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Binomial Character Sums Modulo Prime Powers

par Vincent PIGNO et Christopher PINNER

Résumé. On montre que les sommes binomiales et liées de ca-
ractères multiplicatifs

pm∑
x=1

(x,p)=1

χ(xl(Axk +B)w),
pm∑
x=1

χ1(x)χ2(Axk +B),

ont une évaluation simple pourm suffisamment grand (pourm ≥ 2
si p - ABk).

Abstract. We show that the binomial and related multiplica-
tive character sums

pm∑
x=1

(x,p)=1

χ(xl(Axk +B)w),
pm∑
x=1

χ1(x)χ2(Axk +B),

have a simple evaluation for large enoughm (form ≥ 2 if p - ABk).

1. Introduction
For an odd prime p and multiplicative character χ mod pm we are inter-

ested in explicitly evaluating complete pure character sums of the form

(1.1) S∗(χ, xl(Axk +B)w, pm) =
pm∑
x=1
p-x

χ(xl(Axk +B)w)

once m is sufficiently large. Equivalently, for characters χ1 and χ2 mod pm
we consider the sums

(1.2) S(χ1, χ2, Ax
k +B, pm) =

pm∑
x=1

χ1(x)χ2(Axk +B).

Writing

(1.3) χ1 = χl, χ2 = χw, χ1(x)χ2(Axk +B) = χ(xl(Axk +B)w),
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with χ1 = χ0 the principal character if l = 0, the correspondence be-
tween (1.1) and (1.2) is clear. These sums include the mod pm generaliza-
tions of the classical Jacobi sums

(1.4) J(χ1, χ2, p
m) =

pm∑
x=1

χ1(x)χ2(1− x),

which have been evaluated exactly by Zhang Wenpeng & Weili Yao [20]
when χ1, χ2 and χ1χ2 are primitive andm ≥ 2 is even (some generalizations
are considered in [19]).

More generally for a multiplicative character χ mod pm, and rational
functions f(x), g(x) ∈ Z(x) one can define the mixed complete exponential
sum,

(1.5) S (χ, g(x), f(x), pm) :=
pm∑∗

x=1
χ(g(x))epm(f(x))

where ey(x) = e2πix/y and ∗ indicates that we omit any x producing a non-
invertible denominator in f or g (as for example in (1.1) we must omit the
p | x if l < 0; for l ≥ 0 the condition p - x is redundant unless l = 0, since
the excluded terms are zero if l > 0). When m = 1 the Weil bound (see §4)
is often the most that we can say about (1.5), but when m ≥ 2 methods
of Cochrane [3] (see also Cochrane and Zheng [5] & [7]) can sometimes be
used to reduce and simplify the sums. For example we showed in [13] that
the sums

(1.6)
pm∑
x=1

χ(x)epm(nxk)

can be evaluated explicitly when m is sufficently large (for m ≥ 2 if p - nk).
We show here that the sums (1.1) and (1.2) similarly have a simple evalu-
ation for large enough m (for m ≥ 2 if p - ABk).

It is interesting that the sums (1.6) and (1.1) can both be written explic-
itly in terms of classical Gauss sums for any m ≥ 1 (see §3). In particular
one can trivially recover the Weil bound in these cases (see §4).

We shall assume throughout that χ2 is a primitive character mod pm

(equivalently χ is primitive and p - w). We assume, noting the correspon-
dence (1.3) between (1.1) and (1.2), that

(1.7) g(x) = xl(Axk +B)w, p - w

where k, l are integers with k > 0 (else x 7→ x−1) and A, B non-zero integers
with

(1.8) A = pnA1, p - A1B, 0 ≤ n < m.
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We define the integers d ≥ 1 and t ≥ 0 by
(1.9) d = (k, p− 1), k = ptk1, p - k1.

For m ≥ n+ t+ 1 it transpires that the sum in (1.1) or (1.2) is zero unless

(1.10) χ1 = χk3,

for some mod pm character, χ3 (i.e. χ is the (k, φ(pm))/(k, l, φ(pm))th power
of a character), and we have a solution, x0, to a characteristic equation of
the form,

(1.11) g′(x) ≡ 0 mod pmin{m−1, dm+n
2 e+t}

with
(1.12) p - x0(Axk0 +B).
A solution to (1.11) satisfying (1.12) can be reduced to whether or or not a
constant, dependent on χ1, χ2, k, A, and B, is a kth power mod a particular
power of p (see (5.11)). Notice that in order to have a solution to (1.11)
satisfying (1.12) we must have
(1.13) l = pn+tl1, p - l1, p - (pnl1 + wk1),
if m > t + n + 1 (equivalently χ1 is induced by a primitive mod pm−n−t

character and χ1χ
k
2 is a primitive mod pm−t character) and pn+t | l if

m = t+ n+ 1.
We shall use a to denote a primitive root mod pm and define the integer

r by
(1.14) ap−1 = 1 + rp, p - r.

For the primitive character χ, with χ1 = χl and χ2 = χw, we define an
integer c by
(1.15) χ(a) = eφ(pm)(c), p - c.

When (1.10) holds, (1.11) has a solution x0 satisfying (1.12), and m >
n+ t+ 1, we obtain the following explicit evaluation of the sum (1.2).

Theorem 1.1. Suppose that p is an odd prime and χ1 = χl, χ2 = χw are
mod pm characters with χ2 primitive.

If χ1 satisfies (1.10), and (1.11) has a solution x0 satisfying (1.12), then
pm∑
x=1

χ1(x)χ2(Axk +B)

= dχ1(x0)χ2(Axk0 +B)


pm−1, if t+ n+ 1 < m ≤ 2t+ n+ 2,
p
m+n

2 +t, if m > 2t+ n+ 2, m− n even,
p
m+n

2 +tε1, if m > 2t+ n+ 2, m− n odd,
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except if p = m − n = 3, t = 0, n > 0 when an extra factor e3(−cl1rk) is
needed, with

ε1 :=
(−2rc

p

)(
wl1(pnl1 + wk1)

p

)
ε, ε :=

{
1 p ≡ 1 mod 4,
i p ≡ 3 mod 4,

where n, d, t, k1, l1, r, c and are as defined in (1.8), (1.9), (1.13), (1.14),
(1.15), and

(
α
p

)
is the Legendre symbol.

If χ1 does not satisfy (1.10), or (1.11) has no solution satisfying (1.12),
then the sum is zero.

From this we see that the non-zero sums have

(1.16)

∣∣∣∣∣∣
pm∑
x=1

χ1(x)χ2(Axk+B)

∣∣∣∣∣∣ =
{
dpm−1, if t+n+1 < m ≤ 2t+n+2
dp

m+n
2 +t, if 2t+n+2 < m.

For t = 0 the result (1.16) can be obtained from [3] by showing equality
in their Sα evaluated at the d critical points α. For t > 0 the α will not
have multiplicity one as needed in [3].

For the mod pm Jacobi sums (1.4) we can take x0 = l(l + w)−1 and
obtain:

Corollary 1.2. Suppose that p is an odd prime and χ1 = χl, χ2 = χw are
mod pm characters with χ2 primitive.
If p - l(l + w), then

J(χ1, χ2, p
m) = χ1(l)χ2(w)

χ1χ2(l + w)p
m
2

1, if m is even,(
−2rc
p

) (
lw(l+w)

p

)
ε, if m ≥ 3 is odd.

If p | l(l + w), then J(χ1, χ2, p
m) = 0.

2. Preliminaries
Condition (1.10) will arise naturally in our proof of Theorem 1.1 but can

also be seen from elementary considerations.

Lemma 2.1. For any odd prime p, multiplicative characters χ1, χ2 mod

pm, and f1, f2 in Z[x], the sum S =
pm∑
x=1

χ1(x)χ2(f1(xk))epm(f2(xk)) is zero

unless χ1 = χk3 for some mod pm character χ3.

Proof. Taking z = aφ(pm)/(k,φ(pm)), a a primitive root mod pm, we have
zk = 1 and

S =
pm∑
x=1

χ1(xz)χ2(f1((xz)k))epm(f2((xz)k)) = χ1(z)S.
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Hence if S 6= 0 we must have 1 = χ1(z) = χ1(a)φ(pm)/(k,φ(pm)) and χ1(a) =
eφ(pm) (c′(k, φ(pm))) for some integer c′. For an integer c1 satisfying

c′(k, φ(pm)) ≡ c1k mod φ(pm),

we equivalently have χ1 = χk3 where χ3(a) = eφ(pm)(c1). �

We remark that the restriction to primitive χ2 is fairly natural; if χ2 is
not primitive but χ1 is primitive then S(χ1, χ2, Ax

k + B, pm) = 0 (since∑p
y=1 χ1(x + ypm−1) = 0), if both are not primitive we can reduce to a

lower modulus

S(χ1, χ2, Ax
k +B, pm) = pS(χ1, χ2, Ax

k +B, pm−1).

The condition m > t + n + 1 is also unsurprising; if t ≥ m − n then
one can of course use Euler’s Theorem to reduce the power of p in k to
t = m − n − 1. If t = m − n − 1 and the sum is non-zero then, as in
a Heilbronn sum, we obtain a mod p sum, pm−1∑p−1

x=1 χ(xl(Axk + B)w),
where one does not expect a nice evaluation.

Finally we observe that if χ is a mod rs character with (r, s) = 1, then
χ = χ1χ2 for a mod r character χ1 and mod s character χ2, and for any
g(x) in Z[x]

rs∑
x=1

χ(g(x)) =
r∑

x=1
χ1(g(x))

s∑
x=1

χ2(g(x)).

Thus it is enough to work modulo prime powers.

3. Gauss Sums
For a character χ mod pj , j ≥ 1, we let G(χ, pj) denote the classical

Gauss sum

G(χ, pj) =
pj∑
x=1

χ(x)epj (x).

Recall (see for example Section 1.6 of Berndt, Evans & Williams [1]) that

(3.1)
∣∣∣G(χ, pj)

∣∣∣ =


pj/2, if χ is primitive mod pj ,
1, if χ = χ0 and j = 1,
0, otherwise.

It is well known that the mod p Jacobi sums (1.4) (and their generalization
to finite fields) can be written in terms of Gauss sums (see for example
Theorem 2.1.3 of [1] or Theorem 5.21 of [11]). This extends to the mod pm
sums. For example when χ1, χ2 and χ1χ2 are primitive mod pm

(3.2) J(χ1, χ2, p
m) = G(χ1, p

m)G(χ2, p
m)

G(χ1χ2, pm) ,
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and |J(χ1, χ2, p
m)| = pm/2 (see Lemma 1 of [21] or [19]; the relationship

for Jacobi sums over more general residue rings modulo prime powers can
be found in [15]).

We showed in [13] that for p - n the sums

S (χ, x, nxk, pm) =
pm∑
x=1

χ(x)epm(nxk)

are zero unless χ = χk1 for some character χ1 mod pm, in which case (sum-
ming over the characters whose order divides (k, φ(pm)) to pick out the kth
powers)

(3.3) S (χ, x, nxk, pm) =
∑

χ
(k,φ(pm))
2 =χ0

χ1χ2(n)G(χ1χ2, p
m).

From Lemma 2.1 we know that the sum in (1.2) is zero unless χ1 = χk3
for some character χ3 mod pm, in which case the sum can be written as
(k, φ(pm)) mod pm Jacobi like sums

∑pm

x=1 χ5(x)χ2(Ax + B) and again be
expressed in terms of Gauss sums.

Theorem 3.1. Let p be an odd prime. If χ1, χ2 are characters mod pm
with χ2 primitive and χ1 = χk3 for some character χ3 mod pm, and n and
A1 are as defined in (1.8), then

pm∑
x=1

χ1(x)χ2(Axk +B)

= pn
∑
χ4∈X

χ3χ4(A1)χ2χ3χ4(B)G(χ3χ4, p
m−n)G(χ2χ3χ4, p

m)
G(χ2, pm) ,

where X denotes the mod pm characters χ4 with χD4 = χ0, D = (k, φ(pm)),
such that χ3χ4 is a mod pm−n character.

Notice that if (k, φ(pm)) = 1, as in the generalized Jacobi sums (1.4),
with χ2 primitive, and χ1 = χk3 is a mod pm−n character if p | A, then we
have the single χ4 = χ0 term and

pm∑
x=1

χ1(x)χ2(Axk +B) = pnχ3(A1)χ2χ3(B)G(χ3, p
m−n)G(χ2χ3, p

m)
G(χ2, pm) ,

of absolute value p(m+n)/2 if χ2, χ2χ3 and χ3 are primitive mod pm

and pm−n (noting that G(χ, pm) = χ(−1)G(χ, pm) we plainly recover the
form (3.2) in that case).
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For the multiplicative analogue of the classical Kloostermann sums, χ as-
sumed primitive and p -A, Theorem 3.1 gives a sum of two terms of size pm/2

pm∑∗

x=1
χ(Ax+ x−1) = χ3(A)

G(χ, pm)
(
G(χ3, p

m)2 + χ∗(A)G (χ3χ
∗, pm)2

)
when χ = χ2

3 (otherwise the sum is zero), where χ∗ denotes the mod pm

extension of the Legendre symbol (taking χ2 = χ, χ1 = χ, k = 2 we have
D = 2 and χ4 = χ0 or χ∗). For m = 1 this is Han Di’s [9, Lemma 1].
Cases where we can write the exponential sum explicitly in terms of Gauss
sums seem rare. Best known (after the quadratic Gauss sums) are perhaps
the Salié sums, evaluated by Salié [14] for m = 1 (see Williams [18],[17] or
Mordell [12] for a short proof) and Cochrane & Zheng [6, §5] for m ≥ 2;
for p - AB

pm∑∗

x=1
χ∗(x)epm(Ax+Bx−1)

= χ∗(B)
{
p

1
2 (m−1)(epm(2γ) + epm(−2γ))G (χ∗, p) , m odd,
p

1
2m (χ∗(γ)epm(2γ) + χ∗(−γ)epm(−2γ)) , m even,

if AB = γ2 mod pm, and zero if χ∗(AB) = −1. Cochrane & Zheng’s m ≥ 2
method works with a general χ as long as the congruence rAx2+cx−Br ≡ 0
mod p does not have a repeat root, but formulae seem lacking when m = 1
and χ 6= χ∗. Explicit formulae for power moments of Kloosterman sums
modulo prime powers are obtained in [8].

For the Jacobsthal sums we get (essentially Theorems 6.1.14 & 6.1.15
of [1])

p−1∑
m=1

(
m

p

)(
mk +B

p

)
=
(
B

p

) k−1∑
j=0

χ(B)2j+1G(χ2j+1, p)G(χ2j+1χ∗, p)
G(χ∗, p) ,

p−1∑
m=0

(
mk +B

p

)
=
(
B

p

) k−1∑
j=1

χ(B)2jG(χ2j , p)G(χ2jχ∗, p)
G(χ∗, p) ,

when p ≡ 1 mod 2k and p - B, where χ denotes a mod p character of order
2k and χ∗ the mod p character corresponding to the Legendre symbol (see
also [10]).

Proof of Theorem 3.1. Observe that if χ is a primitive character mod pj ,
j ≥ 1, then

(3.4)
pj∑
y=1

χ(y)epj (Ay) = χ(A)G(χ, pj).
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Indeed, for p - A this is plain from y 7→ A−1y. If p | A and j = 1 the sum
equals

∑p
y=1 χ(y) = 0 and for j ≥ 2 writing y = au+φ(pj−1)v, a a primitive

root mod pm, χ(a) = eφ(pj)(c), u = 1, ..., φ(pj−1), v = 1, .., p,

(3.5)
pj∑
y=1

χ(y)epj (Ay) =
φ(pj−1)∑
u=1

χ(au)epj (Aau)
p∑
v=1

ep(cv) = 0.

Hence if χ2 is a primitive character mod pm we have

G(χ2, p
m)χ2(Axk +B) =

pm∑
y=1

χ2(y)epm((Axk +B)y)

and, since χ1 = χk3 and D = (k, φ(pm)),

G(χ2, p
m)

pm∑
x=1

χ1(x)χ2(Axk +B)

=
pm∑
x=1

χ3(xk)
pm∑
y=1

χ2(y)epm((Axk +B)y)

=
pm∑
x=1

χ3(xD)
pm∑
y=1

χ2(y)epm((AxD +B)y)

=
∑

χD4 =χ0

pm∑
u=1

χ3(u)χ4(u)
pm∑
y=1

χ2(y)epm((Au+B)y)

=
∑

χD4 =χ0

pm∑
y=1

χ2(y)epm(By)
pm∑
u=1

χ3χ4(u)epm(Auy)

=
∑

χD4 =χ0

pm∑
y=1

χ2χ3χ4(y)epm(By)
pm∑
u=1

χ3χ4(u)epm(Au).

Since p - B we have
pm∑
y=1

χ2χ3χ4(y)epm(By) = χ2χ3χ4(B)G(χ2χ3χ4, p
m).

If χ3χ4 is a mod pm−n character then
pm∑
u=1

χ3χ4(u)epm(Au) = pn
pm−n∑
u=1

χ3χ4(u)epm−n(A1u)

= pnχ3χ4(A1)G(χ3χ4, p
m−n).
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If χ3χ4 is a primitive character mod pj for some m − n < j ≤ m then
by (3.5)

pm∑
u=1

χ3χ4(u)epm(Au) = pm−j
pj∑
u=1

χ3χ4(u)epj (pj−(m−n)A1u) = 0,

and the result follows. �

Notice that if m ≥ n+2 then by (3.1) the set X can be further restricted
to those χ4 with χ3χ4 primitive mod pm−n. Hence if pt|| k, withm ≥ n+t+2
and we write χ3(a) = eφ(pm)(c3), χ4(a) = eφ(pm)(c4) we have pm−1−t | c4,
pn|| (c3 +c4), giving pn|| c3. From χk3 = χ1 = χl this yields pn+t|| c3k = c1 =
cl and pn+t|| l. If n > 0 we deduce that pt|| l + wk. Moreover when n = 0
reversing the roles of A and B gives pt|| l+wk. Hence when m ≥ n+ t+ 2
we have S(χ1, χ2, Ax

k +B, pm) = 0 unless (1.13) holds. For m = n+ t+ 1
we similarly still have pn+t | l.

4. Weil Bounds
For m = 1 (non-degenerate) sums of the form (1.5) have Weil [16] type

bounds; for example if f is a polynomial (with f(x) not constant mod p or
g(x) 6= c h(x)b where b is the order of χ) then

(4.1) |S (χ, g(x), f(x), p)| ≤ (deg(f) + `− 1) p1/2,

where ` denotes the number of zeros and poles of g (see Castro & Moreno [2]
or Cochrane & Pinner [4] for a treatment of the general case).

An expression in terms of Gauss sums will sometimes give us an elemen-
tary way of obtaining a Weil strength bound. For example from (3.3) one
immediately obtains∣∣∣S (χ, x, nxk, pm)

∣∣∣ ≤ (k, φ(pm))pm/2.

Similarly from Theorem 3.1 we have

(4.2)
∣∣∣S(χ1, χ2, Ax

k +B, pm)
∣∣∣ ≤ (k, φ(pm))p(m+n)/2.

For m = 1 and p - A this gives us the bound∣∣∣∣∣∣
p−1∑
x=1

χ
(
xl(Axk +B)w

)∣∣∣∣∣∣ ≤ dp 1
2 ,

where d = (k, p−1). For l = 0 we can slightly improve this for the complete
sum, ∣∣∣∣∣∣

p−1∑
x=0

χ(Axk +B)

∣∣∣∣∣∣ ≤ (d− 1)p
1
2 ,
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since, taking χ1 = χ3 = χ0, χ2 = χ, the χ4 = χ0 term in Theorem 3.1 equals
−χ(B), the missing x = 0 term in (1.1). These correspond to the classical
Weil bound (4.1) after an appropriate change of variables to replace k by d.
For m ≥ t + 1 the bound (4.2) is dp

m+n
2 +t, so by (1.16) we have equality

in (4.2) for m ≥ n + 2t + 2, but not for t + n + 1 < m < 2t + n + 2 (note
m+n

2 + t = m− 1 when m = n+ 2t+ 2).

5. Proof of The Evaluation
Proof of Theorem 1.1. Let a be a primitive root mod pm and define the
integers rl, p - rl, by

aφ(pl) = 1 + rlp
l,

so that r = r1. Since (1 + rs+1p
s+1) = (1 + rsp

s)p, for any s ≥ 1 we have

(5.1) rs+1 ≡ rs mod ps.

We define the integers c1 := cl, c2 := cw, so that

(5.2) χ1(a) = eφ(pm)(c1), χ2(a) = eφ(pm)(c2).

Since χ2 is assumed primitive we have p - c2.
We write

γ = u
φ(pL)
d

+ v, L :=
{

1, if m ≤ n+ 2t+ 2,⌈
m−n

2
⌉
− t, if m > n+ 2t+ 2,

and observe that if u = 1, ..., dpm−L and v runs through an interval I of
length φ(pL)/d then γ runs through a complete set of residues mod φ(pm).
Hence setting h(x) = Axk +B and writing x = aγ we have

pm∑
x=1

χ1(x)χ2(h(x)) =
∑
v∈I

χ1(av)
dpm−1∑
u=1

χ1(au
φ(pL)
d )χ2

(
h

(
au

φ(pL)
d

+v
))

.

Since 2(L+ t) + n ≥ m we can write

h

(
au

φ(pL)
d

+v
)

= A
(
aφ(pL+t)

)u( k
dpt

)
avk +B

= A
(
1 + rL+tp

L+t
)u( k

dpt

)
avk +B

≡ h(av) +A1u

(
k

dpt

)
avkrL+tp

L+t+n mod pm.
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This is zero mod p if p | h(av) and consequently any such v give no contri-
bution to the sum. If p - h(av) then, since rL+t ≡ rL+t+n mod pL+t,

h

(
au

φ(pL)
d

+v
)
≡ h(av)

(
1+A1u

(
k

dpt

)
h(av)−1avkrL+t+np

L+t+n
)

mod pm

≡ h(av)a
A1u

(
k
dpt

)
h(av)−1avkφ(pL+t+n)

mod pm.

Thus,
pm∑
x=1

χ1(x)χ2(h(x)) equals

∑
v∈I

p-h(av)

χ1(av)χ2(h(av))
dpm−L∑
u=1

χ1

(
au

φ(pL)
d

)
χ2

(
au

φ(pL)
d

Akavkh(av)−1
)
,

where the inner sum
dpm−L∑
u=1

edpm−L

(
u
(
c1 + c2Ah(av)−1kavk

))
is dpm−L if

(5.3) c1 + c2h(av)−1A1a
vk
(
k

dpt

)
dpt+n ≡ 0 mod dpm−L

and zero otherwise. Thus our sum will be zero unless (5.3) has a solution
v with p - h(av). For m ≥ n+ t+ 1 we have m− L ≥ t+ n and a solution
to (5.3) necessitates dpt+n | c1 (giving us condition (1.10)) with pt+n || l for
m > n+ t+ 1. Hence for m > n+ t+ 1 we can simplify the congruence to

(5.4) h(av)
(

c1
dpt+n

)
+ c2A1a

vk
(
k

dpt

)
≡ 0 mod pm−L−t−n

and for a solution we must have pt || c1 + kc2. Equivalently,

(5.5) cg′(av)
dpt+n

≡ 0 mod pm−t−n−L,

and we must have a solution x0 to

(5.6) g′(x) ≡ 0 mod pmin{m−1, bm+n
2 c+t}

satisfying (1.12). Suppose that (5.6) has a solution x0 = av0 with p - h(x0)
and that m > n + t + 1. Rewriting the congruence (5.5) in terms of the
primitive root, a, gives

avk ≡ ab mod pm−t−n−L

for some integer b. Thus two solutions to (5.5), av1 and av2 must satisfy

v1k ≡ v2k mod φ(pm−t−n−L).
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That is v1 ≡ v2 mod (p−1)
d if m ≤ n+ 2t+ 2 and if m > n+ 2t+ 2

v1 ≡ v2 mod φ(pm−n−2t−L)
d

where m−n− 2t−L = L if m−n is even and L− 1 if m−n is odd. Thus
if n + t + 1 < m ≤ n + 2t + 2 or m > n + 2t + 2 and m − n is even our
interval I contains exactly one solution v. Choosing I to contain v0 we get
that

pm∑
x=1

χ1(x)χ2(h(x)) = dpm−Lχ1(x0)χ2(h(x0)).

Suppose that m > n + 2t + 2 with m − n odd and set s := m−n−1
2 . In

this case I will contain p solutions and we pick our interval I to contain
the p solutions v0 + yps−t−1

(
p−1
d

)
where y = 0, ..., p− 1. Since dpt | c1 and

dpt | k we can write, with g defined as in (1.7),

g1(x) := g(x)c = xc1(Axk +B)c2 =: H
(
xdp

t
)
.

Thus, setting χ = χc4, where χ4 is the mod pm character with χ4(a) =
eφ(pm)(1),

pm∑
x=1

χ1(x)χ2(h(x)) = dp
m+n−1

2 +t
p−1∑
y=0

χ
(
g
(
av0+yps−t−1( p−1

d )))

= dp
m+n−1

2 +t
p−1∑
y=0

χ4
(
H
(
xdp

t

0 ayφ(ps)
))
,

where

(5.7) xdp
t

0 ayφ(ps) = xdp
t

0 (1 + rsp
s)y = xdp

t

0 + yrsx
dpt

0 ps mod pm−n−1.

If n = 0 then 3s ≥ m. If n > 0 then, since

p−nH ′(xdpt) =
(
xg′1(x)
dpt+n

)
x−dp

t ∈ Z[x],

we have pn | 1
(k−1)!H

(k)
(
xdp

t

0

)
, and pn−vp(k) | 1

k!H
(k)
(
xdp

t

0

)
for all k ≥ 1

where vp(k) is the p-adic valuation of k, pvp(k) || k. Since vp(k) ≤ log k/ log p
we have

B(k) := ks+n−vp(k) ≥ ks− log k
log p+n ≥ 3s− log 3

log p+n = m+s−1− log 3
log p ≥ m

for all k ≥ 3 if m − n ≥ 5. For m − n = 3 we have B(4) = m + 1 and for
k ≥ 5, B(k) ≥ 5 +m− 3− log 5/ log p > m for all p ≥ 3 with B(3) = m for
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p ≥ 5. Hence, excluding the case p = 3 = m− n, n > 0, t = 0 we have

(5.8) (ps)k
H(k)

(
xdp

t

0

)
k! ≡ 0 mod pm,

for all k ≥ 3. For p = 3 = m − n, n > 0, t = 0 congruence (5.8) holds for
k ≥ 4 while it is easily checked that H ′′′(x) ≡ −(c1/d3n)Bc2xc1/d−33n mod
3n+1 and

1
3!H

′′′(xd0)
(
yrsx

d
0p
s
)3
≡ (c1/d3n)g1(x0)rsy3m−1mod 3m.

As xg′1(x) = (c1 + kc2)g1(x)− c2kBg1(x)/h(x),

p−nH ′′(xdpt)x2dpt =
(
c1
dpt

+ c2
k

dpt
− c2

k

dpt
B

h(x) − 1
)(

xg′1(x)
dpt+n

)
+ c2

(
k

dpt

)2
A1Bx

k g1(x)
h(x)2 .

Plainly a solution x0 to (5.6) satisfying (1.12) also has g′1(x0) ≡ 0 mod
p
m+n−1

2 +t and

(5.9) x0g
′
1(x0)

dpt+n
= λp

m−n−1
2 , H ′(xdp

t

0 ) = x−dp
t

0 λp
m+n−1

2 ,

for some integer λ, and

p−nH ′′(xdp
t

0 ) ≡ c2

(
k

dpt

)2
A1Bx

k−2dpt
0

g1(x0)
h(x0)2 mod p.

Hence by the Taylor expansion, using (5.7) and that rs ≡ rm−1 ≡ r mod p,

H
(
xdp

t

0 ayφ(ps)
)
≡ H(xdp

t

0 ) +H ′(xdp
t

0 )yrsxdp
t

0 p
m−n−1

2

+ 2−1H ′′(xdp
t

0 )y2r2
sx

2dpt
0 pm−n−1 mod pm

≡ g1(x0)
(
1 +

(
βy + αy2

)
rm−1p

m−1
)

mod pm

≡ g1(x0)a(βy+αy2)φ(pm−1) mod pm,

with

(5.10) β := g1(x0)−1λ, α := 2−1c2h(x0)−2rA1B

(
k

dpt

)2
xk0,

unless p = 3 = m − n, n > 0, t = 0 when the additional term in the
expansion gives β := g1(x0)−1λ+ (c1/d3n), and

χ4
(
H
(
xdp

t

0 ayφ(ps)
))

= χ(g(x0))ep(αy2 + βy).
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Since plainly p - α, completing the square then gives
pm∑
x=1

χ1(x)χ2(h(x)) = dp
m+n−1

2 +tχ(g(x0))ep(−4−1α−1β2)
p−1∑
y=0

ep(αy2)

= dp
m+n−1

2 +tχ(g(x0))ep(−4−1α−1β2)
(
α

p

)
εp

1
2

where ε is 1 or i as p is 1 or 3 mod 4.
Notice that g′(x0) ≡ 0 mod p

m+n−1
2 +t corresponds to

(5.11) xk0 ≡ −BA−1
1 l1(wk1 + pnl1)−1 mod p

m−n−1
2 .

Hence, since it is unchanged by a square mod p, we can replace the α inside
the Legendre symbol by 2cwrA1Bx

k
0, and the xk0 by −A1Bl1(wk1 + pnl1),

giving (
α

p

)
=
(−2rcwl1(wk1 + pnl1)

p

)
.

Observe that xk ≡ aγ mod pl has a solution if and only if (k, φ(pl)) | γ.
In particular for l − 1 ≥ t a solution mod pl guarantees a solution mod
pl+1. Since m−n−1

2 − 1 ≥ t, it is clear from the form (5.11) that (5.6) has a
solution satisfying (1.12) if and only if (1.11) does. For such a solution x0
we have p | λ and ep(−4−1α−1β2) = 1 (unless p = 3 = m− n, n > 0, t = 0
when −4−1α−1β2 ≡ −α ≡ −rcl1k mod 3). �
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