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Theta operators, Goss polynomials, and v-adic
modular forms

par Matthew A. PAPANIKOLAS et Guchao ZENG

In honor of David Goss

Résumé. Nous étudions les dérivées divisées des formes modu-
laires de Drinfeld et déterminons des formules pour ces dérivées
en termes de polynômes de Goss pour le noyau de l’exponentielle
de Carlitz. Comme conséquence, nous prouvons que les dérivées
divisées des formes modulaires v-adiques au sens de Serre, définies
par Goss et Vincent, sont encore des formes modulaires v-adiques.
De plus, à multiplication par une factorielle de Carlitz près, la v-
intégralité est stable sous les opérateurs de dérivation divisée.

Abstract. We investigate hyperderivatives of Drinfeld modular
forms and determine formulas for these derivatives in terms of
Goss polynomials for the kernel of the Carlitz exponential. As
a consequence we prove that v-adic modular forms in the sense
of Serre, as defined by Goss and Vincent, are preserved under
hyperdifferentiation. Moreover, upon multiplication by a Carlitz
factorial, hyperdifferentiation preserves v-integrality.

1. Introduction

In [21], Serre introduced p-adic modular forms for a fixed prime p, as p-
adic limits of Fourier expansions of holomorphic modular forms on SL2(Z)
with rational coefficients. He established fundamental results about families
of p-adic modular forms by developing the theories of differential operators
and Hecke operators acting on p-adic spaces of modular forms, and in par-
ticular he showed that the weight 2 Eisenstein series E2 is also p-adic. If
we let ϑ := 1

2πi
d
dz be Ramanujan’s theta operator acting on holomorphic

complex forms, then letting q(z) = e2πiz, we have

(1.1) ϑ = q d
dq , ϑ(qn) = nqn.
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Although ϑ does not preserve spaces of complex modular forms, Serre
proved the induced operation ϑ : Q ⊗ Zp[[q]] → Q ⊗ Zp[[q]] does take p-
adic modular forms to p-adic modular forms and preserves p-integrality.

In the present paper we investigate differential operators on spaces of
v-adic modular forms, where v is a finite place corresponding to a prime
ideal of the polynomial ring A = Fq[θ], for Fq a field with q elements and
q itself a power of a prime number p. Drinfeld modular forms were first
studied by Goss [10, 11, 12], as rigid analytic functions,

f : Ω→ C∞,

on the Drinfeld upper half space Ω that transform with respect to the group
Γ = GL2(A) (see §4 for precise definitions). Here if we take K = Fq(θ), then
Ω is defined to be C∞ \K∞, where K∞ = Fq((1/θ)) is the completion of K
at its infinite place and C∞ is the completion of an algebraic closure of K∞.
Goss showed that Drinfeld modular forms have expansions in terms of the
uniformizing parameter u(z) := 1/eC(π̃z) at the infinite cusp of Ω, where
eC(z) is the exponential function of the Carlitz module and π̃ is the Carlitz
period. Each such form f is uniquely determined by its u-expansion,

f =
∞∑
n=0

cnu
n ∈ C∞[[u]].

If k ≡ 0 (mod q − 1), then the weight k Eisenstein series of Goss [12], has
a u-expansion due to Gekeler [7, (6.3)] of the form

Ek = −ζC(k)
π̃k

−
∑

a∈A, amonic
Gk(u(az)), ζC(k)

π̃k
∈ K,

where ζC(k) is a Carlitz zeta value, Gk(u) is a Goss polynomial of degree
k for the lattice ΛC = Aπ̃ (see §3–4 and (4.2)), and u(az) can be shown to
be represented as a power series in u (see §4). Gekeler and Goss also show
that spaces of forms for Γ are generated by forms with u-expansions with
coefficients in A. Using this as a starting point, Goss [14] and Vincent [24]
defined v-adic modular forms in the sense of Serre by taking v-adic limits of
u-expansions and thus defining v-adic forms as power series in K⊗AAv[[u]]
(see §5). Goss [14] constructed a family of v-adic forms based on forms with
A-expansions due to Petrov [19] (see Theorem 6.3), and Vincent [24] showed
that forms for the group Γ0(v) ⊆ GL2(A) with v-integral u-expansions are
also v-adic modular forms.

It is natural to ask how Drinfeld modular forms and v-adic forms behave
under differentiation, and since we are in positive characteristic it is fa-
vorable to use hyperdifferential operators ∂rz , rather than straight iteration
dr

dzr = d
dz ◦ · · · ◦

d
dz (see §2 for definitions). Gekeler [7, §8] showed that if

we define Θ := − 1
π̃

d
dz = − 1

π̃
∂1
z , then we have the action on u-expansions
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determined by the equality

(1.2) Θ = u2 d
du = u2 ∂1

u.

Now as in the classical case, derivatives of Drinfeld modular forms are not
necessarily modular, but Bosser and Pellarin [1, 2], showed that hyperdif-
ferential operators ∂rz preserve spaces of quasi-modular forms, i.e., spaces
generated by modular forms and the false Eisenstein series E of Gekeler
(see Example 4.7), which itself plays the role of E2.

For r > 0, following Bosser and Pellarin we define the operator Θr by

Θr := 1
(−π̃)r ∂

r
z .

Uchino and Satoh [22, Lem. 3.6] proved that Θr takes functions with u-
expansions to functions with u-expansions, and Bosser and Pellarin [1,
Lem. 3.5] determined formulas for the expansion of Θr(un). If we consider
the r-th iterate of the classical ϑ-operator, ϑ◦r = ϑ ◦ · · · ◦ ϑ, then clearly
by (1.1),

ϑ◦r(qn) = nrqn.

If we iterate Θ, taking Θ◦r = Θ ◦ · · · ◦Θ, then by (1.2) we find

Θ◦r(un) = r!
(
n+ r − 1

r

)
un+r,

which vanishes identically when r > p. On the other hand, the factor of r!
is not the only discrepancy in comparing Θr and Θ◦r, and in fact we prove
two formulas in Corollary 4.10 revealing that Θr is intertwined with Goss
polynomials for ΛC :

Θr(un) = un ∂n−1
u

(
un−2Gr+1(u)

)
, ∀ n > 1,(1.3)

Θr(un) =
r∑
j=0

(
n+ j − 1

j

)
βr,ju

n+j , ∀ n > 0,(1.4)

where βr,j are the coefficients of Gr+1(u). These formulas arise from general
results (Theorem 3.4) on hyperderivatives of Goss polynomials for arbitrary
Fq-lattices in C∞, which is the primary workhorse of this paper, and they
induce formulas for hyperderivatives of u-expansions of Drinfeld modular
forms (Corollary 4.12). It is important to note that (1.4) is close to a for-
mula of Bosser and Pellarin [1, Eq. (28)], although the connections with
coefficients of Goss polynomials appears to be new and the approaches are
somewhat different.

Goss [14] defines the weight space of v-adic modular forms to be
S = Z/(qd − 1)Z × Zp, where d is the degree of v, and if we take Mm

s ⊆
K ⊗A Av[[u]] to be the space of v-adic forms of weight s ∈ S and type
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m ∈ Z/(q − 1)Z (see §5), then we prove (Theorem 6.1) that Θr preserves
spaces of v-adic modular forms,

Θr :Mm
s →Mm+r

s+2r, r > 0.

Of particular importance here is proving that the false Eisenstein series E
is a v-adic form (Theorem 6.5). Vincent [23, Thm. 1.2] showed that Θ(f)
is congruent to a modular form modulo v, so we show that this congruence
lifts to v-adic modular forms. For r > q, unlike in the classical case, Θr

does not preserve v-integrality due to denominators coming from Gr+1(u),
but we show in §7 that this failure can be controlled, namely showing
(Theorem 7.4) that

ΠrΘr :Mm
s (Av)→Mm+r

s+2r(Av), r > 0,

where Πr ∈ A is the Carlitz factorial (see §2) andMm
s (Av) =Mm

s ∩Av[[u]].

Acknowledgments. The authors thank David Goss for a number of help-
ful suggestions on an earlier version of this article, and they thank Bruno
Anglès for translating the abstract into French. The authors also thank the
referee for useful suggestions.

2. Functions and hyperderivatives

Let Fq be the finite field with q elements, q a fixed power of a prime p.
Let A := Fq[θ] be a polynomial ring in one variable, and let K := Fq(θ)
be its fraction field. We let A+ denote the monic elements of A, Ad+ the
monic elements of degree d, and A(<d) the elements of A of degree < d.

For each place v of K, we define an absolute value | · |v and valuation
ordv, normalized in the following way. If v is a finite place, we fix ℘ ∈ A+
to be the monic generator of the prime ideal pv corresponding to v and
we set |℘|v = 1/qdeg℘ and ordv(℘) = 1. If v = ∞, then we set |θ|∞ = q
and ord∞(θ) = −deg(θ) = −1. For any place v we let Av and Kv denote
the v-adic completions of A and K. For the place ∞, we note that K∞ =
Fq((1/θ)), and we let C∞ be a completion of an algebraic closure of K∞.
Finally, we let Ω := C∞ \K∞ be the Drinfeld upper half-plane of C∞.

For i > 1, we set

(2.1) [i] = θq
i − θ, Di = [i][i− 1]q · · · [1]qi−1

, Li = (−1)i[i][i− 1] · · · [1],

and we let D0 = L0 = 1. We have the recursions, Di = [i]Dq
i−1 and Li =

−[i]Li−1, and we recall [13, Prop. 3.1.6] that

(2.2) [i] =
∏

f∈A+, irred.
deg(f)|i

f, Di =
∏

a∈Ai+

a, Li = (−1)i · lcm(f ∈ Ai+).
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For m ∈ Z+, we define the Carlitz factorial Πm as follows. If we write
m =

∑
miq

i with 0 6 mi 6 q − 1, then
(2.3) Πm =

∏
i

Dmi
i .

For more information about Πm the reader is directed to Goss [13, §9.1].
For an Fq-algebra L, we let τ : L → L denote the q-th power Frobenius

map, and we let L[τ ] denote the ring of twisted polynomials over L, subject
to the condition that τc = cqτ for c ∈ L. We then define as usual the Carlitz
module to be the Fq-algebra homomorphism C : A→ A[τ ] determined by

Cθ = θ + τ.

The Carlitz exponential is the Fq-linear power series,

(2.4) eC(z) =
∞∑
i=0

zq
i

Di
.

The induced function eC : C∞ → C∞ is both entire and surjective, and for
all a ∈ A,

eC(az) = Ca(eC(z)).
The kernel ΛC of eC(z) is the A-lattice of rank 1 given by ΛC = Aπ̃, where
for a fixed (q − 1)-st root of −θ,

π̃ = θ(−θ)1/(q−1)
∞∏
i=1

(
1− θ1−qi

)−1
∈ K∞

(
(−θ)1/(q−1))

is called the Carlitz period (see [13, §3.2] or [18, §3.1]). Moreover, we have
a product expansion

(2.5) eC(z) = z
∏′

λ∈ΛC

(
1− z

λ

)
= z

∏′

a∈A

(
1− z

aπ̃

)
,

where the prime indicates omitting the a = 0 term in the product. For more
information about the Carlitz module, and Drinfeld modules in general, we
refer the reader to [13, Chs. 3–4].

We will say that a function f : Ω → C∞ is holomorphic if it is rigid
analytic in the sense of [6]. We set H(Ω) to be the set of holomorphic
functions on Ω. We define a holomorphic function u : Ω→ C∞ by setting

(2.6) u(z) := 1
eC(π̃z) ,

and we note that u(z) is a uniformizing parameter at the infinite cusp of Ω
(see [7, §5]), which plays the role of q(z) = e2πiz in the classical case. The
function u(z) is A-periodic in the sense that u(z + a) = u(z) for all a ∈ A.
The imaginary part of an element z ∈ C∞ is set to be

|z|i = inf
x∈K∞

|z − x|∞,
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which measures the distance from z to the real axis K∞ ⊆ C∞. We will say
that an A-periodic holomorphic function f : Ω→ C∞ is holomorphic at ∞
if we can write a convergent series,

f(z) =
∞∑
n=0

cnu(z)n, cn ∈ C∞, |z|i � 0.

The function f is then determined by the power series f =
∑
cnu

n ∈
C∞[[u]], and we call this power series the u-expansion of f and the coeffi-
cients cn the u-expansion coefficients of f . We set U(Ω) to be the subset of
H(Ω) comprising functions on Ω that are A-periodic and holomorphic at
∞. In other words, U(Ω) consists of functions that have u-expansions.

We now define hyperdifferential operators and hyperderivatives (see [5,
15, 22] for more details). For a field F and an independent variable z over
F , for j > 0 we define the j-th hyperdifferential operator ∂jz : F [z]→ F [z]
by setting

∂jz(zn) =
(
n

j

)
zn−j , n > 0,

where
(n
j

)
∈ Z is the usual binomial coefficient, and extending F -linearly.

(By usual convention
(n
j

)
= 0 if 0 6 n < j.) For f ∈ F [z], we call ∂jz(f) ∈

F [z] its j-th hyperderivative. Hyperderivatives satisfy the product rule,

(2.7) ∂jz(fg) =
j∑

k=0
∂kz (f)∂j−kz (g), f, g ∈ F [z],

and composition rule,

(2.8) (∂jz ◦ ∂kz )(f) = (∂kz ◦ ∂jz)(f) =
(
j + k

j

)
∂j+kz (f), f ∈ F [z].

Using the product rule one can extend to ∂jz : F (z)→ F (z) in a unique way,
and F (z) together with the operators ∂jz form a hyperdifferential system.
If F has characteristic 0, then ∂jz = 1

j!
dj

dzj , but in characteristic p this
holds only for j 6 p − 1. Furthermore, hyperderivatives satisfy a number
of differentiation rules (e.g., product, quotient, power, chain rules), which
aid in their description and calculation (see [15, §2.2] and [18, §2.3] for a
complete list of rules and historical accounts). Moreover, if f ∈ F (z) is
regular at c ∈ F , then so is ∂jz(f) for each j > 0, and it follows that we
have a Taylor expansion,

(2.9) f(z) =
∞∑
j=0

∂jz(f)(c) · (z − c)j ∈ F [[z − c]].

In this way we can also extend ∂jz uniquely to ∂jz : F ((z − c))→ F ((z − c)).
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For a holomorphic function f : Ω → C∞, it was proved by Uchino and
Satoh [22, §2] that we can define a holomorphic hyperderivative ∂jz(f) :
Ω→ C∞ (taking F = C∞ in the preceding paragraph). That is,

∂jz : H(Ω)→ H(Ω).

Moreover they prove that the system of operators ∂jz on holomorphic func-
tions inherits the same differentiation rules for hyperderivatives of polyno-
mials and power series. Thus for f ∈ H(Ω) and c ∈ Ω, we have a Taylor
expansion,

f(z) =
∞∑
j=0

∂jz(f)(c) · (z − c)j ∈ C∞[[z − c]].

We have the following crucial lemma for our later considerations in §4,
where we find new identities for derivatives of functions in U(Ω).

Lemma 2.10 (Uchino–Satoh [22, Lem. 3.6]). If f ∈ H(Ω) is A-periodic
and holomorphic at ∞, then so is ∂jz(f) for each j > 0. That is,

∂jz : U(Ω)→ U(Ω), j > 0.

We recall computations involving u(z) and ∂1
z (u(z)) (see [7, §3]). First

we see from (2.4) that ∂1
z (eC(z)) = 1, so using (2.5) and taking logarithmic

derivatives,

(2.11) u(z) = 1
eC(π̃z) = 1

π̃
· ∂

1
z (eC(π̃z))
eC(π̃z) = 1

π̃

∑
a∈A

1
z + a

.

Furthermore,

(2.12) ∂1
z (u(z)) = ∂1

z

( 1
eC(π̃z)

)
= −∂

1
z (eC(π̃z))
eC(π̃z)2 = −π̃u(z)2.

Thus, ∂1
z (u) = −π̃u2 ∈ U(Ω). In §4 we generalize this formula and calculate

∂rz(un) for r, n > 0.
We conclude this section by discussing some properties of hyperderiva-

tives particular to positive characteristic. Suppose char(F ) = p > 0. If we
write j =

∑s
i=0 bip

i, with 0 6 bi 6 p−1 and bs 6= 0, then (see [15, Thm. 3.1])

(2.13) ∂jz = ∂b0z ◦ ∂b1pz ◦ · · · ◦ ∂bsps

z ,

which follows from the composition law and Lucas’s theorem (e.g., see [1,
Eq. (14)]). We note that for 0 6 b 6 p− 1,

∂bp
k

z = 1
b! · ∂

pk

z ◦ · · · ◦ ∂p
k

z , (b times).
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Moreover the p-th power rule (see [3, §7], [15, §2.2]) says that for f ∈
F ((z − c)),

(2.14) ∂jz
(
fp

s) =
{(
∂`z(f)

)ps

if j = `ps,
0 otherwise,

and so calculation using (2.13) and (2.14) can often be fairly efficient.

3. Goss polynomials and hyperderivatives

We review here results on Goss polynomials, which were introduced by
Goss in [10, §6] and have been studied further by Gekeler [7, §3], [8]. We
start first with an Fq-vector space Λ ⊆ C∞ of dimension d. We define the
exponential function of Λ,

eΛ(z) = z
∏′

λ∈Λ

(
1− z

λ

)
,

which is an Fq-linear polynomial of degree qd. If we take tΛ(z) = 1/eΛ(z),
then just as in (2.11) we have

tΛ(z) =
∑
λ∈Λ

1
z − λ

.

We can extend these definitions to any discrete lattice Λ ⊆ C∞, which is
the union of nested finite dimensional Fq-vector spaces Λ1 ⊆ Λ2 ⊆ · · · .
We find that generally eΛ(z) = limi→∞ eΛi

(z) and tΛ(z) = limi→∞ tΛi
(z),

where the convergence is coefficient-wise in C∞((z)).

Remark 3.1. If we take Λ = ΛC , then eΛC
(z) = eC(z), whereas if we take

Λ = A, then eA(z) = 1
π̃
eC(π̃z). Thus

tA(z) = π̃ tΛC
(π̃z) = π̃

eC(π̃z) ,

and u(z), as defined in (2.6), is given by

u(z) = tA(z)
π̃

= tΛC
(π̃z).

This normalization of u(z) is taken so that the u-expansions of some Drin-
feld modular forms will have K-rational coefficients.

Theorem 3.2 (Goss [10, §6]; see also Gekeler [7, §3]). Let Λ ⊆ C∞ be a
discrete Fq-vector space. Let

eΛ(z) = z
∏′

λ∈Λ

(
1− z

λ

)
=
∞∑
j=0

αjz
qj
,
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and let tΛ(z) = 1/eΛ(z). For each k > 1, there is a monic polynomial
Gk,Λ(t) of degree k with coefficients in Fq[α0, α1, . . .] so that

Sk,Λ(z) :=
∑
λ∈Λ

1
(z − λ)k = Gk,Λ

(
tΛ(z)

)
.

Furthermore the following properties hold.
(a) Gk,Λ(t) = t(Gk−1,Λ(t) + α1Gk−q,Λ(t) + α2Gk−q2,Λ(t) + · · · ).
(b) We have a generating series identity

GΛ(t, x) =
∞∑
k=1

Gk,Λ(t)xk = tx

1− teΛ(x) .

(c) If k 6 q, then Gk,Λ(t) = tk.
(d) Gpk,Λ(t) = Gk,Λ(t)p.
(e) t2 ∂1

t

(
Gk,Λ(t)

)
= kGk+1,Λ(t).

Gekeler [7, (3.8)] finds a formula for each Gk,Λ(t),

(3.3) Gk+1,Λ(t) =
k∑
j=0

∑
i

(
j

i

)
αitj+1,

where the sum is over all (s + 1)-tuples i = (i0, . . . , is), with s arbitrary,
satisfying i0 + · · ·+ is = j and i0 + i1q+ · · ·+ isq

s = k;
(j
i

)
= j!/(i0! · · · is!)

is a multinomial coefficient; and αi = αi00 · · ·αiss .
Part (e) of Theorem 3.2 indicates that there are interesting hyperderiva-

tive relations among Goss polynomials, with respect to t and to z, which
we now investigate. All hyperderivatives we will take will be of polynomials
and formal power series, but the considerations in §2 about holomorphic
functions will play out later in the paper. The main result of this section is
the following.

Theorem 3.4. Let Λ ⊆ C∞ be a discrete Fq-vector space, and let t = tΛ(z).
For r > 0, we define βr,j so that

Gr+1,Λ(t) =
r∑
j=0

βr,jt
j+1.

Then

∂rz(tn) = (−1)r · tn ∂n−1
t

(
tn−2Gr+1,Λ(t)

)
, ∀n > 1,(3.4a)

∂rz(tn) = (−1)r
r∑
j=0

βr,j t
j+1 ∂jt (tn+j−1), ∀n > 0,(3.4b)
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and (
n+ r − 1

r

)
Gn+r,Λ(t) =

r∑
j=0

βr,j t
j+1 ∂jt

(
tj−1Gn,Λ(t)

)
, ∀n > 1.(3.4c)

Remark 3.5. We see that (3.4a) and (3.4b) generalize (2.12) and that (3.4c)
generalizes Theorem 3.2(e). In later sections (3.4a) and (3.4b) will be useful
for taking derivatives of Drinfeld modular forms. The coefficients βr,j can
be computed using the generating series GΛ(t, x) or equivalently (3.3). The
proof requires some preliminary lemmas.

Lemma 3.6 (cf. Petrov [20, §3]). For r > 0 and n > 1,

(3.6a) ∂rz
(
Sn,Λ(z)

)
= (−1)r

(
n+ r − 1

r

)
Gn+r,Λ(t).

Moreover, we have

(3.6b) ∂rz
(
Sn,Λ(z)

)
= (−1)n+r−1 · ∂n−1

z

(
Sr+1,Λ(z)

)
and

(3.6c) ∂rz(t) = (−1)rGr+1,Λ(t).

Proof. First of all, we recall the convention that for n > 0 and r > 0, we
have

(−n
r

)
= (−1)r

(n+r−1
r

)
. Then using the power and quotient rules [15,

§2.2], we see that for λ ∈ C∞,

∂rz

( 1
(z − λ)n

)
=
(
−n
r

)
1

(z − λ)n+r = (−1)r
(
n+ r − 1

r

)
1

(z − λ)n+r .

Therefore,

∂rz
(
Sn,Λ(z)

)
= (−1)r

(
n+ r − 1

r

)
Sn+r,Λ(z),

and combining with the defining property of Gn+r,Λ(t) in Theorem 3.2, we
see that (3.6a) follows. Now(

n+ r − 1
r

)
=
(

(r + 1) + (n− 1)− 1
n− 1

)
,

and so (3.6b) follows from (3.6a). Finally, (3.6c) is a special case of (3.6a)
with n = 1. �

Lemma 3.7. For n > 1, we have an identity of rational functions in x,

x

(1− teΛ(x))n = ∂n−1
t

(
tn−1x

1− teΛ(x)

)
= ∂n−1

t

(
tn−2GΛ(t, x)

)
.
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Proof. Our derivatives with respect to t are taken while considering x to
be a constant. We note that for ` > 0,

∂`t

( 1
1− teΛ(x)

)
= eΛ(x)`

(1− teΛ(x))`+1 ,

by the quotient and chain rules [15, §2.2]. Therefore, by the product rule,

∂n−1
t

(
tn−1

1− teΛ(x)

)
=

n−1∑
k=0

∂kt (tn−1)∂n−1−k
t

( 1
1− teΛ(x)

)

=
n−1∑
k=0

(
n− 1
k

)(
teΛ(x)

1− teΛ(x)

)n−1−k
· 1

1− teΛ(x)

=
(

1 + teΛ(x)
1− teΛ(x)

)n−1
· 1

1− teΛ(x) .

A simple calculation yields that this is 1/(1 − teΛ(x))n, and the result
follows. �

Proof of Theorem 3.4. The chain rule [15, §2.2] and (3.6c) imply that

∂rz(tn) =
r∑

k=1

(
n

k

)
tn−k

∑
`1,...,`k>1
`1+···+`k=r

∂`1z (t) · · · ∂`kz (t)

= (−1)r
r∑

k=1

(
n

k

)
tn−k

∑
`1,...,`k>1
`1+···+`k=r

G`1+1,Λ(t) · · ·G`k+1,Λ(t).

By direct expansion (see [15, §2.2, Eq. (I)]), the final inner sum above is
the coefficient of xr in(

G2,Λ(t)x+G3,Λ(t)x2 + · · ·
)k
,

and therefore by the binomial theorem,

∂rz(tn) = (−1)r ·
(
coefficient of xr in

(
t+G2,Λ(t)x+G3,Λ(t)x2 + · · ·

)n).
Now G1,Λ(t) = t, so

t+G2,Λ(t)x+G3,Λ(t)x2 + · · · =
∞∑
k=1

Gk,Λ(t)xk−1 = GΛ(t, x)
x

= t

1− teΛ(x) .

Therefore,

∂rz(tn) = (−1)r ·
(
coefficient of xr+1 in tnx

(1− teΛ(x))n
)
.
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From Lemma 3.7 we see that
tnx

(1− teΛ(x))n = tn
∞∑
k=1

∂n−1
t

(
tn−2Gk,Λ(t)

)
xk,

and so (3.4a) holds. To prove (3.4b), we first note that it holds when n = 0
by checking the various cases and using that βr,0 = 0 for r > 1, since
Gr+1,Λ(t) is divisible by t2 for r > 1 by Theorem 3.2, and that β0,0 = 1.
For n > 1, we use (3.4a) and write

∂rz(tn) = (−1)r · tn ∂n−1
t

(
tn−2Gr+1,Λ(t)

)
= (−1)r · tn ∂n−1

t

( r∑
j=0

βr,j t
n+j−1

)
.

Noting that

∂n−1
t (tn+j−1) =

(
n+ j − 1
n− 1

)
tj = tj−n+1 ∂jt (tn+j−1),

we then have
∂rz(tn) = (−1)r

r∑
j=0

βr,j t
j+1 ∂jt (tn+j−1),

and so (3.4b) holds. Furthermore, by (3.6a) and (3.6b),(
n+ r − 1

r

)
Gn+r,Λ(t) = (−1)n−1 · ∂n−1

z

(
Sr+1,Λ(z)

)
= (−1)n−1 · ∂n−1

z

(
Gr+1,Λ(t)

)
.

But then by (3.4a),

∂n−1
z

(
Gr+1,Λ(t)

)
=

r∑
j=0

βr,j∂
n−1
z (tj+1)

= (−1)n−1
r∑
j=0

βr,jt
j+1 ∂jt

(
tj−1Gn,Λ(t)

)
,

which yields (3.4c). �

4. Theta operators on Drinfeld modular forms

We recall the definition of Drinfeld modular forms for GL2(A), which
were initially studied by Goss [10, 11, 12]. We will also review results on
u-expansions of modular forms due to Gekeler [7]. Throughout we let Γ =
GL2(A). A holomorphic function f : Ω → C∞ is a Drinfeld modular form
of weight k > 0 and type m ∈ Z/(q − 1)Z if

(1) for all γ =
(
a b
c d

)
∈ Γ and all z ∈ Ω,

f(γz) = (det γ)−m(cz + d)kf(z), γz = az + b

cz + d
;
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(2) and f is holomorphic at ∞, i.e., f has a u-expansion and so f ∈
U(Ω).

We let Mm
k be the C∞-vector space of modular forms of weight k and

type m. We know that Mm
k ·Mm′

k′ ⊆M
m+m′
k+k′ and that M =

⊕
k,mM

m
k and

M0 =
⊕
kM

0
k are graded C∞-algebras. Moreover, in order to haveMm

k 6= 0,
we must have k ≡ 2m (mod q − 1). If L is a subring of C∞, then we let
Mm
k (L) denote the space of forms with u-expansion coefficients in L, i.e.,

Mm
k (L) = Mm

k ∩ L[[u]]. We note that if f =
∑
cnu

n is the u-expansion of
f ∈Mm

k , then

(4.1) cn 6= 0 ⇒ n ≡ m (mod q − 1),

which can be seen by using γ =
(
ζ 0
0 1

)
, for ζ a generator of F×q , in the

definition above.
Certain Drinfeld modular forms can be expressed in terms of A-expan-

sions, which we now recall. For k > 1, we set

(4.2) Gk(t) = Gk,ΛC
(t) =

k−1∑
j=0

βk−1,jt
j+1,

to be the Goss polynomials with respect to the lattice ΛC . Since eC(z) ∈
K[[z]], it follows from Theorem 3.2 that the coefficients βk−1,j ∈ K for all
k, j. As in (2.6) and Remark 3.1, we have u(z) = 1/eC(π̃z), and for a ∈ A
we set

(4.3) ua(z) := u(az) = 1
eC(π̃az) .

Since eC(π̃az) = Ca(eC(π̃z)), if we take the reciprocal polynomial for Ca(z)
to be Ra(z) = zq

deg a
Ca(1/z) then

(4.4) ua = uq
deg a

Ra(u) = uq
deg a + · · · ∈ A[[u]].

We say that a modular form f has an A-expansion if there exist k > 1 and
c0, ca ∈ C∞ for a ∈ A+, so that

f = c0 +
∑
a∈A+

caGk(ua).

Example 4.5. For k ≡ 0 (mod q − 1), k > 0, the primary examples of
Drinfeld modular forms with A-expansions come from Eisenstein series,

Ek(z) = 1
π̃k

∑′

a,b∈A

1
(az + b)k ,
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which is a modular form of weight k and type 0. Gekeler [7, (6.3)] showed
that

(4.6) Ek = 1
π̃k

∑′

b∈A

1
bk
−
∑
a∈A+

Gk(ua) = −ζC(k)
π̃k

−
∑
a∈A+

Gk(ua),

where ζC(k) =
∑
a∈A+ a

−k is a Carlitz zeta value. We know (see [13, §9.2])
that ζC(k)/π̃k ∈ K.

For more information and examples on A-expansions the reader is di-
rected to Gekeler [7], López [16, 17], and Petrov [19, 20].

Example 4.7. We can also define the false Eisenstein series E(z) of
Gekeler [7, §8] to be

E(z) := 1
π̃

∑
a∈A+

∑
b∈A

a

az + b
,

which is not quite a modular form but is a quasi-modular form similar to
the classical weight 2 Eisenstein series [1, 7]. Gekeler showed that E ∈ U(Ω)
and that E has an A-expansion,

(4.8) E =
∑
a∈A+

aG1(ua) =
∑
a∈A+

aua.

We now define theta operators Θr on functions in H(Ω) by setting for
r > 0,

(4.9) Θr := 1
(−π̃)r ∂

r
z .

If we take Θ = Θ1, then by (2.12), Θu = u2, and Θ plays the role of the
classical theta operator ϑ = q d

dq . Just as in the classical case, Θ and more
generally Θr do not take modular forms to modular forms. However, Bosser
and Pellarin [1, Thm. 2] prove that Θr preserves quasi-modularity:

Θr : C∞[E, g, h]→ C∞[E, g, h],

where E is the false Eisenstein series, g = Eq−1, and h is the cusp form of
weight q + 1 and type 1 defined by Gekeler [7, Thm. 5.13] as the (q − 1)-st
root of the discriminant function ∆. To prove their theorem, Bosser and
Pellarin [1, Lem. 3.5] give formulas for Θr(un), which are ostensibly a bit
complicated. From Theorem 3.4, we have the following corollary, which
perhaps conceptually simplifies matters.
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Corollary 4.10. For r > 0,
Θr(un) = un ∂n−1

u

(
un−2Gr+1(u)

)
, ∀n > 1,(4.10a)

Θr(un) =
r∑
j=0

βr,ju
j+1∂ju(un+j−1)(4.10b)

=
r∑
j=0

(
n+ j − 1

j

)
βr,ju

n+j , ∀n > 0,

where βr,j are the coefficients of Gr+1(t) in (4.2).

Proof. The proof of (4.10a) is straightforward, but it is worth noting how
the different normalizations of u(z) and tΛC

(z) work out. From Remark 3.1,
we see that

Θr(un) =
(−1
π̃

)r
∂rz
(
tΛC

(π̃z)n
)

=
(−1
π̃

)r
· π̃r ∂rz

(
tnΛC

)
∣∣
z=π̃z

= tn ∂n−1
t

(
tn−2Gr+1(t)

)∣∣
t=tΛC

(π̃z) = un ∂n−1
u

(
un−2Gr+1(u)

)
,

where the third equality is (3.4a). The proof of (4.10b) is then the same as
for (3.4b). �

Remark 4.11. We see from (4.10a) that there is a duality of some fashion
between the r-th derivative of un and the (n− 1)-st derivative of Gr+1(u),
which dovetails with (3.6b).

We see from this corollary that Θr can be seen as the operator on power
series in C∞[[u]] given by the following result. Moreover, from (4.12b), we
see that computation of Θr(f) is reasonably straightforward once the com-
putation of the coefficients of Gr+1(t) can be made.

Corollary 4.12. Let f =
∑
cnu

n ∈ U(Ω). For r > 0,

Θr(f) = Θr(c0) +
∞∑
n=1

cnu
n ∂n−1

u

(
un−2Gr+1(u)

)
,(4.12a)

Θr(f) =
r∑
j=0

βr,j u
j+1 ∂ju

(
uj−1f

)
,(4.12b)

where βr,j are the coefficients of Gr+1(t) in (4.2).

Finally we recall the definition of the r-th Serre operator Dr on modular
forms in Mm

k for r > 0. We set

(4.13) Dr(f) := Θr(f) +
r∑
i=1

(−1)i
(
k + r − 1

i

)
Θr−i(f)Θi−1(E).

The following result shows that Dr takes modular forms to modular forms.
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Theorem 4.14 (Bosser–Pellarin [2, Thm. 4.1]). For any weight k, type m,
and r > 0,

Dr
(
Mm
k

)
⊆Mm+r

k+2r.

5. v-adic modular forms

In this section we review the theory of v-adic modular forms introduced
by Goss [14] and Vincent [24]. In [21], Serre defined p-adic modular forms
as p-adic limits of Fourier series of classical modular forms and determined
their properties, in particular their behavior under the ϑ-operator. For a
fixed finite place v of K, Goss and Vincent recently transferred Serre’s
definition to the function field setting of v-adic modular forms, and Goss
produced families of examples based on work of Petrov [19] (see Theo-
rem 6.3). In §6, we show that v-adic modular forms are invariant under the
operators Θr.

For our place v of K we fix ℘ ∈ A+, which is the monic irreducible
generator of the ideal pv associated to v, and we let d := deg(℘). As before
we let Av and Kv denote completions with respect to v.

We will write K ⊗Av[[u]] for K ⊗A Av[[u]], and we recall that K ⊗Av[[u]]
can be identified with elements of Kv[[u]] that have bounded denominators.
For f =

∑∞
n=0 cnu

n ∈ K ⊗Av[[u]], we set

(5.1) ordv(f) := inf
n
{ordv(cn)} = min

n
{ordv(cn)}.

If ordv(f) > 0, i.e., if f ∈ Av[[u]], then we say f is v-integral. For f ,
g ∈ K ⊗Av[[u]], we write that

f ≡ g (mod ℘m),

if ordv(f − g) > m. We also define a topology on K⊗Av[[u]] in terms of the
v-adic norm,

(5.2) ‖f‖v := q− ordv(f),

which is a multiplicative norm by Gauss’ lemma.
Following Goss, we define the v-adic weight space S = Sv by

(5.3) S := lim←−̀Z/(qd − 1)p`Z = Z/(qd − 1)Z× Zp.

We have a canonical embedding of Z ↪→ S, by identifying n ∈ Z with (n, n),
where n is the class of n modulo qd− 1. For any a ∈ A+ with ℘ - a, we can
decompose a as a = a1a2, where a1 ∈ A×v is the (qd − 1)-st root of unity
satisfying a1 ≡ a (mod v) and a2 ∈ A×v satisfies a2 ≡ 1 (mod v). Then for
any s = (x, y) ∈ S, we define

(5.4) as := ax1a
y
2.
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This definition of as is compatible with the usual definition when s is an
integer. Furthermore, it is easy to check that the function s 7→ as is contin-
uous from S to A×v .

Definition 5.5 (Goss [14, Def. 5]). We say a power series f ∈ K⊗Av[[u]] is
a v-adic modular form of weight s ∈ S, in the sense of Serre, if there exists
a sequence of K-rational modular forms fi ∈Mmi

ki
(K) so that as i→∞,

(a) ‖fi − f‖v → 0,
(b) ki → s in S.

Moreover, if f 6= 0, then mi is eventually a constant m ∈ Z/(q − 1)Z, and
we say that m is the type of f . We say that fi converges to f as v-adic
modular forms.

It is easy to see that the sum and difference of two v-adic modular forms,
both with weight s and typem, are also v-adic modular forms with the same
weight and type. We set

(5.6) Mm
s =

{
f ∈ K ⊗Av[[u]]

∣∣∣∣ f a v-adic modular form of
weight s and type m

}
,

which is a Kv-vector space, and we note that
Mm1

s1 · M
m2
s2 ⊆M

m1+m2
s1+s2 .

We takeMm
s (Av) :=Mm

s ∩Av[[u]], which is an Av-module. Moreover, any
Drinfeld modular form inMm

k (K) is also a v-adic modular form as the limit
of the constant sequence (u-expansion coefficients of forms in Mm

k (K) have
bounded denominators by [7, Thm. 5.13, §12], [12, Thm. 2.23]), and so for
k ∈ Z, k > 0,

Mm
k (K) ⊆Mm

k , Mm
k (A) ⊆Mm

k (Av).
The justification of the final part of Definition 5.5 is the following lemma.

Lemma 5.7. Suppose that fi ∈ Mmi
ki

(K) converge to a non-zero v-adic
modular form f . Then there is some m ∈ Z/(q − 1)Z so that except for
finitely terms mi = m.

Proof. Since ‖f − fi‖v → 0, it follows that ‖fi − fj‖v → 0 as i, j → ∞.
If f =

∑
cnu

n and cn 6= 0, then from (4.1) we see that for i, j � 0,
n ≡ mi ≡ mj (mod q − 1). �

Proposition 5.8. Suppose {fi} is a sequence of v-adic modular forms with
weights si. Suppose that we have f0 ∈ K ⊗Av[[u]] and s0 ∈ S satisfying,

(a) ‖fi − f0‖v → 0,
(b) si → s0 in S.

Then f0 is a v-adic modular form of weight s0. The type of f0 is the eventual
constant type of the sequence {fi}.
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Proof. For each i > 1, we have a sequence of Drinfeld modular forms gi,j →
fi as j → ∞. Standard arguments show that the sequence of Drinfeld
modular forms {gi,i}∞i=1 converges to f0 with respect to the ‖ · ‖v-norm and
that the weights ki of gi,i go to s0 in S. �

We recall the definitions of Hecke operators on Drinfeld modular forms
and their actions on u-expansions [7, §7], [10, §7]. For ` ∈ A+ irreducible
of degree e, the Hecke operator T` : Mm

k →Mm
k is defined by

(T`f)(z) = `kf(`z) + U`f(z) = `kf(`z) +
∑

β∈A(<e)

f

(
z + β

`

)
.

Just as in the classical case the operators T` and U` are uniquely determined
by their actions on u-expansions. We define U`, V` : C∞[[u]]→ C∞[[u]] by

(5.9) U`

( ∞∑
n=0

cnu
n
)

:=
∞∑
n=1

cnGn,Λ`
(`u),

where Λ` ⊆ C∞ is the e-dimensional Fq-vector space of `-division points on
the Carlitz module C, and

(5.10) V`

( ∞∑
n=0

cnu
n
)

:=
∞∑
n=0

cnu
n
` .

We find [7, Eq. (7.3)] that T` : C∞[[u]] → C∞[[u]] of weight k is given by
T` = `kV` + U`.

If f ∈ Mm
s for some weight s ∈ S, then we define U`(f), V`(f) ∈ K ⊗

Av[[u]] as above, and if ` 6= ℘, we set

(5.11) T`(f) = `sV`(f) + U`(f),

where `s is defined as in (5.4) (note that if ` = ℘, then (5.4) is not well-
defined). Of importance to us is that Hecke operators preserve spaces of
v-adic modular forms.

Proposition 5.12. Let ` ∈ A+ be irreducible, ` 6= ℘. For all v-adic weights
s and types m, the operators T`, U℘, and V℘ preserve the spaces Mm

s and
Mm

s (Av).

We first define a sequence of normalized Eisenstein series studied by
Gekeler [7, §6]. For d > 1, we let

(5.13) gd(z) = −Ld · Eqd−1(z),

which is a Drinfeld modular form of weight qd − 1 and type 0. By the
following proposition we see that gd plays the role of Ep−1 for classical
modular forms.
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Proposition 5.14 (Gekeler [7, Prop. 6.9, Cor. 6.12]). For d > 1, the
following hold:

(a) gd ∈ A[[u]];
(b) gd ≡ 1 (mod [d]).

Proof of Proposition 5.12. Let f ∈ Mm
s . Once we establish that T`(f),

U℘(f), and V℘(f) are elements ofMm
s , we claim the statement about the

operators preservingMm
s (Av) is a consequence of (5.9)–(5.11). Indeed, in

either case ` 6= ℘ or ` = ℘ we have V`(Av[[u]]) ⊆ Av[[u]], since in (5.10) the
un` terms are in A[[u]] by (4.4). Likewise for U`, the polynomials Gn,Λ`

(`u)
in (5.9) are in A[u], as the Fq-lattice Λ` has exponential function given by
polynomials from the Carlitz action, namely eΛ`

(z) = C`(z)/`, and thus by
Theorem 3.2(b),

GΛ`
(`u, x) =

∞∑
n=1

Gn,Λ`
(`u)xn = `ux

1− uC`(x) ∈ ` ·A[u][[x]].

Additionally we recall that the cases of U℘ and V℘ preserving v-integrality
were previously proved by Vincent [24, Cor. 3.2, Prop. 3.3].

Now by hypothesis we can choose a sequence {fi} of Drinfeld modular
forms of weight ki and type m so that fi → f and ki → s. By Proposi-
tion 5.14(b), for any i > 0,

gq
i

d ≡ 1 (mod ℘q
i),

since ordv([d]) = 1. The form gq
i

d has weight (qd − 1)qi and type 0, and
certainly figq

i

d → f with respect to the ‖ · ‖v-norm. However, we also have
that as real numbers,

weight of figq
i

d = ki + (qd − 1)qi →∞, as i→∞.
Therefore, it suffices to assume that ki →∞ as real numbers, as i→∞.

Suppose that f =
∑
cnu

n, fi =
∑
cn,iu

n ∈ K ⊗ Av[[u]]. For ` 6= ℘, since
`ki → `s and cn,i → cn, we have

T`(fi) = `ki

∞∑
n=0

cn,iu
n
` +

∞∑
n=0

cn,iGn,Λ`
(`u) −→ T`(f).

Since T`(fi) ∈Mm
ki

(K), it follows that T`(f) ∈Mm
s .

Now consider the case ` = ℘. Since ki → ∞, we see that |℘ki |v → 0.
Therefore,

T℘(fi)→
∞∑
n=0

cnGn,Λ℘(℘u) = U℘(f),

and so U℘(f) ∈ Mm
s . By the same argument each U℘(fi) ∈ Mm

ki
, starting

with the constant sequence fi in the first paragraph. By subtraction each
(5.15) V℘(fi) = ℘−ki

(
T℘(fi)− U℘(fi)

)
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is then an element of Mm
ki
. Because cn,i → cn, we see from (5.10) that

V℘(fi) → V℘(f) with respect to the ‖ · ‖v-norm. Thus by Proposition 5.8,
V℘(f) ∈Mm

s as desired. �

6. Theta operators on v-adic modular forms

As is well known the operators Θr do not generally take Drinfeld modular
forms to Drinfeld modular forms [1, 22]. However, we will prove in this
section that each Θr, r > 0, does preserve spaces of v-adic modular forms.
Using the equivalent formulations in (4.12a) and (4.12b), we define Kv-
linear operators

Θr : K ⊗Av[[u]]→ K ⊗Av[[u]], r > 0.

Theorem 6.1. For any weight s ∈ S and type m ∈ Z/(q − 1)Z, we have
for r > 0,

Θr :Mm
s →Mm+r

s+2r.

This can be seen as similar in spirit to the results of Bosser and Pel-
larin [1, Thm. 2], [2, Thm. 4.1] (see also Theorem 4.14), that Θr preserves
spaces of Drinfeld quasi-modular forms, and our main arguments rely on es-
sentially showing that quasi-modular forms with Kv-coefficients are v-adic
and applying Theorem 4.14. Consider first the operator Θ = Θ1, which can
be equated by (2.12) with the operation on u-expansions given by

Θ = u2 ∂1
u.

We recall a formula of Gekeler [7, §8] (take r = 1 in (4.13)), which states
that for f ∈Mm

k ,
Θ(f) = D1(f) + kEf,

where E is the false Eisenstein series whose u-expansion is given in (4.8).
Our first goal is to show that E is a v-adic modular form, for which we use
results of Goss and Petrov. For k, n > 1 and s ∈ S, we set
(6.2) fk,n :=

∑
a∈A+

ak−nGn(ua), f̂s,n :=
∑
a∈A+
℘ - a

asGn(ua).

The notation fk,n and f̂s,n is not completely consistent, since fk,n is more
closely related to f̂k−n,n than f̂k,n, but this viewpoint is convenient in many
contexts (see [14]).

Theorem 6.3 (Goss [14, Thm. 2], Petrov [19, Thm. 1.3]).
(a) (Petrov) Let k, n > 1 be chosen so that k − 2n > 0, k ≡ 2n

(mod q − 1), and n 6 pordp(k−n). Then
fk,n ∈Mm

k (K),
where m ≡ n (mod q − 1).
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(b) (Goss) Let n > 1. For s = (x, y) ∈ S with x ≡ n (mod q − 1) and
y ≡ 0 (mod qdlogq(n)e), we have

f̂s,n ∈Mm
s+n,

where m ≡ n (mod q − 1).

We note that the statement of Theorem 6.3(b) is slightly stronger than
what is stated in [14], but Goss’ proof works here without changes. We then
have the following corollary.

Corollary 6.4. For any ` ≡ 0 (mod q − 1), we have f̂`+1,1 ∈M1
`+2.

If we take ` = 0, we see that

f̂1,1 =
∑
a∈A+
℘ - a

aua ∈ Av[[u]]

is a v-adic modular form in M1
2(Av) and is a partial sum of E in (4.8).

From this we can prove that E itself is a v-adic modular form.

Theorem 6.5. The false Eisenstein series E is a v-adic modular form in
M1

2(Av).

Proof. Starting with the expansion in (4.8), we see that E ∈ Av[[u]]. Also,

E =
∑
a∈A+

aua =
∑
a∈A+
℘ - a

aua + ℘
∑
a∈A+

au℘a

=
∑
a∈A+
℘ - a

aua + ℘
∑
a∈A+
℘ - a

au℘a + ℘2 ∑
a∈A+

au℘2a,

and continuing in this way, we find

E =
∞∑
j=0

(
℘j

∑
a∈A+
℘ - a

au℘ja

)
.

We note that ∑
a∈A+
℘ - a

au℘ja = V ◦j℘

( ∑
a∈A+
℘ - a

aua

)
= V ◦j℘ (f̂1,1),

where V ◦j℘ is the j-th iterate V℘ ◦ · · · ◦V℘. By Proposition 5.12, we see that
V ◦j℘ (f̂1,1) ∈M1

2(Av) for all j. Moreover,

E =
∞∑
j=0

℘jV ◦j℘ (f̂1,1),



750 Matthew A. Papanikolas, Guchao Zeng

the right-hand side of which converges with respect to the ‖ · ‖v-norm, and
so we are done by Proposition 5.8. �

Proof of Theorem 6.1. Let f ∈ Mm
s and pick fi ∈ Mm

ki
(K) with fi → f .

It follows from the formulas in Corollary 4.12 that Θr(fi) → Θr(f) with
respect to the ‖ · ‖v-norm for each r > 0, so by Proposition 5.8 it remains
to show that each

Θr(fi) ∈Mm+r
ki+2r.

We proceed by induction on r. If r = 1, then since D1(fi) ∈Mm+1
ki+2 (K) for

each i by Theorem 4.14, it follows from Theorem 6.5 that
Θ(fi) = D1(fi) + kiEfi ∈Mm+1

ki+2,

for each i. Now by (4.13), for each i

Θr(fi) = Dr(fi)−
r∑
j=1

(−1)j
(
ki + r − 1

j

)
Θr−j(fi)Θj−1(E).

By Theorem 4.14, Dr(fi) ∈ Mm+r
ki+2r(K), and by the induction hypothesis

and Theorem 6.5 the terms in the sum are inMm+r
ki+2r. �

7. Theta operators and v-adic integrality

We see from Theorem 6.1 that Θr : Mm
s → Mm+r

s+2r, and it is a natural
question to ask whether Θr preserves v-integrality, i.e.,

Θr :Mm
s (Av)

?→Mm+r
s+2r(Av).

However, it is known that this can fail for r sufficiently large because of
the denominators in Gr+1(u) (e.g., see Vincent [25, Cor. 1]). Nevertheless,
in this section we see that Θr is not far off from preserving v-integrality.

For an A-algebra R and a sequence {bm} ⊆ R, we define an A-Hurwitz
series over R (cf. [13, §9.1]) by

(7.1) h(x) =
∞∑
m=0

bm
Πm

xm ∈ (K ⊗A R)[[x]],

where we recall the definition of the Carlitz factorial Πm from (2.3). Series
of this type were initially studied by Carlitz [4, §3] and further investigated
by Goss [9, §3], [13, §9.1]. The particular cases we are interested in are
when R = A or R = A[u], but we have the following general proposition
whose proof can be easily adapted from [9, §3.2], [13, Prop. 9.1.5].

Proposition 7.2. Let R be an A-algebra, and let h(x) be an A-Hurwitz
series over R.

(a) If the constant term of h(x) is 1, then 1/h(x) is also an A-Hurwitz
series over R.
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(b) If g(x) is an A-Hurwitz series over R with constant term 0, then
h(g(x)) is also an A-Hurwitz series over R.

We apply this proposition to the generating function of Goss polynomials.

Lemma 7.3. For each k > 1, we have Πk−1Gk(u) ∈ A[u].

Proof. Consider the generating series
G(u, x)
x

=
∞∑
k=1

Gk(u)xk−1 = u

1− ueC(x) .

We claim that G(u, x)/x is an A-Hurwitz series over A[u]. Indeed certainly
the constant series u itself is one, and

1− ueC(x) = 1−
∞∑
i=0

uxq
i

Πqi

is an A-Hurwitz series over A[u] with constant term 1, so the claim follows
from Proposition 7.2(a). The result is then immediate. �

Theorem 7.4. For r > 0, if f ∈ Mm
s (Av), then ΠrΘr(f) ∈ Mm+r

s+2r(Av).
Thus we have a well-defined operator,

ΠrΘr :Mm
s (Av)→Mm+r

s+2r(Av).

Proof. By (4.12a), we see that the possible denominators of Θr(f) come
from the denominators of Gr+1(u), which are cleared by Πr using
Lemma 7.3. �

Remark 7.5. Once we see that ΠrΘr preserves v-integrality, the question of
whether Πr is the best possible denominator is important but subtle, and
in general the answer is no. For example, taking r = qd+1 − 1, we see from
Theorem 3.2(d), that

Gqd+1(u) = uq
d+1
,

and so Θqd+1−1 : Av[[u]]→ Av[[u]] already by (4.12a). However, Πqd+1−1 can
be seen to be divisible by ℘.

Nevertheless, we do see that Πr is the best possible denominator in many
cases. For example, let r = qi for i > 1. Then from Theorem 3.2(a),

Gqi+1(u) = u

(
Gqi(u) +

Gqi+1−q(u)
D1

+ · · ·+ G1(u)
Di

)
= u

(
uq

i +
Gqi+1−q(u)

D1
+ · · ·+ u

Di

)
.

From Theorem 3.2(b) we know that u2 divides Gk(u) for all k > 2, and so
we find that the coefficient of u2 in Gqi+1(u) is precisely 1/Di, which is the
same as Πqi .
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