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A necessary and sufficient condition for an
algebraic integer to be a Salem number

par Dragan STANKOV

Résumé. Nous donnons une condition nécessaire et suffisante pour qu’une
racine strictement supérieure à 1 d’un polynôme réciproque unitaire de degré
pair > 4 à coefficients entiers soit un nombre de Salem. Cette condition exige
que le polynôme minimal d’une certaine puissance de cet entier algébrique
ait un coefficient linéaire assez grand. Pour les nombres de Salem de certains
petits degrés nous déterminons également la probabilité qu’une puissance d’un
tel nombre satisfasse à cette condition.

Abstract. We present a necessary and sufficient condition for a root greater
than unity of a monic reciprocal polynomial of an even degree at least four,
with integer coefficients, to be a Salem number. This condition requires that
the minimal polynomial of some power of the algebraic integer has a linear
coefficient that is relatively large. We also determine the probability that an
arbitrary power of a Salem number, of certain small degrees, satisfies this
condition.

1. Introduction
A Salem number is a real algebraic integer τ > 1 of degree at least

four, conjugate to τ−1, all of whose conjugates, excluding τ and τ−1, are
unimodal i.e., lie on |z| = 1. The corresponding minimal polynomial P (x) of
degree d of these numbers, called a Salem polynomial, is (self-)reciprocal,
that is xdP (1/x) = P (x). Since P (x) is self-reciprocal and irreducible it
must have even degree. It is well known [7] that τn should also be a Salem
number of degree d for any natural n. Fractional parts of τn are dense
in the unit interval [0, 1], but are not uniformly distributed [1, 8]. Salem
numbers have appeared in quite different areas of mathematics (number
theory, harmonic analysis, knot theory, etc.). Throughout, when we speak
about a conjugate, the minimal polynomial or the degree of an algebraic
number we mean over the field of the rationals Q.
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In [9] Vieira, extending a result of Lakatos and Losonczi [3], presented a
sufficient condition for a self-reciprocal polynomial to have a fixed number
of roots on the complex unit circle U = {z ∈ C : |z| = 1}. Let p(z) =
adz

d+ad−1z
d−1 + · · ·+a1z+a0 be a d-th degree self-reciprocal polynomial.

If the inequality

(1.1) |ad−l| >
1
2

(
d

d− 2l

) d∑
k=0,k 6=l,d−l

|ak|, l < d/2

holds, then p(z) has exactly d − 2l roots on U and these roots are simple.
Here we present, in a sense, a result which lies in the opposite direction of
a special case of this theorem. Namely, we shall prove the following

Theorem 1.1. A real algebraic integer τ > 1 is a Salem number if and
only if its minimal polynomial P (x) is reciprocal of even degree d ≥ 4, and
there is n ∈ N, n ≥ 2 such that τn has the minimal polynomial Pn(x) =
1 + a1,nx+ a2,nx

2 + · · ·+ ad−1,nx
d−1 +xd, which is also reciprocal of degree

d, and satisfies the condition

(1.2) |ad−1,n| >
1
2

(
d

d− 2

)(
2 +

d−2∑
k=2
|ak,n|

)
.

Notice that the condition (1.2) is the special case when l = 1 of the
condition (1.1) applied to Pn(x).

We present a method, easy for implementation, for the calculation of
the coefficients of Pn(x) starting with P (x) without determination of its
roots. We can use the companion matrix C of a monic polynomial P (x) =
xd + ad−1x

d−1 + ad−2x
d−2 + · · ·+ a0 defined as

C =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 0 1
−a0 −a1 −a2 · · · −ad−2 −ad−1


d×d

It is well known [4, 5] that P (x) is the characteristic polynomial of C so the
root λ of P (x) is an eigenvalue of C. If v is an eigenvector of C associated
with λ then Cnv = Cn−1Cv = Cn−1λv = · · · = λnv. Thus Cn should have
an eigenvalue λn and the characteristic polynomial of Cn must be Pn(x),
i.e. Pn(x) = det(xI − Cn). It is easy to show that v = [1 λ λ2 . . . λd−1]T .

Using this method we are able, for a Salem number τ , to find at least one
n such that the minimal polynomial Pn(x) of τn satisfies condition (1.2). In
Table 1.1 we present examples of Salem numbers and the smallest n which
we have found. The forth example in the table is the root of the Lehmer
polynomial which is the smallest known Salem number. We notice that n
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becomes large as d increases. It would be interesting to find at least one n
for all small Salem numbers in the Mossinghoff’s list [6].

The relative frequency of n such that the minimal polynomial Pn(x) of
τn satisfies (1.2), which we approximated for d = 4 (2.12) and for d =
6 (2.13), significantly decreases when d increases. One might ask what is
the probability of fulfilling the condition (1.2) for an arbitrary power of the
root. We determined the exact value of the probability for d = 4, 6 and we
approximated the probability for d = 8, 10.

Theorem 1.2. Let τ be a Salem number of degree d, n, n0 ∈ N and let
Pn(x) be the minimal polynomial of τn. Let pd denotes the limit of the
probability that coefficients of Pn(x) satisfy (1.2) when n ≥ n0 is randomly
chosen, as n0 approaches infinity. Then:

(1) p4 is equal to 1/3 and,
(2)

(1.3) p6 = 4
π2

[ ∫ arccos
√

19−1
6

arccos
√

30
6

(
arccos −5− 6 cos t

6 + 6 cos t − (π − t)
)

dt

+
∫ arccos

√
6

6

arccos
√

19−1
6

(
arccos 1− 6 cos t

6− 6 cos t − (π − t)
)

dt
]

= 0.0717258 . . . .

Furthermore, we have approximated the probabilities for d = 8 and d =
10 using a numerical method and have got p8 ≈ 0.012173, p10 ≈ 0.0018.
These results suggest that pd decreases approximately five times when d is
increased by two.

If P (x) is monic, reciprocal, with integer coefficients then Pn(x) is a peri-
odic sequence of polynomials if and only if P (x) is the product of cyclotomic
polynomials. In fact, if Pn(x) is a periodic sequence, among these polyno-
mials there are only finitely many distinct ones. Then the set of roots of
these polynomials is also finite, and all the powers α, α2, α3, . . . of a root α
of P (x) are in this set. Therefore for some p, q, αp = αq, p 6= q. Since α 6= 0
it follows that αp−q = 1. Vice versa, if P (x) is the product of cyclotomic
polynomials then all its roots are roots of 1 so the set of its powers is finite
and the set of coefficients ak,n for k = 1, 2, . . . , d− 1, n = 1, 2, . . . of Pn(x)
is also finite. Thus Pn(x) is a periodic sequence of polynomials.

Acknowledgments. The author would like to thank the unknown referee
for valuable comments that resulted in an improvement of this paper, espe-
cially for the calculation of the smallest n of the last seven Salem numbers
in the Table 1.1, marked with *, which the referee generously permitted to
be added in the Table.
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Table 1.1. Salem number τ and the smallest n such that
the minimal polynomial Pn(x) of τn satisfies (1.2)

d τ Coefficients n

1. 4 1.72208381 1 −1 −1 9
2. 6 1.50613568 1 −1 0 −1 14
3. 8 1.28063816 1 0 0 −1 −1 72
4. 10 1.17628082 1 1 0 −1 −1 −1 605
5. 10 1.21639166 1 0 0 0 −1 −1 53
6. 10 1.23039143 1 0 0 −1 0 −1 240
7. 10 1.26123096 1 0 −1 0 0 −1 43
8.* 10 1.29348595 1 0 −1 −1 0 1 1367
9.* 12 1.24072642 1 −1 1 −1 0 0 −1 5894

10.* 14 1.20002652 1 0 0 −1 −1 0 0 1 61739
11.* 14 1.20261674 1 0 −1 0 0 0 0 −1 40389
12.* 14 1.25509351 1 0 −1 −1 0 1 0 −1 10824
13.* 14 1.26729644 1 −1 0 0 0 0 −1 1 48159
14.* 16 1.23631793 1 −1 0 0 0 0 0 0 −1 68667

2. Proofs of Theorems
In order to prove Theorem 1.1 we shall use a theorem of Kronecker [1,

Theorem 4.6.4], which is a consequence of Weyl’s theorems [2]. Suppose
α = (αk)1≤k≤p ∈ Rp has the property that the real numbers 1, α1, . . . , αp
are Q-linearly independent, and let µ denote an arbitrary vector in Rp, N
an integer and ε a positive real number. Then Kronecker’s theorem states
that there exists an integer n > N such that ‖nαk−µk‖ < ε, (k = 1, . . . , p)
where ‖x‖ = min{|x −m| : m ∈ Z} is the distance from x to the nearest
integer.

Proof of Theorem 1.1.

Necessity. Suppose that τ > 1 is a Salem number. The essence of the
proof is to show that there is n such that each of d − 2 unimodal roots of
Pn(x) could be arbitrarily close to exactly one root of xd−2 + 1 (see [10,
Lemma 2]) and to show that then the coefficients of Pn(x) will satisfy
the condition (1.2). It is obvious that roots of xd−2 + 1 are exp(±π+2jπ

d−2 i),
j = 0, 1, . . . , d/2− 2. We denote conjugates of τ by

(2.1) τ−1, exp(±2iπω1), . . . , exp(±2iπωd/2−1).

Numbers 1, ω1, . . . , ωd/2−1 are Q-linearly independent [1, proof of Theo-
rem 5.3.2]. According to the Kronecker’s theorem consider (wj)2≤j≤d/2 ∈
Rd/2−1 with µ = (1/2+0

d−2 , 1/2+1
d−2 , . . . , 1/2+d/2−2

d−2 ). It is clear that for every
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Figure 2.1. If τ is the seventh Salem number in Table 1.1
of degree 10 then conjugates of τ43 (represented with ◦)
and of τ80 (represented with +), whose minimal polynomials
P43(x), P80(x) satisfy (2), are close to roots of x8+1, vertices
of the regular octagon.

ε > 0 there exists an arbitrarily large integer n such that

(2.2)
∣∣∣∣nωj − 1/2 + j − 1

d− 2

∣∣∣∣ < ε (mod 1) (j = 1, 2, . . . , d/2− 1).

Since a coefficient of a polynomial is a continuous function of its roots, for
every ε > 0 there exists an arbitrarily large integer n such that the minimal
polynomial

(2.3) Pn(x) = (x− τn)(x− τ−n)

·

xd−2 + 1 +
d/2−2∑
j=1

εj(xd−2−j + xj) + εd/2−1x
d/2−1

 ,
of the Salem number τn satisfies |εk| < ε, k = 1, . . . , d/2− 1. We denote

(2.4) − τn − τ−n = T
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Pn(x) = (x2 + Tx+ 1)

·

xd−2 + 1 +
d/2−2∑
j=1

εj(xd−2−j + xj) + εd/2−1x
d/2−1


= xd + 1 + (T + ε1)(xd−1 + x) + (ε2 + Tε1 + 1)(xd−2 + x2)

+
d/2−1∑
j=3

(εj + Tεj−1 + εj−2)(xd−j + xj)

+ (2εd/2−2 + Tεd/2−1)xd/2.

Now we consider the coefficients of Pn(x) to show they satisfy the con-
dition (1.2). It is obvious that |ad−1,n| = |T + ε1| ≥ |T | − |ε|. We need to
estimate

1
2

(
d

d− 2

)(
2 +

d−2∑
k=2
|ak,n|

)

= 1
2

(
d

d− 2

)(
2 + 2|ε2 + Tε1 + 1|+ 2

d/2−1∑
j=3
|εj + Tεj−1 + εj−2|

+ |2εd/2−2 + Tεd/2−1|
)

≤ 1
2

(
d

d− 2

)(
2 + 2ε2 + 2|T |ε1 + 2 + 2

d/2−1∑
j=3

(εj + |T |εj−1 + εj−2)

+ 2εd/2−2 + |T |εd/2−1

)

≤ 1
2

(
d

d− 2

)
(4 + (2d− 8)ε+ (d− 3)|T |ε).

So the condition (1.2) will be satisfied if

|T | − |ε| > 1
2

(
d

d− 2

)
(4 + (2d− 8)ε+ (d− 3)|T |ε),

which is equivalent to

(2.5) (2d− 4)|T | − 4d
(d2 − 3d)|T |+ 2d2 − 6d− 4 > ε, d ≥ 4.

Since |T | = τn + τ−n tends to ∞ as n→∞ it is obvious that the left side
of (2.5) tends to D := 2d−4

d(d−3) as n→∞. The determination of n such that
coefficients of Pn(x) satisfies (1.2) has to be done in following four steps:

(i) we choose ε such that D > ε > 0;
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(ii) we choose an integer N such that (2.5) will be fulfilled for all n ≥ N ;
(iii) we chose an ε > 0 such that if each of d − 2 unimodal roots of

a Pn(x) is at the distance < ε in modulus of exactly one root of
xd−2 + 1 then |εk| < ε, k = 1, . . . , d/2− 1 is fulfilled in (2.3);

(iv) we chose n ≥ N such that (2.2) is fulfilled.

Sufficiency. Suppose that τ > 1 is a real algebraic integer with conjugates
τ1 = τ , τ2, . . . , τd over Q such that τn has the minimal polynomial Pn(x)
which is also reciprocal of degree d, and satisfies the condition (1.2). If τ is a
conjugate of τ ′ then τn is a conjugate of τ ′n. Since the minimal polynomial
Pn(x) of τn is of degree d so τn1 , τn2 , . . . , τnd must be different numbers and
their product has to be 1 because Pn(x) is monic and reciprocal. The poly-
nomial Pn(x) satisfies the condition (1.2) so it satisfies the condition (1.1)
of Vieira’s theorem where l = 1. According to the theorem there are d− 2
roots of Pn(x) on the boundary of the unit disc |z| = 1. Since they occur
in conjugate complex pairs their product is equal to 1. It follows that τ−n
should be a conjugate of τn which allow us to conclude that τn is a Salem
number. If |τ ′n| = 1 then |τ ′| = 1 thus it follows that there are d − 2 con-
jugates of τ on the boundary of the unit disc. Finally, in the same manner
as for τn, we conclude that τ is also a Salem number. �

Proof of Theorem 1.2.

(1). If we use (2.1) and denote D := τn + 1/τn (d = 4) we have

Pn(x) = (x2 −Dx+ 1)
(
x2 − 2 cos(2πnω1)x+ 1

)
.

We denote 2π{nω1} by θ1 and 2 cos(θ1) by s1 where { · } denotes the
fractional part. Since nω1 is uniformly distributed modulo one θ1 is uni-
formly distributed on [0, 2π]. For d = 4 the condition (1.2) is reduced to
|a3,n| > 2 + |a2,n|. Since Pn(x) = (x2−Dx+ 1)(x2− s1x+ 1) the condition
becomes

(2.6) |−D − s1| > 2 + |Ds1 + 2|.

From the definition of D it is obvious that D → ∞ when n → ∞. Since
|s1| ≤ 2 we have D+s1 →∞ so that |−D − s1| = |D+s1| is equal, for every
sufficiently large n, to D+ s1. Finally (2.6) becomes D+ s1 > 2 + |Ds1 + 2|
i.e. D+ s1− 2 > Ds1 + 2 > −D− s1 + 2. Solving this double inequality for
s1 we get

− D

D + 1 < s1 <
D − 4
D − 1 .

When n0 tends to infinity we obtain −1 < s1 < 1 i.e. −1/2 < cos θ1 < 1/2.
It follows that π/3 < θ1 < 2π/3 or 4π/3 < θ1 < 5π/3 so that the limit of
the probability has to be p4 = 2π/3

2π = 1
3 .
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(2). Using (2.1) with d = 6 and the definition of D we have

Pn(x) = (x2 −Dx+ 1)(x2 − 2 cos(2πnω1)x+ 1)(x2 − 2 cos(2πnω2)x+ 1).

We denote θ1 := 2π{nω1}, θ2 := 2π{nω2}. Coefficients of Pn(x) depend
only on real parts of unimodal roots so that we can chose the complex
conjugates from the upper half (complex) plane. Thus we define

(2.7) ti =
{
θi if θi ∈ (0, π);
2π − θi if θi ∈ (π, 2π),

i = 1, 2.

Since nω1, nω2 are uniformly distributed modulo one θ1, θ2 are uniformly
distributed on [0, 2π] and t1, t2 are uniformly distributed on [0, π]. We
denote

(2.8) s1 := 2 cos(t1), s2 := 2 cos(t2).

For d = 6 the condition (1.2) is reduced to |a5,n| > 6
8(2 + 2|a4,n| + |a3,n|).

Since
Pn(x) = (x2 −Dx+ 1)(x2 − s1x+ 1)(x2 − s2x+ 1)

the condition becomes

(2.9) |−D − s1 − s2|

>
6
8(2 + 2|Ds1 +Ds2 + s1s2 + 3|+ |−2D − 2s1 − 2s2 −Ds1s2|).

The main idea of the proof is to determine the region S in s1Os2 plane such
that every point (s1, s2) ∈ S satisfies (2.9). Since D → ∞ when n → ∞,
|s1| ≤ 2, |s2| ≤ 2 we conclude that the left side in (2.9) |−D − s1 − s2| =
|D+ s1 + s2| is equal, for every sufficiently large n, to D+ s1 + s2. We can
find the boundary of S if we replace > in (2.9) with = and if we replace both
| · | on the right side with ±( · ). There are four possibilities for replacing
so we get four equations which we solve for s2. We get rational functions
s2 = fi(D, s1) which tends to s2 = Fi(s1) when n0 →∞, i = 1, 2, 3, 4:

f1(D, s1) = 10D + 10s1 − 6Ds1 − 24
6D + 6s1 − 3Ds1 − 10 , F1(s1) = 10− 6s1

6− 3s1
,

f2(D, s1) = −2D + 2s1 + 6Ds1 + 24
6D + 6s1 + 3Ds1 + 2 , F2(s1) = −2 + 6s1

6 + 3s1
,

f3(D, s1) = −10D + 10s1 + 6Ds1 + 12
6D + 6s1 + 3Ds1 + 10 , F3(s1) = −10 + 6s1

6 + 3s1
,

f4(D, s1) = 2D + 2s1 − 6Ds1 − 12
6D + 6s1 − 3Ds1 − 2 , F4(s1) = 2− 6s1

6− 3s1
.
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The boundary of S consists of parts of graphs of Fi(s1). We have to find
intersection points of these graphs. Therefore we solve four equations:

(2.10)

F1(s1) = F2(s1)⇒ s1 = 1/3±
√

19/3,

F1(s1) = F3(s1)⇒ s1 = ±
√

30/3,

F4(s1) = F2(s1)⇒ s1 = ±
√

6/3,

F4(s1) = F3(s1)⇒ s1 = −1/3±
√

19/3.

We have to determine the area of the region T in t1Ot2 plane such that for
every point (s1, s2) ∈ S there is unique (t1, t2) ∈ T where

(2.11) t1 = arccos(s1/2), t2 = arccos(s2/2),

using (2.8). The ratio of the area of T to the area of all possible values
(t1, t2), i.e. π2, is equal to the probability p6. Since s2 = Fi(s1) it follows that
t2 = arccos(Fi(2 cos(t1))/2) =: Gi(t1) using (2.8). For the determination of
the area of T it is convenient to show that T has reflection symmetry across
the line t2 = π−t1. Let the graph of t2 = Gi(t1) be Γi. We claim that Γ1 can
be obtained by reflecting of Γ3 about the line t2 = π− t1 i.e. if (t1, t2) ∈ Γ1
then (π − t2, π − t1) ∈ Γ3 (see Figure 2.2). Indeed, if t2 = G1(t1) then

G3(π − t2) = arccos(F3(2 cos(π − t2))/2)
= arccos(F3(−2 cos(t2))/2)
= arccos(F3(−2 cos(G1(t1)))/2)
= arccos(F3(−F1(s1))/2)
= arccos(−s1/2)
= arccos(− cos(t1))
= arccos(cos(π − t1))
= π − t1.

In the same manner we can show that Γ2 is a reflection of Γ4 in the line
t2 = π − t1. Therefore T consists of four congruent curve-triangles, each
of them has the same area A (see Figure 2.2). If we bring to mind the
intersection points (2.10) and formulas (2.11) we find out the intersection
points of graphs Γi, i = 1, 2, 3, 4 which are the limits of two definite integrals
that occur in (1.3). We conclude that A is equal to sum of these integrals
(see Figure 2.2) and that p6 = 4A/π2 as it is claimed. �

If we use the same method for the determination of p8, p10 etc. it re-
quires multiple definite integrals applied on the regions with complicated
boundaries. Thus it is much more convenient to use a numerical approach.
For each pair of conjugate complex roots of a Salem polynomial we define
a variable ti ∈ (0, π), as in (2.7) and si as in (2.8) i = 1, 2, . . . ,H where we
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Figure 2.2. The event T that a power of a Salem number
of degree 6 has the minimal polynomial which satisfies the
condition (1.2) is shaded in the figure. It consists of four
congruent curve-triangles, each of them has the same area A
which is equal to the definite integral. Thus the probability
of T is 4A/π2 = 0.0717258 . . ..

denoted (d − 2)/2 by H. Let m ∈ N and let 0 = ti,0, ti,1, . . . , ti,m = π, i =
1, 2, . . . ,H be nodes arranged consecutively with equal spacing h = π/m.
Starting from

Pn(x) = (x2 −Dx+ 1)
H∏
i=1

(x2 − 2 cos(ti)x+ 1)

we calculate the coefficients of Pn(x) which obviously depend on D, ti so
that there are the functions Ak,n such that

ak,n = Ak,n(D; t1, t2, . . . , tH), k = 1, 2, . . . , d− 1.
For D fixed and for each H-tuple (t1,j1 , t2,j2 , . . . , tH,jH ) we calculate

ak,n = Ak,n(D; t1,j1 , t2,j2 , . . . , tH,jH ), ji = 0, 1, . . . ,m,
and replace them into the condition (1.2). The number Nc of all H-tuples,
i.e. of all points of πH , which satisfy this condition, divided with (m+ 1)H ,
the number of all H-tuples, approximates pd. If we take a large D = 109

and a small h ≥ 0.002 we get p8 ≈ 0.012173, p10 ≈ 0.0018. Since there are
four nested loops the calculation of p10 requires much CPU time. Thus it
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Table 2.1. Coefficients of P43(x), P80(x) which satisfy (2)
and of P100(x) which does not, where P (x) is the minimal
polynomial of the seventh Salem number in Table 1.1. The
modulus of the linear coefficient of P43(x), P80(x) is rela-
tively large.

P43(x) P80(x) P100(x)
1 1 1

−21586 −115763027 −12007769482
3611 23986075 29164508197
688 −39926871 −18134706516

5418 20167702 −25180138718
−6193 4830711 52256753515

was necessary to improve our programm. We use the fact that all H-tuples
which satisfy (1.2) are close to the point P (π/H, 3π/H, . . . , (d − 3)π/H)
or to H! points obtained by permuting the coordinates of P , because these
coordinates are the arguments of the roots of xd−2 + 1. Therefore to get Nc

we have to check and count only points in a small region around the P and
then to multiply the number of them by H!.

We have also verified p4 and p6 experimentally. For the first Salem num-
ber in the Table 1.1 of degree 4 we have found that if 1 ≤ n ≤ 300 then the
coefficients of Pn(x) satisfy (1.2) 98 times: for 9, 13, 16, 17, 20, 24, 27, 31,
35, 38, 42, 45, 46, 49, 53, 56, 57, 60, 64, 67, 68, 71, 75, 78, 79, 82, 86, 89,
93, 97, 100, 104, 107, 108, 111, 115, 118, 122, 126, 129, 130, 133, 137, 140,
141, 144, 148, 151, 155, 159,162, 166, 169, 170, 173, 177, 180, 181, 184, 188,
191, 192, 195, 199, 202, 203, 206, 210, 213, 217, 221, 224, 228, 231, 232,
235, 239, 242, 243, 244, 246, 250, 253, 254, 257, 261, 264, 265, 268, 272,
275, 279, 283, 286, 290, 293, 294, 297, so that the relative frequency is

(2.12) 98/300 ≈ 0.33.

For the second Salem number in the Table 1.1 of degree 6 we have found
that if 101 ≤ n ≤ 300 then the event that Pn(x) satisfies (1.2) occurs
fourteen times: for n = 116, 144, 157, 167, 187, 195, 206, 225, 238, 246, 257,
276, 287, 295 so that the relative frequency is 14/200 = 0.07. If 1001 ≤ n ≤
1200 then Pn(x) satisfy (1.2) sixteen times: for n = 1001, 1029, 1031, 1039,
1050, 1052, 1063, 1080, 1082, 1101, 1103, 1120, 1131, 1133, 1152, 1182 with
the relative frequency

(2.13) 16/200 = 0.08.
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