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Construction of points realizing
the regular systems of

Wolfgang Schmidt and Leonard Summerer

par Damien ROY

On the occasion of Axel Thue’s 150th birthday,
with special homage to Professor Wolfgang Schmidt

on his 80th birthday.

Résumé. Récemment, W. M. Schmidt et L. Summerer ont in-
troduit une nouvelle théorie qui leur permet de redémontrer les
principales inégalités connues liant les exposants d’approximation
diophantienne d’un point de Rn, et d’en trouver de nouvelles. Ils
montrent d’abord comment la plupart de ces exposants peuvent
être calculés en termes des minima successifs d’une famille de
convexes à un paramètre attachée à ce point. Puis ils démontrent
que ces minima peuvent, à leur tour, être approchés par une cer-
taine classe de fonctions dites de type (n, γ). Ils ramènent ainsi
le problème initial à l’étude de ces fonctions. Pour compléter la
théorie, on voudrait savoir si, en retour, étant donné une fonction
de ce type, il existe un point de Rn dont les minima de la famille
de convexes correspondante approchent cette fonction. On montre
ici que tel est le cas pour les fonctions dites régulières.

Abstract. In a series of recent papers, W. M. Schmidt and
L. Summerer developed a new theory by which they recover all
major generic inequalities relating exponents of Diophantine ap-
proximation to a point in Rn, and find new ones. Given a point
in Rn, they first show how most of its exponents of Diophan-
tine approximation can be computed in terms of the successive
minima of a parametric family of convex bodies attached to that
point. Then they prove that these successive minima can in turn
be approximated by a certain class of functions which they call
(n, γ)-systems. In this way, they bring the whole problem to the
study of these functions. To complete the theory, one would like
to know if, conversely, given an (n, γ)-system, there exists a point
in Rn whose associated family of convex bodies has successive
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minima which approximate that function. In the present paper,
we show that this is true for a class of functions which they call
regular systems.

1. Introduction

Let ξ1, . . . , ξn−1 ∈ R for some integer n ≥ 2. A basic problem in Diophan-
tine approximation is to measure how well the point (ξ1, . . . , ξn−1) can be
approximated by rational points with common denominators below a given
bound, and how small can integer linear combinations of 1, ξ1, . . . , ξn−1 be,
given an upper bound on the absolute values of their coefficients. This gives
rise to four classical exponents of approximation which are linked by the
dualities of A. Y. Khintchine [5, 6] and V. Jarník [4]. In the case n = 3,
M. Laurent achieved recently a complete description of the joint spectrum of
these four exponents [7]. Such a description is still lacking in higher dimen-
sions. However, N. Moshchevitin [8] recently found a new relation between
these exponents in the case n = 4. Then, a second proof of it together with
a proof of a “dual” relation was given by W. M. Schmidt and L. Summerer
in [13] using their theory of parametric geometry of numbers. To show that
both relations are best possible these authors ask for the existence of points
in R4 satisfying certain conditions that we will recall below. The purpose
of this note is to construct such points. For the interested reader, it can
serve as an introduction to [9] where we construct points satisfying the fully
general conditions provided by the theory of Schmidt and Summerer.

This wonderful theory, called parametric geometry of numbers by their
authors, was developed first in dimension n = 3 in [11] and then for gen-
eral dimension n ≥ 2 in [12]. It provides a very precise description of the
behavior of the successive minima of certain parametric families of con-
vex bodies of Rn. Here, the term convex body of Rn refers to a compact
0-symmetric neighborhood C of 0 in Rn. We recall that, for j = 1, . . . , n,
the j-th minimum λj(C) of such a set is the smallest real number λ such
that λC contains at least j linearly independent elements of Zn. Clearly
these minima form a monotone increasing sequence λ1(C) ≤ · · · ≤ λn(C).
Throughout this paper, we assume that the integer n is at least 2.

Let x · y denote the usual scalar product of vectors x,y ∈ Rn, and let
‖x‖ = (x · x)1/2 denote the corresponding norm of a vector x. For our
purpose, we work with the families of convex bodies

Cu(Q) =
{
x ∈ Rn ; ‖x‖ ≤ Q, |x · u| ≤ Q−(n−1) } (Q ≥ 1),

where u is a fixed unit vector of Rn. These are essentially the polar recip-
rocal bodies to those considered in [12] but in view of the close relations
linking the successive minima of a convex body to those of its polar recip-
rocal body, this makes very little difference. Besides its own fundamental
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intrinsic interest, a strong motivation for studying the successive minima
of Cu(Q) as functions of Q comes from the fact that, if we choose u to be
a multiple of (1, ξ1, . . . , ξn−1), then the four exponents to which we alluded
above can be computed directly from these functions (see [12, §1]), and
the same holds for the intermediate exponents studied by Y. Bugeaud and
M. Laurent in [1] (see also [2] and [10]). In fact, let

∆n := {(x1, . . . , xn) ∈ Rn ; x1 ≤ · · · ≤ xn},

and consider the continuous map Lu : [0,∞)→ ∆n given by

Lu(q) =
(

log λ1(Cu(eq)), . . . , log λn(Cu(eq))
)

(q ≥ 0).

An approximation of Lu with bounded difference suffices by far to compute
these exponents.

In [12, §2], Schmidt and Summerer define, for each γ ≥ 0 and each a ≥ 0,
the notion of an (n, γ)-system on the interval [a,∞). This is a continuous
map P : [a,∞)→ Rn which satisfies a certain number of conditions which,
although relatively easy to state, are somewhat difficult to analyze. The
largest part of their paper deals with this issue. Here, since we essentially
use the polar reciprocal bodies, the relevant notion for us is a dual one as
in [13, §7]. However, for simplicity, we keep the same terminology. Then,
modulo slight modifications, the authors establish in [12, §2] the existence
of a constant γ > 0 and of an (n, γ)-system P : [0,∞) → Rn such that
Lu −P is bounded on [0,∞).

As shown in [12, §3], the behavior of an (n, 0)-system is much easier to
understand. In particular, such a map takes values in ∆n. In [9], we show
that, for each (n, γ)-system P : [0,∞) → Rn, there exist a real number
a ≥ 0 and an (n, 0)-system X : [a,∞)→ ∆n for which P−X is bounded on
[a,∞). In view of the result of Schmidt and Summerer mentioned above,
this means that, for any unit vector u in Rn, there exists an (n, 0)-system
X : [a,∞) → ∆n for which the difference Lu − X is bounded on [a,∞).
In [9], we also show that the converse is true namely that, for each (n, 0)-
system X : [a,∞)→ ∆n, there exists a unit vector u of Rn such that Lu−X
is bounded on [a,∞). In particular, this proves a conjecture of [12, §4] to
the effect that all generic relations between exponents of approximation can
be derived from the study of (n, 0)-systems.

Our goal here is to construct unit vectors associated to a class of (n, 0)-
systems which is slightly more general than the regular systems of [13, §3].
To present this class of quasi-regular (n, 0)-systems, we follow Schmidt and
Summerer in [12, §3] and define the combined graph of a set of real valued
functions defined on an interval I to be the union of their graphs in I ×R.
For a function P = (P1, . . . , Pn) : [a,∞) → ∆n, and a sub-interval I of
[a,∞), we define the combined graph of P above I to be the combined
graph of its components P1, . . . , Pn restricted to I. If P is continuous and
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if the real numbers q ≥ a at which P1(q), . . . , Pn(q) are not all distinct
form a discrete subset of [a,∞), then the map P is uniquely determined
by its combined graph over the full interval [a,∞). We also denote by
Φn : Rn → ∆n the continuous map which lists the coordinates of a point in
monotone increasing order.

Definition 1.1. A quasi-regular (n, 0)-system is a continuous function
P : [a,∞) → ∆n for which there exists an unbounded strictly increasing
sequence of positive real numbers (Xi)i≥1 such that, upon defining

qi = (Xi + · · ·+Xi+n−1)/n (i ≥ 1),

we have a = q1 and, for each i ≥ 1 and each q ∈ [qi, qi+1],

(1.1) P(q) = Φn(Xi + n(q − qi)− q, Xi+1 − q, . . . , Xi+n−1 − q).

If, for some δ > 0, we also have Xi+1 ≥ Xi + δ for each i ≥ 1, then we say
that P has mesh at least δ. If there exists ρ > 1 such that Xi+1 = ρXi for
each i ≥ 1, then we say that P is regular.

Since Xi + n(qi+1 − qi)− qi+1 = Xi+n − qi+1, Condition (1.1) applied to
q = qi, qi+1 implies that

P(qi) = (Xi−qi, . . . , Xi+n−1−qi), P(qi+1) = (Xi+1−qi+1, . . . , Xi+n−qi+1).

Therefore, upon writing P = (P1, . . . , Pn), it is equivalent to asking that the
combined graph of P above [qi, qi+1] consists of one line segment of slope
n − 1 joining (qi, P1(qi)) to (qi+1, Pn(qi+1)), together with n − 1 distinct
line segments of slope −1 joining (qi, Pj+1(qi)) to (qi+1, Pj(qi+1)) for each
j = 1, . . . , n− 1.

The above remark shows in particular that any choice of real numbers
0 < X1 < X2 < · · · with limi→∞Xi = ∞ gives rise to a continuous map
P : [q1,∞)→ ∆n satisfying (1.1) for each i ≥ 1. It also implies that, in turn,
such a map P uniquely determines the sequence (Xi)i≥1 because the local
minima of its first component P1 are the points (qi, P1(qi)) = (qi, Xi − qi)
(i ≥ 1). This is illustrated on Figure 1 below which shows in solid lines the
combined graph of a quasi-regular (4, 0)-system over an interval [q1, q5].

A general (n, 0)-system also comes with a partition of its domain into
subintervals above which its combined graph consists of a line segment of
slope n−1 and n−1 line segments of slope −1, but there is more flexibility
in the way in which these line segments connect the points above the left
and the right end-points of the subintervals. In the case of a quasi-regular
(n, 0)-system, the line segments of slope n − 1 always connect the lowest
point on the left to the highest point on the right.

The main result of this paper is the following statement where ‖ ‖∞
stands for the maximum norm.
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Figure 1.1. Example of combined graph of a quasi-regular
(4, 0)-system over an interval [q1, q5], with the trajectory of
an ideal point x∗3 enlightened.

Theorem 1.2. Let P : [q1,∞)→ ∆n be a quasi-regular (n, 0)-system with
mesh at least log 4. Then there exists a unit vector u of Rn such that

‖P(q)− Lu(q)‖∞ ≤ 2n2 (q ≥ q1).

To say a word about the proof, recall that each convex body C of Rn
induces a distance function on Rn. It is the map from Rn to [0,∞) which
assigns to each point x of Rn the smallest real number λ ≥ 0, denoted
λ(x, C), such that x ∈ λC (see [3, §1.3]). Usually, C is fixed and x varies.
Here, the situation is reversed. The point x ∈ Rn is fixed and we let the
convex body C vary within the family Cu(Q) with Q ≥ 1, for some unit
vector u of Rn. In view of the definition of Cu(Q), we have

(1.2) λ(x, Cu(Q)) = max
{
‖x‖Q−1, |x · u|Qn−1} (Q ≥ 1).

Suppose that the coordinates of u are linearly independent over Q and
that x ∈ Zn \ {0}. Then, we have 0 < |x · u| < ‖x‖ and we define a map
Lx : [0,∞)→ R by

Lx(q) := L(x, q) := log λ(x, Cu(eq))
= max

{
log ‖x‖ − q, log |x · u|+ (n− 1)q

}
(q ≥ 0).

Its graph is a polygon with two sides: a line segment of slope −1 followed
by an half-line with slope n − 1. The function Lx is continuous and has a
local minimum at the point where its graph changes slope from −1 to n−1.
Although x is fixed, we say that Lx, or its graph, represents the trajectory
of the point x with respect to the varying family of convex bodies Cu(Q).
Clearly, this trajectory is uniquely determined by its local minimum. It is
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not difficult to show that the combined graph of Lu above any compact in-
terval is covered by the trajectories of finitely many non-zero integer points
(see [11, §4]).

Now, let P : [q1,∞) → ∆n be a quasi-regular (n, 0)-system. In the no-
tation of Definition 1.1, we can imagine its combined graph covered by
the trajectories of a sequence of “ideal points” x∗i having local minima at
(qi, P1(qi)). Figure 1 shows the trajectory of such an ideal point x∗3. In
general, we cannot hope for such points to exist. Instead, we construct
a sequence (xi)i≥1 of integer points and a unit vector u such that, for
each i ≥ 1, the trajectory of xi is close to ideal and moreover the n-tuple
(xi, . . . ,xi+n−1) is a basis of Zn. In practice, the vector u is also constructed
as a limit of unit vectors ui where ui is perpendicular to xi, . . . ,xi+n−2 for
each i ≥ 1. Then, it suffices to choose the sequence (xi)i≥1 so that the
trajectory of xi with respect to the family Cui+1(Q) is close to ideal. To
this end, we require P to have mesh at least log 4. This allows us to control
appropriately the norms of the points xi as well as the angles that they
make with respect to certain subspaces.

2. Almost orthogonal sequences

For k = 1, . . . , n, we endow
∧k Rn with the Euclidean space structure

characterized by the property that, for any orthonormal basis (e1, . . . , en)
of Rn, the products ej1 ∧ · · · ∧ ejk with 1 ≤ j1 < · · · < jk ≤ n form
an orthonormal basis of

∧k Rn. We denote by ‖p‖ the associated norm of
an element p of

∧k Rn. We also denote by
∧k Zn the lattice of

∧k Rn of
co-volume 1 spanned by the products x1 ∧ · · · ∧ xk with x1, . . . ,xk ∈ Zn.

The projective distance between two non-zero points x,y of Rn is

dist(x,y) := ‖x ∧ y‖
‖x‖ ‖y‖ .

It depends only on the classes of x and y in Pn−1(R) and represents the
sine of the angle between the one-dimensional subspaces of Rn spanned by
x and y. This function induces a metric on Pn−1(R) (satisfying the triangle
inequality) and Pn−1(R) is complete with respect to that metric.

Given a point x of Rn and a subspace U of Rn, we denote by U⊥ the
orthogonal complement of U and by projU (x) the orthogonal projection of
x on U . If x is non-zero, we also define

dist(x, U) := ‖projU⊥(x)‖
‖x‖ .

The next lemma connects the two notions of distance.
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Lemma 2.1. If x is a non-zero point of Rn, and if U is a non-zero proper
subspace of Rn with basis (y1, . . . ,yk), then

dist(x, U) = ‖x ∧ y1 ∧ · · · ∧ yk‖
‖x‖ ‖y1 ∧ · · · ∧ yk‖

= min{dist(x,y) ; y ∈ U \ {0} }.

Proof. The first formula follows from the definition using

‖x∧y1∧· · ·∧yk‖ = ‖projU⊥(x)∧y1∧· · ·∧yk‖ = ‖projU⊥(x)‖ ‖y1∧· · ·∧yk‖.

It implies in particular that dist(x,y) = dist(x, 〈y〉R) for any y ∈ Rn \ {0}.
To prove the second equality of the lemma, we first note that, for any sub-
space V of U , we have projU⊥(x) = projU⊥(projV ⊥(x)) and so dist(x, U) ≤
dist(x, V ). In particular, this implies that dist(x, U) ≤ dist(x,y) for any
y ∈ U \ {0}. If x /∈ U⊥, then y := projU (x) is a non-zero element of U with
dist(x, U) = dist(x,y) because x has the same orthogonal projection on U⊥
as on 〈y〉⊥R . Thus the second equality holds in that case. If x ∈ U⊥, then it
still holds because dist(x, U) = 1 = dist(x,y) for any y ∈ U \ {0}. �

Definition 2.2. We say that a sequence (x1, . . . ,xk) of vectors of Rn is
almost orthogonal if it is linearly independent and if

dist(xj , 〈x1, . . . ,xj−1〉R) ≥ 1/2 (2 ≤ j ≤ k).

By Lemma 2.1, it follows that any subsequence of an almost orthogonal
sequence is almost orthogonal. Moreover, if (x1, . . . ,xk) is almost orthogo-
nal, then

‖x1 ∧ · · · ∧ xk‖ = ‖x1‖
k∏
j=2

(
‖xj‖ dist

(
xj , 〈x1, . . . ,xj−1〉R

))
≥ 2−(k−1)‖x1‖ · · · ‖xk‖.

Note that in [9], we use a stronger notion of almost orthogonality.
We say that an element x of Zn is primitive if it is non-zero and if its

coordinates are relatively prime as a set. More generally, we say that a k-
tuple (x1, . . . ,xk) of elements of Zn is primitive if x1 ∧ · · · ∧ xk is non-zero
and if its coordinates with respect to a basis of

∧k Zn are relatively prime.
This condition is equivalent to asking that (x1, . . . ,xk) can be extended to
a basis (x1, . . . ,xn) of Zn. In particular, it requires that 1 ≤ k ≤ n.

Finally, we say that a non-zero subspace U of Rn is defined over Q if it is
spanned by elements of Qn. Following Schmidt in [10], we then define the
height of U by

H(U) = ‖x1 ∧ · · · ∧ xk‖
where (x1, . . . ,xk) is any basis of U ∩Zn. This is independent of the choice
of the basis. The next result summarizes some of the above considerations.
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Lemma 2.3. Let (x1, . . . ,xn−1) be an almost orthogonal primitive (n−1)-
tuple of points of Zn and let U := 〈x1, . . . ,xn−1〉R. Then, we have

2−(n−2)‖x1‖ · · · ‖xn−1‖ ≤ H(U) ≤ ‖x1‖ · · · ‖xn−1‖.

We conclude this section with a particular construction of almost orthog-
onal sequences. It will serve as the initial step for a recursive construction
of integer points in the next section.

Lemma 2.4. Let (e1, . . . , en) denote the canonical basis of Zn and let
B1, . . . , Bn−1 ∈ Z with Bi ≥ 2i−1 for i = 1, . . . , n− 1. Set

xi = Biei + ei+1 (i = 1, . . . , n− 1).
Then (x1, . . . ,xn−1) is an almost orthogonal primitive (n − 1)-tuple of in-
teger points.

Proof. We first note that (e1,x1, . . . ,xn−1) is a basis of Zn and therefore
(x1, . . . ,xn−1) is primitive. Let k be an integer with 2 ≤ k ≤ n− 1. Since

x1 ∧ · · · ∧ xk ∧ ek+1 = B1 · · ·Bke1 ∧ · · · ∧ ek+1,

we must have ‖x1 ∧ · · · ∧ xk‖ ≥ B1 · · ·Bk. As we also have

‖x1 ∧ · · · ∧ xk−1‖ ‖xk‖ ≤
k∏
i=1
‖xi‖ =

k∏
i=1

√
1 +B2

i

≤
k∏
i=1

(
Bi exp

( 1
2B2

i

))
≤ 2

k∏
i=1

Bi ,

we conclude from Lemma 2.1 that dist(xk, 〈x1, . . . ,xk−1〉R) ≥ 1/2. This
shows that the sequence (x1, . . . ,xn−1) is almost orthogonal. �

3. A recursive construction of points

The next lemma is the key to a recursive construction of points in Zn
which is at the heart of the proof of our main theorem.

Lemma 3.1. Let (y1, . . . ,yn−1) be an almost orthogonal primitive (n−1)-
tuple of points of Zn and let A be a real number with

A ≥ 2 + ‖y1‖+ · · ·+ ‖yn−1‖.
Then, there exists a point yn ∈ Zn with the following properties

1) A ≤ ‖yn‖ ≤ 2A,
2) (y1,y2, . . . ,yn) is a basis of Zn,
3) (y2, . . . ,yn) is almost orthogonal,
4) if u is a unit vector perpendicular to U := 〈y1, . . . ,yn−1〉R, and if

u′ is a unit vector perpendicular to U ′ := 〈y2, . . . ,yn〉R, then

dist(u,u′) ≤ 1
AH(U) and |y1 · u′| =

1
H(U ′) .
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Proof. Let U and u be as in Condition 4). We define V = 〈y2, . . . ,yn−1〉R,
and choose a unit vector v of U which is perpendicular to V . Then (u,v)
is an orthonormal basis for V ⊥.

The hyperplane H(U)−1u + U is a closest translate of U which con-
tains a point of Zn not in U . For any point y of this hyperplane, we have
| det(y1, . . . ,yn−1,y)| = 1 and there exist ε1, . . . , εn−1 ∈ [−1/2, 1/2] such
that

y + ε1y1 + · · ·+ εn−1yn−1 ∈ Zn.
We apply this to the point y = H(U)−1u + (3/2)Av. This yields an integer
point

yn := 1
H(U)u + 3

2Av + ε1y1 + · · ·+ εn−1yn−1 ∈ Zn

for which (y1, . . . ,yn) is a basis of Zn because | det(y1, . . . ,yn)| = 1. Since
H(U) ≥ 1, we also find∥∥∥yn − 3

2Av
∥∥∥ ≤ 1 + 1

2
(
‖y1‖+ · · ·+ ‖yn−1‖

)
≤ A

2
and thus A ≤ ‖yn‖ ≤ 2A. This shows that Conditions 1) and 2) hold.

Since the orthogonal projection of yn on V ⊥ has norm at least

(3.1) |yn · v| =
∣∣∣32A+ ε1y1 · v

∣∣∣ ≥ 3
2A−

1
2‖y1‖ ≥ A,

we find that

dist(yn, 〈y2, . . . ,yn−1〉R) = dist(yn, V ) = ‖projV ⊥(yn)‖
‖yn‖

≥ A

‖yn‖
≥ 1

2 .

We also note that

dist(yi, 〈y2, . . . ,yi−1〉R) ≥ dist(yi, 〈y1, . . . ,yi−1〉R) ≥ 1
2 (3 ≤ i ≤ n− 1)

because (y1, . . . ,yn−1) is almost orthogonal. Thus (y2, . . . ,yn) is almost
orthogonal as well, and so Condition 3) holds.

Let U ′ := 〈y2, . . . ,yn〉R and let u′ be a unit vector perpendicular to U ′.
Since V ⊂ U ′, we have u′ ∈ V ⊥ and so we can write

u′ = au + bv

for some a, b ∈ R with a2 + b2 = 1. Since yn ∈ U ′, we have 0 = yn · u′ and
so

|b| = |a| |yn · u|
|yn · v|

≤ |yn · u|
A

= 1
AH(U)

where the middle inequality uses (3.1) and |a| ≤ 1. We conclude that

dist(u,u′) = ‖u ∧ u′‖ = ‖bu ∧ v‖ = |b| ≤ 1
AH(U) .
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Finally, we find that
1 = | det(y1, . . . ,yn)| = |y1 · u′| ‖y2 ∧ · · · ∧ yn‖ = |y1 · u′|H(U ′)

and so |y1 · u′| = H(U ′)−1. �

Proposition 3.2. Let (Ai)i≥1 be a sequence of real numbers with A1 ≥ 1
and Ai+1 ≥ 4Ai for each i ≥ 1. Then there exist a sequence of points
(xi)i≥1 in Zn and a unit vector u of Rn which, for each index i ≥ 1, fulfil
the following conditions:

1) (xi,xi+1, . . . ,xi+n−1) is a basis of Zn,
2) Ai ≤ ‖xi‖ ≤ 2Ai,
3) 2−n ≤ |xi · u|Ai+1 · · ·Ai+n−1 ≤ 2n.

Proof. We first construct an almost orthogonal primitive (n − 1)-tuple
(x1, . . . ,xn−1) as in Lemma 2.4 using B1 = dA1e, . . . , Bn−1 = dAn−1e,
unless A1 ≤

√
2, in which case we take B1 = 1. Then these points satisfy

Ai ≤ ‖xi‖ ≤ 2Ai for i = 1, . . . , n− 1. We set
U1 = 〈x1, . . . ,xn−1〉R

and denote by u1 a unit vector of Rn orthogonal to U1. Then, using the
fact that
2 + 2Ai + · · ·+ 2Ai+n−2 ≤ 2(1 +A1 + · · ·+Ai+n−2) ≤ Ai+n−1 (i ≥ 1),

Lemma 3.1 allows us to construct recursively, for each i ≥ 1, an additional
integer point xi+n−1, an additional (n − 1)-dimensional vector subspace
Ui+1 and an additional unit vector ui+1 with the following properties

1) Ai+n−1 ≤ ‖xi+n−1‖ ≤ 2Ai+n−1,
2) (xi, . . . ,xi+n−1) is a basis of Zn,
3) (xi+1, . . . ,xi+n−1) is almost orthogonal,
4) Ui+1 = 〈xi+1, . . . ,xi+n−1〉R and ui+1 is perpendicular to Ui+1,
5) dist(ui,ui+1) ≤ A−1

i+n−1H(Ui)−1,
6) |xi · ui+1| = H(Ui+1)−1.

Thanks to Lemma 2.3, we have

2−(n−2)‖xi‖ · · · ‖xi+n−2‖ ≤ H(Ui) ≤ ‖xi‖ · · · ‖xi+n−2‖ (i ≥ 1),
and therefore
(3.2) 2−(n−2)Ai · · ·Ai+n−2 ≤ H(Ui) ≤ 2n−1Ai · · ·Ai+n−2 (i ≥ 1).
In view of the growth of the sequence (Ai)i≥1, this implies that H(Ui+1) ≥
2H(Ui) for each i ≥ 1. Then, using 5), we deduce that the image of (ui)i≥1
in Pn−1(R) converges to the class of a unit vector u satisfying

dist(ui,u) ≤
∞∑
j=i

dist(uj ,uj+1) ≤
∞∑
j=i

1
Aj+n−1H(Uj)

≤ 2
Ai+n−1H(Ui)
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for each i ≥ 1. Fix an index i ≥ 1. Upon replacing ui+1 by −ui+1 if
necessary, we may assume that ui+1 · u ≥ 0. Then, the above estimate
yields
|xi · u− xi · ui+1| ≤ ‖xi‖ ‖u− ui+1‖

≤ 2‖xi‖dist(u,ui+1) ≤ 4‖xi‖
Ai+nH(Ui+1) ≤

1
2H(Ui+1)

since Ai+n ≥ 4nAi ≥ 8‖xi‖. In view of 6), this implies that
1

2H(Ui+1) ≤ |xi · u| ≤
2

H(Ui+1) .

Using the estimates for H(Ui+1) given by (3.2), this shows that the third
condition of the proposition is satisfied. �

In view of the formula (1.2) for λ(x, Cu(Q)), the estimates of the propo-
sition yield the following result.

Corollary 3.3. Let the notation be as in the proposition. For each integer
i ≥ 1 and each real number Q ≥ 1, we have

2−nAi
Q

max
{

1, Q
Qi

}n
≤ λ(xi, Cu(Q)) ≤ 2nAi

Q
max

{
1, Q
Qi

}n
.

where Qi = (Ai · · ·Ai+n−1)1/n.

4. Proof of the main theorem

To deduce our main theorem from Proposition 3.2 and its corollary, we
simply use the following well-known principle.

Lemma 4.1. Let C be a convex body of Rn and let y1, . . . ,yn be linearly
independent points of Zn. Suppose that
(4.1) λ(y1, C) · · ·λ(yn, C)vol(C) ≤ B
for some real number B. Then, we have(
λ1(C), . . . , λn(C)

)
≤ Φn

(
λ(y1, C), . . . , λ(yn, C)

)
≤ n!B

2n
(
λ1(C), . . . , λn(C)

)
,

where the inequality is meant component-wise.

Proof. Choose a permutation σ ∈ Sn such that
λ(yσ(1), C) ≤ · · · ≤ λ(yσ(n), C).

By definition of the successive minima, we have λj(C) ≤ λ(yσ(j), C) for
j = 1, . . . , n. As Minkowski’s second convex body theorem gives

2n

n! ≤ λ1(C) · · ·λn(C)vol(C),
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comparison with (4.1) yields

λj(C) ≤ λ(yσ(j), C) ≤
n!B
2n λj(C) (1 ≤ j ≤ n). �

Proof of Theorem 1.2. Let (Xi)i≥1 and (qi)i≥1 be as in Definition 1.1,
for the given quasi-regular (n, 0)-system P. We define

Ai := exp(Xi) (i ≥ 1).

For this choice of parameters, we select a sequence of integer points (xi)i≥1
and a unit vector u which satisfy the conclusion of Proposition 3.2. We also
define

L(xi, q) := log λ(xi, Cu(eq)) (q ≥ 0, i ≥ 1).
Since exp(qj) = (Aj · · ·Aj+n−1)1/n for each j ≥ 1, Corollary 3.3 yields

(4.2) |L(xj , q)−Xj − nmax{0, q − qj}+ q| ≤ n log(2) (q ≥ 0, j ≥ 1).

To show that the vector u has the required property, we fix an integer i ≥ 1
and a real number q ∈ [qi, qi+1]. The points xi, . . . ,xi+n−1 form a basis of
Zn and, since qi ≤ q ≤ qi+1, the estimates (4.2) show that they satisfy

|L(xi, q)−Xi − n(q − qi) + q| ≤ n log 2,
|L(xi+1, q)−Xi+1 + q| ≤ n log 2,
· · ·

|L(xi+n−1, q)−Xi+n−1 + q| ≤ n log 2.

On one hand, these inequalities give

‖P(q)− Φn(L(xi, q), . . . , L(xi+n−1, q))‖∞ ≤ n log 2.

On the other hand, since vol(C(eq)) ≤ 2n, they also lead to

L(xi, q) + · · ·+ L(xi+n−1, q) + log vol(C(eq)) ≤ (n2 + n) log 2

which, by Lemma 4.1, implies that

‖Lu(q)− Φn(L(xi, q), . . . , L(xi+n−1, q))‖∞ ≤ (n2 + n) log 2 + log(n!/2n).

This gives

‖P(q)− Lu(q)‖∞ ≤ (n2 + n) log(2) + log(n!) ≤ 2n2,

as requested. �
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