

Problem C. Determine the set of irrationality exponents of morphic num-
bers. In particular, is it true that the irrationality exponent of a morphic
number is always algebraic?

Sometimes in the literature [10], Problems B and C are referred to as
conjectures.

In this paper we restrict our research to solutions f(z) of the following
functional equation

Ly )= 5

Theorem 1.1. Let f(z) € Q((z7 1)) be a solution of (1.1) and b € Z be
inside the disc of convergence of f(z). Assume that A(b")B(b%") # 0 for
all m € Z>o and that f(b) is irrational. Then the irrationality exponent of
f(b) is a rational number.

%, ABeQ[, B#0, deZ d>2.

In other words, Theorem 1.1 shows that the solutions of (1.1) do not give
any extra contribution to the spectrum L;; on top of the Mahler numbers
constructed by Bugeaud.
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The key ingredient in the proof of Theorem 1.1 is that u(f(b)) can be
derived from the information about the continued fraction expansion of the
Laurent series f(z). It has been known for some time that these two notions
are related. A similar idea was applied by various authors to obtain upper
bounds of the irrationality exponents of certain Mahler numbers (see for
example, [1, 2, 5, 8, 9]). The most general result in that direction is due
to Bugeaud, Han, Wen, and Yao [6], where they manage to compute an
upper bound of the irrationality exponent of f(b) from the distribution
of the associated non-zero Hankel determinants. In some cases they get
p(f(b)) < 2 and then, due to the Dirichlet theorem, the bound is sharp.
However, to the best of our knowledge, no one was able to apply these
ideas and compute p(f(b)) before, if it is strictly bigger than two. In this
paper we overcome that obstacle and provide the precise value of p( f(b)) for
all functions f satisfying (1.1), based on the continued fraction expansion
of f(2).

Recall that a Laurent series f(z) € Q((z7!)) admits the continued frac-
tion expansion

f(z) =lao(2),a1(2),...,ax(2),...],

where a; € Q[z]. It is finite if and only if f(z) is a rational function. As in the
case of real numbers, we call the rational function [ag(z),a1(2), ..., an(2)] =
Pk (2)

O] the n-th convergent of f. Assuming that p, and ¢, are coprime, we

denote by di the degree of the denominator gy.

Theorem 1.2. Let f(z) € Q((271)) \ Q(2) be a Laurent series which sat-
isfies (1.1). Let b € Z with |b] > 2 be inside the disc of convergence of f
such that A(b¥")B(b®™") # 0 for all m € Z=q. Then

(1.2) u(f(b)) =1+ limsup i1
k—oo

Unfortunately, Theorem 1.2 does not always allow to compute p(f(b))
for given polynomials A and B in (1.1). This is because the formula (1.2)
requires the knowledge of the whole continued fraction of f. Finding it
is usually a difficult task. However in many cases, as soon as we know
that u(f(b)) > 2, we can compute the irrationality exponent of f(b) after
computing only finitely many convergents of f. We demonstrate the method
by computing the irrationality exponents of those Mahler numbers f(b)
from [2], for which we know that u(f(b)) > 2.

Theorem 1.3. Let fa = fa,.4,(2) € Z((271)) be a solution of the equation
(1'3) fa(z) = (22 + a1z + a2)fa(z3); ay,az € 7.

For any integer b, |b| = 2 one has
(1) for all s € Z, if fs2(b) is irrational, then u(fs (b)) = 3;
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2) foralls €7, if fo _g2(42 b) is irrational, then
$3,—52(s24+1)
M(f83,782(82+1) (b)) = 3;

(3) if fr2,1(b) is irrational, then p(fi21(b)) = 2.

The paper has the following structure. Sections 2 and 3 are devoted to
the proof of Theorem 1.2. In Section 4, we develop a theory of gaps in
the sequence dj, of convergents degrees. We show that Theorem 1.1 follows
from Proposition 4.4, the key result in that theory. The proposition itself
is proven in Section 5. Finally, we end up with the proof of Theorem 1.3 in
Section 6.

2. Useful estimate on irrationality exponent

The following proposition is a modification of Lemma 4.1 from [1] which
we will need in the proof. But it may be of independent interest.

Proposition 2.1. Let o« € R. Assume that there exist two sequences

(pj
an n
sequences O,, 6, and T, of real numbers with 0, > 1,6, > 0, 7, > 0 such

that

Jnen € Q and (%)nEN € Q of rational approximations of o and three

On .

an
(c) (g,)™ > qi’rf, and ¢ — 00 as n — oo.
for alln € N. Then we have the upper bound

)
b) la— B2 =g, 70 Ja =B = (qp)
)

On, (14 7,)0,
(2.1) p(e) < lim sup max {1 + = HT)} .

n—oo 5n ’ 677,

The immediate corollary of this proposition is that if the sequences 6,
and 9§, satisfy 6,/0, — 1 as n — oo and 7, > 1 then the sequence of
approximations p/, /¢, to « is nearly optimal, i.e.

p(a) = limsup(1l + 7).

n—oQ

Proof. Denote by ¢ = ¢(q),) a real number such that the inequality

/
‘a—%b<dﬁrkﬁ
dn
is satisfied for all n € N. Let p/q be a rational number whose denominator
q is large enough. We choose the minimal integer n such that 2cq < (¢},)™.
Condition (c) guarantees that such n exists. Then, by the choice of n and
Condition (c), we have that ¢ > ¢’». By the triangle inequality we have
/ /
Pl ‘p_p;z _’a_py
q 9 In
Now we have two possibilities:

(2.2)
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(1). The case p/q # p),/q,- Then |p/q — p/a,| = (qg,)~" and from (2.2)
we get that | — p/q| > (2¢¢,,)~'. We then apply Condition (a) to get

1
‘a—p’ >
q

(2). The case p/q = pl,/q,,- Then we have

o=l
a—=|=|a
q

/
0
_Pn L+mn) 5
/

n

> (g,) 7 > g

To conclude the proof of the proposition, consider some number p strictly
bigger than the right hand side of (2.1). Then, there exists ng € N such
that u > 1+ 6,/, and u > (1 + 7,)0, /0, for all n > ng. Choose n1 > ng
such that for n < ng we have (q;,)™ < (q;,,)™. Then, for any p/q with
2¢q > (q;,,)™1, we have that

ot
q

and hence p(a) < p. O

3. Proof of Theorem 1.2

For convenience, denote the leading coefficients of A and B in equa-
tion (1.1) by « and f, and denote the degrees of A and B by 7, and 74,
respectively.

Consider the sequence (py(z)/qx(2))rezs, of the convergents of f. Denote
the degree of g by di. Then, by the standard property of convergents, we
have

(3.1) @ (2)f(2) —pr(z) = > ewiz,

1=dp 41

where ¢, ; are some real coefficients, and cg g, ., is always nonzero.
By substituting 2% in place of z in equation (3.1) and then using the
functional relation (1.1) for f(z%), we get that:

(382)  BEGEDE) - ARnED = AR) Y. aur

1=dp 41

After repeating this procedure m times we derive the following equation:

(3.3) Qem(2) f(2) = pem(2) = U(2) Z ck’iz_dmi,

1=dg41
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where
m—1 m—1
Geom(2) = [[ BCHawz), prm(2) = [] ACH)pe(z"),
<3.4) t=0 o t=0
U(z) = [ AG=")
t=0

Lemma 3.1. Let b € R with |b| > 1 be inside the disc of convergence of f.

Assume that for all t € Z=q we have AbY)YB(bY) # 0. Then, for m large
enough, we have

gk (0)] = B |7 (1) gpg

Ta_

(3.5) o
|Gr,m (D) f (b) — pr,m (b)| =< Ozm|b|d (d—l_dk+1).

Here, the constants implied by the “<” signs may depend on A, B, and k,
but do not depend on m.

Proof. Since b is inside the disc of convergence of f, it is also inside the disc
of convergence of

2 (g (2) F(2) — pr(2)) = D Chiitde, 2 -
i=0

By letting 2 tend to infinity, the right hand side tends to cggq,., = 1.
Therefore, for m large enough, one has

oo
(3.6) Z C]w'b_dmi = ’b’—dmdk+l_
i=dp 41
Next, notice that
< Az 2 :
125 =TI PaG=™)
dira H A ’

1—o az" =0

where P4(z) is a polynomial with P4(0) = 1. One can check that the disc
of convergence of this infinite product is {z : |z| > 1}. Moreover, since
A(bdt) # 0 for all t € Z, the product

”ﬁl A
Pl abdtra

converges to a nonzero element as m — oo. In other words,
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and hence

O LT T = 4

(3.7)

nﬁl A®)
t=0

By analogous arguments we get the same estimate for the product of B (bdt ),
with ¢ running from 0 to m — 1.

The last ingredient of the proof is that for m large enough, |q, (b )| <
b|™ % Now, (3.3), (3.4), (3.6), and (3.7) give:

m—1
m m i
1 BO™)au™™)| = |8 b (1 +e)

t=0

’CIk,m(b)‘ =

and

|G1.m (0)f (D) = Dre.m (B))]

m—1 . 00 ‘ .
- H A(bd) Z Ck:,ib_dmZ = ‘a‘m‘b‘d (ﬁ*dkﬂ)' 0
t=0 i=dpy1

As an immediate corollary of (3.5) we have that

(38) |Qk,m(b)‘ _ bdm(dk-f—%-‘ro(l))
and
(3.9) (G (0) F(B) — i (b)] = b~ (Bera=r+o(),

Since the sequence dj tends to infinity with k, for any ¢ > 0 one can choose
k = k(e) such that

ed/r<;>max{dr_a1 +1’d?z)1 —l—l}.
For that & we can choose m big enough (m > mg(k)) so that the absolute
values of o(1) in (3.8) and (3.9) are smaller than 1/2. Then we have

dp1(1+e) dpy1(1—e€)

(3'10) ka,m(b)_ =9 < |Qk,m(b)f(b) _pkz,m(b)| < Qk,m(b)_ T
Since, by letting k — oo, we can make € as small as we wish, we immediately
have pu(f(b)) > 1+ limsup d(’;%. For convenience, let us denote the ratio
di+1/dy by O and define

d
p = lim sup SRl
dy;
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3.1. Upper bound for p(f(b)). Foragiven ky € N, define K = K (k) €
N as the minimal possible value such that

(311) ClK+1 >d- dk0+1 —Ta + d+ 1.

Consider any k in the range ky < k < K and consider an arbitrary m >
M = M(ko) := max{mo(ko), mo(ko + 1),...,mo(K)}, so that the equa-
tion (3.10) is satisfied for all values k between ko and K. Equation (3.10)
yields

41
Dk,m (D) _1_( d, +€’“’m)
3.12 b) — = q ., ,
( ) | ( ) ka,m(b) | k,

where supy, <k« m>n |€k,m| tends to zero as kg tends to infinity.
Now we construct sequences P, /@, and P} /Q) in the following way:

P prom(®) P protam(b) Pg—ky _ Pr-1,m(b)
Qr @) Q2 Grerim(®) T Qrpy  qx-1,m(D)’
Pl prorim () P3 pror2,m(b) Py, prm(b)

ey

QL o) QT Gror2m (D) Kk axm(b)

Then we continue defining the sequences by increasing the index M. That
is, for any u € Z>o and any v € {1,..., K — ko} we define
Pk —ko)+v _ Pro+o—1,M+u(b) P ko) 4o _ Pho+v,M+u(b)
Qu(K—kg)—H} Qko—l—v—l,M—I—u(b) ’ Q;(K7k0)+v kao—i-v,M—i-u(b)

One can see from (3.12) that the following sequences (9, )nen and (7, )neN
satisfy Condition (b) of Proposition 2.1:

o dk‘o +v+1

dg,
_ otv . .

F€hotrv—1,M+u} Tu(K—ko)+v ‘= d
ko+v

dk‘o +v—1

5u(K—ko)+'u : + €kg+o, M—+u-

Now we define a sequence (6)nen so that Condition (a) is satisfied.
By (3.8) we have that for any k € {ko,..., K} and for any m > M,
dg+1+7p/(d—1)+0(1)
|Gkr1,m (D) = qr,m (D)] AkFre/C@ D50 = [qp, 1, (D)

where, as for €x m, SUPg <k<k, m>M |€f | tends to 0 as ko tends to infinity.
The last equation suggests the following formula for 6,,:

di41
7+6*
‘ dp, k,'m’

L dko +v

0 = + €,
u(K—ko)+v * ko+v—1,M+u-"
dko—i-’u—l

It remains to verify Condition (c). The fact that Q% tends to infinity

with n is obvious. Because of Condition (b), the equation (Q/,)™ > Qi’ff
is equivalent to:

(3.13) |Qnf(b) — Pp| < |Quy1f(D) — Pryal-
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By definition, for any u € Zso and v € {1,...K — kg — 1}, we have

Q’/U‘(kao}i»v = QU(K—kO)+U+1 and P’[L(K*kg)#»’u = Pu(K—ko)—i-'U—l-l and both

sides of (3.13) coincide for n = u(K — ko) + v. Therefore it only remains to

verify (3.13) for n = (u+1)(K — ko). From the estimate (3.9) and equations
/

(1) (K—ko) = K M+u(b), Q(ut1)(K—ko)+1 = Gko,M+u+1(b) we have

\qrc p1+u(D) f(b) — Pr M4u(b)] = p=d" T (dr1— g2 +o(1))

(3.11)  _ smtut1 _Ta_ 4,
< b (dho 1= 0(1)) — |Gk, 1 +ut1(0) f (D) — Pro,m4ut1(D)]-

After all conditions of Proposition 2.1 are checked, we apply it to get
9u(K—l€0)+U eu(K—ko)—&—v
w(f(0)) <limsup max 1+ ——— (1+ 7, x_ — 5.
( ( )) tseo kg<v< K 5u(K_k0)+1; ( u(K k0)+v) 5u(K—k0)+y

Notice that by construction, 6, /0, tends to 1 as kg tends to infinity. Also,
as kg tends to infinity, we have that
dk0+v+1
Tu(K—k —_ .
u( 0)+v dk0+v

for all v > 0 and v between kg and K. This leads to the upper bound
dy,
p(f(b)) < limsup {1 -t } :
n— 00 dn

which now coincides with the lower bound for u(f(b)). That proves Theo-
rem 1.2.

4. Gaps in the set of values dj

Theorem 1.2 suggests that in order to compute the irrationality exponent
of a Mahler number f(b), we need to consider large gaps in the sequence
(di)ken of degrees of the denominators of the convergents of f(z).

Define by ® the set of all values dj:

& =0(f):={dr : ke N}

We say that [u,v] is a gap in ® of size r > 0 if u and v are elements of ®,
r = v —u and no elements w with u < w < v are in ®. For the gap [u,v] in
& we say that p(z)/q(2) is gap’s convergent if p(z)/q(z) is a convergent of
f and deg(q) = u. To emphasize that this convergent is associated with the
gap [u,v] we will use the notation p,(z)/qu(z). To avoid abuse of notation,
in the remaining part of the paper the notion p,(z)/q.(z) will always mean
the gap’s convergent, i.e. deg(qy,) = u.

In further discussion we always assume that the value b € N satisfies the
conditions of Theorem 1.2. It implies that if all gaps in ® are of size at



440 Dzmitry BADZIAHIN

most 2% then u(f(b)) = 2. Indeed, we have

y w4 TatT
w(f(b) =1+ limsup — < lim <1+d‘1> =2
gaps [up] of ® U YO U
Therefore in order to compute the irrationality exponent of f(b) it is suf-
ficient to consider gaps in ® of a bigger size than T;’l_i;”. We call such
gaps big. We introduce a partial order on the set of big gaps. We say that
[u,v] < [u/,v'] if there exists m € N such that

pu(z) T AGRY) pu(z")
qw(z) Q) B(zT)  qu(z7)’

This definition is justified by the following lemma.
Lemma 4.1. Let [u,v] be a big gap in ®. Then the fraction

A(2)pu(z?)

B(z)qu(z)
is a convergent of f. Moreover, the gap in ®, which corresponds to this
convergent, has size bigger than v — u.

Proof. Denote by C(z) the polynomial ged(A(2)py(2%), B(2)qu(2?)) and let
re := deg(C). From (3.2) we have that

B(2)qu(z%) A(2)pu(2?)
C(z) C(2)

Here, ||g|| denotes the biggest degree of z with non-zero coefficient in Lau-
B(x)au(z?) . q AE)pu(z?)
C(2) C(2)

fz) =

‘:ra—rc—dv.

(4.1) ‘

rent series g. We have that are coprime and more-

over,

B(z)qu(zd) B
(4.2) deg (C(z) =rp+du—r.<dv+r.—rg.
Ta+7p .

The last inequality is true because for big gaps we have v —u > ~5
Hence
A(Z)pu(zd)/B(Z)Qu(zd)
C(2) C(2)

is a convergent of f and the size of its corresponding gap is

(dv+re—1s) —(rp+du—re) =2rc+dlv—u)—re—rp >v—u. O

We say that a big gap [u,v] in ® is primitive if there are no other big
gaps [v/,v] in ® such that [u/,v] < [u,v]. A primitive gap [u,v] generates
the ordered sequence of big gaps

[u, v] = [ug, vo] < [u1,v1] < [ug,v2] < ...
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such that
pun+1 (Z) — A(z)pun (Zd)/B(Z)qun (Zd)
Qunir (2) C(z) C(z)

Then the formula (1.2) for u(f(b)) from Theorem 1.2 can be rewritten as
follows:

(4.4) p(f(b) =1+ sup {lim sup

[UO ,Uo] is primitive 1—00 uni

(4.3)

Un,

}u{1}.

Lemma 4.2. The size of a primitive gap in ® does not exceed %(m—i—m).

Proof. Suppose the contrary: the size of a primitive gap [u,v] in ® is bigger
than %(rd +1p). Let w be the biggest integer such that dw < v —ry (i.e.
—rp—1
w= (251,
Assume that w lies inside a big gap [s,t] in ®, that is, s < w < t. Then,
by (4.1) and (4.2) the gap, associated with the convergent

A(2)ps(27)
B(z)gs(2)’

contains [ds+ry, dt—rg]. Obviously, ds+r, < vand dt—r, = v—r,—r, > u.
Therefore this gap intersects with [u,v] and hence it must coincide with
[u,v]. We get [s,t] < [u,v], which is a contradiction.

We then deduct that w does not lie inside a big gap. In other words,

there is an element s € ® with 0 < w — s < 4. Consider the fraction
pz) _ AG)pa(:)
q(z)  B(2)qs(2?)

Then by (3.2), we have ||¢(2)f(z) — p(2)|| < ¢ —d(s+ 1), which is strictly
smaller than —u. Indeed,

_Ta—i—rb
d—1

d(s—i—l)—ra}d(w +1>—ra>v—ra—rb— 1(7“@—1—?";,)211,.

d—
Divide ¢ by ¢, with the remainder: ¢(z) = a(z)qu(z) + r(z) and write
p(2z) = a(z)pu(z) + ¢(z). Then we have

la(2)qu(2)f(2) = a(2)pu(2)|| = deg(a) — v.

Obviously, the degree of ¢ is 1, + ds which is strictly smaller than v and
therefore deg(a) —v < v —u—v = —u.

Assume that r # 0. Since the convergents of f are the best approximants
to f and deg(r) < deg(qy), we have

I7(2)f(2) = (2 = llqw (2)f(2) = pw (2)]| = —u,
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where p,//q, is the convergent of f which precedes p,/q,. The last two
estimates imply

la(2)f(2) =p(2)] = lIr(2)f(2) = c(2)l| = —u,
which contradicts the condition r # 0. Hence we get that » = 0 and p/q
coincides with p,/q,. This together with (4.1) and (4.2) implies that v =
ds+ry—r.and v = dt+r.—7r, where r. = deg(ged(A(2)pu(2?), B(2)qu(2%))).
Since polynomials p,(2%) and ¢,(z%) are coprime, r. < rq + 1. Finally,

2d -1
U—ugd(t—s)—l—%c—ra—rbgﬁ(ra—i—rb). O
Lemma 4.3. Assume that (d — 1)u > rq. Then
v — F2 v+ 2
(4.5) dr_blélimsup{vn} < —4L
u ~+ -1 n—00 Un, U — dfl

Proof. From equations (4.1) and (4.2) we have that

Upt1 = dup + 13 — Tens

(46) Un+1 = dvn —7Tq+ Tens
where
(4.7) ren = deg ged(A(2)pu, (29), B(2)qu, (29))

and it is not bigger than r, 4+ . This implies
dv, — 14 < Un+1 < dvy, + 1y ‘
dup +71y  Upy1  dup —Tg

By iterating this inequality n times we get
dv—(14+d+---+d"Yr, < U dv+(1+d+---+d"Hn
du+(1+d+--+d Yy, u,  du—(1+d+---+dr,
Taking limits as n — oo yields (4.5). O

Lemmata 4.2 and 4.3 together imply that only finitely many primitive
gaps may contribute to the supremum in (4.4). Indeed, consider all primitive
gaps [u,v] in ® with v > Fo. By Lemma 4.2, their sizes are bounded.
Therefore we can choose the primitive gap [ug, v] in ® with the biggest
possible size S such that wug is smallest possible among all primitive gaps
in @ of this size. Then, by Lemma 4.3, a primitive gap [u,v] in ® can only
contribute to the limsup in (4.4) if

u+ S+ vo— 749
u — e >u + Bt
d—1 0T g—1

Ta+Tp

Since vg — ug > 4%, the right hand side of the inequality is bigger than
one and therefore it gives us an upper bound for u. Denote this bound by
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ly. We deduct that only [u,v] with u < [, can contribute to the limsup
in (4.4) and there are obviously finitely many of them.

Now to complete the proof of Theorem 1.1, we need to show that for
any primitive gap [u,v] in ® we have that liminf, . v, /u, is a rational
number. The most mysterious term in the formulae (4.6) is ¢ ,. In the next
section we prove the following proposition which is a key to the proof of
Theorem 1.1.

Proposition 4.4. The sequence (repn)nen @5 eventually periodic.

We end this section by showing how Proposition 4.4 implies Theorem 1.1.
Let the sequence (7, )nen be periodic, starting from the index ny and with
the period length P, i.e. 7¢yy4i = Tno+p+i for every i € Z>o. Denote by R
the following value:

_ gP-1
R:=d Te,no + o+ drc,no-i—P—Q + Teno+P—1-

By applying the formulae (4.6) for wun,, VUng, Ung+1, Ung+15- - - UP tO Ungyt P,
Uno+P, W€ get

Ungsp = A Upy +15(1+d+---+d"7) — R,

Ungrp = A 0y —ro(1+d+---+d"" 1)+ R.
Define
ro i =r(1+d+---+d’"Y) =R, and r,:=r,(1+d+---+d"" 1) —R.
Then we get

g Mmotkp _ o @ Puny + (L4 d7 PP+ dB D)y, un Pt

k=00 Ungrkp koo dFPupy — (14 dP + 2P + d*=DP)r, v,y — T 7

which is a rational number. By analogous arguments, the limits of

Ung+1+kP Ung+(k+1)P—1

Y )
Ung+14+kP Ung+(k+1)P—1

as k — oo are all rational numbers. Therefore lim sup,,_, ., vn/un, as the
maximum of the limits above, is a rational number. This finishes the proof
of Theorem 1.1.

5. Proof of Proposition 4.4

We split each of the polynomials A, B, p,,, and g, (m € Zxp) into the
product of three factors: cyclotomic, non-cyclotomic and the power of z. For
example, A(z) = A.(2) - An(2) - Ap(z), where all roots of A.(z) are roots of
unity, Ag(z) is a power of z and none of the roots of A, (z) is either zero or
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a root of unity. The polynomials B, By, By, Peum s P s POum s Qeum s n,um
and qgy,, are defined in the same way. Obviously,

ged(Ac(2)Pesum (29 Ba(2)@n,um (2%))
= gcd(An(2)Pnum (24), Be(2)qeu,, (27)) = const,
and therefore we can split 7., into the sum of three parts: 7¢,m, = 7¢.cm +
Tn,e;m 1 70,c,m- Lhe first term is the degree of the cyclotomic part of the ged
in (4.7), the second one is the degree of the non-cyclotomic part of it and

the third one is generated by the powers of z presented in the gcd. We will
consider each term separately.

5.1. Non-cyclotomic term.

Lemma 5.1. Let C,D € Z[x] be such that none of their roots is a root of
unity. Then there exists mg € N such that for all m > my,

ged(C(2), D(2%")) = const.

Proof. Assume the contrary. Then there exists a root « of C such that z—«
divides D(z?™) for infinitely many values m. Hence there exists a root 3 of
D such that

B =ad™ = @™
for some positive integers mi # my. But the latter is only possible if « is a
root of unity or zero — a contradiction. O

Lemma 5.2. The sequence (T cm)meN 5 eventually periodic.

Proof. From Lemma 5.1 fix mg such that
ged(An(2), Bu(27 ) gnu(2Y)) = ged(Bn(2), An (24 )pnw(2¥)) = const

for all m > mg. Write the non-cyclotomic part of the convergent p,,, /qu,,
in the following form:

P _ 150" Afn(2)p(2)
Gnim 110" B (2)g5(2)]
where the numerator and denominator of the right hand side are coprime;
m(2) | AGY), Biw(2) | B(z"), pin(2) | pu(z"") and ;,(2) | gu(="");
the leading coefficients of A, (2), B} ,,(2), P (2), ¢, (2) coincide with those
of A(z),B(z),pn(z) and gy(z) respectively. Then for m > mg the degree
Tn,e;m Of

ng(An(Z)pn,um+1 (Zd)7 BH(Z)QH,uerl (Zd))

as well as the polynomials A} .\, By .11, t €{0,...,mo}, depend entirely
on the polynomials Aj .., A7 .., ..., Anym and Bg ..., By, . But there

are finitely many such combinations. Therefore one can find ms > m; > mg
such that Ag,, = Af,.,, -+, 45 = A; and Bj .. = Bj o, -

mo,mi mo,ma2
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* _ * _ _
Bio.mi = Bigms- Then we get ry.cm, = Tn,emas Tnie,mi+1 = Tnye;ma+1, €tC.
Hence the sequence of (7 m)men is eventually periodic. O

5.2. Powers of z. We write
Ag(z) = 2% Bo(z) = 2%; pou(z) =2 and qou(z) = 2%.

Since A and B are coprime and p, and ¢, are coprime, we have that at
least one value of s,,s; and at least one of s, s, is zero. If we have s, =
sp = 0 (or s, = s = 0) then, by (4.3), the powers of z of all numerators
(denominators) are zero and hence (70,c,m)mez,., is the zero sequence.

Now without loss of generality assume that s, > 0,5, > 0,5, = 5, = 0.
Denote by sy, and sq,, the maximal powers of z of p,,, and gq,,, respec-
tively. Notice that, if for some mg € N the value s, is zero then, as before,
the sequence rg .., becomes zero for all m > mg. On the other hand, if s, ,,
is positive for all m € Zsq then the power of z of q,,, (2%) is always bigger
than that of A(z), which follows that 7 ., equals s, for all m € Zx.

In all cases we have that the sequence (r07c,m)mez>0 is eventually periodic.

5.3. Cyclotomic term. Note that each of the polynomials A., B., pc.u,
Qe is a (possibly empty) product of cyclotomic polynomials ®,,(z). We
start by investigating the structure of polynomials ®,(z%) as d changes.
That requires some notation. Given n € N, the radical of n is the product
of all prime divisors of n, i.e.:

rad(n) := [] »-

peP
pln

For two positive integers n and m, by r(n, m) we denote the biggest divisor
of n which is coprime with m, and s(n,m) :=n/r(n,m).

Lemma 5.3. Let n,d be two positive integers. The polynomial @n(zd) is a
product of cyclotomic polynomials. More precisely,

(I)n(zd): H (I)rns(d,n)(z)'
r|r(d,n)

Proof. All the roots of ®,(z) are of the form ¢, where &, is n-th primitive
root of unity, 0 < ¢ < n and ged(i,n) = 1. Therefore the roots & of P, (2%
are the solutions of the equation £¢ = ¢!, which can be written as

i J _ enj+i
nd * gd - End )
where 0 < j < d. The values nj + i run through the set A of all numbers
between zero and nd, which are coprime with n. Split this set into subsets
Ny:={z eN : ged(d,z) =t}

Obviously, they are non-empty only if ¢ | d and ged(¢,n) = 1. These two
conditions are equivalent to ¢ | 7(d,n). Denote by r the fraction r(d,n)/t.
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Notice that for any « € N; one has &, = 52(/1 /t where z/t is coprime with
nd/t. Finally, write nd/t = rns(d,n), so the numbers £, are the roots of
the polynomial (I)rns(d,n)( ) and ., dn)( ) ‘ Dy, ( ) O

Write the polynomial A.(z) as the product:

Ac(z) = H A o(2),
reN
ged(d,r)=1
where A, .(z) is the product of all ®,(z) such that ®,(z) | Ac.(z) and
r(n,d) = r. Other polynomials B, .(2), Pr.c.um (%), @r.c,un (2) are defined anal-
ogously. Clearly, among all values r with ged(r,d) = 1 only finitely many
polynomials A, .(z) have positive degree.
One of the outcomes of Lemma 5.3 is that for any n and m in N every
cyclotomic divisor ®(z) of ®,,(2%") has r(k,d) = r(n,d). Therefore we can
split 7¢¢m into the sum:

Te,eem = § Tr.c,c,ms

reN
ged(d,r)=1

where
Preem = 86d(Are(2)Preun (27), Bre(2)dreun (27)).

Only finitely many of the sequences (77.¢ cm)men are non-zero.
It remains to show that every non-zero sequence (7 cm)men is eventu-
ally periodic.

Case 1. Assume that among the divisors of A, ., By ¢, Dr.cu, Gr,c,u there are
no polynomials ®,(z). From Lemma 5.3 we know that all divisors ®x(z) of
®,,(2%") satisfy ns(d,n)™ | k. Consider a divisor ®,(z) of one of the polyno-
mials Ay c, Br.c, Pr.cus Gr.cu- Since n # r, and r(n, d) = r, we have s(d,n) > 1
and therefore, as m tends to infinity, all divisors ®;(z) of ®,(2%") satisfy
k — oo. Therefore there exists mg such that for m > mg

ged(Aro(2), Pn(27")) = ged(Br.o(2), @, (29")) = const.

Then the proof of Proposition 4.4 in this case is analogous to that of
Lemma 5.2.

Before considering the other cases, we need more notation and lemma.
Given two polynomials f(z), g(z) € Z[z] with deg(f) > 0 denote by o(f, g)
the maximal power of f which divides g, i.e.

o(f,9) :=max{n € Zo : (f(2))" | g(2)}.

Lemma 5.4. For any f(z) € Z[z] and any k € N there exists a constant
c = c(f, k) such that for any m € N, o(®.(2), f(27™)) < c.
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Proof. We write k = rs where r = r(k, d) is coprime with d and the radical
of s divides the one of d. Split f as a product f = f,-g, where all the roots
of g are either not roots of unity or they are roots of unity of degree k' with
r(k',d) # r. The function f, is defined as follows:

F= T @),
rad(s;) | rad(d)
Then g(2%™") is always coprime with ®;(z) and o (®x(2), f(2¢")) = o(Pr(2),
fr(zdm))~
We finish the proof of the lemma by induction on s. For s = 1, Lemma 5.3
implies that
o(@r(2), f(z7")) = 0(®1(2), (B,(7))* D) = a(1).

Now, consider S € N with rad(S) | rad(d). Assume that the statement of
the lemma is satisfied for all s < S with rad(s) | d, i.e. for any such s there
exists a constant c(s) such that o(®,s(2), f(2%")) < ¢(s). Now we prove
the statement for S. Lemma 5.3 implies that

U(q)rS(Z)v f?“(sdm))

< U((I)TS(Z)7 (CI)TS(de))a(S)) + Z U<(I)rs(z)7 fr(zdm71)>
8|S, s<S

<alS)+ Y cfs).

s|S, s<S
Since the right hand side does not depend on m, the proof is finished. [J
Case 2. Assume that ®,(z) divides py . (z) and
gd(®r(2), Ay o(2)) = ged(®y(2), Byo(2)) = const.

Note that the case ®,(z) | grcu(z) can be dealt analogously: we just
swap A, . with B, . and p,c, with ¢, c .
Write A, .(z) and B, (z) as

n n—+n*
Are(2) = H Dps,(2), Br(z) = H Dys,(2).
i=1 i=n+1

Let S be the set of all positive integers s which divide one of the values s;,
1<i<n+n* ie.

S:={seN:Jie{l,...,n+n"}, s|s}
Recall that pnc,um_;,_l/ Gr.coumy, Can be written in the form

pT,C7Um+1 (Z) — AT’,C(Z>pT',C,um (zd)
Grcsumr (7)) Bre(2)arcum (24)
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Then the value 7, ¢ m+1 is completely determined by two tuples X, ,,, and
Y q,m which are defined as follows:

Ypm = (0¢ims--10¢ym), whereN =#S, (1,...,(, €S,

O¢m = U((I)TC(Z)apr,c,um (Zd))
and X, is defined analogously with p, ., replaced by g c.u,,.- By Lem-
ma 5.3, we have that ¥, ,,41 and ¥,,41 are also determined by >, ,, and
Y q,m respectively.

It remains to show that all terms of ¥, ,, and ¥, ,, are bounded by a
constant independent of m. That in turn will imply that there are only
finitely many different values for (X, ,,, Xqm) and there exist m; < mg
such that Xy, ., = Xpma, Xgmi = Zq,ms, hence the sequence (7 c.cm)meN
is eventually periodic end the proof of Proposition 4.4 is completed for this
case.

Write the part py cu,,/dr.cu, Of the convergent p,,./qu,, in the following

form:

Prean () _ TIi%0" Afm (2)P5(2)

Grean(2)  TT0" Bl (2)60 ()]
where the numerator and the denominator of the right hand side are co-
prime and A7,,(2) | Ape(="), Bim(2) | Bro(®), pin(2) | preu(2?") and
G (2) | greu(z7).

Since none of A, .(z) and By .(z) are divisible by ®,(z) we have that
there exists mo € N such that for all m > myg, the polynomials A, .(2¢")
and B,..(z%") are coprime with both A, .(2) and B, .(z). Therefore for each
term o¢ ,, of X, we have

mo
* d * d
Tem = Y 0(Pre(2), Ap p(29)) + 0 (@rc(2), P (%))
=0
By Lemma 5.4, the right hand side is always bounded by some constant
independent of m. By analogous arguments, the same is true for all terms
O¢m of Z%m.

Case 3. Assume that ®,(z) divides A, .(z). Then, since A, () and B, .(2)
are coprime, we have that ®,(z) does not divide B, (z).

Note that the case ®,(z) | By.(z) can be handled analogously. We just
swap A, . with B, . and p;. ., with g .. Therefore Case 3 is the last one
which needs to be investigated.

Lemma 5.5. For any n € N with r(n,d) = r there exists m € N such that
@, (2) | D,(21").

Proof. We write n as a product n = rs and prove the lemma by induction
on s. For s = 1 the statement is straightforward. Consider S such that
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rad(S) | rad(d). Assume that the statement is true for all s < S with
rad(s) | rad(d) and prove it for S. Write the prime factorisations of S and
d in the following way:

& B
S =pi".. .pg’“pkﬁff .. .pk'_fgl; d=p".. .p:ﬁl,
where 1 < a1,..., 0k < ap and Bgi1 = a1 > 0,000, By = ag > 0.
Then, by Lemma 5.3, one has that ®g(z) divides ®4(z%) for s =
pffll_ak“ . .pglfll_ak“. By induction assumption, we have that there ex-
ists m such that ®4(z) | ®,(24"). Therefore, ®g(z) | B, (24" ). O

Similarly to Case 2, define the set S and the following tuple:

Ygm = (0¢,m,--,0¢cym), Wwhere N =#S, (1,...,(, € Sand

m—1

O¢im =0 (@rc(z), H BT’C<2dt> . Qr,c,u(zdm)> .

t=0

As in Case 2, we have that all terms in X, ,, are bounded by a constant,
which is independent of m. On the other hand, by Lemma 5.3, every poly-
nomial A, .(z%) is divisible by ®,(z) and therefore

In view of Lemma 5.5, there exists mg big enough, so that for any ( € S
and m > mg the value

m—1

o <(I)TU(Z>, H Ar,c(«zdt) 'pr,c,u(zdm)>

t=0

is bigger than every term in X, ,,. That implies that for every m > mg
every polynomial (®,¢(2))?¢m cancels out in the expression

Prean(2) _ TIEG" Arelz prea (=)
Q’I",C,um (Z) H?;Bl BT’,C(zdt)qT’,C,u(de)

Hence for m > mg the polynomial qm,um(zd) is coprime with A, .(z),
B,.c(z) divides py c ., (%) and therefore the value Trcem 1S equal to 7.
Again we have that the sequence (7. cm)men is eventually periodic.

To finish the proof of Proposition 4.4 we observe that the sequence r ,
is the sum of finitely many eventually periodic sequences and hence is even-
tually periodic itself. O
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6. Application: d = 3, infinite products of quadratic polynomials

Consider the set of Mahler functions ga(2) = ga, a,(2) Which satisfy the

equation
ga(2) = (2% + a1z + ag)qa(2%);  ay,a2 € Z.

Such functions and their corresponding Mahler numbers were considered
in [2] and it was conjectured that, given b € Z with |b] > 2, if gu(b) &€ Q
then 1(ga(b)) = 2 for all a € Z2, except the following three families:

(a) a=(s,5?), s € Z;

(b) a=(s3,—s*(s*+1)), s € Z;

(c) a=(£2,1).

In [2, Theorem 9] the lower bounds for the irrationality exponents of
ga(b) for those families is provided. Here we demonstrate how Theorem 1.2
together with Lemmata 4.2 and 4.3 can be used to show that the lower
bounds in [2] are sharp.

Family (a). Let a = (s,s%). Simple calculations reveal that the first con-
vergent of ga(z) is 1/(z — s) and

(2= 8)ga(z) —1=(s—s>)273+ ...

Therefore for 53 —s # 0 we have that ®(g,) contains a primitive gap [1, 3] of
size 2. Note that 23" — s is always coprime with the polynomial 22+ sz + s2.
Indeed, each root zq of the latter quadratic polynomial satisfies |zo|? = |s|?,
so |z0|3™ = |s|>" > |s| as soon as |s| > 2. But the last condition is equivalent
to s # +1,0 which in turn is equivalent to s — s # 0.
We thus have that the numerator and the denominator of
;’;61(22'3t +52% + 52

m

23" — s

are always coprime. Therefore all the values 7., equal zero and equa-
tions (4.6) imply that the gaps [u,,v,| generated by [1, 3] satisfy

Unt1  Bup — 2

Un+1 S,

and therefore )
. ..U Vo — 5
liminf = = [2) = 2.

From Lemma 4.2 we know that the size of any primitive gap in ®(ga)
does not exceed 5. Therefore, by Lemma 4.3, only gaps with

v < u+95
u—1 " u—-1
may contribute to the irrationality exponent of g,(b). The last inequality
is equivalent to u < 7. It remains to check that ®(ga) = {1,3,7,...} where

2<
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the gap [3, 7] is not primitive and is generated by [1, 3]. Hence there are no
other primitive gaps [u, v] with u < 7 and Theorem 1.2 implies:

Leta = (s, s%) GZQ with s3+s # 0. If |b| > 2,b € Z and ga(b) € Q
then p(ga (b)) =

For the remaining values of s we have:
1 1 1
go,0(2) = P g11(2) = L1 g-1,1(2) = Z+1

The function g is then rational, and therefore ga(b) € Q.

Family (b). Let a = (s3, —s%(s? + 1)). In this case we compute

pa(2) 2+ s(s?2 4+ 1)
q2(2) 22 +sz+s?

and

¢2(2)ga(2) = p2(2) = —(s" + 5" + 57277 + ..
Therefore for s5 4+ s* + 52 # 0 we have that ®(ga) contains the primitive
gap [2,5] of size 3. One can easily check that 22 + sz — s%(s®> + 1) =
(z — 5)(z + (s® + 5)). On the other hand, all roots of 223" + 523" + 2 for
s # 0 are not real. Therefore the fraction

1o (22 45558 — (s 4 1))pa (2P
(J2(Z3 )

is always in its reduced form, i.e. every term of r.,, is zero. This yields to

2
L. Vo — 5
liminf = = 2

2 _ 9,

As in the case of Family (a), we need to check that ®(ga) does not contain
any other primitive gap [u, v] with u < 7 which is obvious (by (4.6), we have
the big gaps [2,5] and [6, 13] in ®(ga). There is no more space for big gaps
with u < 7). Therefore we finally get:

Let a = (53, —s%(s> + 1)) with s € Z,s® + s* + 52 # 0. If |b| > 2
beZ and ga(b) € Q then u(ga(b)) = 3.

Finally notice that the equation s® + s* + s> = 0 has only one integer
solution: s = 0. But goo(z) has already been considered in Family (a) and
is equal to 1/z.

Family (c). Let a = (2,1). The case a = (—2,1) is considered analogously
and is left to the reader. One can check that 1,2, 3,4 and 5 belong to ®(ga).
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Direct computation shows that [5, 8] is the primitive gap in ®(g,) and the
corresponding fifth convergent of g, is

ps(2) =2+ 23+ 222 +4  and

(2) =2 =2+ 1= - D22+ D)2 -2+ 1).
In other words, g5(z) = ®1(2)®3(2)Ps(2). Lemma 5.3 implies that all cy-
clotomic divisors of g5(z3") are either of the form ®3,.(z) with some integer
r or ®1(z). Hence g5(2%") is always coprime with 22 4 22 +1 = ®5(2)?, i.e.

the fraction , .
ol (27 4225 4+ Dps(27")

q5(2*")
is always in its reduced form and every term of 7., is zero. This yields to
-1 7
lim inf O _ 10 = -
n—0oo Uy, UQ 5

Now from Lemma 4.2 we know that the size of any primitive gap in ®(ga)
does not exceed 5. Therefore, by Lemma 4.3, only gaps with

7 v u+95

5 < u—1 S u—1
may contribute to the irrationality exponent of g,(b). The last inequality
is equivalent to v < 16. It remains to show that all integers from 8 to
15 belong to ®(ga). This for example can be done by checking that the

corresponding Hankel determinants
H, = det(ci-‘rj—l)i,je{l,...,n}7 n=3§,...15

are not zero, where ¢; are the coeflicients of the series g,:
0
—i
ga(z) = Z ciz™".
i=1

See [2, Corollary 1] for justification. We used Mathematika package to
compute all of the required Hankel determinants.
Finally we have:

Leta = (£2,1). If |b| > 2, b € Z then u(ga(b)) = 2.
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