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Igusa’s Local Zeta Functions and Exponential
Sums for Arithmetically Non Degenerate

Polynomials

par Adriana A. ALBARRACÍN-MANTILLA et Edwin
LEÓN-CARDENAL

Résumé. Nous étudions la fonction zêta locale tordue associée
à un polynôme en deux indéterminées à coefficients dans un corps
local non archimédien de caractéristique arbitraire. Sous l’hypo-
thèse que le polynôme est arithmétiquement non-dégénéré, nous
obtenous une liste explicite de candidats pour les pôles en termes
des données géométriques obtenues à partir d’une famille de poly-
gones de Newton arithmétiques attachés au polynôme. La notion
de non-dégénérescence arithmétique de Saia et Zúñiga-Galindo
est plus faible que la notion habituelle de non-dégénérescence de
Kouchnirenko. Finalement, on applique nos résultats pour obtenir
des développements asymptotiques pour certaines sommes expo-
nentielles associées à ces polynômes.

Abstract. We study the twisted local zeta function associated
to a polynomial in two variables with coefficients in a non-Archi-
medean local field of arbitrary characteristic. Under the hypothesis
that the polynomial is arithmetically non degenerate, we obtain an
explicit list of candidates for the poles in terms of geometric data
obtained from a family of arithmetic Newton polygons attached
to the polynomial. The notion of arithmetical non degeneracy due
to Saia and Zúñiga-Galindo is weaker than the usual notion of
non degeneracy due to Kouchnirenko. As an application we obtain
asymptotic expansions for certain exponential sums attached to
these polynomials.

1. Introduction

Local zeta functions play a relevant role in mathematics, since they are
related with several mathematical theories as partial differential equations,
number theory, singularity theory, among others, see for example [1, 5, 10].

Manuscrit reçu le 7 juillet 2016, révisé le 14 février 2017, accepté le 7 avril 2017.
2010 Mathematics Subject Classification. 11S40, 14G10, 11T23, 14M25.
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In this article we study “twisted” versions of the local zeta functions for
arithmetically non-degenerate polynomials studied by Saia and Zúñiga-
Galindo in [15]. Let Lv be a non-Archimedean local field of arbitrary char-
acteristic with valuation v, let Ov be its ring of integers with group of units
O×v , let Pv be the maximal ideal in Ov. We fix a uniformizer parameter π
of Ov. We assume that the residue field of Ov is Fq, the finite field with q
elements. The absolute value for Lv is defined by |z| := |z|v = q−v(z), and
for z ∈ L×v , we define the angular component of z by ac(z) = zπ−v(z). We
consider f(x, y) ∈ Ov[x, y] a non-constant polynomial and χ a character of
O×v , that is, a continuous homomorphism from O×v to the unit circle, con-
sidered as a subgroup of C×. When χ(z) = 1 for any z ∈ O×v , we will say
that χ is the trivial character and it will be denoted by χtriv. We associate
to these data the local zeta function,

Z(s, f, χ) :=
∫
O2
v

χ(ac f(x, y)) |f(x, y)|s |dxdy|, s ∈ C,

where Re(s) > 0, and |dxdy| denotes the Haar measure of (L2
v,+) norma-

lized such that the measure of O2
v is one.

It is not difficult to see that Z(s, f, χ) is holomorphic on the half plane
Re(s) > 0. Furthermore, in the case of characteristic zero (char(Lv) = 0),
Igusa [9] and Denef [4] proved that Z(s, f, χtriv) is a rational function of
q−s, for an arbitrary polynomial in several variables. When char(Lv) > 0,
new techniques are needed since there is no a general theorem of resolu-
tion of singularities, nor an equivalent method of p-adic cell decomposition.
However the stationary phase formula, introduced by Igusa, has proved to
be useful in several cases, see e.g. [12, 15, 19] an the references therein.

A considerable advance in the study of local zeta functions has been ob-
tained for the generic class of non-degenerate polynomials. Roughly speak-
ing the idea is to attach a Newton polyhedron to the polynomial f (more
generally to an analytic function) and then define a non degeneracy con-
dition with respect to the Newton polyhedron. Then one may construct a
toric variety associated to the Newton polygon, and use the well known
toric resolution of singularities in order to prove the meromorphic conti-
nuation of Z(s, f, χ), see e.g. [1] for a good discussion about the Newton
polyhedra technique in the study of local zeta functions. The first use of
this approach was pioneered by Varchenko [16] in the Archimedean case.
After Varchenko’s article, several authors have been used their methods to
study local zeta functions and their connections with oscillatory integrals
and exponential sums, see for instance [6, 7, 13, 14, 15, 17, 19] and the
references therein.

In [15] Saia and Zúñiga-Galindo introduced the notion of arithmetically
non-degeneracy for polynomials in two variables, this notion is weaker than
the classical notion of non-degeneracy due to Kouchnirenko. Then they
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studied local zeta functions Z(s, f, χtriv) when f is an arithmetically non-
degenerate polynomial with coefficients in a non-Archimedean local field of
arbitrary characteristic. They established the existence of a meromorphic
continuation for Z(s, f, χtriv) as a rational function of q−s, and they gave
an explicit list of candidate poles for Z(s, f, χtriv) in terms of a family of
arithmetic Newton polygons which are associated with f .

In this work we study the local zeta functions Z(s, f, χ) for arithmeti-
cally modulo π non degenerate polynomials in two variables over a non-
Archimedean local field, when χ is non necessarily the trivial character. By
using the techniques of [15] we obtain an explicit list of candidate poles
of Z(s, f, χ) in terms of the data of the geometric Newton polygon for f
and the equations of the straight segments defining the boundaries of the
arithmetic Newton polygon attached to f , see Theorem 6.1. As an applica-
tion we describe the asymptotic expansion for oscillatory integrals attached
to f , see Theorem 7.2. On the other hand, there have been a lot interest
on estimation of exponential sums mod pm attached to non-degenerate
polynomials in the sense of Kouchnirenko, see e.g. [2, 3, 7, 8, 19]. Our esti-
mations are for a class of polynomials in two variables which are degenerate
in the sense of Kouchnirenko, thus the techniques developed in the above
mentioned articles can not be applied.

We would like to thank to Professor W. A. Zúñiga-Galindo for pointing
out our attention to this problem and for very useful suggestions about this
work. We also want to thank to the anomymous referee for useful comments.

2. Geometric Newton Polygons and Non-degeneracy Conditions

We set R+ = {x ∈ R| x > 0}, and we denote by 〈 · , · 〉 the usual inner
product of R2, we also identify the dual vector space with R2.

Let f(x, y) =
∑
i,j ai,jx

iyj , be a non-constant polynomial in Lv[x, y] sat-
isfying f(0, 0) = 0. The support of f is defined as supp(f) = {(i, j) ∈
N2| ai,j 6= 0} and the Geometric Newton polygon of f , denoted by Γgeom(f),
is the convex hull in R2

+ of the set
⋃

(i,j)∈supp(f)((i, j) + R2
+).

A proper face of Γgeom(f) is a non empty convex subset τ which is the
intersection of Γgeom(f) with a line H (supporting line of τ) and such
that one of the two half-spaces defined by H contains Γgeom(f). Note that
Γgeom(f) is a face itself. The dimension of τ is the dimension of the subspace
spanned by τ . The zero dimensional faces are called vertices and the one
dimensional faces are called edges. For every face τ ⊆ Γgeom(f) the face
function is the polynomial

fτ (x, y) =
∑

(i,j)∈τ
ai,jx

iyj .
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A non constant polynomial f(x, y) satisfying f(0, 0) = 0 is called non
degenerate with respect to Γgeom(f) (in the sense of Kouchnirenko [11]) if:

(1) the origin of L2
v is a singular point of f(x, y);

(2) for every τ ⊆ Γgeom(f), there are no solutions (x, y) ∈ (L×v )2 to the
system

fτ (x, y) = ∂fτ
∂x

(x, y) = ∂fτ
∂y

(x, y) = 0.

Now, we recall the construction of a polyhedral subdivision of R2
+ subordi-

nate to Γgeom(f). Given a ∈ R2
+ we set

m(a) := inf
x∈Γgeom(f)

〈a, x〉.

We also define F (a) = {x ∈ Γgeom(f)|〈a, x〉 = m(a)} as the first meet locus
of a. Note that F (a) is a face of Γgeom(f). In particular, F (0) = Γgeom(f).
We define an equivalence relation on R2

+ by taking

a ∼ a′ if and only if F (a) = F (a′).

The equivalence classes of ∼ are the sets

∆τ := {a ∈ (R+)2 | F (a) = τ},

with τ ⊆ Γgeom(f). The following Proposition gives a precise description of
these equivalent classes.

Lemma 2.1 ([15, Proposition 2.1]). Let τ be a proper face of Γgeom(f). If
τ is an edge of Γgeom(f), with normal vector a, then

∆τ = {λa | λ ∈ R, λ > 0}.

If τ is a vertex of Γgeom(f) contained in the edges γ1 and γ2, and if a1, a2
are the normal vectors to γ1, γ2 respectively, then

∆τ = {λ1a1 + λ2a2 | λ1, λ2 ∈ R,with λ1, λ2 > 0}.

Sets like ∆τ are called strictly positive cones and one says that they are
spanned by a or a1, a2. When the set of generators is linearly independent
over R one says that the cone is simplicial. If the generators are in Z2 then
we call ∆τ a rational simplicial cone, and when the set of generators is a
subset of a basis of the Z-module Z2, we say that ∆τ is a simple cone.

A vector of R2
+ is called primitive if their entries are integers which are

relatively prime. For every edge of Γgeom(f), there exist a unique primitive
vector in N2 \ {0} perpendicular to it. Therefore, the equivalence classes of
∼ are rational simplicial cones spanned by the primitive vectors orthogonal
to the edges of Γgeom(f).
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From the above considerations one has that there exists a partition of
R2

+ of the form

R2
+ = {(0, 0)} ∪

⋃
τ⊂Γgeom(f)

∆τ ,

where τ runs through all proper faces of Γgeom(f). In this case one says
that {∆τ}τ⊂Γgeom(f) is a simplicial conical subdivision of R2

+ subordinated
to Γgeom(f).

2.1. Local zeta functions and conical subdivisions. Once we have
a simplicial conical subdivision subordinated to Γgeom(f), it is possible
to reduce the computation of Z(s, f, χ) to integrals over the cones ∆τ .
In order to do that let f(x, y) ∈ Lv[x, y] be a non-constant polynomial
satisfying f(0, 0) = 0, and let Γgeom(f) be its geometric Newton polygon.
We fix a simplicial conical subdivision {∆τ}τ⊂Γgeom(f) of R2

+ subordinated
to Γgeom(f), and set

E∆τ := {(x, y) ∈ O2
v | (v(x), v(y)) ∈ ∆τ},

Z(s, f, χ,∆τ ) :=
∫
E∆τ

χ(ac f(x, y)) |f(x, y)|s |dxdy|,

for a proper face τ , and

Z(s, f, χ,O×2
v ) :=

∫
O×2
v

χ(ac f(x, y)) |f(x, y)|s |dxdy|.

Therefore

(2.1) Z(s, f, χ) = Z(s, f, χ,O×2
v ) +

∑
τ⊂Γgeom(f)

Z(s, f, χ,∆τ ).

The integrals appearing in (2.1) can be computed explicitly when f is
assumed to be non-degenerate with respect to Γgeom(f) by using techniques
of toroidal geometry or the π-adic stationary phase formula, see e.g. [7,
16, 19]. For the sake of completeness we recall here the stationary phase
formula. We recall that the conductor cχ of a character χ of O×v is defined
as the smallest c ∈ N \ {0} such that χ is trivial on 1 + πcOv.

Denote by x̄ the reduction mod π of x ∈ Ov, we denote by f(x) the
reduction of the coefficients of f(x) ∈ Ov[x] (we assume that not all of the
coefficients of f are in πOv). We fix a set of representatives L of Fq in Ov,
that is, L×L is mapped bijectively onto F2

q by the canonical homomorphism
O2
v → (Ov/πOv)2 ' F2

q . Now take T ⊆ F2
q and denote by T its preimage

under the aforementioned homomorphism, we denote by ST (f) the subset
of L × L mapped bijectively to the set of singular points of f in T . We
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define also

νT (f̄ , χ) :=


q−2 Card{t ∈ T | f̄(t) 6= 0} if χ = χtriv

q−2cχ
∑

{t∈T |f̄(t̄) 6=0} mod P
cχ
v

χ(ac (f(t))), if χ 6= χtriv,

and

σT (f̄ , χ) :=
{
q−2 Card{t ∈ T | t̄ is a non singular root of f̄} if χ = χtriv

0 if χ 6= χtriv.

Denote by ZT (s, f, χ) the integral
∫
T χ(ac f(x, y)) |f(x, y)|s |dxdy|.

Lemma 2.2 ([19, Igusa’s Stationary Phase Formula]). With all the nota-
tion above we have

ZT (s, f, χ) = νT (f, χ) + σT (f, χ)(1− q−1)q−s

(1− q−1−s)

+
∫
ST (f)

χ(ac f(x, y)) |f(x, y)|s |dxdy|,

where Re(s) > 0.
Lemma 2.3 ([10, Lemma 8.2.1]). Take a ∈ Ov, χ a character of O×v , e ∈ N
and n,N ∈ N \ {0}. Then∫

a+πeOv
χ(ac(x))N |x|sN+n−1 dx

=



(1− q−1)(q−en−eNs)
(1− q−n−Ns) if a ∈ πeOv, χN = χtriv

q−eχ(ac(a))N |a|sN+n−1 if a /∈ πeOv, χN |1+πea−1Ov = χtriv

0 all other cases.
The next lemma is an easy consequence of Lemma 2.3 and will be used

frequently along the article.
Lemma 2.4. Take h(x, y) ∈ Ov[x, y], then∑

(x0,y0)∈(Fq×)2

∫
Ov
χ(ac (h(x0, y0) + πz)) |h(x0, y0) + πz|s |dz|

=



q−s(1− q−1)N
(1− q−1−s) + (q − 1)2 −N if χ = χtriv∑

(x0,y0)∈(Fq×)2

h(x0,y0)6=0

χ(ac(h(x0, y0))) if χ 6= χtriv and χ|U = χtriv

0 all other cases,
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where N = Card{(x0, y0) ∈ (Fq×)2 | h(x0, y0) = 0}, and U = 1 + πOv.

3. Arithmetic Newton Polygons and Non Degeneracy
Conditions.

3.1. Semi-quasihomogeneous polynomials. Let L be a field, and a, b
two coprime positive integers. A polynomial f(x, y) ∈ L[x, y] is called quasi-
homogeneous with respect to the weight (a, b) if it has the form f(x, y) =
cxuyv

∏l
i=1(ya − αix

b)ei , c ∈ L×. Note that such a polynomial satisfies
f(tax, tby) = tdf(x, y), for every t ∈ L×, and thus this definition of quasi-
homogeneity coincides with the standard one after a finite extension of L.
The integer d is called the weighted degree of f(x, y) with respect to (a, b).

A polynomial f(x, y) is called semi-quasihomogeneous with respect to
the weight (a, b) when

(3.1) f(x, y) =
lf∑
j=0

fj(x, y),

and the fj(x, y) are quasihomogeneous polynomials of degree dj with res-
pect to (a, b), and d0 < d1 < · · · < dlf . The polynomial f0(x, y) is called
the quasihomogeneous tangent cone of f(x, y).

We set

fj(x, y) := cjx
ujyvj

lj∏
i=1

(ya − αi,jxb)ei,j , cj ∈ L×.

We assume that dj is the weighted degree of fj(x, y) with respect to (a, b),
thus dj := ab

(∑lj
i=1 ei,j

)
+ auj + bvj .

Now, let f(x, y) ∈ L[x, y] be a semi-quasihomogeneous polynomial of
the form (3.1), and take θ ∈ L× a fixed root of f0(1, ya). We put ej,θ for
the multiplicity of θ as a root of fj(1, ya). To each fj(x, y) we associate a
straight line of the form

wj,θ(z) := (dj − d0) + ej,θz, j = 0, 1, . . . , lf ,

where z is a real variable.

Definition 3.1. (1) The arithmetic Newton polygon Γf,θ of f(x, y) at
θ is

Γf,θ =
{

(z, w) ∈ R2
+

∣∣∣w 6 min
06j6lf

{wj,θ(z)}
}
.

(2) The arithmetic Newton polygon ΓA(f) of f(x, y) is defined as the
family

ΓA(f) = {Γf,θ | θ ∈ L×, f0(1, θa) = 0}.
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If Q = (0, 0) or if Q is a point of the topological boundary of Γf,θ which
is the intersection point of at least two different straight lines wj,θ(z), then
we say that Q is a vertex of ΓA(f). The boundary of Γf,θ is formed by r
straight segments, a half-line, and the non-negative part of the horizontal
axis of the (w, z)-plane. Let Qk, k = 0, 1, . . . , r denote the vertices of the
topological boundary of Γf,θ, with Q0 := (0, 0). Then the equation of the
straight segment between Qk−1 and Qk is

(3.2) wk,θ(z) = (Dk − d0) + εkz, k = 1, 2, . . . , r.

The equation of the half-line starting at Qr is,

(3.3) wr+1,θ(z) = (Dr+1 − d0) + εr+1z.

Therefore

(3.4) Qk = (τk, (Dk − d0) + εkτk), k = 1, 2, . . . r,

where τk := (Dk+1−Dk)
εk−εk+1

> 0, k = 1, 2, . . . r. Note that Dk = djk and
εk = ejk,θ, for some index jk ∈ {1, . . . , lj}. In particular, D1 = d0, ε1 = e0,θ,
and the first equation is w1,θ(z) = ε1z. If Q is a vertex of the boundary of
Γf,θ, the face function is the polynomial

(3.5) fQ(x, y) :=
∑

wj,θ(Q)=0
fj(x, y),

where wj,θ(z) is the straight line corresponding to fj(x, y).

Definition 3.2. (1) A semi-quasihomogeneous polynomial f(x, y) ∈
L[x, y] is called arithmetically non-degenerate modulo π with re-
spect to Γf,θ at θ, if the following conditions holds.
(a) The origin of F2

q is a singular point of f , i.e. f(0, 0) =
∇f(0, 0) = 0;

(b) f(x, y) does not have singular points on (F×q )2;
(c) for any vertex Q 6= Q0 of the boundary of Γf,θ, the system of

equations

fQ(x, y) = ∂fQ
∂x

(x, y) = ∂fQ
∂y

(x, y) = 0,

has no solutions on (F×q )2.
(2) If a semi-quasihomogeneous polynomial f(x, y) ∈ L[x, y] is arith-

metically non-degenerate with respect to Γf,θ, for each θ ∈ L×

satisfying f0(1, θa) = 0, then f(x, y) is called arithmetically non-
degenerate with respect to ΓA(f).
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3.2. Arithmetically non degenerate polynomials. Let

aγ = (a1(γ), a2(γ)),

be the normal vector of a fixed edge γ of Γgeom(f). It is well known that
f(x, y) is a semi-quasihomogeneous polynomial with respect to the weight
aγ , in this case we write

f(x, y) =
lf∑
j=0

fγj (x, y),

where fγj (x, y) are quasihomogeneous polynomials of degree dj,γ with res-
pect to aγ , cf. (3.1). We define

ΓAγ (f) = {Γf,θ | θ ∈ L×, fγ0 (1, θa1(γ)) = 0},

i.e. this is the arithmetic Newton polygon of f(x, y) regarded as a semi
quasihomogeneous polynomial with respect to the weight aγ . Then we de-
fine

ΓA(f) =
⋃

γ edge of Γgeom(f)
ΓAγ (f).

Definition 3.3. f(x, y) ∈ L[x, y] is called arithmetically non-degenerate
modulo π with respect to its arithmetic Newton polygon, if for every edge
γ of Γgeom(f), the semi-quasihomogeneous polynomial f(x, y), with respect
to the weight aγ , is arithmetically non-degenerate modulo π with respect
to ΓAγ (f).

4. The local zeta function of (y3 − x2)2 + x4y4

We present an example to illustrate the geometric ideas presented in the
previous sections. We assume that the characteristic of the residue field
of Lv is different from 2. Note that the origin of L2

v is the only singular
point of f(x, y) = (y3−x2)2 +x4y4, and this polynomial is degenerate with
respect to Γgeom(f). Now, the conical subdivision of R2

+ subordinated to
the geometric Newton polygon of f(x, y) is R2

+ = {(0, 0)}∪
⋃9
j=1 ∆j , where

the ∆j are in Table 4.1.

4.1. Computation of Z(s, f , χ,∆i), i = 1, 2, 3, 4, 6, 7, 8, 9. These in-
tegrals correspond to the case in which f is non-degenerate on ∆i. The
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integral corresponding to ∆3, can be calculated as follows.
Z(s, f, χ,∆3)

=
∞∑
n=1

∫
πnO×v ×πnO×v

χ(ac f(x, y))|f(x, y)|s|dxdy|

=
∞∑
n=1

q−2n−4ns

×
∫
O×2
v

χ(ac (πny3−x2)2+π4nx4y4)|(πny3−x2)2+π4nx4y4|s|dxdy|.

We set g3(x, y) = (πny3−x2)2 +π4nx4y4, then g3(x, y) = x4 and the origin
is the only singular point of g3. We decompose O×2

v as

O×
2

v =
⊔

(a,b)∈(F×q )2

(a, b) + (πOv)2,

thus
Z(s, f, χ,∆3)

=
∞∑
n=1

q−2n−4ns ∑
(a,b)∈(F×q )2

∫
(a,b)+(πOv)2

χ(ac g3(x, y))|g3(x, y)|s|dxdy|

=
∞∑
n=1

q−2n−4ns−2 ∑
(a,b)∈(F×q )2

∫
O2
v

χ(ac g3(a+πx, b+πy))|g3(a+πx, b+πy)|s|dxdy|.

Now, by using the Taylor series for g around (a, b):

g(a+πx, b+πy)=g(a, b)+π
(
∂g
∂x(a, b)x+ ∂g

∂y (a, b)y
)

+π2(higher order terms),

Table 4.1. Conical subdivision of R2
+ \ {(0, 0)}.

Cone Generators

∆1 (0, 1)R+ \ {0}
∆2 (0, 1)R+ \ {0}+ (1, 1)R+ \ {0}
∆3 (1, 1)R+ \ {0}
∆4 (1, 1)R+ \ {0}+ (3, 2)R+ \ {0}
∆5 (3, 2)R+ \ {0}
∆6 (3, 2)R+ \ {0}+ (2, 1)R+ \ {0}
∆7 (2, 1)R+ \ {0}
∆8 (2, 1)R+ \ {0}+ (1, 0)R+ \ {0}
∆9 (1, 0)R+ \ {0}
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and the fact that ∂g3
∂x (a, b) = 4a3 6≡ 0 mod π, we can change variables in

the previous integral as follows

(4.1)

z1 = g3(a+ πx, b+ πy)− g3(a, b)
π

z2 = y.

This transformation gives a bianalytic mapping on O2
v that preserves the

Haar measure. Hence by Lemma 2.4, we get

Z(s, f, χ,∆3)

=
∞∑
n=1

q−2n−4ns−2 ∑
(a,b)∈(F×q )2

∫
Ov
χ(ac (g3(a, b) + πz1))|g3(a, b) + πz1)|s |dz1|,

=



q−2−4s(1− q−1)2

(1− q−2−4s) if χ = χtriv

q−2−4s(1− q−1)2

(1− q−2−4s) if χ4 = χtriv and χ|U = χtriv

0 all other cases,

where U = 1 + πOv.
We note here that for i = 1, 2, 4, 6, 7, 8 and 9, the computation of the

Z(s, f, χ,∆i) are similar to the case Z(s, f, χ,∆3).

4.2. Computation of Z(s, f , χ,∆5) (An integral on a degenerate
face in the sense of Kouchnirenko).

Z(s, f, χ,∆5)(4.2)

=
∞∑
n=1

∫
π3nO×v ×π2nO×v

χ(ac f(x, y)) |f(x, y)|s|dxdy|

=
∞∑
n=1

q−5n−12ns

×
∫
O×2
v

χ(ac((y3−x2)2+π8nx4y4))|(y3−x2)2+π8nx4y4|s |dxdy|.

Let f (n)(x, y) = (y3 − x2)2 + π8nx4y4, for n > 1. We define

(4.3) Φ : O×2
v −→ O×2

v

(x, y) 7−→ (x3y, x2y).

Φ is an analytic bijection of O×2
v onto itself that preserves the Haar measure,

so it can be used as a change of variables in (4.2). We have (f (n)◦Φ)(x, y) =
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x12y4f̃ (n)(x, y), with f̃ (n)(x, y) = (y − 1)2 + π8nx8y4, and then

I(s, f (n), χ) :=
∫
O×2
v

χ(ac((y3−x2)2+π8nx4y4)) |(y3−x2)2+π8nx4y4|s|dxdy|

=
∫
O×2
v

χ(ac(x12y4f̃ (n)(x, y))) |f̃ (n)(x, y)|s |dxdy|.

Now, we decompose O×2
v as follows:

O×2
v =

 ⊔
y0 6≡1 mod π

O×v × {y0 + πOv}

⋃O×v × {1 + πOv},

where y0 runs through a set of representatives of F×q in Ov. By using this
decomposition,

I(s, f (n), χ)

=
∑

y0 6≡1 mod π

∞∑
j=0

q−1−j
∫
O×2
v

χ(ac(x12[y0+πj+1y]4f̃ (n)(x, y0+πj+1y))) |dxdy|

+
∞∑
j=0

q−1−j
∫
O×2
v

X (x12[1 + πj+1y]4f̃ (n)(x, 1 + πj+1y)) |dxdy|,

where X (x12[1 + πj+1y]4f̃ (n)(x, 1 + πj+1y)) = χ(x12[1 + πj+1y]4f̃ (n)(x, 1 +
πj+1y))× |x12[1 + πj+1y]4f̃ (n)(x, 1 + πj+1y)|s. Finally,

I(s, f (n), χ) =
∑

y0 6≡1 mod π

∞∑
j=0

q−1−j
∫
O×2
v

χ(ac(f1(x, y))) |dxdy|

+
4n−2∑
j=0

q−1−j−(2+2j)s
∫
O×2
v

χ(ac(f2(x, y))) |dxdy|

+ q−4n−8ns
∫
O×2
v

χ(f3(x, y)) |f3(x, y)|s |dxdy|

+
∞∑

j=4n
q−j−1−8ns

∫
(O×v )2

χ(ac(f4(x, y))) |dxdy|,

where
f1(x, y) = x12(y0 + πj+1y)4((y0 − 1 + πj+1y)2 + π8nx8(y0 + πj+1y)4),

f2(x, y) = x12(1 + πj+1y)4(y2 + π8n−(2+2j)x8(1 + πj+1y)4),
f3(x, y) = x12(1 + πj+1y)4(y2 + x8(1 + πj+1y)4),

and

f4(x, y) = x12(1 + πj+1y)4(π2+2j−8ny2 + x8(1 + πj+1y)4).
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We note that each f i, (i = 1, 2, 3, 4), does not have singular points on (F×q )2,
so we may use the change of variables (4.1) and proceed in a similar manner
as in the computation of Z(s, f, χ,∆3).

We want to call the attention of the reader to the fact that the definition
of the fi’s above depends on the value of |(πj+1y)2 + π8nx8(1 + πj+1y)4|,
which in turn depends on the explicit description of the set {(w, z) ∈ R2 |
w ≤ min{2z, 8n}}. The later set can be described explicitly by using the
arithmetic Newton polygon of f(x, y) = (y3 − x2)2 + x4y4.

Summarizing, when χ = χtriv,

Z(s, f, χtriv)(4.4)

= 2q−1(1− q−1) + q−2−4s(1− q−1)
(1− q−2−4s)

+ q−7−16s(1− q−1)2

(1− q−2−4s)(1− q−5−12s) + q−8−18s(1− q−1)2

(1− q−3−6s)(1− q−5−12s)

+ q−3−6s(1− q−1)
(1− q−3−6s) + (1− q−1)2q−6−14s

(1− q−1−2s)(1− q−5−12s)

− (1− q−1)2q−9−20s

(1− q−1−2s)(1− q−9−20s) + (q − 2)(1− q−1)q−6−12s

(1− q−5−12s)

+ (1− q−1)(q−10−20s)
(1− q−9−20s)

+ q−9−20s

(1− q−1−s)(1− q−9−20s)

{
q−1(q−1−s − q−1)N

+ (1− q−1)2(1− q−1−s)− q−2(1− q−1−s)T
}
,

where N = (q − 1) Card{x ∈ F×q | x2 = −1} and T = Card{(x, y) ∈ (F×q )2 |
y2 + x8 = 0}.

When χ 6= χtriv and χ|1+πOv = χtriv we have several cases: if χ2 = χtriv,
we have

(4.5) Z(s, f, χ) = (1− q−1)2q−6−14s

(1− q−1−2s)(1− q−5−12s) −
(1− q−1)2q−9−20s

(1− q−1−2s)(1− q−9−20s) .

When χ4 = χtriv,

(4.6) Z(s, f, χ) = q−1(1− q−1) + q−3−4s(1− q−1)
(1− q−2−4s) + q−2−4s(1− q−1)2

(1− q−2−4s)

+ q−7−16s(1− q−1)2

(1− q−2−4s)(1− q−5−12s) .



344 Adriana A. Albarracín-Mantilla, Edwin León-Cardenal

In the case where χ6 = χtriv, we obtain

(4.7) Z(s, f, χ) = q−8−18s(1− q−1)2

(1− q−3−6s)(1− q−5−12s) + q−3−6s(1− q−1)2

(1− q−3−6s)

+ q−4−6s(1− q−1)
(1− q−3−6s) + q−1(1− q−1).

If χ12 = χtriv, then

(4.8) Z(s, f, χ) = χ4(y0)χ2(y0 − 1)(q − 2)(1− q−1)q−6−12s

(1− q−5−12s) ,

where χ̄ is the multiplicative character induced by χ in F×q . Finally for
χ20 = χtriv

(4.9) Z(s, f, χ) = (1− q−1)(q−10−20s)
(1− q−9−20s) .

In all other cases Z(s, f, χ) = 0.

5. Integrals Over Degenerate Cones

From the example in Section 4, we may deduce that when one deals
with an integral of type Z(s, f, χ,∆) over a degenerate cone, we have to
use an analytic bijection Φ over the units as a change of variables and
then, split the integration domain according with the roots of the tangent
cone of f . In each one of the sets of the splitting, calculations can be done
by using the arithmetical non-degeneracy condition and/or the stationary
phase formula. The purpose of this section is to show how this procedure
works.

5.1. Some reductions on the integral Z(s, f, χ,∆). We recall the
definitions of Section 3, let f(x, y) ∈ Ov[x, y] be a semiquasihomogeneous
polynomial, with respect to the weight (a, b), with a, b coprime, and

f (m)(x, y) := π−d0mf(πamx, πbmy) =
lf∑
j=0

π(dj−d0)mfj(x, y),

where m > 1, and

(5.1) fj(x, y) = cjx
ujyvj

lj∏
i=1

(ya − αi,jxb)ei,j , cj ∈ L×v .

By Proposition 5.1 in [15], there exists a measure-preserving bijection

Φ : O×2
v −→ O×2

v

(x, y) 7−→ (Φ1(x, y),Φ2(x, y)),
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such that F (m)(x, y) := f (m)◦Φ(x, y) = xNiyMi f̃ (m)(x, y), with f̃ (m)(x, y) =∑lf
j=0 π

(dj−d0)mf̃j(x, y), where one can assume that f̃j(x, y) is a polynomial
of the form

(5.2) f̃j(u,w) = cju
AjwBj

lj∏
i=1

(w − αi,j)ei,j .

After using Φ as a change of variables in Z(s, f, χ,∆), one has to deal with
integrals of type:

I(s, F (m), χ) :=
∫
O×2
v

χ(ac (F (m)(x, y))) |F (m)(x, y)|s |dxdy|.

We set

R(f0) := {θ ∈ Ov | f0(1, θa) = 0},

and

l(f0) := max
θ 6=θ′

θ,θ′∈R(f0)

{v(θ − θ′)}.

Proposition 5.1 ([15, Proposition 5.2]).

I(s, F (m), χ) = U0(q−s, χ)
1− q−1−s +

∑
θ∈R(f0)

Jθ(s,m, χ),

where U0(q−s, χ) is a polynomial with rational coefficients and

Jθ(s,m, χ)

:=
∞∑

k=1+l(f0)
q−k

∫
O×2
v

χ(ac(F (m)(x, θ + πky)))|F (m)(x, θ + πky)|s|dxdy|.

In order to compute the integral Jθ(s,m, χ), we introduce here some no-
tation. For a polynomial h(x, y) ∈ Ov[x, y] we define Nh = Card{(x0, y0) ∈
(Fq×)2 | h(x0, y0) = 0}, and put

Mh = q−s(1− q−1)Nh

1− q−1−s +(q−1)2−Nh and Σh :=
∑

(a,b)∈(Fq×)2

h(a,b)6=0

χ(ac (h(a, b))).

Proposition 5.2. We fix θ ∈ R(f0) and assume that f(x, y) is arithmeti-
cally non degenerate with respect to Γf,θ. Let τi, i = 0, 1, 2, . . . , r be the
abscissas of the vertices of Γf,αi,0, cf. (5.2).
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(1) Jθ(s,m, χtriv) is equal to
r−1∑
i=0

q−(Di+1−d0)ms
(
q−(1+sεi+1)([mτi]+1) − q−(1+sεi+1)([mτi+1]−1)

1− q−(1+sεi+1)

)
Mg

+ q−(Dr+1−d0)ms
(
q−(1+sεr+1)[mτr]

1− q−(1+sεr+1)

)
Mgr+

r∑
i=1

q−(Di−d0)ms−(sεi[mτi])MG,

with

g(x, y) = γi+1(x, y)yei+1,θ + πm(Di+1−Di)(higher order terms),

gr(x, y) = γr+1(x, y)yer+1,θ + πm(Dr+1−Di)(higher order terms),

and

G(x, y) =
∑

w̃i,θ(Vi)=0

γi(x, y)yei,θ ,

where w̃i,θ(z̃) is the straight line corresponding to the term

π(dj−d0)m+kej,θγj(x, y)yej,θ ,

cf. (3.5).
(2) In the case χ|1+πOv = χtriv, Jθ(s,m, χ) is equal to
r−1∑
i=0

q−(Di+1−d0)ms
(
q−(1+sεi+1)([mτi]+1) − q−(1+sεi+1)([mτi+1]−1)

1− q−(1+sεi+1)

)
Σg

+ q−(Dr+1−d0)ms
(
q−(1+sεr+1)[mτr]

1− q−(1+sεr+1)

)
Σgr+

r∑
i=1

q−(Di−d0)ms−(sεi[mτi]).

(3) In all other cases Jθ(s,m, χ) = 0.

Proof. The proof is a slightly variation of the proof of Proposition 5.3 in [15].
In order to give some insight about the role of the arithmetic Newton
polygon of f , we present here some details of the proof.

The first step is to note that for (x, y) ∈ (O×v )2, θ ∈ R(f0) and k ≥
1 + l(f0),

(5.3) F (m)(x, θ + πky) = cjπ
(dj−d0)m+kej,θγj(x, y)yej,θ ,

where cj ∈ L×v and the γj ’s are polynomials satisfying |γj(x, y)| = 1 for any
(x, y) ∈ O×2

v . Then we associate to each term in (5.3) a straight line of the
form w̃j,θ(z̃) := (dj − d0)m+ ej,θz̃, for j = 0, 1, . . . , lf . We also associate to
F (m)(x, θ + πky) the convex set

ΓF (m)(x,θ+πky) =
{

(z̃, w̃) ∈ R2
+

∣∣∣ w̃ 6 min
06j6lf

{w̃j,θ(z̃)}
}
.
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As it was noticed in [15], the polygon ΓF (m)(x,θ+πky) is a rescaled version of
Γf,θ. Thus the vertices of ΓF (m)(x,θ+πky) can be described in terms of the
vertices of Γf,θ. More precisely, the vertices of ΓF (m)(x,θ+πky) are

Vi :=
{

(0, 0) if i = 0
(mτi, (Di − d0)m+mεiτi) if i = 1, 2, . . . , r,

where the τi are the abscissas of the vertices of Γf (m),θ. The crucial fact in
our proof is that F (m)(x, θ + πky), may take different forms depending of
the place that k occupies with respect to the abscissas of the vertices of
ΓF (m)(x,θ+πky). This leads to the cases:

(i) mτi < k < mτi+1,
(ii) k > mτr, and
(iii) k = mτi.

We only consider here the first case.
When mτi < k < mτi+1, there exists some j? ∈ {0, . . . , lf} such that

(dj? − d0)m+ kεj? = (Di+1 − d0)m+ kεi+1,

and
(dj? − d0)m+ kεj? < (dj − d0)m+ kεj ,

for j ∈ {0, . . . , lf} \ {j?}. In consequence

F (m)(x, θ+πky) = π−(Di+1−d0)m−εi+1k(γi+1(x, y)yei+1,θ +πm(Di+1−Di)(. . .))

for any (x, y) ∈ O×2
v , where

γi+1(x, y)yei+1,θ + πm(Di+1−Di)(. . .)

= γi+1(x, y)yei+1,θ + πm(Di+1−Di)(terms with weighted degree > Di+1).

We put g(x, y) := γi+1(x, y)yei+1,θ + πm(Di+1−Di)(. . .). Then∫
O×2
v

χ(ac(F (m)(x, θ + πky))) |F (m)(x, θ + πky)|s |dxdy|

= q−(Di+1−d0)ms−εi+1ks
∫
O×2
v

χ(ac(g(x, y)) |g(x, y)|s |dxdy|.

By using the following partition of O×2
v ,

O×
2

v =
⊔

(a,b)∈(F×q )2

(a, b) + (πOv)2,
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we have∫
O×2
v

χ(ac(g(x, y)) |g(x, y)|s |dxdy|(5.4)

=
∑

(a,b)∈(F×q )2

∫
(a,b)+(πOv)2

χ(ac g(x, y))|g(x, y)|s|dxdy|

=
∑

(a,b)∈(F×q )2

∫
O2
v

χ(ac g(a+ πx, b+ πy)) |g(a+ πx, b+ πy)|s |dxdy|.

Since ∂g
∂y (a, b) 6≡ 0 (mod π) for (a, b) ∈ (F×q )2, the following is a measure

preserving map from O2
v to itself:

(5.5)

z1 = x

z2 = g(a+ πx, b+ πy)− g(a, b)
π

.

By using (5.5) as a change of variables, (5.4) becomes:∑
(a,b)∈(F×q )2

∫
Ov
χ(ac (g(a, b) + πz2)) |g(a, b) + πz2|s |dz2|,

and then Lemma 2.4 implies that the later sum equals

q−s(1− q−1)Ng

(1− q−1−s) + (q − 1)2 −Ng if χ = χtriv∑
(a,b)∈(Fq×)2

g(a,b)6=0

χ(ac(g(a, b))) if χ 6= χtriv and χ|U = χtriv

0 all other cases,

where U = 1 +πOv, and Ng = Card{(a, b) ∈ (Fq×)2 | g(a, b) = 0}. The rest
of the proof follows the same strategy of the proof in [15]. �

5.2. Poles of Z(s, f , χ,∆).

Definition 5.3. For a semi quasihomogeneous polynomial f(x, y) ∈Lv[x, y]
which is non degenerate with respect to ΓA(f) =

⋃
{θ∈Ov |f0(1,θa)=0} Γf,θ, we

define

P(Γf,θ) :=
rθ⋃
i=1

{
− 1
εi
,− (a+ b) + τi
Di+1 + εi+1τi

,−(a+ b) + τi
Di + εiτi

}
∪

⋃
{εr+1 6=0}

{
− 1
εr+1

}
,

and

P(ΓA(f)) :=
⋃

{θ∈Ov |f0(1,θa)=0}
P(Γf,θ).
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Where Di, εi, τi are obtained form the equations of the straight segments
that form the boundary of Γf,θ, cf. (3.2),(3.3), and (3.4).

Theorem 5.4. Let ∆ := (a, b)R+ and let f(x, y) =
∑lf
j=0 fj(x, y) ∈ Ov[x, y]

be a semi-quasihomogeneous polynomial, with respect to the weight (a, b),
with a, b coprime, and fj(x, y) as in (5.1). If f(x, y) is arithmetically
non-degenerate with respect to ΓA(f), then the real parts of the poles of
Z(s, f, χ,∆) belong to the set

{−1} ∪
{
−a+ b

d0

}
∪ {P(ΓA(f))}.

In addition Z(s, f, χ,∆) = 0 for almost all χ. More precisely,

Z(s, f, χ,∆) = 0,

when χ|1+πOv 6= χtriv.

Proof. The integral Z(s, f, χ,∆) admits the following expansion:

Z(s, f, χ,∆)(5.6)

=
∞∑
m=1

∫
πamO×v ×πbmO×v

χ(ac(f(x, y)) |f(x, y)|s |dxdy|

=
∞∑
m=1

q−(a+b)m−d0ms
∫
O×2
v

χ(ac (F (m)(x, y))) |F (m)(x, y)|s |dxdy|,

where F (m)(x, y) is as in Proposition 5.1 (cf. also with (5.3)). Now, by
Proposition 5.1 and Proposition 5.2, we have∫

O×2
v

χ(ac (F (m)(x, y))) |F (m)(x, y)|s |dxdy|

= U0(q−s, χ)
1− q−1−s +

∑
{θ∈Ov |f0(1,θa)=0}

Jθ(s,m, χ),

thus (5.6) implies

Z(s, f, χ,∆) = U0(q−s,χ)
1−q−1−s +

∑
{θ∈O×v |f0(1,θa)=0}

( ∞∑
m=1

q−(a+b)m−d0msJθ(s,m, χ)
)
.

At this point we note that the announced result follows by using the
explicit formula for Jθ(s,m, χ) given in Proposition 5.2 and by using some
algebraic identities involving terms of the form [mτi], as in the proof of [15,
Theorem 5.1]. �



350 Adriana A. Albarracín-Mantilla, Edwin León-Cardenal

Example 5.5. Consider f(x, y) = (y3−x2)2 +x4y4 ∈ Lv[x, y], as in Exam-
ple 4. The polynomial f(x, y) is a semiquasihomogeneous polynomial with
respect to the weight (3, 2), which is the generator of the cone ∆5, see Ta-
ble 4.1. We note that f(x, y) = f0(x, y)+f1(x, y), where f0(x, y) = (y3−x2)2

and f1(x, y) = x4y4, cf. (3.1). In this case θ = 1 is the only root of f0(1, y3),
thus ΓA(f) = Γf,1.

Since f0(t3x, t2y) = t12f0(x, y) and f1(t3x, t2y) = t20f1(x, y), the nu-
merical data for Γf,1 are: a = 3, b = 2,D1 = d0 = 12, τ1 = 4, ε1 = 2,
and D2 = 20, then the boundary of the arithmetic Newton polygon Γf,1 is
formed by the straight segments

w0,1(z) = 2z (0 6 z 6 4), and, w1,1(z) = 8 (z > 4),
together with the half-line {(z, w) ∈ R2

+|w = 0}. According to Theo-
rem 5.4, the real parts of the poles of Z(s, f, χ,∆5) belong to the set
{−1,− 5

12 ,−
1
2 ,−

9
20}, cf. (4.4)–(4.9).

6. Local zeta functions for arithmetically non-degenerate
polynomials

Take f(x, y) ∈ Lv[x, y] be a non-constant polynomial satisfying f(0, 0) =
0. Assume that
(6.1) R2

+ = {(0, 0)} ∪
⋃

γ⊂Γgeom(f)
∆γ ,

is a simplicial conical subdivision subordinated to Γgeom(f). Let aγ =
(a1(γ), a2(γ)) be the perpendicular primitive vector to the edge γ of
Γgeom(f), we also denote by 〈aγ , x〉 = da(γ) the equation of the corre-
sponding supporting line (cf. Section 2). We set

P(Γgeom(f)) :=
{
−a1(γ)+a2(γ)

da(γ)

∣∣∣ γ is an edge of Γgeom(f), with da(γ) 6= 0
}
.

Theorem 6.1. Let f(x, y) ∈ Lv[x, y] be a non-constant polynomial. If
f(x, y) is arithmetically non-degenerate with respect to its arithmetic New-
ton polygon ΓA(f), then the real parts of the poles of Z(s, f, χ) belong to
the set

{−1} ∪ P(Γgeom(f)) ∪ P(ΓA(f)).
In addition Z(s, f, χ) vanishes for almost all χ.

Proof. Consider the conical decomposition (6.1), then by (2.1) the problem
of describe the poles of Z(s, f, χ) is reduced to the problem of describe
the poles of Z(s, f, χ,O×2

v ) and Z(s, f, χ,∆γ), where γ is a proper face of
Γgeom(f). By Lemma 2.2, the real part of the poles of Z(s, f, χ,O×2

v ) is −1.
For the integrals Z(s, f, χ,∆γ), we have two cases depending of the non

degeneracy of f with respect to ∆γ . If ∆γ is a one-dimensional cone gen-
erated by aγ = (a1(γ), a2(γ)), and fγ(x, y) does not have singularities on
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(L×v )2, then the real parts of the poles of Z(s, f, χ,∆γ) belong to the set

{−1} ∪
{
−a1(γ) + a2(γ)

dγ

}
⊆ {−1} ∪ P(Γgeom(f)).

If ∆γ is a two-dimensional cone, fγ(x, y) is a monomial, and then it does
not have singularities on the torus (L×v )2, in consequence Z(s, f, χ,∆γ) is an
entire function as can be deduced from [19, Proposition 4.1]. If ∆γ is a one-
dimensional cone, and fγ(x, y) has not singularities on (O×v )2, then f(x, y)
is a semiquasihomogeneous arithmetically non-degenerate polynomial, and
thus by Theorem 5.4, the real parts of the poles of Z(s, f, χ,∆γ) belong to
the set

{−1} ∪
{
−a1(γ) + a2(γ)

dγ

}
∪ P(ΓA(f)) ⊆ {−1} ∪ P(Γgeom(f)) ∪ P(ΓA(f)).

From these observations the real parts of the poles of Z(s, f, χ) belong to
the set {−1} ∪ P(Γgeom(f)) ∪ P(ΓA(f)).

Now we prove that Z(s, f, χ) vanishes for almost all χ. From (6.1)
and (2.1) it is enough to show that the integrals Z(s, f, χ,∆γ) = 0 for
almost all χ, to do so, we consider two cases. If f is non-degenerate with
respect to ∆γ , Z(s, f, χ,∆γ) = 0 for almost all χ, as follows from the proof
of [19, Theorem A]. On the other hand, when f is degenerate with respect
to ∆γ and ∆γ is a one dimensional cone generated by aγ , then f(x, y) is
a semiquasihomogeneous polynomial with respect to the weight aγ , thus
by Theorem 5.4, Z(s, f, χ,∆γ) = 0 when χ|1+πOv 6= χtriv. If ∆γ is a two
dimensional cone, then γ is a point. Indeed, it is the intersection point of
two edges τ and µ of Γgeom(f), and satisfies the equations:

〈aτ , γ〉 = da(τ) and 〈aµ, γ〉 = da(µ).
It follows that f(x, y) is a semiquasihomogeneous polynomial with respect
to the weight given by the barycenter of the cone: aτ+aµ

2 . The weighted
degree is da(τ)+da(µ)

2 . Finally, we may use again Theorem 5.4 to obtain the
required conclusion. �

7. Exponential Sums mod πm.

7.1. Additive Characters of a non-Archimedean local field. We
first assume that Lv is a p-adic field, i.e. a finite extension of the field of
p-adic numbers Qp. We recall that for a given z =

∑∞
n=n0 znp

n ∈ Qp, with
zn ∈ {0, . . . , p− 1} and zn0 6= 0, the fractional part of z is

{z}p :=


0 if n0 ≥ 0
−1∑
n=n0

znp
n if n0 < 0.
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Then for z ∈ Qp, exp(2π
√
−1 {z}p), is an additive character on Qp, which

is trivial on Zp but not on p−1Zp.
If TrLv/Qp( · ) denotes the trace function of the extension, then there

exists an integer d ≥ 0 such that TrLv/Qp(z) ∈ Zp for |z| ≤ qd but
TrLv/Qp(z0) /∈ Zp for some z0 with |z0| = qd+1. d is known as the expo-
nent of the different of Lv/Qp and by, e.g. [18, Chap. VIII, Corollary of
Proposition 1] d ≥ e − 1, where e is the ramification index of Lv/Qp. For
z ∈ Lv, the additive character

κ(z) = exp
(

2π
√
−1
{
TrLv/Qp(π

−dz)
}
p

)
,

is a standard character of Lv, i.e. κ is trivial on Ov but not on π−1Ov. In
our case, it is more convenient to use

Ψ(z) = exp
(

2π
√
−1
{
TrLv/Qp(z)

}
p

)
,

instead of κ( · ), since we will use Denef’s approach for estimating exponen-
tial sums, see Proposition (7.1) below.

Now, let Lv be a local field of characteristic p > 0, i.e. Lv = Fq((T )).
Take z(T ) =

∑∞
i=n0 ziT

i ∈ Lv, we define Res(z(T )) := z−1. Then one may
see that

Ψ(z(T )) := exp(2π
√
−1 TrFq/Fp(Res(z(T )))),

is a standard additive character on Lv.

7.2. Exponential Sums. Let Lv be a non-Archimedean local field of ar-
bitrary characteristic with valuation v, and take f(x, y) ∈ Lv[x, y]. The
exponential sum attached to f is

E(z, f) := q−2m ∑
(x,y)∈(Ov/Pmv )2

Ψ(zf(x, y)) =
∫
O2
v

Ψ(zf(x, y)) |dxdy|,

for z = uπ−m where u ∈ O×v and m ∈ Z. Denef found the following nice
relation between E(z, f) and Z(s, f, χ). We denote by CoefftkZ(s, f, χ) the
coefficient ck in the power series expansion of Z(s, f, χ) in the variable
t = q−s.

Proposition 7.1 ([5, Proposition 1.4.4]). With the above notation

E(uπ−m, f) = Z(0, f, χtriv) + Coefftm−1
(t− q)Z(s, f, χtriv)

(q − 1)(1− t)
+

∑
χ 6=χtriv

gχ−1χ(u)Coefftm−c(χ)Z(s, f, χ),
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where c(χ) denotes the conductor of χ and gχ is the Gaussian sum

gχ = (q − 1)−1q1−c(χ) ∑
x∈(Ov/P c(χ)

v )×
χ(x) Ψ(x/πc(χ)).

We recall here that the critical set of f is defined as
Cf := Cf (Lv) = {(x, y) ∈ L2

v | ∇f(x, y) = 0}.
We also define

βΓgeom = max
γ edges of Γgeom(f)

{
−a1(γ) + a2(γ)

da(γ)

∣∣∣∣ da(γ) 6= 0
}
,

and
βΓA

θ
:= max

θ∈R(f0)
{P | P ∈ P(Γf,θ)}.

Theorem 7.2. Let f(x, y) ∈ Lv[x, y] be a non constant polynomial which
is arithmetically modulo π non-degenerate with respect to its arithmetic
Newton polygon. Assume that Cf ⊂ f−1(0) and assume all the notation
introduced previously. Then the following assertions hold.

(1) For |z| big enough, E(z, f) is a finite linear combination of functions
of the form

χ(ac z)|z|λ(logq |z|)jλ ,
with coefficients independent of z, and λ ∈ C a pole of (1−q−s−1)×
Z(s, f, χtriv) or Z(s, f, χ) (with χ|1+πOv = χtriv), where

jλ =
{

0 if λ is a simple pole
0, 1 if λ is a double pole.

Moreover all the poles λ appear effectively in this linear combina-
tion.

(2) Assume that β := max{βΓgeom , βΓA
θ
} > −1. Then for |z| > 1, there

exist a positive constant C(Lv), such that
|E(z)| 6 C(Lv)|z|β logq |z|.

Proof. The proof follows by writing Z(s, f, χ) in partial fractions and using
Proposition 7.1 and Theorem 6.1. �
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