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Abelian varieties isogenous to a power of an
elliptic curve over a Galois extension

par Isabel VOGT

Résumé. Soient E/k une courbe elliptique et k′/k une extension de Galois.
On construit un foncteur exact de la catégorie des modules sans torsion sur
l’anneau des endomorphismes EndEk′ munis d’une action semi-linéaire de
Gal(k′/k) vers la catégorie des variétés algébriques sur k qui sont k′-isogènes
à une puissance de E. Comme application, on donne une preuve simple du
fait que toute courbe elliptique sur k qui est géométriquement à multiplication
complexe, est isogène sur k à une courbe elliptique à multiplication complexe
par un ordre maximal.

Abstract. Given an elliptic curve E/k and a Galois extension k′/k, we
construct an exact functor from torsion-free modules over the endomorphism
ring EndEk′ with a semilinear Gal(k′/k) action to abelian varieties over k that
are k′-isogenous to a power of E. As an application, we give a simple proof that
every elliptic curve with complex multiplication geometrically is isogenous
over the ground field to one with complex multiplication by a maximal order.

1. Introduction
Let E be an elliptic curve over a field k. As in [4], the theory of abelian

varieties isogenous over k to a power of E is related to the theory of finitely
presented torsion-free modules over the endomorphism ring Rk := Endk E.
To recall briefly, there is a functor

HomRk
( · , E) :

{
finitely presented
left Rk-modules

}opp

→
{
commutative proper
k-group schemes

}
,

such that for M a finitely presented Rk-module and C a k-scheme, we have
Homk(C,HomRk

(M,E)) = HomRk
(M,Homk(C,E)).

Restricting to torsion-free modules, we obtain a functor

HomRk
( · , E) :

{
fin. pres. tors. free
left Rk-modules

}opp

→
{

abelian k-varieties
isogenous to Er, r ∈ Z

}
.
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This functor is fully faithful, but not in general an equivalence of categories.
For example, if chat k = 0 and E does not have complex multiplication,
then the image of this functor consists entirely of the powers of E; yet it is
possible for E to be k-isogenous to a non-isomorphic curve.

In fact, this functor is never surjective if E/k acquires complex mul-
tiplication (CM) over a separable quadratic extension k′/k: E is always
k-isogenous to its k′/k quadratic twist E′/k, as we now show. Suppose that
Ek′ has CM by the order O. Let α ∈ O be a purely imaginary element of
O, so that the nontrivial element σ ∈ Gal(k′/k) acts as σα = −α. Multi-
plication by α composed with the isomorphism Ek′

'−→ E′k′ is Galois stable,
and so descends to an isogeny E → E′ over k.

In this note we describe a generalization of the functor HomRk
( · , E),

which in particular addresses the case when Endk E 6= Endk̄ E. We will
show that the essential image of this functor always contains all of the
quadratic twists of E.

More generally, one may also consider abelian varieties, as in the case
of nontrivial twists, that are isogenous to a power of an elliptic curve only
after passing to a Galois extension of the ground field. When restricted to
torsion-free modules, the image of the functor we construct will lie in the
category of abelian varieties that become isogenous to a power of E over
a Galois extension. This functor may therefore shed light upon abelian
varieties that are not isogenous to a power of E over the ground field, and
therefore missed by the previous functor, but become isogenous to a power
of E after making a suitable extension.

Let k′/k be a finite Galois extension and let G := Gal(k′/k). As every
proper commutative group scheme over a field is projective, the category
of commutative proper k-group schemes is equivalent to the category of
commutative proper k′-group schemes equipped with descent data for k′/k.
For this reason we may identify commutative proper k-group schemes with
commutative proper k′-group schemes with an action of G, such that all
maps, including the structure maps, are G-equivariant.

Let R = Rk′ := EndEk′ be the endomorphism ring of the base change
Ek′ of E to k′. In particular, R is noetherian. This inherits an action of G.
We denote this action by r 7→ σr for σ ∈ G and r ∈ R. We may then form
the twisted group ring R〈G〉 as the free R-module

R〈G〉 =
⊕
σ∈G

R · σ

with the commutation relation σr = σrσ. In this way, a module over R〈G〉
is an R-module with a semilinear G-action.

We give a construction of the following in Section 2.
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Theorem 1.1. There exists an exact functor

HomR〈G〉( · , Ek′) :
{

fin. pres. left
R〈G〉-modules

}opp

→
{
commutative proper
k-group schemes

}
,

such that
(1) For a finitely presented R〈G〉-module M and any k-scheme C, we

have
Homk(C,HomR〈G〉(M,Ek′)) = HomR〈G〉(M,Homk′(Ck′ , Ek′)).

(2) The functor agrees with HomR( · , Ek′) under the forgetful functors
mapping R〈G〉-modules to R-modules and base-changing k-schemes
to k′-schemes.

In particular, this shows that if M is an R〈G〉-module that is torsion-
free as an R-module, then HomR〈G〉(M,Ek′) is an abelian variety A over k,
such that Ak′ is isogenous to a power of E. However, we may say something
about the k-isogeny class of A as well. Recall that the category of abelian
varieties over k up to isogeny has the same objects as the category of abelian
varieties over k, but all isogenies are inverted.

Let F = R⊗ZQ. Since F is semisimple, the category of finitely presented
modules over the twisted group algebra F 〈G〉 is semisimple (as in the case
when the action of G on F is trivial, see Lemma 2.3 below). Let S1, . . . , S`
denote the simple objects.
Theorem 1.2. There is a functor

HomF 〈G〉( · , Ek′) :
{

fin. pres.
F 〈G〉-modules

}opp

→
{
abelian varieties over k

up to isogeny

}
,

compatible with the functor HomR〈G〉( · , Ek′). For any torsion-free finitely
presented R〈G〉-module M , HomR〈G〉(M,Ek′) is isogenous over k to a
product of powers of the abelian varieties HomF 〈G〉(Si, Ek′).

As an application of this Galois-equivariant functor, we give a simple and
new proof of the following old result (see [3, Prop. 25], [2, Prop. 2.2], [6,
Prop. 5.3], [5, Prop. 2.3b] for other proofs of the same or similar results),
which is useful in reducing questions about arbitrary CM elliptic curves to
those with complex multiplication by a maximal order; this will be used
in [7] for this very reason.
Corollary 1.3. Let k be a number field and let E/k be an elliptic curve.
Suppose that Ek̄ has complex multiplication by an order O in an imaginary
quadratic field F . Then there exists an elliptic curve E′/k and an isogeny

ϕ : E′ → E

defined over k, such that E′
k̄
has complex multiplication by the full ring of

integers of F .
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2. Categorical Constructions
For any R〈G〉-module M , let HomR〈G〉(M,Ek′) be the functor from the

category of k-schemes to the category of sets sending a k-scheme C to

HomR〈G〉(M,Homk′(Ck′ , Ek′)).

Let

Resk′/k : {comm. proper k′-group schemes}→{comm. proper k-group sch}

denote Weil restriction of scalars.

Proposition 2.1. The functor HomR〈G〉(M,Ek′) is representable by a
commutative proper k-group scheme. When M = R〈G〉, the representing
scheme is Resk′/k Ek′.

Proof. We first show that HomR〈G〉(R〈G〉, Ek′) = Resk′/k Ek′ . Indeed, by
the universal property of the restriction of scalars we have

Homk(C,Resk′/k Ek′)
= Homk′(Ck′ , Ek′) = HomR〈G〉(R〈G〉,Homk′(Ck′ , Ek′))
= Homk(C,HomR〈G〉(R〈G〉, Ek′))

as desired. Note that the k-scheme Resk′/k Ek′ has endomorphisms by R〈G〉.
Now let

(2.1) R〈G〉m → R〈G〉n →M → 0

be a finite presentation of M as R〈G〉-modules. The map R〈G〉m → R〈G〉n
is given by multiplication on the right by a m×n matrix X. Multiplication
by X on the left also defines a map

(Resk′/k Ek′)n → (Resk′/k Ek′)m.

As commutative proper group schemes over k form an abelian category, the
above morphism has a kernel in this category,

(2.2) 0→ A→ (Resk′/k Ek′)n → (Resk′/k Ek′)m.

We claim that A represents the functor HomR〈G〉(M,Ek′) defined above.
Indeed, we may apply the left-exact functor Homk(C,−) to (2.2) to obtain

(2.3) 0→ Homk(C,A)→ Homk′(Ck′ , Ek′)n → Homk′(Ck′ , Ek′)m.
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Similarly apply the left-exact functor HomR〈G〉( · ,Homk′(Ck′ , Ek′)) to (2.1)
to obtain

(2.4) 0→ HomR〈G〉(M,Homk′(Ck′ , Ek′))→ Homk′(Ck′ , Ek′)n

→ Homk′(Ck′ , Ek′)m.
As the right maps in both (2.3) and (2.4) are induced by multiplication by
X, the kernels are functorially isomorphic, as desired. �

Recall that we let F := R ⊗ Q. We now show that we have a compati-
ble functor taking values in the category of abelian varieties over k up to
isogeny, as in Theorem 1.2. For objects B1 and B2 in the isogeny category,
denote by Homisog(B1, B2) the morphisms in the isogeny category.

For a finitely presented F 〈G〉-module N , define the functor
HomF 〈G〉(N,Ek′)

from the isogeny category of abelian varieties over k to sets by
B 7→ HomF 〈G〉(N,Homisog(Bk′ , Ek′)).

Proposition 2.2. The functor HomF 〈G〉(N,Ek′) defined above is repre-
sented by an abelian variety in the isogeny category over k.
Proof. As above, let B be an object of the isogeny category of abelian
varieties over k. If N = M ⊗R〈G〉 F 〈G〉, we have

HomF 〈G〉(N,Homisog(Bk′ , Ek′))
= HomF 〈G〉(M ⊗ F 〈G〉,Homk′(Bk′ , Ek′)⊗Q),
= HomR〈G〉(M,R〈G〉Homk′(Bk′ , Ek′)⊗Q),
= HomR〈G〉(M,Homk′(Bk′ , Ek′))⊗Q.

And so this functor agrees with the original HomR〈G〉( · , Ek′) after com-
posing with the localization map to the isogeny category.

Therefore the functor HomF 〈G〉(F 〈G〉, Ek′) is represented by Resk′/k(Ek′)
in the isogeny category. Furthermore, as the isogeny category is an abelian
category, the same proof as in Lemma 2.1 shows that for all finitely pre-
sented F 〈G〉-modules N , the functor HomF 〈G〉(N,Ek′) is represented by
an object in the isogeny category. �

Lemma 2.3. Let F be a semisimple Q-algebra. Then F 〈G〉 is semisimple.
Proof. Let V →W be a surjection of finite-dimensional left F 〈G〉-modules.
As F is semisimple, we may choose a splitting ϕ : W → V as F -modules.
The map π : W → V given by

π(w) =
∑
g∈G

gϕ(g−1w),

defines a splitting as F 〈G〉-modules. �
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Since the endomorphism algebra of an elliptic curve is always semisimple,
Lemma 2.3 combined with the above construction proves Theorem 1.2.

We now show compatibility with base change and restriction of scalars.

Lemma 2.4. Let M be a finitely presented left R-module and set A :=
HomR(M,Ek′). Then we have that

Resk′/k A 'HomR〈G〉(R〈G〉 ⊗RM,Ek′).

Proof. By Yoneda’s Lemma, it suffices to show that Resk′/k A and

HomR〈G〉(R〈G〉 ⊗RM,Ek′

have the same functors of points. Let C be a k-scheme. By the universal
property of restriction of scalars, we have

Resk′/k A(C) = A(Ck′) = HomR(M,Hom(Ck′ , Ek′)).

By the adjunction between restriction and induction [1, Prop. 2.8.3(i)], we
have

HomR(M,Hom(Ck′ , Ek′)) ' HomR〈G〉(R〈G〉 ⊗M,Hom(Ck′ , Ek′)),
which completes the proof. �

For any ring R and any left R-algebra S, let S denote the (R,S)-bimodule
S under multiplication by R on the left and S on the right.

Lemma 2.5. Let M be a finitely presented left R〈G〉-module and let A :=
HomR〈G〉(M,Ek′). Then the base change Ak′ is isomorphic to

HomR(RM,Ek′),
where RM denotes the underlying R-module of M .

Proof. By Yoneda’s Lemma, it suffices to show that Ak′ and HomR(RM,
Ek′) have the same functor of points. Let D be a k′-scheme. Let kD denote
the k-scheme whose structure morphism is the composition D → Spec k′ →
Spec k. By the universal property of fiber products,

Ak′(D) = A(kD) = HomR〈G〉
(
M,Ek′

(
(kD)k′

))
.

We are thus reduced to showing that
HomR〈G〉

(
M,Ek′

(
(kD)k′

))
= HomR(RM,Ek′(D)).

Furthermore, by the adjunction between restriction and coinduction [1,
Prop. 2.8.3(ii)],

HomR(RM,Ek′(D)) = HomR〈G〉(M,HomR(R〈G〉, Ek′(D))).

It suffices then to show that, as left R〈G〉-modules,
Ek′

(
(kD)k′

)
' HomR(R〈G〉, Ek′(D)).
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As k′ ⊗k k′ '
∏
σ∈G k

′, we have that
(kD)k′ ' qσ∈GD,

where τ ∈ G maps the σth copy of D to the τσth copy. Elements of
Ek′ (qσ∈GD) can be represented as tuples f = (fσ)σ where fσ ∈ Ek′(D)
and

(τf)σ = τfτ−1σ.

Similarly elements of HomR(R〈G〉, Ek′(D)) are tuples g = (gσ)σ where
g ∈ Ek′(D) and (τg)σ = gστ . The correspondence

gσ = σfσ−1 ,

shows that these R〈G〉-modules are isomorphic. �

Note that any finitely presented R-module with a semilinear G-action is
also a finitely presented R〈G〉-module, as we now explain. As R is noether-
ian, it suffices to show that any R〈G〉-moduleM , which is finitely generated
as an R-module, admits a G-equivariant surjection from R〈G〉n for some n.
If m1, . . . ,mr are R-module generators of M , then the map R〈G〉r → M
sending ei 7→ mi has the desired properties.

We have the following nice properties of the functor HomR〈G〉( · , Ek′).

Proposition 2.6. Let E/k be an elliptic curve and k′/k a finite Galois
extension with Galois group G. Let R := Endk′ E and let M be a finitely
presented R〈G〉-module and let A := HomR〈G〉(M,Ek′).
(1) HomR〈G〉( · , Ek′) is exact.
(2) A is a commutative proper group scheme over k of dimension rkR(M).
(3) If M is torsion-free as an R-module, then A is an abelian variety

over k such that Ak′ is isogenous to a power of Ek′.
(4) HomR〈G〉(R,Ek′) = E.

Proof. Parts (1)–(3) follow from the corresponding properties after base-
extension to k′ [4, ThM. 4.4]. For part (4), we have

Homk(C,HomR〈G〉(R,Ek′)) = HomR〈G〉(R,Homk′(Ck′ , Ek′))
= Homk′(Ck′ , Ek′)G

= Homk(C,E). �

3. Examples and Applications
As an example of Theorem 1.2, we have the following in the special case

k′/k is a separable quadratic extension.
Proposition 3.1. Let k′/k be a separable quadratic extension and set G :=
Gal(k′/k) with nontrivial element σ. Let E′ denote the corresponding k′/k
quadratic twist of E. If M is a torsion-free R〈G〉-module, then the abelian
variety HomR〈G〉(M,Ek′) is isogenous to Er × (E′)r

′
for some r, r′ ≥ 0.
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Proof. As above, we denote the G-action on F by σ(x) = σx. By Theo-
rem 1.2, it suffices to decompose F 〈G〉 into simple modules. Let σF denote
F endowed with the G-action σ(x) = −σx for x ∈ F . Then we have an
isomorphism

F ⊕ σF
ϕ−→ F 〈G〉,

defined by ϕ(a, b) = a(σ + 1) + b(σ − 1). By comparing functors of points,
we have HomF 〈G〉(F,Ek′) ' E and HomF 〈G〉(σF,Ek′) ' E′ in the isogeny
category. �

Example 3.2. Consider the special case that k is a number field, and
E has complex multiplication by an order O in the imaginary quadratic
field F = FracO, which is defined over the quadratic extension k′ = kF/k
with Galois group G = {1, σ}. Let M be a finitely presented O〈G〉-module
that is torsion-free as an O-module. Then as multiplication by a totally
imaginary element of O defines an isomorphism σF ' F of F 〈G〉-modules,
we have that HomO〈G〉(M,Ek′) is an abelian variety defined over k, which
is isogenous over k to a power of E.

Continuing in the setup of the previous example, we conclude by proving
Corollary 1.3.

Proof of Corollary 1.3. This follows from Example 3.2 as the full ring of
integers OF of F is a finitely presented O〈G〉-module, which is torsion-
free of rank 1 over O. The full endomorphism ring of E is defined over
(the at most quadratic extension) k′, so we have that O = EndEk′ . This
inherits a (possibly trivial) action of G. We therefore have the following
exact sequence of O〈G〉-modules:

0→ O → OF → OF /O → 0,
where the action of G is induced from the action on F . Applying the functor
HomO〈G〉( · , Ek′) we obtain an exact sequence

0→HomO〈G〉(OF /O, Ek′)→ E′ → E → 0,

where E′ is again an elliptic curve over k and the right map is an isogeny
to E. By functoriality, E′k′ has an action of OF , as desired. �
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