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Density of quasismooth hypersurfaces in
simplicial toric varieties

par Niels LINDNER

Résumé. Cet article a pour objet la densité des hypersurfaces
dans une variété torique projective, normale et simpliciale sur un
corps fini ayant une intersection quasi-lisse avec un sous-schéma
quasi-lisse fixé. Le résultat géneralise la formule trouvée par
B. Poonen pour des variétés projectives lisses. Comme applica-
tion, nous analysons en outre la densité des hypersurfaces dont le
nombre des singularités et la longueur du schéma singulier sont
bornés.

Abstract. This paper investigates the density of hypersurfaces
in a projective normal simplicial toric variety over a finite field
having a quasismooth intersection with a given quasismooth sub-
scheme. The result generalizes the formula found by B. Poonen
for smooth projective varieties. As an application, we further an-
alyze the density of hypersurfaces with bounds on their number
of singularities and on the length of their singular schemes.

1. Introduction

Let Y ⊆ Pn be a smooth projective variety over a field K. Fix an integer
k ≥ 1.

Question. If f ∈ H0(Pn,OPn(k)) is a homogeneous polynomial of degree k
chosen uniformly at random, what is the probability that the intersection
Y ∩ V (f) is smooth?

For algebraically closed fields K, the classical theorem of Bertini implies
that the locus of hypersurfaces f such that Y ∩ V (f) is smooth is open
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and dense, see e.g. [8, Theorem II.8.18]. If K = Fq is a finite field with q
elements, then Poonen [11, Theorem 1.1] showed that

lim
k→∞

#{f ∈ H0(Pn,OPn(k)) | Y ∩ V (f) is smooth}
#H0(Pn,OPn(k)) = 1

ζY (dimY + 1) ,

where ζY is the Hasse–Weil zeta function of the projective variety Y , given
by

ζY (s) :=
∏

P∈Y closed point

(
1− q−sdegP

)−1
= exp

∞∑
r=1

#Y (Fqr )q
−rs

r

for s ∈ C, Re(s) > dimY .
The aim of this paper is to investigate how Poonen’s result extends

to quasismooth subschemes Y of simplicial toric varieties, for example
weighted projective spaces. Since we cannot expect smoothness anymore,
we require instead that Y be quasismooth (see Definition 2.1) and ask for
quasismooth intersections. The main result is the following:

Theorem 1.1. Let X be a projective normal simplicial toric variety over a
finite field Fq. Fix a Weil divisor D and an ample Cartier divisor E on X.
Let Y ⊆ X be any quasismooth subscheme such that Y meets the singular
locus of X only in finitely many points. Then

lim
k→∞

#{f ∈ H0(X,OX(D + kE)) | Y ∩ V (f) is quasismooth}
#H0(X,OX(D + kE))

=
∏

P∈Y closed

(
1− q−νP (D)

)
,

where νP (D) is a non-negative integer depending on P and D with the
property that νP (D) equals degP · (dimY + 1) if Y is smooth at P .

Remark 1.2. (1) If X = Pn, D = 0 and E is a hyperplane, then we
recover Poonen’s result [11, Theorem 1.1].

(2) In [7], Poonen’s formula is generalized to a semiample setting. In
the special case that X is a smooth toric variety, the result [7,
Theorem 1.1] implies our Theorem 1.1.

(3) For a precise definition of the number νP (D) and its properties we
refer to Subsection 3.2.

(4) The formula in Theorem 1.1 is in particular valid if νP (D) = 0 for
some closed point P ∈ Y . In this case, both sides of the equation
are zero. Moreover, Y ∩ V (f) fails to be quasismooth for all f ∈
H0(X,OX(D+kE)) and all k ≥ 0, see Corollary 4.2. For a situation
where νP (D) = 0 occurs, see Example 4.3. However, if X is smooth
or D is Cartier, then νP (D) is always positive by Lemma 3.8.
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(5) If the intersection of Y with the singular locus of X is of positive
dimension, then Theorem 1.1 may fail, see Lemma 4.4 and Exam-
ple 4.6.

The proof uses a modified version of Poonen’s closed point sieve: We
divide the closed points of Y into low, medium and high degree points and
show that the impact of the latter two is negligible.

At first, we need to develop some preliminaries on simplicial toric vari-
eties and quasismoothness. After an extensive study of restriction maps to
zero-dimensional subschemes and the numbers νP (D) in Section 3, we can
finally adapt Poonen’s strategy to prove Theorem 1.1 in Section 4.

In Section 5 we give a formula for the density of quasismooth hypersur-
faces with an upper bound on the number of singular points and the length
of the singular schemes, respectively. Finally, for smooth toric varieties, we
show that hypersurfaces of degree k whose singular scheme is of length at
least k form a set of density zero.

2. Facts on simplicial toric varieties

We first collect some facts on toric varieties. Let X be an n-dimensional
projective normal simplicial split toric variety without torus factors over
a perfect field K. Let Σ be the corresponding simplicial fan in the lattice
N ∼= Zn. Denote by M the dual lattice of N and set d to be the number of
one-dimensional cones in Σ.

2.1. The homogeneous coordinate ring ([4], [5, §5.2, §5.3]). Denote
by Cl(X) the class group of X, i. e. the group of Weil divisors on X modulo
rational equivalence. Then there is an exact sequence

0→M → Zd ϑ−→ Cl(X)→ 0

of abelian groups.
The homomorphism ϑ induces a grading by the class group on the poly-

nomial ring S := K[x1, . . . , xd]: If xα1
1 · · ·x

αd
d ∈ S is a monomial, define

deg(xα1
1 · · ·x

αd
d ) := ϑ(α1, . . . , αd). S is called the homogeneous coordinate

ring of X. Let D,E be Weil divisors on X. There is a natural isomorphism

S ∼=
⊕

[D]∈Cl(X)
H0(X,OX(D))

of graded rings, which is compatible with the natural multiplication maps
of sections

H0(X,OX(D))⊗H0(X,OX(E))→ H0(X,OX(D + E)).
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Any finitely generated graded S-moduleM gives rise to a coherent sheaf M̃
on X, and conversely every coherent sheaf on X arises this way. Further-
more, every homogenenous ideal of S defines a closed subscheme of X, and
every closed subscheme of X comes from some homogeneous ideal of S.

2.2. Quotient construction ([5, §5.1]). Define G := HomZ(Cl(X),Gm).
If L/K is a field extension, then the group G acts on the L-rational points
of Ad = SpecS = SpecK[x1, . . . , xd] via

G× Ld → Ld, g · (a1, . . . , ad) 7→ (g(deg(x1)) · a1, . . . , g(deg(xd)) · ad).

There is an algebraic set B ⊆ Ad depending on X, such that the quotient
Ad \B → (Ad \B)/G is geometric and isomorphic to X. The singularities
of X are all due to the quotient action of G, which acts with finite isotropy
groups on Ad \B.

2.3. Quasismoothness.

Definition 2.1 (see [1, Definition 3.1]). Denote by

π : Ad \B → (Ad \B)/G ∼= X

the quotient map.
• A subscheme Y ⊆ X is called quasismooth at a closed point P ∈ Y
if π−1(Y ) is smooth at all points in the fiber π−1(P ).
• Y is called quasismooth if it is quasismooth at all closed points.

Remark 2.2. As above, let X be any projective normal simplicial toric
variety, and let Y ⊆ X be a subscheme.

(1) X is quasismooth.
(2) If Y is smooth at P ∈ Y , it is also quasismooth at P .
(3) If Y is quasismooth at P ∈ Y and X is smooth at P , then Y is

smooth at P .
(4) Y is quasismooth at a closed point P if and only if π−1(Y ) is smooth

at some point in π−1(P ).

Testing quasismoothness means testing smoothness on the affine cone:
For example, if X = Pn, then a subscheme Y ⊆ X is quasismooth if and
only if the affine cone of Y is smooth outside {0}. This is in turn equivalent
to Y being smooth.

Moreover, if Y is a (quasi)smooth subscheme of Pn and f is a homoge-
neous polynomial in n+ 1 variables, then the affine cone of Y ∩V (f) is not
smooth at a point Q ∈ An+1 \ {0} if and only if the order of vanishing of f
at Q is at least two. Such polynomials form a homogeneous ideal inside the
polynomial ring in n+ 1 variables. This defines in turn a closed subscheme
of Pn.
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This works in general: Let X be an arbitrary projective normal simplicial
toric variety and let Y be a quasismooth subscheme of X. Pick a global
section f ∈ H0(X,OX(D)) of some Weil divisor D on X. Then the quasi-
smoothness of Y ∩V (f) is still a local condition on Y : If P is a closed point
of Y , we pull back the first-order infinitesimal neighborhood of all points
in the affine quasicone lying over P . More precisely, we have the following:

Lemma 2.3. Let Y ⊆ X be a quasismooth subscheme, P ∈ Y a closed
point. Then there is a closed subscheme YP ⊆ X such that for all Weil
divisors D on X and f ∈ H0(X,OX(D)) we have

Y ∩ V (f) is quasismooth at P ⇔ ϕP,D(f) 6= 0,

where ϕP,D is the natural restriction map

ϕP,D : H0(X,OX(D))→ H0(YP ,OX(D)|YP
).

Proof. Let S be the homogeneous coordinate ring of X and π : Ad \B → X
the map from the quotient construction. For any Q ∈ π−1(P ), there are
natural maps

ϑQ : S → Oπ−1(Y ),Q → Oπ−1(Y ),Q/m
2
Q,

where mQ is the maximal ideal of the local ring Oπ−1(Y ),Q of π−1(Y )
at Q. Denote by IP the largest homogeneous ideal of S contained in⋂
Q∈π−1(P ) kerϑQ with respect to the grading given by Cl(X). Then IP

defines a closed subscheme YP of X.
Let D be a Weil divisor on X. For f ∈ S[D], the intersection Y ∩ V (f)

is not quasismooth at P if and only if there is a point Q ∈ π−1(P ) such
that ϑQ(f) = 0. By Remark 2.2 (4), this is equivalent to ϑQ(f) = 0 for all
Q ∈ π−1(P ), which is in turn equivalent to f ∈ IP ∩S[D]. In other words, f
lies in kerϕP,D, after applying the isomorphism S[D] ∼= H0(X,OX(D)). �

Example 2.4. Assume Y = X and let P ∈ X be a closed point. By defini-
tion, the ideal IP inside the homogeneous coordinate ring S = K[x1, . . . , xd]
is generated by all homogeneous polynomials f ∈ S such that

f(Q) = ∂f

∂x1
(Q) = · · · = ∂f

∂xd
(Q) = 0

for all Q ∈ π−1(P ). Quasismoothness can hence be effectively tested with
the Jacobian criterion on Ad \B.

Moreover, if p is the prime ideal of S corresponding to the point P , then
S/p is an integral domain. In particular, the fiber π−1(P ) is an integral
scheme over a perfect field and hence generically smooth. Since S is a
regular ring, we can invoke [6, Corollary 1] to obtain

IP = p(2),



266 Niels Lindner

where p(2) denotes the symbolic square of p.
More generally, let Y ⊆ X be a closed quasismooth subscheme cut out

by a homogeneous ideal JY with respect to the grading by the class group
Cl(X). Let P ∈ Y be a closed point and denote by p the prime ideal of S
defining P in X. Then π−1(P ) is generically smooth as above. Furthermore,
since Y is quasismooth, π−1(Y ) is smooth and its coordinate ring is hence
regular. We can apply [6, Corollary 1] again to see

IP = JY + p(2).

3. Sections restricted to zero-dimensional subschemes

Let X be as above, Y ⊆ X a quasismooth subscheme. Fix a Weil divisor
D and an ample Cartier divisor E on X. We want to determine the pro-
portion of sections of D+ kE having a quasismooth intersection with Y as
k →∞.

In view of Lemma 2.3, we will take a closer look at the K-vector spaces
H0(YP ,OX(D)|YP

) and the map ϕP,D.

3.1. Surjectivity of ϕP,D. Let Z be a zero-dimensional subscheme of X
and denote the corresponding closed immersion by i : Z ↪→ X. Then there
is an associated surjective map OX � i∗OZ of sheaves. Tensoring with
OX(D), taking the long exact sequence in cohomology and applying the
projection formula, this yields a natural map on global sections

ϕZ : H0(X,OX(D))→ H0(Z,OX(D)|Z).

This way, we recover ϕP,D if Z equals the scheme YP . Tensoring with
OX(D + kE) instead of OX(D), we obtain

ϕZ,k : H0(X,OX(D + kE))→ H0(Z,OX(D + kE)|Z) ∼= H0(Z,OX(D)|Z).

The last isomorphism comes from the fact that

OX(D + kE) ∼= OX(D)⊗OX(E)⊗k,

since X is normal, and that OX(E) is locally free of rank one, as E is
Cartier.

We see that ϕZ,k is surjective if H1(X,K ⊗OX(kE)) vanishes, where K
is the kernel of the surjection OX(D) → OX(D)|Z . Since K is a coherent
sheaf on the projective variety X and E is ample, we have the following
result by Serre vanishing [8, Theorem II.5.3]:

Lemma 3.1. For any zero-dimensional subscheme Z ⊆ X exists an integer
kZ such that the natural map

ϕZ,k : H0(X,OX(D + kE))→ H0(Z,OX(D)|Z)

is surjective for all k ≥ kZ .
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The rest of this subsection is devoted to an improvement of this result.
In order to achieve this, we need to have a look at multiplication of sections
on toric varieties. Define regE(D) to be the smallest integer ` ≥ 1 such that

H i(X,OX(D + kE − iE)) = 0 for all k ≥ ` and i ≥ 1.

The number regE(D) exists and coincides with the Castelnuovo–Mumford
regularity of the sheaf OX(D) with respect to the ample line bundle OX(E)
on X.

Lemma 3.2. The natural multiplication map

H0(X,OX(D + kE))⊗H0(X,OX(E))→ H0(X,OX(D + (k + 1)E))

is surjective for all k ≥ regE(D).

Proof. See [10, Theorem 2]. �

We will now give an enhanced version of Lemma 3.1:

Lemma 3.3. For all zero-dimensional subschemes Z the map ϕZ,k is sur-
jective whenever

k ≥ dimK H
0(Z,OX(D)|Z) + regE(D)− 1.

Proof. Let Z be a zero-dimensional subscheme of X. Since cohomology
commutes with flat base change, we can check the surjectivity of the map
ϕZ,k after a base change to some field extension. Thus we can w.l.o.g.
assume the existence of a section f0 ∈ H0(X,OX(E)) ∼= S[E] defined over
K satisfying V (f0) ∩ Z = ∅. Choose elements f1, . . . , fs ∈ S[E] such that
{f0, . . . , fs} forms a K-basis of S[E].

By Lemma 3.2, we have surjective multiplication maps

H0(X,OX(D + `E))⊗H0(X,OX(E))⊗k−` � H0(X,OX(D + kE)),

whenever k ≥ ` := regE(D). These maps are compatible with the iso-
morphisms H0(X,OX(−)) ∼= S[−]. Identify now H0(X,OX(E))⊗(k−`) with
the space of homogeneous polynomials in f0, . . . , fs of degree k − `, where
` := regE(D). Homogenization via f0 yields an isomorphism

S[D+`E] ⊗K[f1, . . . , fs]≤k−` ∼= S[D+`E] ⊗K[f0, . . . , fs]k−`
and we thus obtain a surjective K-linear map

S[D+`E] ⊗ K[f1, . . . , fs]≤k−`
� S[D+`E] ⊗ S

⊗(k−`)
[E]

∼= H0(X,OX(D + `E))⊗H0(X,OX(E))⊗(k−`)

� H0(X,OX(D + kE)).
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Consider the composition

ϑk : S[D+`E] ⊗K[f1, . . . , fs]≤k−` → H0(X,OX(D + kE))
ϕZ,k−−−→ H0(Z,OX(D)|Z).

The linear map ϑk becomes surjective for large enough k by Lemma 3.1.
Furthermore, if ϑk is surjective, then so is ϕZ,k. Define the subspaces

Bj := ϑk
(
S[D+`E] ⊗K[f1, . . . , fs]≤j

)
, j = −1, . . . , k − `.

This yields an ascending chain of subspaces {0} = B−1 ⊆ B0 ⊆ ..., thus
for some j ≥ −1 holds Bj = Bj+1. Then, if [fi] denotes the image of fi in
H0(Z,OZ), we obtain

Bj+2 =
s∑
i=1

[fi] ·Bj+1 =
s∑
i=1

[fi] ·Bj = Bj+1.

A fortiori, Br = Bj for r ≥ j. But ϑk is eventually surjective, so as soon as
Bj = Bj+1, it must be the all of H0(Z,OX(D)|Z) for large k. This means
that ϑk and hence ϕZ,k are surjective whenever

k − ` ≥ dimK H
0(Z,OX(D)|Z)− 1. �

3.2. Dimension of H0(YP , OX(D)|YP ).

Definition 3.4. With the same notation as above, define

νP (D) := dimK H
0(YP ,OX(D)|YP

).

Remark 3.5. A general recipe to compute νP (D) is the following: Let
π : Ad \ B → X denote the quotient map. Pick a closed point P ∈ Y . By
Lemma 2.3, a section f ∈ H0(X,OX(D + kE)) lies in the kernel of

ϕYP ,k : H0(X,OX(D + kE))→ H0(YP ,OX(D)|YP
)

if and only if V (f) is not quasismooth at P , i. e. if and only if π−1(V (f)) is
not smooth at some point Q ∈ π−1(P ). The latter condition can be tested
with the Jacobian criterion and gives therefore an effective description of
kerϕYP ,k. Since ϕYP ,k is surjective for k � 0 by Lemma 3.1, this computes
the number νP (D) as the codimension of kerϕYP ,k in H0(X,OX(D+kE)).

Remark 3.6. An alternative description is the following: If Y ⊆ X is a
closed subscheme, we can use the formula from Example 2.4: Let S denote
the homogeneous coordinate ring of X and let JY be the ideal of Y inside S.
Pick a closed point P ∈ Y and let p denote the corresponding prime ideal in
S. Then, for k � 0, νP (D) equals the dimension of the degree [D+kE]-part
of the Cl(X)-graded S-module S/(JY + p(2)) .
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Example 3.7. Let X be the weighted projective space P(1, . . . , 1, 2) with
the coordinates x0, . . . , xn. Furthermore, let Y = X, D = V (xn) and E =
V (x0). Then H0(X,OX(D + kE)) corresponds to the space of weighted
homogeneous polynomials in the variables x0, . . . , xn of degree 2k+1. Such
a polynomial f can be written as

f =
k∑
i=0

xin · fi(x0, . . . , xn−1), fi homogeneous of degree 2(k − i) + 1.

If Q ∈ An+1 \ {0} lies over the singular point P = (0 : · · · : 0 : 1), then
one computes that both f and ∂f

∂xn
always vanish at Q. Moreover, the

partial derivatives ∂f
∂x0

, . . . , ∂f
∂xn−1

vanish simultaneously at Q if and only if
fk = 0. Thus f lies in kerϕYP ,k if and only if fk = 0. Since fk is a linear
homogeneous polynomial in n variables, this is a codimension n condition.
Hence νP (D) = degP · n = n.

Alternatively, let p = 〈x0, . . . , xn−1〉 be the prime ideal of the polynomial
ring S = K[x0, . . . , xn] corresponding to P = (0 : · · · : 0 : 1). One checks
that p(2) = p2, so

νP (D) = lim
k→∞

dimK(S/p2)2k+1 = n,

as (S/p2)2k+1 is spanned by the classes of x0x
k
n, x1x

k
n, . . . , xn−1x

k
n.

For another computation of νP (D), see Example 4.3. We summarize some
properties of the number νP (D) in the following lemma:

Lemma 3.8. Let P be a closed point of Y .
(1) νP (D) is divisible by degP .
(2) If D is Cartier, then νP (D) ≥ degP .
(3) If X is smooth at P , then νP (D) = degP · (dimY + 1).
(4) In general, νP (D) ≤ degP · dim π−1(Y ), where π is the map from

the quotient construction.

Proof. Recall that in the proof of Lemma 2.3, YP was defined by the ho-
mogeneous ideal IP , which was the largest homogeneous ideal contained in⋂
Q∈π−1(P ) ker(S → Oπ−1(Y ),Q/m

2
Q).

(1) Let κ(P ) be the residue field of P . Since K is perfect, the field
extension κ(P )/K is separable. Suppose that P1, . . . , PdegP are the
degP distinct points lying over P . Denote by X ′, Y ′ and D′ the
respective base changes of X, Y and D to κ(P ). Then

H0(YP ,OX(D)|YP
)⊗K κ(P ) ∼=

degP⊕
i=1

H0(Y ′Pi
,OX′(D′)|Y ′Pi

),

where all the direct summands on the right-hand side have the same
dimension over κ(P ).
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(2) If D is Cartier, then OX(D) is locally free and hence

H0(YP ,OX(D)|YP
) ∼= H0(YP ,OYP

).

Since the latter space is of positive dimension, (1) yields the esti-
mate νP (D) ≥ degP .

(3) Let OY,P be the local ring of Y at P with maximal ideal mP . Since
OX(D) is invertible when restricted to the smooth locus, we get a
honest restriction map ρ : S → OY,P . Now

f ∈ IP ⇔ Y ∩ V (f) quasismooth at P
⇔ Y ∩ V (f) smooth at P
⇔ ρ(f) ∈ m2

P .

Since Y is smooth at P , the Fq-dimension of OY,P /m2
P equals degP ·

(dimY + 1).
(4) Pick a point Q ∈ π−1(P ) of the same degree as P . As the restriction

map ϕYP ,k is eventually surjective for large enough k by Lemma 3.1,
H0(YP ,OX(D)|YP

) has the same dimension as (S/IP )[D+kE] for all
k � 0. But the latter space injects into Oπ−1(Y ),Q/m

2
Q, which has

dimension degQ · (dim π−1(Y ) + 1), as Y is smooth at Q. Since this
injection cannot be surjective,

νP (D) < degQ · (dim π−1(Y ) + 1) = degP · (dim π−1(Y ) + 1).

By part (1), this implies νP (D) ≤ degP · dim π−1(Y ). �

Corollary 3.9. Suppose that P is a closed point of Y and k is a positive
integer such that

degP ≤ k − regE(D) + 1
dim π−1(Y ) .

Then the map ϕYP ,k : H0(X,OX(D + kE)) → H0(YP ,OX(D)|YP
) is sur-

jective.

Proof. Lemma 3.8 gives the bound

νP (D) ≤ degP · dim π−1(Y ) ≤ k − regE(D) + 1.

Thus ϕYP ,k is surjective, as k ≥ νP (D)+regE(D)−1 due to Lemma 3.3. �

4. Sieving closed points

We are now in the shape to prove Theorem 1.1 following the method of
Poonen. The notations are the same as in the previous section, except that
we assume K = Fq to be a finite field.
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4.1. Low degree points.

Lemma 4.1 (Low degree points). For r ≥ 1, let Y<r be the set of closed
points of Y of degree less than r. Then there is a positive integer kr such
that for all k ≥ kr holds

#{f ∈H0(X,OX(D+kE)) | Y ∩ V (f) is quasismooth at all P ∈ Y<r}
#H0(X,OX(D + kE))

=
∏

P∈Y<r

(
1− q−νP (D)

)
.

Proof. Let Z be the union of all schemes YP for P ∈ Y<r. By Lemma 2.3, a
section f ∈ H0(X,OX(D+ kE)) is quasismooth at all P ∈ Y<r if and only
if ϕZ,k(f) vanishes nowhere, where ϕZ,k denotes the composition

H0(X,OX(D + kE))→ H0(Z,OX(D)|Z) ∼=
∏

P∈Y<r

H0(YP ,OX(D)|YP
).

According to Lemma 3.1, there is a constant kr such that for all k ≥ kr,
the map ϕZ,k is surjective. The fibers of a surjective linear map between
finite vector spaces have all the same cardinality, hence

#{f ∈H0(X,OX(D+kE)) | Y ∩ V (f) is quasismooth at all P ∈ Y<r}
#H0(X,OX(D + kE))

=
#ϕ−1

k,Y

(∏
P∈Y<r

(
H0(YP ,OX(D)|YP

) \ {0}
))

#ϕ−1
k,Y

(∏
P∈Y<r

H0(YP ,OX(D)|YP
)
)

=
∏

P∈Y<r

(
1− 1

#H0(YP ,OX(D)|YP
)

)
=

∏
P∈Y<r

(
1− q−νP (D)

)
. �

Corollary 4.2. If νP (D) = 0 for some closed point P of Y , then Y ∩V (f)
is not quasismooth at P for all f ∈ H0(X,OX(D + kE)) and all k ≥ 0.

Proof. Let P ∈ Y be a closed point with νP (D) = 0. In particular,
H0(YP ,OX(D)|YP

) = 0. Then the map ϕYP ,k is surjective for all k ≥ 0
for trivial reasons. Repeating the computation in the proof of Lemma 4.1
above shows that

#{f ∈ H0(X,OX(D + kE)) | Y ∩ V (f) is quasismooth at P}
#H0(X,OX(D + kE)) = 0. �

Example 4.3. It can happen that νP (D) = 0. In this case, Corollary 4.2
states that no section in H0(X,OX(D+kE)) has quasismooth intersection
with Y .
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For example, consider the weighted projective space

X = Y = P(1, . . . , 1, w)

of dimension n, where w ≥ 3. X has homogeneous coordinate ring S =
Fq[x0, . . . , xn], and the grading by the class group Cl(X) ∼= Z is given by
deg(xi) = 1 for i = 0, . . . , n − 1 and deg(xn) = w. Choose a Weil divisor
D` corresponding to OX(`), where ` ∈ {0, . . . , w− 1}. This is not Cartier if
` 6= 0. However, the sheaf OX(w) is ample and invertible. The only singular
point of X is P = (0 : · · · : 0 : 1) in weighted homogeneous coordinates. All
other points Q have νQ(D`) = degQ · (n+ 1) by Lemma 3.8.

We want to compute νP (D`). Write f ∈ H0(X,OX(kw + `)) as

f =
k∑
i=0

xin · fi(x0, . . . , xn−1), fi homogenous of degree (k − i)w + `.

If ` = 1, then f(P ) = 0, and f is not quasismooth at P if and only if
fk = 0. As fk is a linear homogeneous polynomial in n variables, this is a
codimension n condition, thus νP (D1) = n, compare Example 3.7. With a
similar computation, one obtains that νP (D0) = 1. However, if ` ≥ 2, then
f and all its partial derivatives automatically vanish at P . So the surjective
map ϕYP ,k is the zero map, and consequently νP (D`) = 0.

4.2. Medium degree points. As we have seen in the previous example,
we want to avoid low values of νP (D). For m ≥ 0, define

βm := dim {P ∈ Y closed | νP (D) = mdegP}.

Lemma 4.4 (Medium degree points). Fix an integer r ≥ 1 and let c be the
constant from Lemma 3.3. Let Yr,sk be the set of closed points P of Y with
r ≤ degP ≤ sk, where

s := 1
regE(D) · dim π−1(Y ) .

(1) If βm < m for all m = 0, . . . ,dimY , then

lim
r→∞

lim
k→∞

#
{
f ∈H0(X,OX(D+kE))

∣∣∣∣Y ∩V (f) is not quasism.
at some P ∈Yr,sk

}
#H0(X,OX(D + kE)) = 0.

(2) Otherwise

lim
k→∞

#
{
f ∈H0(X,OX(D+kE))

∣∣∣∣Y ∩V (f) is not quasismooth
at some P ∈Yr,sk

}
#H0(X,OX(D + kE)) = 1.
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Proof.
(1) Let k be a positive integer such that k ≥ ` := regE(D). Then we

have the inequalities k · (1− `) ≤ ` · (1− `) and thus
k ≤ k`− `2 + ` = ` · (k − `+ 1).

Hence, for P ∈ Yr,sk,

degP ≤ k

` · dim π−1(Y ) ≤
k − `+ 1

dim π−1(Y ) ,

so the map ϕYP ,k is surjective by Corollary 3.9. Following the proof
of Lemma 4.1, one finds that

#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣ Y ∩ V (f) is not
quasismooth at P

}
#H0(X,OX(D + kE)) = q−νP (D).

Hence we get the estimate

#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣Y ∩ V (f) is not quasismooth
at some P ∈ Yr,sk

}
#H0(X,OX(D + kE))

≤
sk∑
e=r

∑
P∈Y : degP=e

q−νP (D)

≤
sk∑
e=r

dimπ−1(Y )∑
m=0

∑
P∈Y : degP=e,
νP (D)=em

q−em, k ≥ `.

Using the Lang–Weil bound [9, Theorem 1], we can find a constant
L > 0 such that

#{P ∈ Y | degP = e, νP (D) = em} ≤ Lqeβm .

Hence

#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣Y ∩ V (f) is not quasismooth
at some P ∈ Yr,sk

}
#H0(X,OX(D + kE))

≤
sk∑
e=r

dimπ−1(Y )∑
m=0

Lq−e(m−βm)

≤
dimπ−1(Y )∑

m=0

∑
e≥0

Lq−(e+r)(m−βm)

=
dimπ−1(Y )∑

m=0
Lq−r(m−βm) 1

1− qβm−m , k ≥ `.
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If βm < m, this becomes arbitrarily small as r →∞.
(2) Otherwise, choose an integer m ∈ {0, . . . ,dimY } and a subscheme

Z ⊆ Y , dimZ ≥ m, such that for every closed point P ∈ Z holds
νP (D) = m degP . For any integer t ≥ 0, denote by Zr,t the finite
set of closed points of Z whose degree lies between r and t. Further
define for integers k, t ≥ 0 the rational number

ak,t :=
#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣Y ∩ V (f) is not quasismooth
at some P ∈ Zr,t

}
#H0(X,OX(D + kE)) .

By the techniques of Lemma 4.1,

lim
k→∞

ak,t = 1−
∏

P∈Zr,t closed

(
1− q−νP (D)

)
= 1−

∏
P∈Zr,t closed

(
1− q−m degP

)
= 1−

∏
P∈Z<r

(
1− q−m degP

)−1
·
∏

P∈Z≤t

(
1− q−m degP

)
.

The latter product vanishes if m = 0. Otherwise, we can use the
standard power series expansion for the Hasse–Weil zeta function
to obtain∏

P∈Z≤t

(
1− q−m degP

)
= exp

(
−

t∑
e=1

#Z(Fqe)q
−me

e

)
.

The Lang–Weil estimate [9, Theorem 1] gives a constant M > 0
depending on Z such that #Z(Fqe) ≥MqedimZ . Since dimZ ≥ m,
the sum inside the exponential diverges to ∞ and therefore

lim
t→∞

lim
k→∞

ak,t = 1.

Let ε > 0. Then there is a number tε such that

1− ε ≤ lim
k→∞

ak,tε .

Using the obvious inequality ak,tε ≤ ak,sk whenever k ≥ tε
s shows

1− ε ≤ lim
k→∞

ak,tε ≤ lim inf
k→∞

ak,sk ≤ 1,

which completes the proof. �

Remark 4.5. The condition βm < m is automatically satisfied if Y is
smooth. It is still true if Y has only finitely many singularities, provided
that no point P has νP (D) = 0. We have already seen in Corollary 4.2 that
the latter condition is necessary for having quasismooth intersections at all.
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Example 4.6. Besides Example 4.3, another example where the second
case of Lemma 4.4 applies is given by the following: Consider the weighted
projective space X = Y = P(1, 2, 3, 6) with coordinates x0, x1, x2, x3. Pick
divisors D and E such that OX(D) ∼= OX(1) and OX(E) ∼= OX(6).

One computes that νP (D) = 1 for any point P ∈ V (x0, x1), which implies
β1 ≥ dimV (x0, x1) = 1. In contrast to Example 4.3, there is no point P ∈
P(1, 2, 3, 6) with νP (D) = 0. However, the hypersurfaces of degree 6k + 1
which are not quasismooth at some point in V (x0, x1) still form a set of
density one by Lemma 4.4 (2).

4.3. High degree points. We need two preparatorial lemmas.

Lemma 4.7. Let ` := regE(D).
(1) Suppose that X is smooth at the closed point P . Then, for k ≥ `,

#{f ∈ H0(X,OX(D + kE)) | f(P ) = 0}
#H0(X,OX(D + kE)) ≤ q−min(k−`,degP ).

(2) Let V ⊆ X, dimV ≥ 1, be a subscheme which intersects the singular
locus of X in finitely many points only. Then

#{f ∈ H0(X,OX(D + kE)) | V ⊆ {f = 0}}
#H0(X,OX(D + kE)) ≤ q`−k.

Proof. Let Z be the closed subscheme corresponding to the maximal ideal
at P . Since X is smooth at P , we have H0(Z,OX(D)|Z) ∼= H0(Z,OZ), and
the Fq-dimension of this vector space equals degP . Assuming w.l.o.g. that
f0(P ) 6= 0, the proof of Lemma 3.3 shows that the dimension of the image
of the evaluation map

S[D+`E] ⊗ Fq[f1, . . . , fs]≤k−` → H0(X,OX(D + kE))
ϕZ,k−−−→ H0(Z,OZ)

is at least min(k − `,degP ). This proves (1). For (2), pick a point P ∈ V
contained in the smooth locus of X such that degP ≥ k − `. �

Note that the condition on smoothness is essential: Examples 4.3 and 4.6
indicate that the fractions in question can be equal to one in the non-smooth
case.

We need one more technical result. Let W be a Weil divisor on X and
let f ∈ S[W ] be a homogeneous polynomial of degree [W ] with respect to
the grading given by the class group Cl(X). Since S[W ] ⊆ Fq[x1, . . . , xd],
the polynomial f carries a degree degstd(f) with respect to the standard
grading on the polynomial ring Fq[x1, . . . , xd]. Define

δ(W ) := max {degstd(f) | f ∈ S[W ]}.
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Lemma 4.8. The quantity δ(D + kE) grows linearly in k.

Proof. By Lemma 3.2, the natural multiplication map

S[D+`E] ⊗ S
⊗(k−`)
[E] → S[D+kE]

is surjective for k ≥ ` := regE(D). Consequently,
δ(D + kE) = δ(D + `E) + (k − `) · δ(E), k ≥ `.

In particular, δ(D + kE) grows linearly in k. �

Lemma 4.9 (High degree points). Fix a rational number s > 0 and denote
by Y>sk the set of closed points of Y of degree > sk. Suppose that Y meets
the singular locus of X only in finitely many points. Then

lim sup
k→∞

#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣ Y ∩ V (f) is not quasism.
at some P ∈ Y>sk

}
#H0(X,OX(D + kE)) = 0.

Proof. We divide the proof into six steps. The strategy is as follows: We
give first a global proof for X = Y . We choose an open cover of X such
that on each open, a hypersurface fails to be quasismooth if dimX many
derivations vanish. Then we draw sections of H0(X,OX(D + kE)) uni-
formly at random and compute that the probability that the locus where
all derivations vanish contains a point of high degree. Applying Poonen’s
trick of decoupling derivatives, we show that this probability becomes arbi-
trarily small as k →∞. The last step is to generalize the proof to arbitrary
quasismooth subschemes Y ⊆ X with finitely many singular points.

Step 1. Testing quasismoothness with n := dimX many derivations.
Let f ∈ S = K[x1, . . . , xd] be homogeneous with respect to the Cl(X)-

grading. Then, by the definition of quasismoothness, V (f) is not quasi-
smooth at P ∈ X if and only if

f(P ) = ∂f

∂x1
(P ) = · · · = ∂f

∂xd
(P ) = 0.

In fact, even more is true: Let σ ∈ Σ be an n-dimensional cone in the
simplicial fan Σ associated to X. The homogeneous coordinate ring S has
a variable xi for each one-dimensional cone ρi ∈ Σ, where i = 1, . . . , d.
Define Uσ ⊆ X to be the open affine subvariety given by the homogeneous
localization at

∏
ρi 6⊆σ xi. Renumbering the variables, we can assume that∏

ρi 6⊆σ xi = xn+1 · · ·xd. By [1, Lemma 3.6], if P ∈ Uσ, then V (f) is not
quasismooth at P ∈ X if and only if

f(P ) = ∂f

∂x1
(P ) = · · · = ∂f

∂xn
(P ) = 0.

X can be covered with finitely many such sets Uσ, and quasismoothness
may be tested with dimX many derivations on each Uσ. So we may w.l.o.g.
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restrict our search for non-quasismooth points of high degree to Uσ =
{xn+1 . . . xd 6= 0} ⊆ X.

Step 2. Drawing sections at random.
Let Di be the divisor corresponding to V (xi), so that xi is a global

section of OX(Di), i = 1, . . . , n. Set D0 := 0 ∈ Div(X). For i = 0, . . . , n
and b = 0, . . . , q − 1, pick a divisor C̃i,b such that q · C̃i,b ≤ D + bE −Di,
where q is the cardinality of the ground field Fq. Now fix an integer k ≥ 1
and write k = bk/qc · q+ b. Define Ci := C̃i,b + bk/qc ·E. There is a natural
multiplication map

H0(X,OX(Ci))→ H0(X,OX(D + kE −Di)), g 7→ gq.

In order to see this, choose g ∈ H0(X,OX(Ci)). Then

div(gq) = q·div(g) ≥ q·(−Ci) ≥ −q
⌊
k

q

⌋
E−(D+bE−Di) = −(D+kE−Di),

hence gq ∈ H0(X,OX(D+kE−Di)). Note that for all g ∈ H0(X,OX(Ci)),
∂gq

∂xj
= 0, i = 0, . . . , n, j = 1, . . . , n.

Combine these maps to

ψ :

H0(X,OX(D + kE))
⊕⊕n

i=1H
0(X,OX(Ci))
⊕

H0(X,OX(C0))

→ H0(X,OX(D + kE)),

(f0, g1, . . . , gn, h) 7→ f0 +
n∑
i=1

gqi · xi + hq.

This map is Fq-linear and surjective, hence we can compute densities on
the left-hand side.

Step 3. Decoupling of derivatives.
For f = ψ(f0, g1, . . . , gn, h), define the subsets

Wi :=
{
∂f

∂x1
= · · · = ∂f

∂xi
= 0

}
⊆ X ∩ {xn+1 · · ·xd 6= 0}, i = 0, . . . , n.

Note that W0 is n-dimensional and for i ≥ 0, Wi does not depend on
gi+1, . . . , gn and h: Indeed, we have that

∂f

∂xi
= ∂f0
∂xi

+
m∑
j=1

∂xj
∂xi
· gqj +

m∑
j=1

∂gqj
∂xi︸︷︷︸
=0

· xj + ∂hq

∂xi︸︷︷︸
=0

= ∂f0
∂xi

+ gqi , i = 1, . . . , n.
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Step 4. For 0 ≤ i ≤ n−1, conditioned on a choice of f0, g1, . . . , gi for which
dimWi ≤ n − i, the probability that dimWi+1 ≤ n − i − 1 is 1 − o(1) as
k →∞.

There is nothing to show if dimWi ≤ n− i− 1. Otherwise, if dimWi =
n − i, the number of (n − i)-dimensional Fq-irreducible components of Wi

is bounded from above by the number of (d− i)-dimensional Fq-irreducible
components of π−1(Wi), where π : Ad \ B → X is the quotient map.
Applying Bézout’s theorem for affine space, this quantity is bounded by
O(δi), where δ = degstd(f) is the degree of f ∈ Fq[x1, . . . , xd] with respect
to the standard grading.

Let V be such an (n− i)-dimensional component of W . Define

Gbad
V :=

{
gi+1 ∈ H0(X,OX(Ci+1))

∣∣∣∣V ⊆ {∂ψ(f0, g1, . . . , gi+1, ∗)
∂xi+1

= 0
}}

.

Suppose that Gbad
V 6= ∅. If g, g′ ∈ GV , then gq − (g′)q = (g − g′)q vanishes

identically on V ⊆Wi. So g− g′ must vanish identically on V . Hence there
is a bijection

Gbad
V ↔ {g ∈ H0(X,OX(Ci+1)) | V ⊆ {g = 0}}.

Recall that Ci+1 = C̃i+1,b + bk/qc · E, where k = bk/qc · q + b. Using
Lemma 4.7,

#Gbad
V

#H0(X,OX(Ci+1)) = O(q−bk/qc).

Since there are at most O(δi) such components V , and this number grows
like O(ki) by Lemma 4.8, the probability that Wi+1 has dimension greater
than n− i− 1 is

O(kiq−bk/qc) = o(1) as k →∞.

Step 5. Conditioned on a choice of f0, g1, . . . , gn for which Wn is finite, the
probability that Wn ∩ {f = 0} contains a point of degree > sk is o(1) as
k →∞.

We can follow the lines of the previous step: There is nothing to show
if Wn is empty. Otherwise, the number of points in Wn is O(kn) again by
Bézout’s theorem and Lemma 4.8. Pick P ∈Wn and let

Hbad
P := {h ∈ H0(X,OX(C0)) | ψ(f0, g1, . . . , gn, h)(P ) = 0}.

Another application of Lemma 4.7 yields that for all large enough k, either

#Hbad
P

#H0(X,OX(C0)) = O(q−bk/qc)

or P is a singular point of X. The latter possibility can be ruled out since X
contains only finitely many singular points by hypothesis and degP > sk.



Density of quasismooth hypersurfaces 279

As a consequence, the probability that Wn ∩ {f = 0} contains a point of
degree > sk is

O(knq−bk/qc) = o(1) as k →∞.

Putting everything together, the probability that a hypersurface V (f), de-
termined by choosing f ∈ H0(X,OX(D + kE)) at random via ψ, is not
quasismooth at some point in P ∈ {xn+1 · · ·xd 6= 0} of degree > sk is o(1)
as k →∞. This proves the lemma in the case X = Y .

Step 6. Proof for general Y .
Following the strategy of the proof of [11, Lemma 2.6], we can restrict

to an open affine subset U of the smooth locus Xsm of X. We can find
coordinates t1, . . . , tn ∈ OU (U) defining Y ∩Xsm locally by tm+1 = · · · =
tn = 0, where m = dimY . Moreover, there are derivations d1, . . . , dm :
OU (U)→ OU (U) such that for f ∈ OU (U) and P ∈ Y ∩ U ,

Y ∩ V (f) is not quasismooth at P ⇔ Y ∩ V (f) is not smooth at P
⇔ f(P ) = d1(f) = · · · = dm(f) = 0.

For i = 1, . . . ,m, the coordinate ti may be considered as element of
Fq(X) ∼= Fq(U), and thus ti ∈ H0(X,OX(−div(ti))). This allows us to
draw sections as in Step 2, replacing Di by −div(ti). Restricting elements
of H0(X,OX(D+ kE)) to U , the rest of the proof can be carried out anal-
ogously to the case X = Y . �

Proof of Theorem 1.1. If X happens to be zero-dimensional, then we are
done by Lemma 4.1. Otherwise, as in [11, §2.4], the theorem follows from
Lemmas 4.1, 4.4 and 4.9 as r →∞. �

5. Applications

5.1. First examples. We list some easily obtained consequences of The-
orem 1.1:

(1) Let d1, d2, e1, e2 ∈ Z, e1, e2 > 0. Then as k → ∞, the probability
that a hypersurface of bidegree (d1 + ke1, d2 + ke2) in Pm × Pn is
smooth equals

ζPm×Pn(m+ n+ 1)−1 =
m∏
i=0

n∏
j=0

(1− qi+j−m−n−1),

as computed in [7, Example 4.3].
(2) Let w, ` ∈ Z, w ≥ 1, 0 ≤ ` ≤ w − 1. As k → ∞, the probability

that a hypersurface of degree kw+` is quasismooth in the weighted
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projective space X = P(1, . . . , 1, w) of dimension n equals
0 if ` ≥ 2,

(1− q−1) · · · (1− q−n+1) · (1− q−n)2 if ` = 1,
(1− q−1)2 · (1− q−2) · · · (1− q−n) if ` = 0.

This follows from the computations in Examples 3.7 and 4.3. More-
over, as seen in Example 4.3, in the case ` ≥ 2, every hypersurface
passes through (0 : · · · : 0 : 1) and is not quasismooth at this point.

5.2. Taylor conditions. As in [11, Theorem 1.2], there is an extended
version of Theorem 1.1:

Theorem 5.1. Let X be a projective normal simplicial toric variety over
a finite field Fq. Fix a Weil divisor D and an ample Cartier divisor E on
X. Let Y ⊆ X be a quasismooth subscheme such that Y meets the singular
locus of X only in finitely many points. Let Z ⊆ X be a zero-dimensional
subscheme and fix a subset T ⊆ H0(Z,OX(D)|Z). Then

lim
k→∞

#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣ (Y \ (Y ∩ Z)) ∩ V (f) is
quasismooth and ϕZ,k(f) ∈ T

}
#H0(X,OX(D + kE))

= #T
#H0(Z,OX(D)|Z) ·

∏
P∈Y \(Y ∩Z) closed

(
1− q−νP (D)

)
,

where ϕZ,k is the map as defined in subsection 3.1.

Proof. Since the set of sections in question is a subset of
{f ∈ H0(X,OX(D + kE)) | (Y \ (Y ∩ Z)) ∩ V (f) is quasismooth},

we can apply the Lemmas 4.4 and 4.9. It suffices thus to modify the
statement on low degree points. Let Z ′ be the union of Z with the zero-
dimensional subscheme Z used in the proof of Lemma 4.1. Then a section
f ∈ H0(X,OX(D + kE)) is quasismooth at all P in (Y \ (Y ∩ Z))<r and
ϕZ,k ∈ T if and only if f lies in the preimage of

T ×
∏

P∈(Y \(Y ∩Z))<r

(
H0(YP ,OX(D)|YP

) \ {0}
)

under the composition

ϕZ′,k : H0(X,OX(D + kE))→ H0(Z ′,OX(D)|Z′)
'−→ H0(Z,OX(D)|Z)×

∏
P∈(Y \(Y ∩Z))<r

H0(YP ,OX(D)|YP
).

In virtue of Lemma 3.1, this map becomes surjective for all sufficiently large
k. Hence we can derive the formula given in the theorem. �
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As an application, let Z be the zero-dimensional subscheme of all Fq-
rational points of X. Assume that no closed point P ∈ X has νP (D) = 0.
Then T := H0(Z,OX(D)|Z) \ {0} is non-empty and

lim
k→∞

#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣ (X \ Z) ∩ V (f) is quasismooth
and V (f)(Fq) = ∅

}
#H0(X,OX(D + kE))

= #T
#H0(Z,OX(D)|Z) ·

∏
P∈X\Z closed

(
1− q−νP (D)

)
> 0.

In particular, for k � 0 exist quasismooth sections of D + kE without
Fq-rational points.

5.3. Singularities of positive dimension.

Corollary 5.2. With the notation of Theorem 1.1, denote by NQS(f) the
locus where the intersection Y ∩ V (f) is not quasismooth. Then

lim sup
k→∞

#{f ∈ H0(X,OX(D + kE)) | dim NQS(f) ≥ 1}
#H0(X,OX(D + kE)) = 0.

Proof. This follows immediately from Lemma 4.9, as such an f has a non-
quasismooth point in Y ∩ V (f) of arbitrarily large degree. �

5.4. Allowing a finite number of singularities.

Theorem 5.3. In the situation of Theorem 1.1, suppose further that for
any closed point P ∈ Y holds νP (D) > 0. Choose an integer s ≥ 1. Then

lim
k→∞

#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣ Y ∩ V (f) is quasismooth
except for < s points

}
#H0(X,OX(D + kE))

=
∏

P∈Y closed
(1− q−νP (D)) ·

∑
J⊆Y,#J<s

∏
P∈J

1
qνP (D) − 1

.

Proof. Again, we can apply the strategy for medium and high degree points
without big changes. So we take a look at low degree points. Fix an integer
r ≥ 1 and let Y<r be the set of closed points of U of degree less than r.
Denote again by Z the union of all YP for P ∈ Y<r.

Recall that for f ∈ H0(X,OX(D + kE)), the intersection Y ∩ V (f) is
quasismooth at all points in Y<r if and only if all entries ϕZ,k(f) are non-
zero, where ϕZ,k is the composition

H0(X,OX(D + kE))→ H0(Z,OX(D)|Z) ∼=
∏

P∈Y<r

H0(YP ,OX(D)|YP
)
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as in the proof of Lemma 4.1.
In particular, the intersection Y ∩ V (f) is quasismooth at all points in

Y<r except for less than s points if and only if less than s entries of ϕZ,k(f)
are zero.

Fix an enumeration Y<r = {P1, . . . , Pt}. If 0 ≤ i < s, then the number of
elements in

∏
P∈Y<r

H0(YP ,OX(D)|YP
) where precisely i entries are zero is

given by ∑
1≤j1<···<ji≤t

∏
`∈{1,...,t}\{j1,...,ji}

(
#H0(YP`

,OX(D)|YP`
)− 1

)
.

Hence Y ∩ V (f) is quasismooth at all points Y<r except for less than s
points if and only if f lies in the preimage of

s−1∑
i=0

∑
1≤j1<···<ji≤t

∏
`∈{1,...,t}\{j1,...,ji}

(
qνP`

(D) − 1
)

elements under ϕk,Y .
By Lemma 3.1, for any r exists an integer kr such that ϕZ,k is surjective

for k ≥ kr. Thus for large enough k, the fibers of ϕZ,k have the same
cardinality.

Consequently,

#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣Y ∩ V (f) is quasismooth at all points
in Y<r with < s exceptions

}
#H0(X,OX(D + kE))

=
∑s−1
i=0

∑
1≤j1<···<ji≤t

∏
`∈{1,...,t}\{j1,...,ji}

(
qνP`

(D) − 1
)

∏t
`=1 q

νP`
(D)

=
s−1∑
i=0

∑
1≤j1<···<ji≤t

∏
`∈{1,...,t}\{j1,...,ji}

(
1− q−νP`

(D)
) i∏
`=1

q
−νPj`

(D)

=
t∏

`=1

(
1− q−νP`

(D)
)
·
s−1∑
i=0

∑
1≤j1<···<ji≤t

i∏
`=1

q
−νPj`

(D)

1− q−νPj`
(D)

=
∏

P∈Y<r

(1− q−νP (D)) ·
∑

J⊆Y<r,#J<s

∏
P∈J

1
qνP (D) − 1

.

It remains to show that ∑
J⊆Y<r,#J<s

∏
P∈J

1
qνP (D) − 1
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converges as r → ∞. To this end, note that this is an increasing sequence
as r grows. So it suffices to give an absolute upper bound. Since

∑
J⊆Y<r,#J<s

∏
P∈J

1
qνP (D) − 1

=
s−1∑
i=0

∑
{P1,...,Pi}⊆Y<r

1
qνP1 (D) − 1

· · · 1
qνPi

(D) − 1

≤
s−1∑
i=0

 ∑
P∈Y<r

1
qνP (D) − 1

i ,
it suffices to bound

∑
P∈Y<r

(qνP (D) − 1)−1. By Lemma 3.8, we have for all
P ∈ Y that νP (D) ≤ degP · dim π−1(Y ) and νP (D) ≥ degP . Analogously
to the proof of Lemma 4.4,

∑
P∈Y<r

1
qνP (D) − 1

≤
r−1∑
e=1

dimπ−1(Y )∑
m=1

#{P ∈ Y | degP = e, νP (D) = em}
qem − 1

≤
dimπ−1(Y )∑

m=1

r−1∑
e=1

C · qe(m−1)

qem − 1 ,

for some constant C not depending on r. Consequently,

∑
P∈Y<r

1
qνP (D) − 1

≤ C ·
dimπ−1(Y )∑

m=1

∞∑
e=1

1
qe − q−e(m−1) .

Since
∑∞
e=1(qe − q−e(m−1))−1 exists for m ≥ 1, the expression on the left-

hand side is bounded from above. Thus the desired limit exists. �

Example 5.4. For X = Y = P2, the density of plane curves with at most
one singular point is given by

1
ζP2(3) ·

1 +
∑

P∈P2 closed

1
q3 degP − 1

 .
For q = 5, this quantity is about 0.96984.

We investigate now the density of hypersurfaces of degree k whose num-
ber of singularities is bounded in terms of a strictly increasing function k.

Lemma 5.5.
(1) Let (an)n∈N be a sequence of positive real numbers. Then for any

n ∈ N, ∑
J⊆{1,...,n}

∏
j∈J

aj =
n∏
j=1

(aj + 1).
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(2) Under the hypotheses of Theorem 5.3,

lim
s→∞

∑
J⊆Y,#J<s

∏
P∈J

1
qνP (D) − 1

=
∏

P∈Y closed

1
1− q−νP (D) .

Proof. Part (1) is easy. For (2), part (1) implies for any integer r ≥ 1 the
identity

lim
s→∞

∑
J⊆Y<r,#J<s

∏
P∈J

1
qνP (D) − 1

=
∑

J⊆Y<r

∏
P∈J

1
qνP (D) − 1

=
∏

P∈Y<r

1
1− q−νP (D) .

Taking limits,

lim
r→∞

lim
s→∞

∑
J⊆Y<r,#J<s

∏
P∈J

1
qνP (D) − 1

= lim
r→∞

∏
P∈Y<r

1
1− q−νP (D) .

Since the double sequence ∑
J⊆Y<r,#J<s

∏
P∈J

1
qνP (D) − 1


r,s

is increasing and bounded, the iterated limits may be interchanged. �

Corollary 5.6. Let g : Z≥0 → Z≥0 be a strictly increasing function. Then,
under the hypotheses of Theorem 5.3,

lim
k→∞

#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣Y ∩ V (f) is quasismooth
except for < g(k) points

}
#H0(X,OX(D + kE)) = 1.

Proof. For integers k ≥ 0, s ≥ 1 define

ak,s :=
#
{
f ∈ H0(X,OX(D + kE))

∣∣∣∣Y ∩ V (f) is quasismooth
except for < s points

}
#H0(X,OX(D + kE)) .

Due to Theorem 5.3 and Lemma 5.5,

lim
s→∞

lim
k→∞

ak,s = 1.

Using the same reasoning as in the proof of Lemma 4.4 (2), one finds that
for any given ε > 0,

1− ε ≤ lim inf
k→∞

ak,g(k) ≤ 1,

which proves the claim. �
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5.5. Length of the singular scheme. As a final application, we show an
analogue of Corollary 5.6 for lengths of singular schemes of hypersurfaces on
smooth toric varieties. Let f ∈ S = Fq[x1, . . . , xd] be a homogeneous poly-
nomial. We endow the singular locus Σ(f) of f with the scheme structure
given by the vanishing of the ideal

〈
f, ∂f∂x1

, . . . , ∂f∂xd

〉
.

Pick a closed point P ∈ X with local ring OX,P and maximal ideal mX,P .
Since X is smooth, we have a natural restriction map S → OX,P . Define

lengthP (Σ(f)) := dimFq OX,P
/〈

f,
∂f

∂x1
, . . . ,

∂f

∂xd

〉
.

Then
length(Σ(f)) =

∑
P∈Xclosed

lengthP (Σ(f)).

Suppose that V (f) has only isolated singularities. Since isolated singular-
ities are finitely determined [2, Theorem 3], lengthP (Σ(f)) depends only
on the Taylor expansion of f up to some degree. More precisely, for each
integer a ≥ 0 exists an e0 ≥ 0 such that for all integers e ≥ e0, we find a set
BP,a,e ⊆ OX,P /me

X,P with the property that lengthP (Σ(f)) = a if and only
if f lies in the preimage of BP,a,e under the natural map S → OX,P /me

X,P .
Write

µP (a) := #BP,a,e
#OX,P /me

X,P

.

Note that this quotient does not depend on the choice of e due to finite
determinacy. For example,

µP (0) =
#((OX,P /m2

X,P ) \ {0})
#OX,P /m2

X,P

= 1− q− degP (dimX+1).

We can now derive a result similar to Theorem 5.3:

Theorem 5.7. In the situation of Theorem 1.1, suppose further that X is
smooth. Choose an integer s ≥ 1 and let

As :=
{

(aP )P∈X closed

∣∣∣∣ aP ∈ {0, 1, . . . , s} for all P ∈ X closed
and

∑
P∈X closed aP < s

}
.

Then

lim
k→∞

#{f ∈ H0(X,OX(D + kE)) | length(Σ(f)) < s}
#H0(X,OX(D + kE))

= 1
ζX(dimX + 1) ·

∑
a∈As

∏
P∈X closed

µP (aP )
µP (0) .

Proof. In view of Corollary 5.2, we can restrict to hypersurfaces with iso-
lated singularities. It is sufficient to perform the low degree computation
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and show convergence, the strategy for medium and high degree points be-
ing the same as previously. Fix an r ≥ 1 and let X<r = {P1, . . . , Pt} be
the set of closed points of X of degree < r. Let (a1, . . . , at) be a sequence
of non-negative integers satisfying a1 + · · ·+ at = s. Fix an integer e being
large enough to test whether lengthPi

(Σ(f)) = ai for all i ∈ {1, . . . , t}. The
ideals me

X,Pi
, i = 1, . . . , t, define zero-dimensional subschemes of X, let Z

denote their union. Then the natural map

H0(X,OX(D + kE))→ H0(Z,OZ) ∼=
t∏
i=1
OX,Pi/m

e
X,Pi

becomes surjective for large enough k due to Lemma 3.1. Hence, imitating
the proof of Lemma 4.1,

#{f ∈ H0(X,OX(D + kE)) | lengthPi
(Σ(f)) = ai, i = 1, . . . , t}

#H0(X,OX(D + kE))

=
t∏
i=1

µPi(ai), k � 0.

Consequently,

#{f ∈ H0(X,OX(D + kE)) | length(Σ(f)) < s}
#H0(X,OX(D + kE))

=
∑

(a1,...,at):
∑t

i=1 ai<s

t∏
i=1

µPi(ai)

=
t∏
i=1

µPi(0) ·
∑

(a1,...,at):
∑t

i=1 ai<s

t∏
i=1

µPi(ai)
µPi(0)

=
∏

P∈X<r

(1− q− degP (dimX+1)) ·
∑

(aP )P∈X<r :
∑

P
aP<s

∏
P∈X<r

µP (aP )
µP (0)

for k � 0. The convergence of this expression follows from Theorem 5.3, as
hypersurfaces f with length(Σ(f)) < s have less than s singular points. �

Example 5.8. For X = P2, one finds
µP (1) = q−3 degP − q−4 degP , P ∈ P2 closed.

The density of plane curves with at most one ordinary double point as a
singularity is therefore given by

1
ζP2(3) ·

1 +
∑

P∈P2 closed

1
qdegP + q2 degP + q3 degP

 .
For q = 5, this quantity is about 0.93113.
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Corollary 5.9. In the situation of Theorem 5.7, let g : Z≥0 → Z≥0 be a
strictly increasing function. Then

lim
k→∞

#{f ∈ H0(X,OX(D + kE)) | length(Σ(f)) < g(k)}
#H0(X,OX(D + kE)) = 1.

Proof. Applying a similar strategy as in the proofs of Lemma 5.5 and Corol-
lary 5.6, it suffices to show that

lim
s→∞

∑∑
P
aP<s

∏
P∈X<r

µP (aP )
µP (0) =

∏
P∈X<r

1
1− q− degP (dimX+1) , r ≥ 1,

or equivalently,

lim
s→∞

∑
(aP )P∈X<r :

∑
P
aP<s

∏
P∈X<r

µP (aP ) = 1, r ≥ 1.

This follows easily from the fact that∑
a≥0

µP (a) = 1

for all closed points P ∈ X, which is a consequence of Theorem 5.7 and
Corollary 5.2. �

Remark 5.10. Over the complex numbers, it is known that the singular
scheme of a non-factorial nodal hypersurface of degree k ≥ 3 in P4 has
length at least (k − 1)2, see e.g. [3, Theorem 1.4]. If an analogous result
holds in positive characteristic, Corollary 5.9 will show that the density of
non-factorial nodal hypersurfaces in P4 over Fq is zero.
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