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Iwasawa theory for symmetric powers of CM
modular forms at nonordinary primes, II

par Robert HARRON et Jonathan POTTHARST

Résumé. Poursuivant l’étude de la théorie d’Iwasawa des puis-
sances symétriques de formes modulaires à multiplication com-
plexe aux nombres premiers supersinguliers entamée par le pre-
mier auteur et Antonio Lei, nous démontrons une Conjecture Prin-
cipale identifiant les fonctions L p-adiques « admissibles » avec les
idéaux caractéristiques des modules de Selmer de « pente finie »
introduits par le deuxième auteur. Comme ingrédient clé, nous
transformons la divisibilité en égalité dans le résultat de Rubin
concernant la Conjecture Principale des corps quadratiques ima-
ginaires aux nombres premiers inertes.

Abstract. Continuing the study of the Iwasawa theory of sym-
metric powers of CM modular forms at supersingular primes be-
gun by the first author and Antonio Lei, we prove a Main Conjec-
ture equating the “admissible” p-adic L-functions to the charac-
teristic ideals of “finite-slope” Selmer modules constructed by the
second author. As a key ingredient, we improve Rubin’s result on
the Main Conjecture of Iwasawa theory for imaginary quadratic
fields to an equality at inert primes.

Introduction

The study of the Iwasawa theory of symmetric powers of CM modular
forms at supersingular primes was begun by the first author and Antonio
Lei in [HL]. They constructed two types of p-adic L-functions: “admissible”
ones in the sense of Panchishkin and Dabrowski, and “plus and minus” ones
in the sense of Pollack. They also constructed “plus and minus” Selmer
modules in the sense of Kobayashi, and, using Kato’s Euler system, they
compared them to the latter p-adic L-functions via one divisibility in a main
conjecture. The present paper performs the analogous comparison between
the admissible p-adic L-functions and the “finite-slope” Selmer modules in
the sense of the second author. In order to get an identity of characteristic

Manuscrit reçu le 17 juillet 2014, révisé le 5 décembre 2014, accepté le 15 mars 2015.
Mathematics Subject Classification. 11R23, 11F80, 11F67.
The first author acknowledges support from the NSA Young Investigator Grant #H98230-13-

1-0223 and the NSF RTG Grant “Number Theory and Algebraic Geometry at the University of
Wisconsin”.



656 Robert Harron, Jonathan Pottharst

ideals, rather than just a divisibility, we improve the work of Rubin on
the Main Conjecture of Iwasawa theory for imaginary quadratic fields at
inert primes [Ru1, Ru2] to give an equality unconditionally. Rubin’s work
has since been used by various authors to derive other divisibilities; an
examination of these derivations will show that our work upgrades most of
these divisibilities to identities.

The first section of this paper is written as a direct continuation of [HL];
all numbered references to equations, theorems, etc. in it are to the two
papers commonly, except for bibliographical citations, which are to the ref-
erences section here. In this section, we recall the relevant setup from [HL],
as well as the theory of finite-slope Selmer groups from [P2]. Then we
give our results about finite-slope Selmer modules of CM modular forms
and their symmetric powers at supersingular primes. The second section
is written independently of [HL] and the first section. In it we recall the
notations from [Ru1, Ru2] and then treat the Iwasawa theory of imaginary
quadratic fields at inert primes.

Acknowledgement. The authors would like to thank Robert Pollack and
Karl Rubin for helpful conversations and correspondence, as well as the
referee for suggesting improvements in the exposition.

7. CM modular forms and their symmetric powers

7.1. Notations and hypotheses of [HL]. The prime p is assumed odd.
We fix algebraic closures and embeddings ι∞ : Q→ C and ιp : Q→ Qp, and
use these for the definition of Galois groups and decomposition groups. In
particular, we write c ∈ Gal(Q/Q) for the complex conjugation induced by
ι∞.

We normalize reciprocity maps of class field theory to send uniformizers
to arithmetic Frobenius elements. If E/Qp is a finite extension, we nor-
malize duals of E-linear Galois representations by V ∗ = HomE(V,E(1)),
and Fontaine’s functors by Dcris(V ) = HomQp[GQp ](V,Bcris) and D̃cris(V ) =
(Bcris ⊗Qp V )GQp .

For n ≤ ∞ we write kn = Q(µpn) and Qp,n = Qp(µpn). The cyclotomic
character χ induces an isomorphism G∞ := Gal(Qp,∞/Qp) ∼= Z×p , and
G∞ factors uniquely as ∆× Γ in such a way that χ induces isomorphisms
∆ ∼= µp−1 and Γ ∼= 1 + pZp. We fix a topological generator γ0 of Γ.

For a finite extension E of Qp and G = G∞ or Γ, we write ΛOE (G) =
OE [[G]] for the Iwasawa algebra of G with coefficients in OE and we write
ΛE(G) = ΛOE (G) ⊗OE E. Note that ΛE(G) is a product of PIDs if G =
G∞ (resp. a PID if G = Γ). We let Hr,E(G) be the E-valued r-tempered
distributions on G for r ∈ R≥0 and, H∞,E(G) =

⋃
rHr,E(G). These objects

are stable under the involution ι (resp. twisting operator Twn for n ∈ Z)
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obtained by continuity and E-linearity by the rule σ 7→ σ−1 (resp. σ 7→
χ(σ)nσ) on group elements σ ∈ G. If G acts on M , then M ι denotes M
with G action composed through ι.

We fix an imaginary quadratic field K ⊂ Q, considered as a subfield of C
via ι∞, with ring of integers O and quadratic character εK : Gal(K/Q) ∼=
{±1}. We assume p is inert in K, i.e. εK(p) = −1, and write Op (resp. Kp)
for the completion of O (resp. K) at pO.

We fix a newform f of weight k ≥ 2, level Γ1(N) with p - N , character
ε, and CM by K. We write ψ and ψc = ψ ◦ c for the algebraic Hecke
characters of K associated to f , and order them to have types (k − 1, 0)
and (0, k−1), respectively. We write E for a finite extension ofQp containing
ιpι
−1
∞ ψ(A×K,f ). Note that E contains ιp(K) and the images of the coefficients

of f under ιpι−1
∞ . We write Vψ for the one-dimensional E-linear Galois

representation attached to ψ, so that when v - p cond(ψ) the action of Frobv
on Vψ is by multiplication by ψ(v). We write Vf for the E-linear dual of
the two-dimensional Galois representation associated to f by Deligne, with
structure map ρf : GQ → GL(Vf ), satisfying det(ρf ) = εχk−1. One has
Vf ∼= IndQ

K Vψ. Since p is inert in K, the comparison of L-factors between f
and ψ gives x2−ap(f)x+ε(p)pk−1 = x2−ψ(p), and in particular ap(f) = 0
so that f is nonordinary at p. After perhaps enlarging E, we fix a root
α ∈ E of this polynomial, so that the other root is α = −α, and

ψ(p) = ψc(p) = −ε(p)pk−1 = −αα = α2 = α2.

Let m ≥ 1 be an integer, and write r = bm/2c and r̃ = dm/2e. We define
Vm = Symm(Vf ) ⊗ det(ρf )−r. There exist newforms fi for 0 ≤ i ≤ r̃ − 1
(Proposition 3.4), of respective weights ki = (m − 2i)(k − 1) + 1, levels
Γ1(Ni) with p - Ni, characters εi, and having CM by K (in particular, they
are nonordinary at p), such that

Vm ∼=
r̃−1⊕
i=0

(
Vfi ⊗ χ

(i−r)(k−1)
)
⊕
{
εrK m even,
0 m odd.

As a consequence, the complex L-function (Corollary 3.5), Hodge structure
(Lemma 3.6), critical twists (Lemma 3.7), and structure of Dcris as a filtered
ϕ-module (Lemmas 3.9 and 3.10), for Vm are all computed explicitly. The
same computations show that the roots of x2 + εi(p)pki−1 are αi, αi = −αi,
where

αi =
{
p(r−i)(k−1) m even,
αp(r−i)(k−1) m odd.

For η a Dirichlet character of prime-to-p conductor, we denote by Lη its
p-adic L-function (Theorem 4.1), considered as an element of ΛOE (G∞) if
η is nontrivial and of [(γ0 − 1)(γ0 − χ(γ0))]−1ΛOE(G∞) if η is the trivial
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character 1. Let L̃η ∈ ΛOE (G∞) then denote the regularized p-adic L-
function: if η = 1 then it is defined in §5.2 by removing the poles of L1,
and otherwise it is defined to be Lη. Since the roots αi, αi of x2 + εi(p)pki−1

have p-adic valuation hi := ki−1
2 < ki − 1, there are p-adic L-functions

Lfi,αi , Lfi,αi ∈ Hhi,E(G∞) (Theorem 4.2). We let T denote the collection of
tuples t = (t0, . . . , tr̃−1), where each ti ∈ {αi, αi}. For each t ∈ T, we define
the admissible p-adic L-functions

LVm,t = ι

r̃−1∏
i=0

Tw(r−i)(k−1) Lfi,ti

 · {LεrK m even,
1 m odd,

as well as their regularized variants L̃Vm,t where LεrK is replaced by L̃εrK .
(The twist ι and the indexing are our only changes in conventions from [HL].
There, the index set S = {±}r̃−1 is used, and s ∈ S corresponds to t ∈ T

where ti = sip
(r−i)(k−1) if m is even, and ti = siαp

(r−i)(k−1) if m is odd.)
Just as in the case m = 1, these functions can be decomposed in terms of
appropriate products of twists of “plus and minus” logarithms and “plus
and minus” p-adic L-functions (Corollary 6.9); their trivial zeroes and L-
invariants are known (Theorem 6.13), using work of Benois [Ben1, Ben2].

Finally, for θ = 1 or εK , recall the Selmer groups Selk∞(A∗θ) of equa-
tion (8), whose Pontryagin duals Selk∞(A∗θ)∨ are finitely generated, torsion
ΛOE (G∞)-modules.

7.2. Finite-slope Selmer complexes.

7.2.1. Rigid analytic Iwasawa algebras. For G = G∞ or Γ, we write
HE(G) for the E-valued locally analytic distributions on G; explicitly,
HE(Γ) is given by∑

n≥0
cn · (γ0 − 1)n ∈ E[[γ0 − 1]]

∣∣∣∣ lim
n→∞

|cn|sn = 0 for all 0 ≤ s < 1

 ,
and HE(G∞) = HE(Γ) ⊗E E[∆]. This ring contains H∞,E(G), and the
subalgebra ΛE(G) (hence also H∞,E(G)) is dense for a Fréchet topology.
Although the ring is not Noetherian, it is a product of Bézout domains if
G = G∞ (resp. is a Bézout domain if G = Γ).

The topological ring HE(G) is moreover a Fréchet–Stein algebra, so that
the coadmissible HE(G)-modules (in the sense of [ST]) form an abelian full
subcategory of all HE(G)-modules. Coadmissible HE(G)-modules include
the finitely generated ones, and have similar properties to finitely generated
modules over a product of PIDs if G = G∞ (resp. over a PID if G = Γ),
including a structure theory and a notion of characteristic ideal.

The rule P 7→ PHE(G) provides a bijection between prime (resp. maxi-
mal) ideals in ΛE(G) and topologically closed prime (resp. maximal) ideals



Symmetric powers, II 659

in HE(G), and when P is maximal one has ΛE(G)/Pn ∼→ HE(G)/Pn for
all n ≥ 0. In particular, the algebra map ΛE(G)→ HE(G) is faithfully flat
so that the operation M 7→ M ⊗ΛE(G) HE(G) on ΛE(G)-modules is exact
and fully faithful. If M is a finitely generated, torsion ΛE(G)-module, then
it follows from these facts that the natural mapM ⊗1−−→M ⊗ΛE(G)HE(G) is
a bijection, and M admits a canonical structure of HE(G)-module. It then
follows that charHE(G)M = (charΛE(G)M)HE(G), and, since HE(G)× =
ΛE(G)×, all generators of this ideal actually belong to charΛE(G)M .

7.2.2. Galois cohomology. Write S for the set of primes dividing Np,
write QS for the maximal extension of Q inside Q unramified outside S ∪
{∞}, and let GQ,S = Gal(QS/Q) denote the corresponding quotient of
GQ. Recall that k∞ ⊂ QS , and that the natural map from G∞ to the
quotient Gal(k∞/Q) of GQ,S is an isomorphism; we henceforth identify G∞
with this quotient of GQ,S . The embedding ιp determines a decomposition
groupGp ⊂ GQ,S , and choosing additional algebraic closures and emeddings
ι` : Q ↪→ Q` similarly determines decomposition groups G` ⊂ GQ,S for each
` | N . If X is a continuous representation of GQ,S and G is one of GQ,S or
Gv with v ∈ S, we write RΓ(G,X) for the class in the derived category
of the complex of continuous cochains of G with coefficients in X, and we
write H∗(G,X) for its cohomology.

We write ΛE(G∞)ι (resp. HE(G∞)ι) for ΛE(G∞) (resp. HE(G∞)) con-
sidered with G∞-action, and hence also GQ,S-action, with g ∈ G∞ acting by
multiplication by g−1 ∈ G∞ ⊂ ΛE(G∞)× = HE(G∞)×. If V is a continuous
E-linear GQ,S-representation, then its classical Iwasawa cohomology over
G = GQ,S or Gv (v ∈ S) is defined by choosing a GQ,S-stable OE-lattice
T ⊂ V and forming [lim←−nH

∗(G ∩ Gal(QS/Q(µpn)), T )] ⊗OE E; a variant
of Shapiro’s lemma [Nek, (8.4.4)] identifies it with H∗(G,V ⊗E ΛE(G∞)ι),
and in particular it is canonically independent of the choice of lattice T .
The natural map

H∗(G,V ⊗E ΛE(G∞)ι)⊗ΛE(G∞) HE(G∞)→ H∗(G,V ⊗E HE(G∞)ι)

is an isomorphism. We define RΓIw(G,V ) = RΓ(G,V ⊗E HE(G∞)ι) and
H∗Iw(G,V ) = H∗(G,V ⊗EHE(G∞)ι). We refer toH∗Iw(G,V ) as the rigid an-
alytic Iwasawa cohomology, or, because we have no use for classical Iwasawa
cohomology in this paper, simply the Iwasawa cohomology. The complex of
HE(G∞)-modules RΓIw(G,V ) is perfect for the degrees [0, 2], and in par-
ticular the Iwasawa cohomology groups are coadmissibleHE(G∞)-modules.

For details on the claimed properties of Iwasawa cohomology, we refer
to [P2, §1].
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7.2.3. (ϕ, G∞)-modules. There is an equivalence V 7→ Drig(V ) between
the categories continuous E-linear Gp-representations and étale (ϕ,G∞)-
modules over RE = R ⊗Qp E, where R is the Robba ring; see [P2, Theo-
rem 2.3].

Given any (ϕ,G∞)-module D over R, we define RΓIw(Gp, D) to be the
class of

[D 1−ψ−−−→ D]
in the derived category, where ψ is the canonical left inverse to ϕ and the
complex is concentrated in degrees 1, 2, and we define H∗Iw(Gp, D) to be its
cohomology, referring to the latter as the Iwasawa cohomology of D. This
complex of HE(G∞)-modules is perfect for the degrees [0, 2], so that the
Iwasawa cohomology groups are coadmissible HE(G∞)-modules. Note the
comparison
(26) RΓIw(Gp, V ) ∼= RΓIw(Gp,Drig(V )).
For details on the claimed properties of Iwasawa comohomology of (ϕ,G∞)-
modules, we refer to [P1] and [KPX, §§4.3–4.4].

We define D̃cris(D) = D[1/t]G∞ (where t ∈ R is Fontaine’s 2πi) and
Dcris(D) = D̃cris(HomRE (D,RE)), and we say that D is crystalline if
dimE Dcris(D) = rankRE D. Note the comparisons

Dcris(V ) ∼= Dcris(Drig(V )), D̃cris(V ) ∼= D̃cris(Drig(V )).

The functor D̃cris provides an exact, rank-preserving equivalence of exact
⊗-categories with Harder–Narasimhan filtrations, from crystalline (ϕ,G∞)-
modules over RE to filtered ϕ-modules over E, under which those (ϕ,G∞)-
modules of the form Drig(V ) correspond to the weakly admissible filtered ϕ-
modules. In particular, if we tacitly equip any E[ϕ]-submodule of a filtered
ϕ-module with the induced filtration, then for D crystalline D̃cris induces a
functorial, order-preserving bijection

{t-saturated (ϕ,G∞)-submodules of D}

↔ {E[ϕ]-stable subspaces of D̃cris(D)}.

For details on the relationship between (ϕ,G∞)-modules and the crystalline
theory, we refer the reader to [Ber].

7.2.4. Selmer complexes. In the remainder of this subsection, we as-
sume given a continuous E-representation V of GQ,S that is crystalline at
p, as well as a fixed E[ϕ]-stable F ⊆ Dcris(V |Gp), and we associate to these
data an Iwasawa-theoretic Selmer complex.

We begin by defining a local condition for each v ∈ S, by which we mean
an object Uv in the derived category together with a morphism iv : Uv →
RΓIw(Gv, V ). If v 6= p, we denote by Iv ⊂ Gv the inertia subgroup, and
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we let Uv = RΓIw(Gv/Iv, V Iv) and iv be the inflation map. If v = p,
we write F⊥ ⊆ D̃cris(V ) for the orthogonal complement of F , and then
D+
F := D̃−1

cris(F⊥) ⊆ Drig(V ) and D−F = Drig(V )/D+
F . Then we let Uv =

RΓIw(Gp, D+
F ), and we let iv be the functorial map to RΓIw(Gp,Drig(V )) ∼=

RΓIw(Gp, V ).
We now define the Selmer complex RΓ̃F,Iw(Q, V ) to be the mapping fiber

of the morphism

RΓIw(GQ,S , V )⊕
⊕
v∈S

Uv

⊕
v∈S resv −

⊕
v∈S iv−−−−−−−−−−−−−−→

⊕
v∈S

RΓIw(Gv, V ),

where resv : RΓIw(GQ,S , X)→ RΓIw(Gv, X) denotes restriction of cochains
to the decomposition group. We write H̃∗F,Iw(Q, V ) for its cohomology,
referring to it as the extended Selmer groups. By our knowledge of the
constituents of the mapping fiber, RΓ̃F,Iw(Q, V ) is a perfect complex of
HE(G∞)-modules for the range [0, 3].

We will have need for a version without imposing local conditions at p.
Namely, we write RΓ̃(p),Iw(Q, V ) for the mapping fiber of

RΓIw(GQ,S , V )⊕
⊕
v∈S(p)

Uv,Iw

⊕
v∈S(p) resv −

⊕
v∈S(p) iv

−−−−−−−−−−−−−−−−−→
⊕
v∈S(p)

RΓIw(Gv, V ),

where S(p) = S\{p}, and we write H̃∗(p),Iw(Q, V ) for its cohomology. Because
the formation of Iwasawa complexes is exact, we have an exact triangle

RΓIw(Gp, D+
F )→ RΓIw(Gp, V )→ RΓIw(Gp, D−F )→ RΓIw(Gp, D+

F )[1],

where we have used the comparision (26). This triangle identifies the term
RΓIw(Gp, D−F ) to X[1], where X is the mapping fiber of RΓIw(Gp, D+

F )→
RΓIw(Gp, V ). On the other hand, comparing the definitions of the com-
plexes RΓ̃F,Iw(Q, V ) and RΓ̃(p),Iw(Q, V ) as mapping fibers, we obtain an
exact triangle

X → RΓ̃F,Iw(Q, V )→ RΓ̃(p),Iw(Q, V )→ X[1],

from which we deduce the exact triangle

(27) RΓ̃F,Iw(Q, V )→ RΓ̃(p),Iw(Q, V )

→ RΓIw(Gp, D−F )→ RΓ̃F,Iw(Q, V )[1].

7.3. The Main Conjecture for f and its symmetric powers. We
remind the reader of the fixed newform f of weight k, level Γ1(N) with
p - N and character ε, with CM by K, and the roots α, α of x2 + ε(p)pk−1.
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Since the elements α, α are distinct, the ϕ-eigenspace with eigenvalue α
determines an E[ϕ]-stable subspace Fα ⊆ Dcris(Vf ). We apply the construc-
tions of Iwasawa-theoretic extended Selmer groups, with their associated
ranks and characteristic ideals, to the data of Vf equipped with Fα.

The following is the “finite-slope” form of the Main Conjecture of Iwa-
sawa theory for f .

Theorem 7.1. Assume that p does not divide the order of the nebentypus ε.
The coadmissible HE(G∞)-module H̃2

Fα,Iw(Q, Vf ) is torsion, and

charHE(G∞) H̃
2
Fα,Iw(Q, Vf ) = (Tw−1 Lf,α).

Proof. We reproduce the argument of [P1, §5], adapted to the normaliza-
tions of this paper.

In the notation of §7.2.4, the objectD−Fα is crystalline, and D̃cris(D−Fα) has
ϕ-eigenvalue α−1 and Hodge–Tate weight 0. This implies H2

Iw(Gp, D−Fα) =
0. (If k is odd, ε(p) = −1, and α = +p(k−1)/2 then H1

Iw(Gp, D−Fα)tors ∼=
E(χ(k−1)/2) is nonzero, but this “exceptional zero” does not affect the
present proof.)

Write f c = f ⊗ ε−1 for the eigenform with Fourier coefficients complex
conjugate to those of f , and recall the duality HomE(Vfc , E) ∼= Vf (1− k).
Let z′fc ∈ H̃1

(p),Iw(Q,HomE(Vfc , E)) denote Kato’s zeta element derived
from elliptic units (denoted z(p)

γ (f∗) for suitable γ ∈ HomE(Vfc , E) in [Ka,
§15]), and let

zf = Twk−1 z
′
fc ∈ H̃1

(p),Iw(Q,HomE(Vfc , E)(k − 1)) ∼= H̃1
(p),Iw(Q, Vf ).

For a crystalline (ϕ,G∞)-module D satisfying Fil1 DdR(D) = 0, recall the
dual of the big exponential map treated in [Nak, §3]:

Exp∗D∗ : H1
Iw(Gp, D)→ D̃cris(D)⊗E HE(G∞).

One has morphisms

H̃1
(p),Iw(Q, Vf )

locVf−−−→ H1
Iw(Gp, Vf ) ∼= H1

Iw(Gp,Drig(Vf ))

and, by naturality in D, a commutative diagram

H1
Iw(Gp,Drig(Vf )) Colα−−−→ H1

Iw(Gp, D−Fα)
Exp∗V ∗

f
↓ ↓ Exp∗

D−,∗Fα

D̃cris(Vf )⊗E HE(G∞) → D̃cris(D−Fα)⊗E HE(G∞).
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Write locα = Colα ◦ locVf , where the maps locVf and Colα are as in the
preceding two displays. Identifying D̃cris(D−Fα) = HomE(Eeα, E), [Ka, The-
orem 16.6(2)] shows that

(28) (Tw1 Exp∗
D−,∗Fα

locα zf )(eα)

= (Exp∗HomE(Vf ,E) locVf (1) Tw1 zf )(eα) = Lf,α,

after perhaps rescaling eα. In particular, locα is a nontorsion morphism.
The exact triangle (27) gives rise to an exact sequence

0→ H̃1
Fα,Iw(Q, Vf )→ H̃1

(p),Iw(Q, Vf ) locα−−→ H1
Iw(Gp, D−Fα)

→ H̃2
Fα,Iw(Q, Vf )→ H̃2

(p),Iw(Q, Vf )→ 0.

It follows from [Ka, Theorem 12.4] that the finitely generated HE(G∞)-
module H̃1

(p),Iw(Q, Vf ) (resp. H̃2
(p),Iw(Q, Vf )) is free of rank 1 (resp. is tor-

sion). Employing the local Euler–Poincaré formula and the fact that locα is
nontorsion, we see from the preceding exact sequence that H̃1

Fα,Iw(Q, Vf ) =
0, H̃2

Fα,Iw(Q, Vf ) is torsion, and

charHE(G∞)
H̃1

(p),Iw(Q, Vf )
HE(G∞)zf

(charHE(G∞) H̃
2
Fα,Iw(Q, Vf )

)

=
(

charHE(G∞)
H1

Iw(Gp, D−Fα)
HE(G∞) locα zf

)(
charHE(G∞) H̃

2
(p),Iw(Q, Vf )

)
.

Applying Twk−1 to the claim of [Ka, Theorem 12.5(3)] with f∗ in place of
f , we deduce that

charHE(G∞)
H̃1

(p),Iw(Q, Vf )
HE(G∞)zf

= charHE(G∞) H̃
2
(p),Iw(Q, Vf ),

and therefore

charHE(G∞) H̃
2
Fα,Iw(Q, Vf ) = charHE(G∞)

H1
Iw(Gp, D−Fα)

HE(G∞) locα zf
.

Although only a divisibility of characteristic ideals is claimed by Kato, one
easily checks that his proof, especially [Ka, Proposition 15.17], gives an
equality whenever Rubin’s method gives an equality. Under the hypothesis
that ε has order prime to p, the required extension of Rubin’s work is
precisely Theorem 8.1 below. It remains to compute the right hand side of
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the last identity. In fact, one has the exact sequence

0→ H1
Iw(Gp, D−Fα)tors →

H1
Iw(Gp, D−Fα)

HE(G∞) locα zf
Exp∗

D
−,∗
Fα−−−−−→

D̃cris(D−Fα)⊗E HE(G∞)
HE(G∞) Exp∗

D−,∗Fα

locα zf
→ coker Exp∗

D−,∗Fα

→ 0,

and because D−Fα has Hodge–Tate weight zero and H2
Iw(Gp, D−Fα) = 0, [Nak,

Theorem 3.21] shows that
charHE(G∞)H

1
Iw(Gp, D−Fα)tors = charHE(G∞) coker Exp∗

D−,∗Fα

,

and hence

charHE(G∞)
H1

Iw(Gp, D−Fα)
HE(G∞) locα zf

= charHE(G∞)
D̃cris(D−Fα)⊗E HE(G∞)
HE(G∞) Exp∗

D−,∗Fα

locα zf
.

Finally, by (28) the right hand side above is generated by Tw−1 Lf,α. �

We now turn to the Main Conjecture of Iwasawa theory for Vm in
its “finite-slope” form, beginning with the finite-slope analogue of Defi-
nition 5.3. Fix t = (t0, . . . , tr̃−1) ∈ T. For each i = 0, . . . , r̃−1, the elements
αi, αi are distinct, so the ϕ-eigenspace with eigenvalue tip

(r−i)(k−1) deter-
mines an E[ϕ]-stable subspace Fi ⊆ Dcris(Vfi((i−r)(k−1))). We may apply
the constructions of Iwasawa-theoretic extended Selmer groups, with their
associated ranks and characteristic ideals, to the data of Vfi((i− r)(k− 1))
equipped with Fi.
Definition 7.2. For t ∈ T, we define the coadmissible HE(G∞)-module

Seltk∞(V ∗m)∨ :=

r̃−1⊕
i=0

H̃2
Fi,Iw (Q, Vfi((i− r)(k − 1)))ι


⊕
{

Selk∞(A∗εrK )∨[1/p] m even,
0 m odd.

Remarks 7.3.
(1) We remind the reader that since Selk∞(A∗εrK )∨ is a finitely generated,

torsion ΛOE (G∞)-module, it follows from §7.2.1 that

Selk∞(A∗εrK )∨[1/p] = Selk∞(A∗εrK )∨ ⊗ΛOE (G∞) ΛE(G∞)
∼→ Selk∞(A∗εrK )∨ ⊗ΛOE (G∞) HE(G∞),

and therefore Selk∞(A∗εrK )∨[1/p] is naturally a finitely generated (hence
coadmissible), torsion HE(G∞)-module.
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(2) For s ∈ S and i = 0, . . . , r̃ − 1 one can build the “plus and minus”
Iwasawa-theoretic Selmer complex RΓ̃si,Iw(Q, Vfi((i−r)(k−1))) with local
condition at p appropriately built from the choice si, with degree 2 coho-
mology H̃2

si,Iw(Q, Vfi((i− r)(k− 1))), a finitely generated ΛE(G∞)-module.
Then arithmetic duality for Selmer complexes gives

H1,si
f (k∞, A∗fi((r − i)(k − 1)))∨[1/p] ∼= H̃2

si,Iw(Q, Vfi((i− r)(k − 1)))ι.

Since Theorem 5.6 shows the right hand side to be torsion, by §7.2.1 it is
naturally a coadmissible HE(G∞)-module. We refer the reader to [P1, end
of §4] for details.

(3) Although the notation Seltk∞(V ∗m)∨ in the finite-slope case was chosen
for symmetry with Selsk∞(A∗m)∨[1/p] in the “plus and minus” case, this
notation is highly misleading: it is an essential feature of the finite-slope
theory that Seltk∞(V ∗m)∨ is coadmissible but typically not finitely generated
over HE(G∞), and therefore does not arise as the Pontryagin dual (with
p inverted) of direct limits of finite-layer objects, as Selsk∞(A∗m)∨[1/p] does
in (2) above. This fact forces us to work on the other side of arithmetic
duality, as in the first summand of Definition 7.2.

Theorem 7.4. If t ∈ T, the coadmissible HE(G∞)-module Seltk∞(V ∗m)∨ is
torsion, and

charHE(G∞) Seltk∞(V ∗m)∨ = (Tw1 L̃Vm,t).

Proof. Just as in the proof of Theorem 5.9, this theorem follows from The-
orem 5.5 and from Theorem 7.1 applied to each fi. �

8. The Main Conjecture for imaginary quadratic fields at inert
primes

8.1. Recall and statement. In the fundamental works [Ru1, Ru2], Ru-
bin perfected the Euler system method for elliptic units. From this he de-
duced a divisibility of characteristic ideals as in the Main Conjecture of
Iwasawa theory. In most cases, he used the analytic class number formula
to promote the divisibilities to identities. In this section we extend the use
of the analytic class number formula to the remaining cases. The obstruc-
tion in these problematic cases is that the control maps on global/elliptic
units and class groups are far from being isomorphisms. Our approach is
to use base change of Selmer complexes to get a precise description of the
failure of control, and then to apply a numerical characterization of µ- and
λ-invariants that is valid even in the presence of zeroes of the character-
istic ideal at finite-order points. This section is written independently of
the preceding notations and hypotheses of this paper and [HL]; we employ
notations as in [Ru1], recalled as follows.
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We take K to be an imaginary quadratic field, and p an odd prime
inert in K. Let K0 be a finite abelian extension with ∆ = Gal(K0/K) and
δ = [K0 : K], and assume that p - δ. Let K∞ be an abelian extension of
K containing K0, such that Γ = Gal(K∞/K0) is isomorphic to Zp or Z2

p.
One has G = Gal(K∞/K) = ∆ × Γ. Accordingly, K∞ = K0 ·K∆

∞, where
Gal(K∆

∞/K) is identified with Γ.
We write Λ = Λ(G ) = Zp[[G ]]. The letter η will always range over the ir-

reducible representations of ∆ over Zp. One has Zp[∆] =
⊕

η Zp[∆]η, where
Zp[∆]η is isomorphic to the ring of integers in the unramified extension of
Qp of degree dim(η), and, accordingly, Λ =

⊕
η Zp[∆]η[[Γ]]. The sum map

sum: Zp[∆]→ Zp,
∑
σ nσσ 7→

∑
σ nσ, is identified with the projection onto

the component Zp[∆]1 indexed by the trivial character 1; write Zp[∆]! for
the kernel of the sum map, which is equal to

⊕
η 6=1 Zp[∆]η, and satisfies

Zp[∆] = Zp[∆]1 ⊕ Zp[∆]!.
Let F be a subextension of K∞/K0. If F/K0 is finite, we associate to it

the following objects:
• A(F ) = Pic(OF )⊗Z Zp is the p-part of its ideal class group,
• X(F ) = Pic(OF , p∞) = lim←−n(Pic(OF , pn)⊗ZZp) is the inverse limit
of the p-parts of its ray class groups of conductor pn,
• U(F ) = (OF ⊗Z Zp)×pro-p is the pro-p part of its group of semilocal
units,
• E (F ) = O×F ⊗Z Zp is its group of global units ⊗Zp, and
• C (F ) is its group of elliptic units ⊗Zp, as defined in [Ru1, §1].

If F/K0 is infinite, and ? ∈ {A,X,U,E ,C }, we let ?(F ) = lim←−F0
?(F0),

where F0 ranges over the finite subextensions of F , obtaining a finitely
generated Zp[[Gal(F/K)]]-module. Note that Leopoldt’s conjecture is known
in this case, so by the definition of ray class groups one has a short exact
sequence

0→ E (F )→ U(F )→ X(F )→ A(F )→ 0.
Class field theory identifies A(F ) (resp. X(F )) with the Galois group of the
maximal p-abelian extension of F which is everywhere unramified (resp.
unramified at primes not dividing p).

The following improvement of Rubin’s work is the main result of this
section, and the remainder of this section consists of its proof.

Theorem 8.1. One has the equality of characteristic ideals,
charΛA(K∞) = charΛ(E (K∞)/C (K∞)).

In [Ru1, Theorem 4.1(ii)] and [Ru2, Theorem 2(ii)] it is proved that
both the ideals charΛA(K∞) and charΛ(E (K∞)/C (K∞)) are nonzero at
each η-factor, that the first of these ideals divides the second, and that
their η-factors are equal when η is nontrivial on the decomposition group
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of p in ∆. To get equality for the remaining η, we may thus reduce to the
case where p is totally split in K0/K.

In §8.2 we prove the claim (32) below, which is specific to Zp-extensions,
and then in §8.3 we deduce the theorem for both Zp- and Z2

p-extensions
from this claim. Therefore, it is convenient that from now on we specialize
our notation to where K∆

∞ is any Zp-extension (and return to considering
Z2
p-extensions later). We index finite subextensions F of K∞/K0 as F =

Kn = KΓpn
∞ for n ≥ 0. Fix a topological generator γ ∈ Γ, and for brevity

write Λn = Zp[G /Γp
n ] = Λ/(γpn − 1).

Since charΛA(K∞) divides charΛ(E (K∞)/C (K∞)), the Iwasawa µ- and
λ-invariants ofA(K∞) and E (K∞)/C (K∞), considered as a Zp[[Γ]]-modules,
satisfy

(29)
µ(A(K∞)) ≤ µ(E (K∞)/C (K∞)),
λ(A(K∞)) ≤ λ(E (K∞)/C (K∞)).

We shall improve these inequalities to the claim that for some ε ∈ {0, 1}
one has

(30)
µ(A(K∞)) = µ(E (K∞)/C (K∞)),

ε+ λ(A(K∞)) = λ(E (K∞)/C (K∞)),
and additionally
(31) rankZp A(K∞)G = 0, rankZp(E (K∞)/C (K∞))G = ε.

These computations are equivalent to the claim that
(32) (charΛ Zp)ε · charΛA(K∞) = charΛ E (K∞)/C (K∞).

8.2. Proof of (32). Recall that we have assumed p is totally split in
K0/K, and that Γ is isomorphic to Zp.

8.2.1. Characterization of Iwasawa invariants. We will need the
following numerical characterization of Iwasawa µ- and λ-invariants. For
{an} a sequence of positive real numbers, if there exist real numbers µ, λ
such that logp an = µpn+λn+O(1) as n→ +∞, then these numbers µ, λ are
uniquely determined by {an}, and we write µ = µ({an}) and λ = λ({an}).

Lemma 8.2. Let M be a finitely generated, torsion Zp[[Γ]]-module. Then
for n � 0 the quantity rankZpMΓpn stabilizes to some integer r ≥ 0, so
that MΓpn ≈ Z⊕rp ⊕MΓpn [p∞], and Iwasawa’s µ- and λ-invariants of M
satisfy µ(M) = µ({#MΓpn [p∞]}) and λ(M) = r + λ({#MΓpn [p∞]}).

Proof. One easily sees that ifM →M ′ is a pseudo-isomorphism, then both
sides of the desired identities are invariant under replacingM byM ′. Using
the structure theorem and additivity over direct sums, it therefore suffices
to check the case where M = Zp[[Γ]]/(f) for prime f ∈ Zp[[Γ]]. The case
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where f is relatively prime to all the augmentation ideals I(Γpk) = (fk) of
Γpk for k ≥ 0, or equivalently where r = 0, is well-known. The remaining
case is where f = fk/fk−1 for k ≥ 0 (we set f−1 = 1), whence one has

(Zp[[Γ]]/(f))Γpn = Zp[[Γ]]/(f, fn) = Zp[[Γ]]/(f) ≈ Z⊕(p−1)pk−1
p

for n ≥ k, agreeing with the Iwasawa invariants. �

8.2.2. The operation
L
⊗Λ Λn. Since we use base change in the derived

category, we give some generalities on the operation
L
⊗Λ Λn. We first com-

pute that Λn[0] ∼= [Λ γp
n−1−−−−→ Λ] as objects in the derived category of

Λ-modules, the latter concentrated in degrees −1, 0, so that for any Λ-
module (resp. complex of Λ-modules) X one may compute X

L
⊗Λ Λn as

[X γp
n−1−−−−→ X] (resp. as the mapping cone of γpn − 1 on X). The induced

map X
L
⊗Λ Λn+1 → X

L
⊗Λ Λn corresponds to the morphism [X γp

n+1−1−−−−−→

X] → [X γp
n−1−−−−→ X] given by multiplication by 1 + γp

n + · · · + γ(p−1)pn in
shift degree −1, and by the identity in shift degree 0. Alternatively, the Tor
spectral sequence degenerates to short exact sequences

(33) 0→ H i(X)Γpn → H i(X
L
⊗
Λ

Λn)→ H i+1(X)Γpn → 0,

and the natural morphism from the above sequence for n + 1 to the se-
quence for n is given by the natural projection on the first term, and by
multiplication by 1 + γp

n + · · ·+ γ(p−1)pn on the last term. The Bockstein
homomorphism β = βX , defined as the connecting homomorphism in the
exact triangle

X
L
⊗
Λ

(
Λn

γp
n−1−−−−→ Λ/(γpn − 1)2 → Λn → Λn[1]

)
∼=
(
X

L
⊗
Λ

Λn
γp
n−1−−−−→ X

L
⊗
Λ

Λ/(γpn − 1)2 → X
L
⊗
Λ

Λn
β−→ X

L
⊗
Λ

Λn[1]
)
,

is computed on cohomology as the composite

H i(β) : H i(X
L
⊗
Λ

Λn) � H i(X
L
⊗
Λ

Λn)/H i(X)Γpn

∼= H i+1(X)Γpn ↪→ H i+1(X) � H i+1(X)Γpn ↪→ H i+1(X
L
⊗
Λ

Λn).

Note that if Z is a finitely generated, torsion Λ-module, then rankZp Z
Γpn =

rankZp ZΓpn .
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IfX satisfiesX = XΓ, then the above computations reduce toX
L
⊗Λ Λn ∼=

X[1] ⊕ X, in such a way that the natural map X
L
⊗Λ Λn+1 → X

L
⊗Λ Λn is

identified with multiplication by p in shift degree −1, and with the identity
map in shift degree 0. The Bockstein homomorphism

β : X[1]⊕X = X
L
⊗
Λ

Λn → X
L
⊗
Λ

Λn[1] = X[2]⊕X[1]

is the identity map on X[1] and zero on the other factors. In this scenario,
we write β−1 = β−1

X : X[2] ⊕X[1] → X[1] ⊕X for the map that is inverse
to this identity map on X[1] and zero on the other factors. Any morphism
f : Y → X gives rise to a morphism f

L
⊗Λ Λn : Y

L
⊗Λ Λn → X

L
⊗Λ Λn =

X[1] ⊕X. Writing f ⊗Λ Λn for the projection of f
L
⊗Λ Λn onto the second

component, X, the commutative diagram

Y
L
⊗Λ Λn

f
L
⊗Λ Λn−−−−−→ X

L
⊗Λ Λn = X[1]⊕X

βY ↓ βX ↓ ↘∼
Y

L
⊗Λ Λn[1] f

L
⊗Λ Λn[1]−−−−−−→ X

L
⊗Λ Λn[1] = X[2]⊕X[1]

shows that the projection of f
L
⊗Λ Λn onto the first component, X[1], is

computed by β−1
X ◦ (f ⊗Λ Λn)[1] ◦ βY .

8.2.3. Invariants of number fields. We now return to the setting of the
theorem, recalling Nekovář’s constructions of the fundamental invariants of
number fields in terms of Selmer complexes. Throughout, n ≥ 0 ranges over
nonnegative integers.

There is unique Z2
p-extension ofK, and it contains all Zp-extensions ofK.

This extension is unramified at all primes not dividing p, and Lubin–Tate
theory shows it is totally ramified at p. The same ramification behavior
is therefore true of any Zp-extension, as well as of K∞/K0 because p is
totally split in K0/K. In particular, if Sn denotes the set of places of Kn

lying over p, then the restriction maps Sn+1 → Sn are bijections, and Sn is
a principal homogeneous ∆-set. Fixing once and for all v0 ∈ S0, with unique
lift vn ∈ Sn, declaring vn to be a basepoint of Sn gives an identification
Zp[Sn] ∼= Zp[∆] of Zp[∆]-modules. We write inv for the composite of the
semilocal restriction map, the invariant maps of local class field theory, and
this identification:

inv : H2(GK,{p},Zp(1))→
⊕
v∈Sn

H2(GKn,v ,Zp(1)) ∼= Zp[Sn] ∼= Zp[∆].
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For brevity we write

RΓn = RΓcont(GKn,{p},Zp(1)),
RΓIw = RΓIw(K∞/K0,Zp(1)) = Rlim←−

n

RΓn,

and H i
? = H i(RΓ?) for ? ∈ {n, Iw}. Then one has by [Nek, (9.2.1.2)] the

computations

H i
n = 0, i 6= 1, 2, H1

n = O×Kn,{p} ⊗Z Zp,

0→ Pic(OKn,{p})⊗Z Zp → H2
n

inv−−→ Zp[∆] sum−−→ Zp → 0,

and, passing to inverse limits (Mittag-Leffler holds by compactness),

H i
Iw = 0, i 6= 1, 2, H1

Iw = lim←−
n

(O×Kn,{p} ⊗Z Zp),

0→ lim←−
n

(Pic(OKn,{p})⊗Z Zp)→ H2
Iw

inv−−→ Zp[∆] sum−−→ Zp → 0.

Let U− = Zp[∆][−1] ⊕ Zp[∆][−2], considered as a perfect complex of Λ-
modules, or as a complex of Λn-modules. One constructs a map i−n : RΓn →
U− via the local valuation maps in degree one and the local invariant maps
in degree two, and obtains a map i−Iw : RΓIw → U− from the i−n by taking
the inverse limit on n. By taking mapping fibers of i−n and i−Iw, one obtains
complexes RΓ̃f,n of Λn-modules and a perfect complex RΓ̃f,Iw of Λ-modules
sitting in exact triangles

RΓ̃f,n → RΓn
i−n−→ U− → RΓ̃f,n[1]

and

RΓ̃f,Iw → RΓIw
i−Iw−−→ U− → RΓ̃f,Iw[1].

Writing H̃ i
f,? = H i(RΓ̃f,?) for ? ∈ {n, Iw}, one has by [Nek, (9.5.2.2)] the

computations

H̃ i
f,n =


0 i 6= 1, 2, 3
E (Kn) i = 1
A(Kn) i = 2
Zp i = 3,

and H̃ i
f,Iw =


0 i 6= 1, 2, 3
E (K∞) i = 1
A(K∞) i = 2
Zp i = 3.

We note especially the connecting map U− → RΓ̃f,Iw[1] in degree two is
equal to the sum map Zp[∆]→ Zp, by global class field theory’s computa-
tion of the Brauer group.

8.2.4. Control of invariants. The following result summarizes how the
invariants of number fields behave under base change in our situation.
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Proposition 8.3.
(1) For each n one has two diagrams, called crosses, each of whose row

and column is a short exact sequence, given by

E (K∞)Γpn

↓
Zp[∆]→ H1(RΓ̃f,Iw

L
⊗Λ Λn) → E (Kn),

↓
A(K∞)Γpn

A(K∞)Γpn

↓
Zp[∆]→ H2(RΓ̃f,Iw

L
⊗Λ Λn) → A(Kn).

↓
Zp

One also has the computation H3(RΓ̃f,Iw
L
⊗Λ Λn) ∼= Zp.

(2) The composite arrow from the top point to the right point of the
first (resp. second) cross gives the control map E (K∞)Γpn → E (Kn) (resp.
A(K∞)Γpn → A(Kn)).

(3) There is a morphism of diagrams from the crosses associated to n+1
to the crosses associated to n. At the upper (resp. lower, right, left) point of
a cross, the morphism is explicitly computed by the natural projection (resp.
multiplication by 1 + γp

n + · · · + γ(p−1)pn, the norm maps, multiplication
by p).

Proof. By control for Galois cohomology, the natural map RΓIw
L
⊗Λ Λn →

RΓn is an isomorphism, compatible with varying n. Since U− = (U−)Γ,
one has the computation U−

L
⊗Λ Λn ∼= U−[1] ⊕ U−. It follows from the

definition of i−Iw as an inverse limit that i−Iw⊗Λ Λn = i−n , so that i−Iw
L
⊗Λ Λn =

(β−1
U− ◦ i

−
n [1] ◦ βRΓn , i

−
n ). Thus we have a commutative diagram

RΓ̃f,Iw
L
⊗Λ Λn → RΓn

i−Iw
L
⊗Λ Λn−−−−−−→ U−[1]⊕ U− → RΓ̃f,Iw

L
⊗Λ Λn[1]

=↓ pr2 ↓

RΓ̃f,n → RΓn
i−n−→ U− → RΓ̃f,n[1],

which we complete to a morphism of exact triangles via a morphism

BCn : RΓ̃f,Iw
L
⊗
Λ

Λn → RΓ̃f,n.
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Taking mapping fibers of the resulting morphism of triangles gives an exact
triangle

Fib(BCn)→ 0→ U−[1]→ Fib(BCn)[1],
hence an isomorphism Fib(BCn) ∼= U− and an exact triangle

(34) U−
jn−→ RΓ̃f,Iw

L
⊗
Λ

Λn
BCn−−−→ RΓ̃f,n

kn−→ U−[1].

It is easy to compute that jn is the composite of the inclusion U− ↪→
U− ⊕ U−[−1] and the shifted connecting homomorphism U− ⊕ U−[−1]→
RΓ̃f,Iw

L
⊗Λ Λn. The construction of the snake lemma shows that kn is the

composite

RΓ̃f,n → RΓn
i−Iw

L
⊗Λ Λn−−−−−−→ U−[1]⊕ U− pr1−−→ U−[1],

or in other words the composite of RΓ̃f,n → RΓn with β−1
U− ◦ i

−
n [1] ◦ βRΓn .

Of course, the source or target of H i(kn) : H̃ i
f,n → H i+1U− is zero if i 6= 1,

and if i = 1 this computation simplifies to

E (Kn)→ H1
n

β−→ H2
n

inv−−→ Zp[∆].
The kernel of β contains the universal norms in E (Kn) for K∞/Kn, and in
particular C (Kn) (see [dS, Proposition II.2.5] for the norm relations), which
itself is of finite index in E (Kn). Since Zp[∆] is torsion free, it follows that
H1(kn) = 0, too. Since H∗(kn) = 0, the long exact sequence associated to
the triangle (34) breaks up into two short exact sequences, giving the rows
of the crosses. Then (33) gives the short exact columns of the crosses. The
triangle (34) also gives the computation H3(RΓ̃f,Iw

L
⊗Λ Λn) ∼= Zp. Thus we

have shown (1).
The claim (2) is obvious. So is the claim (3), except perhaps concern-

ing the left points; this is because the term U−[1] in the sequence (34) is
identified with the first summand of U−

L
⊗Λ Λn ∼= U−[1]⊕ U−. �

8.2.5. Iwasawa invariants of class groups. The following result re-
lates the Iwasawa invariants of A(K∞) to the class numbers of the Kn.
Proposition 8.4. One has µ(A(K∞)) = µ({#A(Kn)}) and λ(A(K∞)) =
λ(#{A(Kn)}).
Proof. We consider the second cross in Proposition 8.3:

A(K∞)Γpn

↓
Zp[∆]→ H2(RΓ̃f,Iw

L
⊗Λ Λn) → A(Kn).

↓
Zp
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The computation rankZp A(K∞)Γpn = δ − 1 is immediate. A diagram
chase shows that the composite map Zp[∆] → Zp of this cross is just
the degree three part of the base changed and shifted connecting map
(U− → RΓ̃f,Iw[1])

L
⊗Λ Λn[−1] = (U− ⊕ U−[−1] → RΓ̃f,Iw

L
⊗Λ Λn) from

the proof of Proposition 8.3; after accounting for the shift, we have already
noted the latter to be the sum map by global class field theory (the base
change operation here passes to Γpn-invariants, which accomplishes noth-
ing). In particular, the composite Zp[∆] → Zp is surjective. Since there is
only one Λ-quotient of Zp[∆] isomorphic to Zp, and this quotient is a Λ-
direct summand, we may canonically refine the diagram to the short exact
sequence

(35) 0→ Zp[∆]! → A(K∞)Γpn → A(Kn)→ 0.

In particular there is an injection A(K∞)Γpn [p∞] ↪→ A(Kn) of finite abelian
groups, and we may form the commutative diagram

0→ Zp[∆]! →
A(K∞)Γpn+1

A(K∞)Γpn+1 [p∞] →
A(Kn+1)

A(K∞)Γpn+1 [p∞] → 0

p ↓ ↓ ↓

0→ Zp[∆]! → A(K∞)Γpn

A(K∞)Γpn [p∞] → A(Kn)
A(K∞)Γpn [p∞] → 0,

where the first downward arrow is computed by Proposition 8.3(3). Note
that A(K∞)Γpn+1 → A(K∞)Γpn is a surjection of finitely generated Zp-
modules of the same rank, so that the second downward arrow is an iso-
morphism. Therefore, applying the snake lemma and examining the final
column, we get the exact sequence

0→ Zp[∆]!/p→ A(Kn+1)
A(K∞)Γpn+1 [p∞] →

A(Kn)
A(K∞)Γpn [p∞] → 0.

This implies that
#A(Kn)

#A(K∞)Γpn [p∞] = p(δ−1)n #A(K0)
#A(K∞)Γp0 [p∞] ,

so that

µ(A(K∞)) = µ({#A(K∞)Γpn [p∞]}) = µ({#A(Kn)}),
λ(A(K∞)) = δ − 1 + λ({#A(K∞)Γpn [p∞]}) = λ(#{A(Kn)}),

as was desired. �

8.2.6. Iwasawa invariants of global/elliptic units. The following re-
sult relates the Iwasawa invariants of E (K∞)/C (K∞) to the indices of el-
liptic units inside global units of the Kn.
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Proposition 8.5. For some ε ∈ {0, 1} one has µ(E (K∞)/C (K∞)) =
µ({#E (Kn)/C (Kn)}) and λ(E (K∞)/C (K∞)) = ε+λ({#E (Kn)/C (Kn)}).

Proof. We consider the first cross in Proposition 8.3:
E (K∞)Γpn

↓

Zp[∆]→ H1(RΓ̃f,Iw
L
⊗Λ Λn) → E (Kn).

↓
A(K∞)Γpn

It follows from [Ru1, Theorem 7.7] and its proof (in which p being un-
ramified in K0/K renders µ(F ) trivial and Iµ = Λ) that C (K∞) ≈ Λ
and C (Kn) embeds in I(G ) · ΛΓpn with finite index, where I(G ) ⊂ Λ is
the augmentation ideal. Moreover, the norm relations on elliptic units im-
ply that the control map C (K∞)Γpn → C (Kn) is surjective. But any map
ΛΓpn → I(G ) ·Λpn with finite cokernel has kernel that is equal to (ΛΓpn )G ,
which is a Zp-direct summand of ΛΓpn that is G -isomorphic to Zp. This
control map followed by the inclusion C (Kn) ⊆ E (Kn) is equal to the
composite

C (K∞)Γpn → E (K∞)Γpn → E (Kn),
which shows that the subset of C (K∞)Γpn (viewed inside the upper point of
the cross) of elements mapping into the left point Zp[∆] of the cross is again
(C (K∞)Γpn )G . In fact, recalling the decomposition Zp[∆] = Zp[∆]1⊕Zp[∆]!,
the image In of (C (K∞)Γpn )G → Zp[∆] is contained in Zp[∆]1 ≈ Zp. We
define integers en ≥ 0 and εn ∈ {0, 1} by Zp[∆]1/In ≈ Zεnp ⊕Z/pen , so that
In = penZp[∆]1 if εn = 0, and In = 0 and en = 0 if εn = 1. By explicitly
computing the map (ΛΓpn+1 )G → (ΛΓpn )G we find that, in the commutative
diagram

0→ Zp → C (K∞)Γpn+1 → C (Kn+1) → 0
f ↓ ↓ ↓

0→ Zp → C (K∞)Γpn → C (Kn) → 0,
the map f is multiplication by p (up to a unit). Let vn be a generator for
In (a basis vector if εn = 0, and zero if εn = 1). The transition maps from
these computations for n+ 1 to these computations for n form the square

Zp
·vn+1−−−→ In+1 ⊆ Zp[∆]

f ↓ ↓ p
Zp

·vn−−→ In ⊆ Zp[∆],
the second downward map being computed by Proposition 8.3(3), and our
computation of f shows that this square commutes (up to a unit). This
commutativity implies that vn = 0 if and only if vn+1 = 0, so that εn = εn+1
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is independent of n; denote it henceforth by ε. The commutativity also
implies that en = en+1 is independent of n; denote it henceforth by e.

Since E (Kn) is a free Zp-module, we may choose a splitting

H1(RΓ̃f,Iw
L
⊗
Λ

Λn) ∼= Zp[∆]⊕ E (Kn).

The definition of In allows us to modify the first cross in Proposition 8.3
to a short exact sequence

(36) 0→ (E (K∞)/C (K∞))Γpn

→ Zp[∆]/In ⊕ E (Kn)/C (Kn)→ A(K∞)Γpn → 0.

One has rankZp A(K∞)Γpn = rankZp A(K∞)Γpn = δ−1, and combining this
with the above sequence gives rankZp(E (K∞)/C (K∞))Γpn = ε. The above
sequence also gives an exact sequence of finite abelian groups

0→ (E (K∞)/C (K∞))Γpn [p∞]→ Z/pe⊕E (Kn)/C (Kn)→ A(K∞)Γpn [p∞],

where #A(K∞)Γpn [p∞] is bounded independently of n. The claim of the
proposition follows. �

8.2.7. Application of the analytic class number formula. The an-
alytic class number formula [Ru1, Theorem 1.3] gives

#A(Kn) = #E (Kn)/C (Kn).
In view of Propositions 8.4 and 8.5, it follows that (30) holds. Moreover,
the computations rankZp A(K∞)G = 0 and rankZp(E (K∞)/C (K∞))G = ε
follow from (35) and (36), respectively, so that (31) holds. This estab-
lishes (32).

8.3. Conclusion of the proof. We prove the theorem at once for Zp-
and Z2

p-extensions, using (32).
We still assume K∞ is the compositum of K0 with any Zp-extension. Let

K ′∞ denote the compositum of K0 with the unique Z2
p-extension of K, and

write G ′ = Gal(K ′∞/K) = ∆× Γ′ with Γ′ isomorphic to Z2
p, Λ′ = Λ(G ′) =

Zp[[G ′]], and proj : Λ′ � Λ. By Rubin’s theorem, there exist f ′ ∈ Λ(G ′) and
f ∈ Λ(G ) with

f ′ · charΛ′ A(K ′∞) = charΛ′ E (K ′∞)/C (K ′∞),
f · charΛA(K∞) = charΛ E (K∞)/C (K∞).

By [Ru1, Corollary 7.9(i)] one has proj(f ′) = f up to a unit in Λ. Since proj
is a homomorphism of semilocal rings that is a bijection on local factors
and restricts to a local homomorphism on each local factor, it follows that
f ′ is a unit (resp. restricts to a unit over a given local factor) in Λ′ if and
only if f is a unit (resp. restricts to a unit over the corresponding local
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factor) in Λ. On the other hand, (32) implies that f divides charΛ Zp in
Λ. Since (charΛ Zp)η = Λη, the unit ideal, if η 6= 1, we deduce the identity
of the theorem for both Zp- and Z2

p-extensions over each such η-factor. We
only have left to consider the case where η = 1, or rather where ∆ is trivial
and K0 = K.

Lemma 8.6. Write R = Zp[[S, T ]], and for a, b ∈ Zp not both divisible by
p, write Ra,b = R/((1 + S)a(1 + T )b − 1) with πa,b : R � Ra,b. We identify
Ra,b ∼= Zp[[U ]], where U = πa,b(S) if p - b and U = πa,b(T ) otherwise.

Suppose g ∈ R is such that for all a, b above, πa,b(g) divides U in Ra,b.
Then g is a unit.

Proof. Write g = x + yS + zT + O((S, T )2) with x, y, z ∈ Zp; we are to
show that p - x. Since π0,1(g) divides U in R0,1, and R0,1 is a UFD with U
a prime element, it follows that π0,1(g) is either a unit or U times a unit.
As π0,1(g) = x + yU + O(U2), the first case is equivalent to p - x, and the
second case is equivalent to x = 0 and p - y. But in the second case the
identity

g = yS + zT +O((S, T )2) = (1 + S)y(1 + T )z − 1 +O((S, T )2)

would imply πy,z(g) = 0 + O(U2), that is U2 divides πy,z(g) in Ry,z, con-
tradicting that πy,z(g) divides U . �

We continue with ∆ trivial and K0 = K. Choose a Zp-basis γ1, γ2 ∈ Γ′,
so that ker(Γ′ � Γ) = (γa1γb2)Zp for some a, b ∈ Zp not both divisible by p.
Set S = γ1 − 1, T = γ2 − 1 ∈ Λ′, and note that ker(Λ′ � Λ) is generated
by (1 + S)a(1 + T )b − 1, so that the map Λ′ � Λ is identified with the
map πa,b : R � Ra,b of the preceding lemma. Under this identification,
the augmentation ideal charΛ Zp is generated by U ∈ Ra,b, so we have that
πa,b(f ′) = f divides U . SinceK∆

∞ = K∞ was allowed to be any Zp-extension
of K, and conversely every such pair of a, b arises from some choice of K∞,
the preceding lemma shows that f ′ is a unit, and therefore so is f . This
completes the proof of the theorem.
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