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On the spectrum of irrationality exponents of
Mahler numbers

par Dzmitry BADZIAHIN

Résumé. Nous considérons les fonctions de Mahler f(z) qui véri-fient l’équa-
tion fonctionnelle f(z) = A(z)

B(z)f(zd), où A(z)
B(z) est dans Q(z) et d > 2 est un

entier. Nous montrons que, pour tout entier b vérifiant |b| > 2, ou bien f(b) est
rationnel, ou bien son exposant d’irrationalité est rationnel. En outre, nous
déterminons la valeur exacte de l’exposant d’irrationalité de f(b) lorsque l’on
connaît le développement en fraction continue de la fonction de Mahler f(z).
Cela améliore un résultat de Bugeaud, Han, Wen et Yao [6], qui ne donne
qu’une borne supérieure de cet exposant.

Abstract. We consider Mahler functions f(z) which satisfy the functional
equation f(z) = A(z)

B(z)f(zd) where A(z)
B(z) is in Q(z) and d > 2 is an integer.

We prove that, for any integer b with |b| > 2, either f(b) is rational or its
irrationality exponent is rational. We also compute the exact value of the
irrationality exponent of f(b) as soon as the continued fraction expansion of
the Mahler function f(z) is known. This improves the result of Bugeaud, Han,
Wen, and Yao [6] where only an upper bound of the irrationality exponent
was provided.

1. Introduction

Consider a Laurent series f(z) ∈ Q((z−1)). It is called a Mahler function
if for any z inside its disc of convergence f satisfies an equation of the form

n∑
i=0

Pi(z)f(zdi) = Q(z)

for some integers n > 1, d > 2 and polynomials P0, . . . , Pn, Q ∈ F[z] with
P0Pn 6= 0. The values f(b) for integers b inside the disc of convergence
of f are called Mahler numbers. In this paper we investigate the following
problem:

Problem A. Determine the set LM of irrationality exponents of irrational
Mahler numbers.

Manuscrit reçu le 13 novembre 2018, accepté le 15 juin 2019.
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We will call the set LM the spectrum of irrationality exponents of Mahler
numbers. Recall that the irrationality exponent µ(ξ) of an irrational real
number ξ is the supremum of real numbers µ such that the inequality∣∣∣∣ξ − p

q

∣∣∣∣ < q−µ

has infinitely many rational solutions p/q. This is one of the most important
properties of real numbers which indicates how well ξ is approached by
rationals. Note that by the classical Dirichlet approximation theorem we
always have µ(ξ) > 2.

Similar questions have been recently asked by several authors. In 2008,
Bugeaud [4] proved that for any rational ω > 2 there are infinitely many
automatic numbers whose irrationality exponent is equal to ω. It is well
known [3] that automatic numbers are also Mahler numbers, therefore
Bugeaud’s result straightforwardly implies that LM contains all rational
numbers not smaller than two. Later in 2009, Adamczewski and Rivoal [1]
commented on that result with the following question:
Problem B. Is it true that the irrationality exponent of an automatic
number is always a rational number?

Bugeaud, Krieger and Shallit [7] extended Problem A to the set of mor-
phic numbers. They showed that the spectrum of irrationality exponents of
morphic numbers, on top of Q, contains all Perron numbers greater than or
equal to 2. Recall that a Perron number is a positive real algebraic integer,
which is greater in absolute value than all of its conjugates. With respect
to this result the following problem was posed:
Problem C. Determine the set of irrationality exponents of morphic num-
bers. In particular, is it true that the irrationality exponent of a morphic
number is always algebraic?

Sometimes in the literature [10], Problems B and C are referred to as
conjectures.

In this paper we restrict our research to solutions f(z) of the following
functional equation

(1.1) f(z) = A(z)
B(z)f(zd), A,B ∈ Q[z], B 6= 0, d ∈ Z, d > 2.

Theorem 1.1. Let f(z) ∈ Q((z−1)) be a solution of (1.1) and b ∈ Z be
inside the disc of convergence of f(z). Assume that A(bdm)B(bdm) 6= 0 for
all m ∈ Z>0 and that f(b) is irrational. Then the irrationality exponent of
f(b) is a rational number.

In other words, Theorem 1.1 shows that the solutions of (1.1) do not give
any extra contribution to the spectrum LM on top of the Mahler numbers
constructed by Bugeaud.
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The key ingredient in the proof of Theorem 1.1 is that µ(f(b)) can be
derived from the information about the continued fraction expansion of the
Laurent series f(z). It has been known for some time that these two notions
are related. A similar idea was applied by various authors to obtain upper
bounds of the irrationality exponents of certain Mahler numbers (see for
example, [1, 2, 5, 8, 9]). The most general result in that direction is due
to Bugeaud, Han, Wen, and Yao [6], where they manage to compute an
upper bound of the irrationality exponent of f(b) from the distribution
of the associated non-zero Hankel determinants. In some cases they get
µ(f(b)) 6 2 and then, due to the Dirichlet theorem, the bound is sharp.
However, to the best of our knowledge, no one was able to apply these
ideas and compute µ(f(b)) before, if it is strictly bigger than two. In this
paper we overcome that obstacle and provide the precise value of µ(f(b)) for
all functions f satisfying (1.1), based on the continued fraction expansion
of f(z).

Recall that a Laurent series f(z) ∈ Q((z−1)) admits the continued frac-
tion expansion

f(z) = [a0(z), a1(z), . . . , ak(z), . . . ],
where ai ∈ Q[z]. It is finite if and only if f(z) is a rational function. As in the
case of real numbers, we call the rational function [a0(z), a1(z), . . . , an(z)] =
pk(z)
qk(z) the n-th convergent of f . Assuming that pk and qk are coprime, we
denote by dk the degree of the denominator qk.

Theorem 1.2. Let f(z) ∈ Q((z−1)) \ Q(z) be a Laurent series which sat-
isfies (1.1). Let b ∈ Z with |b| > 2 be inside the disc of convergence of f
such that A(bdm)B(bdm) 6= 0 for all m ∈ Z>0. Then

(1.2) µ(f(b)) = 1 + lim sup
k→∞

dk+1
dk

.

Unfortunately, Theorem 1.2 does not always allow to compute µ(f(b))
for given polynomials A and B in (1.1). This is because the formula (1.2)
requires the knowledge of the whole continued fraction of f . Finding it
is usually a difficult task. However in many cases, as soon as we know
that µ(f(b)) > 2, we can compute the irrationality exponent of f(b) after
computing only finitely many convergents of f . We demonstrate the method
by computing the irrationality exponents of those Mahler numbers f(b)
from [2], for which we know that µ(f(b)) > 2.

Theorem 1.3. Let fa = fa1,a2(z) ∈ Z((z−1)) be a solution of the equation

(1.3) fa(z) = (z2 + a1z + a2)fa(z3); a1, a2 ∈ Z.

For any integer b, |b| > 2 one has
(1) for all s ∈ Z, if fs,s2(b) is irrational, then µ(fs,s2(b)) = 3;
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(2) for all s ∈ Z, if fs3,−s2(s2+1)(b) is irrational, then
µ(fs3,−s2(s2+1)(b)) = 3;

(3) if f±2,1(b) is irrational, then µ(f±2,1(b)) = 12
5 .

The paper has the following structure. Sections 2 and 3 are devoted to
the proof of Theorem 1.2. In Section 4, we develop a theory of gaps in
the sequence dk of convergents degrees. We show that Theorem 1.1 follows
from Proposition 4.4, the key result in that theory. The proposition itself
is proven in Section 5. Finally, we end up with the proof of Theorem 1.3 in
Section 6.

2. Useful estimate on irrationality exponent

The following proposition is a modification of Lemma 4.1 from [1] which
we will need in the proof. But it may be of independent interest.
Proposition 2.1. Let α ∈ R. Assume that there exist two sequences
(pnqn )n∈N ∈ Q and (p

′
n
q′n

)n∈N ∈ Q of rational approximations of α and three
sequences θn, δn and τn of real numbers with θn > 1, δn > 0, τn > 0 such
that

(a) q′n � qθnn ;
(b)

∣∣α− pn
qn

∣∣ � q−1−δn
n ;

∣∣α− p′n
q′n

∣∣ � (q′n)−1−τn;
(c) (q′n)τn � q

δn+1
n+1 , and qδnn →∞ as n→∞.

for all n ∈ N. Then we have the upper bound

(2.1) µ(α) 6 lim sup
n→∞

max
{

1 + θn
δn
,
(1 + τn)θn

δn

}
.

The immediate corollary of this proposition is that if the sequences θn
and δn satisfy θn/δn → 1 as n → ∞ and τn > 1 then the sequence of
approximations p′n/q′n to α is nearly optimal, i.e.

µ(α) = lim sup
n→∞

(1 + τn).

Proof. Denote by c = c(q′n) a real number such that the inequality

(2.2)
∣∣∣∣α− p′n

q′n

∣∣∣∣ 6 c(q′n)−1−τn

is satisfied for all n ∈ N. Let p/q be a rational number whose denominator
q is large enough. We choose the minimal integer n such that 2cq 6 (q′n)τn .
Condition (c) guarantees that such n exists. Then, by the choice of n and
Condition (c), we have that q � qδnn . By the triangle inequality we have∣∣∣∣α− p

q

∣∣∣∣ > ∣∣∣∣pq − p′n
q′n

∣∣∣∣− ∣∣∣∣α− p′n
q′n

∣∣∣∣ .
Now we have two possibilities:
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(1). The case p/q 6= p′n/q
′
n. Then |p/q − p′n/q′n| > (qq′n)−1 and from (2.2)

we get that |α− p/q| > (2qq′n)−1. We then apply Condition (a) to get∣∣∣∣α− p

q

∣∣∣∣� 1
qqθnn

� 1

q1+ θn
δn

.

(2). The case p/q = p′n/q
′
n. Then we have∣∣∣∣α− p

q

∣∣∣∣ =
∣∣∣∣α− p′n

q′n

∣∣∣∣� (q′n)−1−τn � q−(1+τn) θn
δn .

To conclude the proof of the proposition, consider some number µ strictly
bigger than the right hand side of (2.1). Then, there exists n0 ∈ N such
that µ > 1 + θn/δn and µ > (1 + τn)θn/δn for all n > n0. Choose n1 > n0
such that for n 6 n0 we have (q′n)τn < (q′n1)τn1 . Then, for any p/q with
2cq > (q′n1)τn1 , we have that ∣∣∣∣α− p

q

∣∣∣∣� q−µ

and hence µ(α) 6 µ. �

3. Proof of Theorem 1.2

For convenience, denote the leading coefficients of A and B in equa-
tion (1.1) by α and β, and denote the degrees of A and B by ra and rb,
respectively.

Consider the sequence (pk(z)/qk(z))k∈Z>0 of the convergents of f . Denote
the degree of qk by dk. Then, by the standard property of convergents, we
have

(3.1) qk(z)f(z)− pk(z) =
∞∑

i=dk+1

ck,iz
−i,

where ck,j are some real coefficients, and ck,dk+1 is always nonzero.
By substituting zd in place of z in equation (3.1) and then using the

functional relation (1.1) for f(zd), we get that:

(3.2) B(z)qk(zd)f(z)−A(z)pk(zd) = A(z)
∞∑

i=dk+1

ck,iz
−di.

After repeating this procedure m times we derive the following equation:

(3.3) qk,m(z)f(z)− pk,m(z) = U(z)
∞∑

i=dk+1

ck,iz
−dmi,
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where

(3.4)
qk,m(z) =

m−1∏
t=0

B(zdt)qk(zd
m), pk,m(z) =

m−1∏
t=0

A(zdt)pk(zd
m),

U(z) =
m−1∏
t=0

A(zdt).

Lemma 3.1. Let b ∈ R with |b| > 1 be inside the disc of convergence of f .
Assume that for all t ∈ Z>0 we have A(bdt)B(bdt) 6= 0. Then, for m large
enough, we have

(3.5)
|qk,m(b)| � βm|b|d

m( rb
d−1 +dk) and

|qk,m(b)f(b)− pk,m(b)| � αm|b|d
m( ra

d−1−dk+1).

Here, the constants implied by the “�” signs may depend on A, B, and k,
but do not depend on m.

Proof. Since b is inside the disc of convergence of f , it is also inside the disc
of convergence of

zdk+1(qk(z)f(z)− pk(z)) =
∞∑
i=0

ck,i+dk+1z
−i.

By letting z tend to infinity, the right hand side tends to ck,dk+1 � 1.
Therefore, for m large enough, one has

(3.6)

∣∣∣∣∣∣
∞∑

i=dk+1

ck,ib
−dmi

∣∣∣∣∣∣ � |b|−dmdk+1 .

Next, notice that
∞∏
t=0

A(zdt)
αzdtra

=
∞∏
t=0

PA(z−dt),

where PA(z) is a polynomial with PA(0) = 1. One can check that the disc
of convergence of this infinite product is {z : |z| > 1}. Moreover, since
A(bdt) 6= 0 for all t ∈ Z, the product

m−1∏
t=0

A(bdt)
αbdtra

converges to a nonzero element as m→∞. In other words,∣∣∣∣∣
m−1∏
t=0

A(bdt)
αbdtra

∣∣∣∣∣ � 1
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and hence

(3.7)
∣∣∣∣∣
m−1∏
t=0

A(bdt)
∣∣∣∣∣ � |α|m|b|(1+d+···+dm−1)ra � |α|m|b|

dm

d−1 ra .

By analogous arguments we get the same estimate for the product of B(bdt),
with t running from 0 to m− 1.

The last ingredient of the proof is that for m large enough, |qk(bd
m)| �

|b|dmdk . Now, (3.3), (3.4), (3.6), and (3.7) give:

|qk,m(b)| =
∣∣∣∣∣
m−1∏
t=0

B(bdt)qk(bd
m)
∣∣∣∣∣ � |β|m|b|dm( rb

d−1 +dk)

and

|qk,m(b)f(b)− pk,m(b)|

=

∣∣∣∣∣∣
m−1∏
t=0

A(bdt)
∞∑

i=dk+1

ck,ib
−dmi

∣∣∣∣∣∣ � |α|m|b|dm( ra
d−1−dk+1). �

As an immediate corollary of (3.5) we have that

(3.8) |qk,m(b)| = bd
m(dk+ rb

d−1 +o(1))

and

(3.9) |qk,m(b)f(b)− pk,m(b)| = b−d
m(dk+1− ra

d−1 +o(1)).

Since the sequence dk tends to infinity with k, for any ε > 0 one can choose
k = k(ε) such that

εdk > max
{

ra
d− 1 + 1, rb

d− 1 + 1
}
.

For that k we can choose m big enough (m > m0(k)) so that the absolute
values of o(1) in (3.8) and (3.9) are smaller than 1/2. Then we have

(3.10) qk,m(b)−
dk+1(1+ε)
dk(1−ε) < |qk,m(b)f(b)− pk,m(b)| < qk,m(b)−

dk+1(1−ε)
dk(1+ε) .

Since, by letting k →∞, we can make ε as small as we wish, we immediately
have µ(f(b)) > 1 + lim sup dk+1

dk
. For convenience, let us denote the ratio

dk+1/dk by δk and define

ρ := lim sup dk+1
dk

.
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3.1. Upper bound for µ(f(b)). For a given k0 ∈ N, defineK = K(k0) ∈
N as the minimal possible value such that
(3.11) dK+1 > d · dk0+1 − ra + d+ 1.
Consider any k in the range k0 6 k < K and consider an arbitrary m >
M = M(k0) := max{m0(k0),m0(k0 + 1), . . . ,m0(K)}, so that the equa-
tion (3.10) is satisfied for all values k between k0 and K. Equation (3.10)
yields

(3.12)
∣∣∣∣∣f(b)− pk,m(b)

qk,m(b)

∣∣∣∣∣ � q−1−
(
dk+1
dk

+εk,m
)

k,m ,

where supk06k<K, m>M |εk,m| tends to zero as k0 tends to infinity.
Now we construct sequences Pn/Qn and P ′n/Q′n in the following way:

P1
Q1

:= pk0,M (b)
qk0,M (b) ,

P2
Q2

:= pk0+1,M (b)
qk0+1,M (b) , . . . ,

PK−k0

QK−k0

:= pK−1,M (b)
qK−1,M (b) ;

P ′1
Q′1

:= pk0+1,M (b)
qk0+1,M (b) ,

P ′2
Q′2

:= pk0+2,M (b)
qk0+2,M (b) , . . . ,

P ′K−k0

Q′K−k0

:= pK,M (b)
qK,M (b) .

Then we continue defining the sequences by increasing the index M . That
is, for any u ∈ Z>0 and any v ∈ {1, . . . ,K − k0} we define

Pu(K−k0)+v
Qu(K−k0)+v

:= pk0+v−1,M+u(b)
qk0+v−1,M+u(b) ;

P ′u(K−k0)+v
Q′u(K−k0)+v

:= pk0+v,M+u(b)
qk0+v,M+u(b) .

One can see from (3.12) that the following sequences (δn)n∈N and (τn)n∈N
satisfy Condition (b) of Proposition 2.1:

δu(K−k0)+v := dk0+v
dk0+v−1

+εk0+v−1,M+u; τu(K−k0)+v := dk0+v+1
dk0+v

+εk0+v,M+u.

Now we define a sequence (θn)n∈N so that Condition (a) is satisfied.
By (3.8) we have that for any k ∈ {k0, . . . ,K} and for any m > M ,

|qk+1,m(b)| = |qk,m(b)|
dk+1+rb/(d−1)+o(1)
dk+rb/(d−1)+o(1) = |qk,m(b)|

dk+1
dk

+ε∗k,m ,

where, as for εk,m, supk06k<K, m>M |ε
∗
k,m| tends to 0 as k0 tends to infinity.

The last equation suggests the following formula for θn:

θu(K−k0)+v := dk0+v
dk0+v−1

+ ε∗k0+v−1,M+u.

It remains to verify Condition (c). The fact that Qδnn tends to infinity
with n is obvious. Because of Condition (b), the equation (Q′n)τn � Q

δn+1
n+1

is equivalent to:
(3.13) |Q′nf(b)− P ′n| � |Qn+1f(b)− Pn+1|.
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By definition, for any u ∈ Z>0 and v ∈ {1, . . .K − k0 − 1}, we have
Q′u(K−k0)+v = Qu(K−k0)+v+1 and P ′u(K−k0)+v = Pu(K−k0)+v+1 and both
sides of (3.13) coincide for n = u(K − k0) + v. Therefore it only remains to
verify (3.13) for n = (u+1)(K−k0). From the estimate (3.9) and equations
Q′(u+1)(K−k0) = qK,M+u(b), Q(u+1)(K−k0)+1 = qk0,M+u+1(b) we have

|qK,M+u(b)f(b)− pK,M+u(b)| = b−d
m+u(dK+1− ra

d−1 +o(1))

(3.11)
< b−d

m+u+1(dk0+1− ra
d−1 +o(1)) = |qk0,M+u+1(b)f(b)− pk0,M+u+1(b)|.

After all conditions of Proposition 2.1 are checked, we apply it to get

µ(f(b)) 6 lim sup
u→∞

max
k06v<K

{
1 +

θu(K−k0)+v
δu(K−k0)+v

, (1 + τu(K−k0)+v)
θu(K−k0)+v
δu(K−k0)+v

}
.

Notice that by construction, θn/δn tends to 1 as k0 tends to infinity. Also,
as k0 tends to infinity, we have that

τu(K−k0)+v →
dk0+v+1
dk0+v

.

for all u > 0 and v between k0 and K. This leads to the upper bound

µ(f(b)) 6 lim sup
n→∞

{
1 + dn+1

dn

}
,

which now coincides with the lower bound for µ(f(b)). That proves Theo-
rem 1.2.

4. Gaps in the set of values dk
Theorem 1.2 suggests that in order to compute the irrationality exponent

of a Mahler number f(b), we need to consider large gaps in the sequence
(dk)k∈N of degrees of the denominators of the convergents of f(z).

Define by Φ the set of all values dk:

Φ = Φ(f) := {dk : k ∈ N}.

We say that [u, v] is a gap in Φ of size r > 0 if u and v are elements of Φ,
r = v− u and no elements w with u < w < v are in Φ. For the gap [u, v] in
Φ we say that p(z)/q(z) is gap’s convergent if p(z)/q(z) is a convergent of
f and deg(q) = u. To emphasize that this convergent is associated with the
gap [u, v] we will use the notation pu(z)/qu(z). To avoid abuse of notation,
in the remaining part of the paper the notion pu(z)/qu(z) will always mean
the gap’s convergent, i.e. deg(qu) = u.

In further discussion we always assume that the value b ∈ N satisfies the
conditions of Theorem 1.2. It implies that if all gaps in Φ are of size at
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most ra+rb
d−1 then µ(f(b)) = 2. Indeed, we have

µ(f(b)) = 1 + lim sup
gaps [u,v] of Φ

v

u
6 lim

u→∞

(
1 +

u+ ra+rb
d−1
u

)
= 2.

Therefore in order to compute the irrationality exponent of f(b) it is suf-
ficient to consider gaps in Φ of a bigger size than ra+rb

d−1 . We call such
gaps big. We introduce a partial order on the set of big gaps. We say that
[u, v] ≺ [u′, v′] if there exists m ∈ N such that

pu′(z)
qu′(z)

=
m−1∏
t=0

A(zdt)
B(zdt)

· pu(zdm)
qu(zdm) .

This definition is justified by the following lemma.

Lemma 4.1. Let [u, v] be a big gap in Φ. Then the fraction
A(z)pu(zd)
B(z)qu(zd)

is a convergent of f . Moreover, the gap in Φ, which corresponds to this
convergent, has size bigger than v − u.

Proof. Denote by C(z) the polynomial gcd(A(z)pu(zd), B(z)qu(zd)) and let
rc := deg(C). From (3.2) we have that

(4.1)
∥∥∥∥∥B(z)qu(zd)

C(z) f(z)− A(z)pu(zd)
C(z)

∥∥∥∥∥ = ra − rc − dv.

Here, ‖g‖ denotes the biggest degree of z with non-zero coefficient in Lau-
rent series g. We have that B(z)qu(zd)

C(z) and A(z)pu(zd)
C(z) are coprime and more-

over,

(4.2) deg
(
B(z)qu(zd)

C(z)

)
= rb + du− rc < dv + rc − ra.

The last inequality is true because for big gaps we have v − u > ra+rb
d−1 .

Hence
A(z)pu(zd)

C(z)
/B(z)qu(zd)

C(z)
is a convergent of f and the size of its corresponding gap is

(dv + rc − ra)− (rb + du− rc) = 2rc + d(v − u)− ra − rb > v − u. �

We say that a big gap [u, v] in Φ is primitive if there are no other big
gaps [u′, v′] in Φ such that [u′, v′] ≺ [u, v]. A primitive gap [u, v] generates
the ordered sequence of big gaps

[u, v] = [u0, v0] ≺ [u1, v1] ≺ [u2, v2] ≺ . . .
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such that

(4.3)
pun+1(z)
qun+1(z) = A(z)pun(zd)

C(z)
/B(z)qun(zd)

C(z) .

Then the formula (1.2) for µ(f(b)) from Theorem 1.2 can be rewritten as
follows:

(4.4) µ(f(b)) = 1 + sup
[u0,v0] is primitive

{
lim sup
i→∞

vni
uni

}
∪ {1}.

Lemma 4.2. The size of a primitive gap in Φ does not exceed 2d−1
d−1 (ra+rb).

Proof. Suppose the contrary: the size of a primitive gap [u, v] in Φ is bigger
than 2d−1

d−1 (ra + rb). Let w be the biggest integer such that dw < v− rb (i.e.
w = bv−rb−1

d c).
Assume that w lies inside a big gap [s, t] in Φ, that is, s 6 w < t. Then,

by (4.1) and (4.2) the gap, associated with the convergent

A(z)ps(zd)
B(z)qs(zd)

,

contains [ds+rb, dt−ra]. Obviously, ds+rb < v and dt−ra > v−rb−ra > u.
Therefore this gap intersects with [u, v] and hence it must coincide with
[u, v]. We get [s, t] ≺ [u, v], which is a contradiction.

We then deduct that w does not lie inside a big gap. In other words,
there is an element s ∈ Φ with 0 6 w − s 6 ra+rb

d−1 . Consider the fraction

p(z)
q(z) = A(z)ps(zd)

B(z)qs(zd)
.

Then by (3.2), we have ‖q(z)f(z)− p(z)‖ 6 ra − d(s+ 1), which is strictly
smaller than −u. Indeed,

d(s+ 1)− ra > d
(
w − ra + rb

d− 1 + 1
)
− ra > v− ra− rb−

d

d− 1(ra+ rb) > u.

Divide q by qu with the remainder: q(z) = a(z)qu(z) + r(z) and write
p(z) = a(z)pu(z) + c(z). Then we have

‖a(z)qu(z)f(z)− a(z)pu(z)‖ = deg(a)− v.

Obviously, the degree of q is rb + ds which is strictly smaller than v and
therefore deg(a)− v < v − u− v = −u.

Assume that r 6= 0. Since the convergents of f are the best approximants
to f and deg(r) < deg(qu), we have

‖r(z)f(z)− c(z)‖ > ‖qu′(z)f(z)− pu′(z)‖ = −u,
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where pu′/qu′ is the convergent of f which precedes pu/qu. The last two
estimates imply

‖q(z)f(z)− p(z)‖ = ‖r(z)f(z)− c(z)‖ > −u,
which contradicts the condition r 6= 0. Hence we get that r = 0 and p/q
coincides with pu/qu. This together with (4.1) and (4.2) implies that u =
ds+rb−rc and v = dt+rc−ra where rc = deg(gcd(A(z)pu(zd), B(z)qu(zd))).
Since polynomials pu(zd) and qu(zd) are coprime, rc 6 ra + rb. Finally,

v − u 6 d(t− s) + 2rc − ra − rb 6
2d− 1
d− 1 (ra + rb). �

Lemma 4.3. Assume that (d− 1)u > ra. Then

(4.5)
v − ra

d−1
u+ rb

d−1
6 lim sup

n→∞

{
vn
un

}
6
v + rb

d−1
u− ra

d−1
.

Proof. From equations (4.1) and (4.2) we have that

(4.6)
un+1 = dun + rb − rc,n;
vn+1 = dvn − ra + rc,n,

where
(4.7) rc,n = deg gcd(A(z)pun(zd), B(z)qun(zd))
and it is not bigger than ra + rb. This implies

dvn − ra
dun + rb

6
vn+1
un+1

6
dvn + rb
dun − ra

.

By iterating this inequality n times we get
dnv − (1 + d+ · · ·+ dn−1)ra
dnu+ (1 + d+ · · ·+ dn−1)rb

6
vn
un
6
dnv + (1 + d+ · · ·+ dn−1)rb
dnu− (1 + d+ · · ·+ dn−1)ra

.

Taking limits as n→∞ yields (4.5). �

Lemmata 4.2 and 4.3 together imply that only finitely many primitive
gaps may contribute to the supremum in (4.4). Indeed, consider all primitive
gaps [u, v] in Φ with u > ra

d−1 . By Lemma 4.2, their sizes are bounded.
Therefore we can choose the primitive gap [u0, v0] in Φ with the biggest
possible size S such that u0 is smallest possible among all primitive gaps
in Φ of this size. Then, by Lemma 4.3, a primitive gap [u, v] in Φ can only
contribute to the limsup in (4.4) if

u+ S + rb
d−1

u− ra
d−1

>
v0 − ra

d−1
u0 + rb

d−1
.

Since v0 − u0 >
ra+rb
d−1 , the right hand side of the inequality is bigger than

one and therefore it gives us an upper bound for u. Denote this bound by
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lu. We deduct that only [u, v] with u 6 lu can contribute to the limsup
in (4.4) and there are obviously finitely many of them.

Now to complete the proof of Theorem 1.1, we need to show that for
any primitive gap [u, v] in Φ we have that lim infn→∞ vn/un is a rational
number. The most mysterious term in the formulae (4.6) is rc,n. In the next
section we prove the following proposition which is a key to the proof of
Theorem 1.1.

Proposition 4.4. The sequence (rc,n)n∈N is eventually periodic.

We end this section by showing how Proposition 4.4 implies Theorem 1.1.
Let the sequence (rc,n)n∈N be periodic, starting from the index n0 and with
the period length P , i.e. rc,n0+i = rn0+P+i for every i ∈ Z>0. Denote by R
the following value:

R := dP−1rc,n0 + · · ·+ drc,n0+P−2 + rc,n0+P−1.

By applying the formulae (4.6) for un0 , vn0 , un0+1, vn0+1,. . . up to un0+P ,
vn0+P , we get

un0+P = dPun0 + rb(1 + d+ · · ·+ dP−1)−R,

vn0+P = dP vn0 − ra(1 + d+ · · ·+ dP−1) +R.

Define

ru := rb(1 + d+ · · ·+ dP−1)−R, and rv := ra(1 + d+ · · ·+ dP−1)−R.

Then we get

lim
k→∞

un0+kP
vn0+kP

= lim
k→∞

dkPun0 + (1 + dP + d2P + d(k−1)P )ru
dkP vn0 − (1 + dP + d2P + d(k−1)P )rv

=
un0 + ru

dP−1
vn0 − rv

dP−1
,

which is a rational number. By analogous arguments, the limits of
un0+1+kP
vn0+1+kP

, . . . ,
un0+(k+1)P−1
vn0+(k+1)P−1

as k → ∞ are all rational numbers. Therefore lim supn→∞ vn/un, as the
maximum of the limits above, is a rational number. This finishes the proof
of Theorem 1.1.

5. Proof of Proposition 4.4

We split each of the polynomials A,B, pum and qum (m ∈ Z>0) into the
product of three factors: cyclotomic, non-cyclotomic and the power of z. For
example, A(z) = Ac(z) ·An(z) ·A0(z), where all roots of Ac(z) are roots of
unity, A0(z) is a power of z and none of the roots of An(z) is either zero or
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a root of unity. The polynomials Bc, Bn, B0, pc,um , pn,um , p0,um , qc,um , qn,um
and q0,um are defined in the same way. Obviously,

gcd(Ac(z)pc,um(zd), Bn(z)qn,um(zd))
= gcd(An(z)pn,um(zd), Bc(z)qc,um(zd)) = const,

and therefore we can split rc,m into the sum of three parts: rc,m = rc,c,m +
rn,c,m+r0,c,m. The first term is the degree of the cyclotomic part of the gcd
in (4.7), the second one is the degree of the non-cyclotomic part of it and
the third one is generated by the powers of z presented in the gcd. We will
consider each term separately.

5.1. Non-cyclotomic term.

Lemma 5.1. Let C,D ∈ Z[x] be such that none of their roots is a root of
unity. Then there exists m0 ∈ N such that for all m > m0,

gcd(C(z), D(zdm)) = const.

Proof. Assume the contrary. Then there exists a root α of C such that z−α
divides D(zdm) for infinitely many values m. Hence there exists a root β of
D such that

β = αd
m1 = αd

m2

for some positive integers m1 6= m2. But the latter is only possible if α is a
root of unity or zero — a contradiction. �

Lemma 5.2. The sequence (rn,c,m)m∈N is eventually periodic.

Proof. From Lemma 5.1 fix m0 such that
gcd(An(z), Bn(zdm)qn,u(zdm)) = gcd(Bn(z), An(zdm)pn,u(zdm)) = const

for all m > m0. Write the non-cyclotomic part of the convergent pum/qum
in the following form:

pn,um
qn,um

=
∏m−1
t=0 A∗t,m(z)p∗m(z)∏m−1
t=0 B∗t,m(z)q∗m(z)

,

where the numerator and denominator of the right hand side are coprime;
A∗t,m(z) | A(zdt), B∗t,m(z) | B(zdt), p∗m(z) | pn(zdm) and q∗m(z) | qn(zdm);
the leading coefficients of A∗t,m(z), B∗t,m(z), p∗m(z), q∗m(z) coincide with those
of A(z), B(z), pn(z) and qn(z) respectively. Then for m > m0 the degree
rn,c,m of

gcd(An(z)pn,um+1(zd), Bn(z)qn,um+1(zd))
as well as the polynomials A∗t,m+1, B

∗
t,m+1, t ∈ {0, . . . ,m0}, depend entirely

on the polynomials A∗0,m, A∗1,m, . . . , A∗m0,m and B∗0,m, . . . , B∗m0,m. But there
are finitely many such combinations. Therefore one can findm2 > m1 > m0
such that A∗0,m1 = A∗0,m2 , . . . , A

∗
m0,m1 = A∗m0,m2 and B∗0,m1 = B∗0,m2 , . . . ,
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B∗m0,m1 = B∗m0,m2 . Then we get rn,c,m1 = rn,c,m2 , rn,c,m1+1 = rn,c,m2+1, etc.
Hence the sequence of (rc,n,m)m∈N is eventually periodic. �

5.2. Powers of z. We write
A0(z) = zsa ; B0(z) = zsb ; p0,u(z) = zsp and q0,u(z) = zsq .

Since A and B are coprime and pu and qu are coprime, we have that at
least one value of sa, sb and at least one of sp, sq is zero. If we have sa =
sp = 0 (or sb = sq = 0) then, by (4.3), the powers of z of all numerators
(denominators) are zero and hence (r0,c,m)m∈Zge0 is the zero sequence.

Now without loss of generality assume that sa > 0, sq > 0, sb = sp = 0.
Denote by sp,m and sq,m the maximal powers of z of pum and qum respec-
tively. Notice that, if for somem0 ∈ N the value sq,m0 is zero then, as before,
the sequence r0,c,m becomes zero for all m > m0. On the other hand, if sq,m
is positive for all m ∈ Z>0 then the power of z of qum(zd) is always bigger
than that of A(z), which follows that r0,c,m equals sa for all m ∈ Z>0.

In all cases we have that the sequence (r0,c,m)m∈Z>0 is eventually periodic.

5.3. Cyclotomic term. Note that each of the polynomials Ac, Bc, pc,u,
qc,u is a (possibly empty) product of cyclotomic polynomials Φn(z). We
start by investigating the structure of polynomials Φn(zd) as d changes.
That requires some notation. Given n ∈ N, the radical of n is the product
of all prime divisors of n, i.e.:

rad(n) :=
∏
p∈P
p|n

p.

For two positive integers n and m, by r(n,m) we denote the biggest divisor
of n which is coprime with m, and s(n,m) := n/r(n,m).
Lemma 5.3. Let n, d be two positive integers. The polynomial Φn(zd) is a
product of cyclotomic polynomials. More precisely,

Φn(zd) =
∏

r|r(d,n)
Φrns(d,n)(z).

Proof. All the roots of Φn(z) are of the form ξin, where ξn is n-th primitive
root of unity, 0 6 i < n and gcd(i, n) = 1. Therefore the roots ξ of Φn(zd)
are the solutions of the equation ξd = ξin, which can be written as

ξind · ξ
j
d = ξnj+ind ,

where 0 6 j < d. The values nj + i run through the set N of all numbers
between zero and nd, which are coprime with n. Split this set into subsets

Nt := {x ∈ N : gcd(d, x) = t}.
Obviously, they are non-empty only if t | d and gcd(t, n) = 1. These two
conditions are equivalent to t | r(d, n). Denote by r the fraction r(d, n)/t.
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Notice that for any x ∈ Nt one has ξxnd = ξ
x/t
nd/t where x/t is coprime with

nd/t. Finally, write nd/t = rns(d, n), so the numbers ξxnd are the roots of
the polynomial Φrns(d,n)(z) and Φrns(d,n)(z) | Φn(zd). �

Write the polynomial Ac(z) as the product:

Ac(z) =
∏
r∈N

gcd(d,r)=1

Ar,c(z),

where Ar,c(z) is the product of all Φn(z) such that Φn(z) | Ac(z) and
r(n, d) = r. Other polynomialsBr,c(z), pr,c,um(z), qr,c,um(z) are defined anal-
ogously. Clearly, among all values r with gcd(r, d) = 1 only finitely many
polynomials Ar,c(z) have positive degree.

One of the outcomes of Lemma 5.3 is that for any n and m in N every
cyclotomic divisor Φk(z) of Φn(zdm) has r(k, d) = r(n, d). Therefore we can
split rc,c,m into the sum:

rc,c,m =
∑
r∈N

gcd(d,r)=1

rr,c,c,m,

where
rr,c,c,m = gcd(Ar,c(z)pr,c,um(zd), Br,c(z)qr,c,um(zd)).

Only finitely many of the sequences (rr,c,c,m)m∈N are non-zero.
It remains to show that every non-zero sequence (rr,c,c,m)m∈N is eventu-

ally periodic.

Case 1. Assume that among the divisors of Ar,c, Br,c, pr,c,u, qr,c,u there are
no polynomials Φr(z). From Lemma 5.3 we know that all divisors Φk(z) of
Φn(zdm) satisfy ns(d, n)m | k. Consider a divisor Φn(z) of one of the polyno-
mialsAr,c, Br,c, pr,c,u, qr,c,u. Since n 6= r, and r(n, d) = r, we have s(d, n) > 1
and therefore, as m tends to infinity, all divisors Φk(z) of Φn(zdm) satisfy
k →∞. Therefore there exists m0 such that for m > m0

gcd(Ar,c(z),Φn(zdm)) = gcd(Br,c(z),Φn(zdm)) = const.

Then the proof of Proposition 4.4 in this case is analogous to that of
Lemma 5.2.

Before considering the other cases, we need more notation and lemma.
Given two polynomials f(z), g(z) ∈ Z[z] with deg(f) > 0 denote by σ(f, g)
the maximal power of f which divides g, i.e.

σ(f, g) := max{n ∈ Z>0 : (f(z))n | g(z)}.

Lemma 5.4. For any f(z) ∈ Z[z] and any k ∈ N there exists a constant
c = c(f, k) such that for any m ∈ N, σ(Φk(z), f(zdm)) < c.
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Proof. We write k = rs where r = r(k, d) is coprime with d and the radical
of s divides the one of d. Split f as a product f = fr · g, where all the roots
of g are either not roots of unity or they are roots of unity of degree k′ with
r(k′, d) 6= r. The function fr is defined as follows:

fr(z) =
∏

rad(si) | rad(d)
(Φrsi(z))α(si).

Then g(zdm) is always coprime with Φk(z) and σ(Φk(z), f(zdm)) = σ(Φk(z),
fr(zd

m)).
We finish the proof of the lemma by induction on s. For s = 1, Lemma 5.3

implies that

σ(Φr(z), fr(zd
m)) = σ(Φr(z), (Φr(zd

m))α(1)) = α(1).

Now, consider S ∈ N with rad(S) | rad(d). Assume that the statement of
the lemma is satisfied for all s < S with rad(s) | d, i.e. for any such s there
exists a constant c(s) such that σ(Φrs(z), fr(zd

m)) 6 c(s). Now we prove
the statement for S. Lemma 5.3 implies that

σ(ΦrS(z), fr(sd
m))

6 σ(ΦrS(z), (ΦrS(zdm))α(S)) +
∑

s|S, s<S
σ(Φrs(z), fr(zd

m−1))

6 α(S) +
∑

s|S, s<S
c(s).

Since the right hand side does not depend on m, the proof is finished. �

Case 2. Assume that Φr(z) divides pr,c,u(z) and

gcd(Φr(z), Ar,c(z)) = gcd(Φr(z), Br,c(z)) = const.

Note that the case Φr(z) | qr,c,u(z) can be dealt analogously: we just
swap Ar,c with Br,c and pr,c,u with qr,c,u.

Write Ar,c(z) and Br,c(z) as

Ar,c(z) =
n∏
i=1

Φrsi(z), Br,c(z) =
n+n∗∏
i=n+1

Φrsi(z).

Let S be the set of all positive integers s which divide one of the values si,
1 6 i 6 n+ n∗, i.e.

S := {s ∈ N : ∃ i ∈ {1, . . . , n+ n∗}, s | si}.

Recall that pr,c,um+1/qr,c,um+1 can be written in the form

pr,c,um+1(z)
qr,c,um+1(z) = Ar,c(z)pr,c,um(zd)

Br,c(z)qr,c,um(zd) .
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Then the value rr,c,c,m+1 is completely determined by two tuples Σp,m and
Σq,m which are defined as follows:

Σp,m := (σζ1,m, . . . , σζN ,m), whereN = #S, ζ1, . . . , ζn ∈ S,

σζ,m := σ(Φrζ(z), pr,c,um(zd))
and Σq,m is defined analogously with pr,c,um replaced by qr,c,um . By Lem-
ma 5.3, we have that Σp,m+1 and Σq,m+1 are also determined by Σp,m and
Σq,m respectively.

It remains to show that all terms of Σp,m and Σq,m are bounded by a
constant independent of m. That in turn will imply that there are only
finitely many different values for (Σp,m,Σq,m) and there exist m1 < m2
such that Σp,m1 = Σp,m2 ,Σq,m1 = Σq,m2 , hence the sequence (rr,c,c,m)m∈N
is eventually periodic end the proof of Proposition 4.4 is completed for this
case.

Write the part pr,c,um/qr,c,um of the convergent pum/qum in the following
form:

pr,c,um(z)
qr,c,um(z) =

∏m−1
t=0 A∗t,m(z)p∗m(z)∏m−1
t=0 B∗t,m(z)q∗m(z)

,

where the numerator and the denominator of the right hand side are co-
prime and A∗t,m(z) | Ar,c(zd

t), B∗t,m(z) | Br,c(zd
t), p∗m(z) | pr,c,u(zdm) and

q∗m(z) | qr,c,u(zdm).
Since none of Ar,c(z) and Br,c(z) are divisible by Φr(z) we have that

there exists m0 ∈ N such that for all m > m0, the polynomials Ar,c(zd
m)

and Br,c(zd
m) are coprime with both Ar,c(z) and Br,c(z). Therefore for each

term σζ,m of Σp,m we have

σζ,m =
m0∑
t=0

σ(Φrζ(z), A∗t,m(zd)) + σ(Φrζ(z), p∗m(zd)).

By Lemma 5.4, the right hand side is always bounded by some constant
independent of m. By analogous arguments, the same is true for all terms
σζ,m of Σq,m.

Case 3. Assume that Φr(z) divides Ar,c(z). Then, since Ar,c(z) and Br,c(z)
are coprime, we have that Φr(z) does not divide Br,c(z).

Note that the case Φr(z) | Br,c(z) can be handled analogously. We just
swap Ar,c with Br,c and pr,c,u with qr,c,u. Therefore Case 3 is the last one
which needs to be investigated.

Lemma 5.5. For any n ∈ N with r(n, d) = r there exists m ∈ N such that
Φn(z) | Φr(zd

m).

Proof. We write n as a product n = rs and prove the lemma by induction
on s. For s = 1 the statement is straightforward. Consider S such that
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rad(S) | rad(d). Assume that the statement is true for all s < S with
rad(s) | rad(d) and prove it for S. Write the prime factorisations of S and
d in the following way:

S = pβ1
1 . . . pβkk p

βk+1
k+1 . . . p

βk+l
k+l ; d = pα1

1 . . . p
αk+l
k+l ,

where β1 < α1, . . . , βk < αk and βk+1 > αk+1 > 0, . . . , βk+l > αk+l > 0.
Then, by Lemma 5.3, one has that ΦS(z) divides Φs(zd) for s =
p
βk+1−αk+1
k+1 . . . p

βk+l−αk+l
k+l . By induction assumption, we have that there ex-

ists m such that Φs(z) | Φr(zd
m). Therefore, ΦS(z) | Φr(zd

m+1). �

Similarly to Case 2, define the set S and the following tuple:

Σq,m := (σζ1,m, . . . , σζN ,m), where N = #S, ζ1, . . . , ζn ∈ S and

σζ,m := σ

(
Φrζ(z),

m−1∏
t=0

Br,c(zd
t) · qr,c,u(zdm)

)
.

As in Case 2, we have that all terms in Σq,m are bounded by a constant,
which is independent of m. On the other hand, by Lemma 5.3, every poly-
nomial Ar,c(zd

t) is divisible by Φr(z) and therefore

σ

(
Φr(z),

m−1∏
t=0

Ar,c(zd
t)
)
> m.

In view of Lemma 5.5, there exists m0 big enough, so that for any ζ ∈ S
and m > m0 the value

σ

(
Φrσ(z),

m−1∏
t=0

Ar,c(zd
t) · pr,c,u(zdm)

)

is bigger than every term in Σq,m. That implies that for every m > m0
every polynomial (Φrζ(z))σζ,m cancels out in the expression

pr,c,um(z)
qr,c,um(z) =

∏m−1
t=0 Ar,c(zd

t)pr,c,u(zdm)∏m−1
t=0 Br,c(zdt)qr,c,u(zdm)

.

Hence for m > m0 the polynomial qr,c,um(zd) is coprime with Ar,c(z),
Br,c(z) divides pr,c,um(zd) and therefore the value rr,c,c,m is equal to rb.
Again we have that the sequence (rr,c,c,m)m∈N is eventually periodic.

To finish the proof of Proposition 4.4 we observe that the sequence rc,m
is the sum of finitely many eventually periodic sequences and hence is even-
tually periodic itself. �
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6. Application: d = 3, infinite products of quadratic polynomials

Consider the set of Mahler functions ga(z) = ga1,a2(z) which satisfy the
equation

ga(z) = (z2 + a1z + a2)qa(z3); a1, a2 ∈ Z.
Such functions and their corresponding Mahler numbers were considered
in [2] and it was conjectured that, given b ∈ Z with |b| > 2, if gu(b) 6∈ Q
then µ(ga(b)) = 2 for all a ∈ Z2, except the following three families:

(a) a = (s, s2), s ∈ Z;
(b) a = (s3,−s2(s2 + 1)), s ∈ Z;
(c) a = (±2, 1).

In [2, Theorem 9] the lower bounds for the irrationality exponents of
ga(b) for those families is provided. Here we demonstrate how Theorem 1.2
together with Lemmata 4.2 and 4.3 can be used to show that the lower
bounds in [2] are sharp.

Family (a). Let a = (s, s2). Simple calculations reveal that the first con-
vergent of ga(z) is 1/(z − s) and

(z − s)ga(z)− 1 = (s− s3)z−3 + . . .

Therefore for s3−s 6= 0 we have that Φ(ga) contains a primitive gap [1, 3] of
size 2. Note that z3m−s is always coprime with the polynomial z2 +sz+s2.
Indeed, each root z0 of the latter quadratic polynomial satisfies |z0|3 = |s|3,
so |z0|3

m = |s|3m > |s| as soon as |s| > 2. But the last condition is equivalent
to s 6= ±1, 0 which in turn is equivalent to s3 − s 6= 0.

We thus have that the numerator and the denominator of∏m−1
t=0 (z2·3t + sz3t + s2)

z3m − s
are always coprime. Therefore all the values rc,m equal zero and equa-
tions (4.6) imply that the gaps [un, vn] generated by [1, 3] satisfy

vn+1
un+1

= 3vn − 2
3un

and therefore

lim inf
n→∞

vn
un

=
v0 − 2

2
u0 + 0

2
= 2.

From Lemma 4.2 we know that the size of any primitive gap in Φ(ga)
does not exceed 5. Therefore, by Lemma 4.3, only gaps with

2 < v

u− 1 6
u+ 5
u− 1

may contribute to the irrationality exponent of ga(b). The last inequality
is equivalent to u < 7. It remains to check that Φ(ga) = {1, 3, 7, . . .} where
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the gap [3, 7] is not primitive and is generated by [1, 3]. Hence there are no
other primitive gaps [u, v] with u < 7 and Theorem 1.2 implies:

Let a = (s, s2) ∈ Z2 with s3+s 6= 0. If |b| > 2, b ∈ Z and ga(b) 6∈ Q
then µ(ga(b)) = 3.

For the remaining values of s we have:

g0,0(z) = 1
z

; g1,1(z) = 1
z − 1; g−1,1(z) = 1

z + 1 .

The function ga is then rational, and therefore ga(b) ∈ Q.

Family (b). Let a = (s3,−s2(s2 + 1)). In this case we compute

p2(z)
q2(z) = z + s(s2 + 1)

z2 + sz + s2

and
q2(z)ga(z)− p2(z) = −(s6 + s4 + s2)z−5 + . . .

Therefore for s6 + s4 + s2 6= 0 we have that Φ(ga) contains the primitive
gap [2, 5] of size 3. One can easily check that z2 + s3z − s2(s2 + 1) =
(z − s)(z + (s3 + s)). On the other hand, all roots of z2·3m + sz3m + s2 for
s 6= 0 are not real. Therefore the fraction∏m−1

t=0 (z2·3t + s3z3t − s2(s2 + 1))p2(z3m)
q2(z3m)

is always in its reduced form, i.e. every term of rc,m is zero. This yields to

lim inf
n→∞

vn
un

=
v0 − 2

2
u0 + 0

2
= 2.

As in the case of Family (a), we need to check that Φ(ga) does not contain
any other primitive gap [u, v] with u < 7 which is obvious (by (4.6), we have
the big gaps [2, 5] and [6, 13] in Φ(ga). There is no more space for big gaps
with u < 7). Therefore we finally get:

Let a = (s3,−s2(s2 + 1)) with s ∈ Z, s6 + s4 + s2 6= 0. If |b| > 2,
b ∈ Z and ga(b) 6∈ Q then µ(ga(b)) = 3.

Finally notice that the equation s6 + s4 + s2 = 0 has only one integer
solution: s = 0. But g0,0(z) has already been considered in Family (a) and
is equal to 1/z.

Family (c). Let a = (2, 1). The case a = (−2, 1) is considered analogously
and is left to the reader. One can check that 1, 2, 3, 4 and 5 belong to Φ(ga).
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Direct computation shows that [5, 8] is the primitive gap in Φ(ga) and the
corresponding fifth convergent of ga is

p5(z) = z4 + z3 + 2z2 + 4 and
q5(z) = z5 − z4 + z3 − z2 + z − 1 = (z − 1)(z2 + z + 1)(z2 − z + 1).

In other words, q5(z) = Φ1(z)Φ3(z)Φ6(z). Lemma 5.3 implies that all cy-
clotomic divisors of q5(z3m) are either of the form Φ3r(z) with some integer
r or Φ1(z). Hence q5(z3m) is always coprime with z2 + 2z+ 1 = Φ2(z)2, i.e.
the fraction ∏m−1

t=0 (z2·3t + 2z3t + 1)p5(z3m)
q5(z3m)

is always in its reduced form and every term of rc,m is zero. This yields to

lim inf
n→∞

vn
un

= v0 − 1
u0

= 7
5 .

Now from Lemma 4.2 we know that the size of any primitive gap in Φ(ga)
does not exceed 5. Therefore, by Lemma 4.3, only gaps with

7
5 <

v

u− 1 6
u+ 5
u− 1

may contribute to the irrationality exponent of ga(b). The last inequality
is equivalent to u < 16. It remains to show that all integers from 8 to
15 belong to Φ(ga). This for example can be done by checking that the
corresponding Hankel determinants

Hn := det(ci+j−1)i,j∈{1,...,n}, n = 8, . . . 15
are not zero, where ci are the coefficients of the series ga:

ga(z) =
∞∑
i=1

ciz
−i.

See [2, Corollary 1] for justification. We used Mathematika package to
compute all of the required Hankel determinants.

Finally we have:

Let a = (±2, 1). If |b| > 2, b ∈ Z then µ(ga(b)) = 12
5 .
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